
Computing ǫ-Free NFA from Regular
Expressions in O(n log2(n)) Time⋆

Christian Hagenah and Anca Muscholl

Institut für Informatik, Universität Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany

Abstract. The standard procedure to transform a regular expression to
an ǫ-free NFA yields a quadratic blow-up of the number of transitions. For
a long time this was viewed as an unavoidable fact. Recently Hromkovic̆
et.al. [5] exhibited a construction yielding ǫ-free NFA with O(n log2(n))
transitions. A rough estimation of the time needed for their construc-
tion shows a cubic time bound. The known lower bound is Ω(n log(n)).
In this paper we present a sequential algorithm for the construction de-
scribed in [5] which works in time O(n log(n) + size of the output). On
a CREW PRAM the construction is possible in time O(log(n)) using
O(n+ (size of the output)/ log(n)) processors.

1 Introduction

Among various descriptions of regular languages regular expressions are espe-
cially interesting because of their succinctness. On the other hand, the high
degree of expressiveness leads to algorithmically hard problems, for example test-
ing equivalence is PSPACE-complete. Given a regular expression we are often
interested in computing an equivalent nondeterministic finite automaton without
ǫ-transitions (NFA). This conversion is of interest due to some operations which
can be easily performed on NFA, as for example intersection.

In this paper we present efficient sequential and parallel algorithms for con-
verting regular expressions into small NFA. For a regular expression E we take
the number of letters as the size of E, whereas the size of an NFA is measured as
the number of transitions. It is known that the translation from NFA to regular
expressions can yield an exponential blow-up, [3]. The other direction however
can be achieved in polynomial time. One classical method for constructing NFA
from regular expressions is based on position automata. This construction yields
NFA of quadratic size, see e.g. [1, 2]. A substantial improvement on this construc-
tion was achieved in [5], where a refinement of position automata was shown to
yield NFA with O(n log2(n)) transitions. This is optimal up to a possible log(n)
factor, as shown in [5] by proving a O(n log(n)) lower bound. However, the pre-
cise complexity of the conversion proposed in [5] was not investigated. A trivial
estimation of the construction of [5] leads to a cubic algorithm.

⋆ Research was partly supported by the French-German project PROCOPE.

Performing the conversion form regular expressions to NFA efficiently is im-
portant from a practical viewpoint. The best one can hope for is to perform
the construction in time proportional to the output size. In the present paper
we propose efficient sequential and parallel algorithms for converting regular
expressions to NFA. Our approach is based on the construction proposed in
[5], but using a slightly different presentation. This allows us to obtain an al-
gorithm which works in time O(n log(n) + size of the output). Therefore, our
algorithm has worst-case complexity of O(n log2(n)). In the parallel setting we
are able to perform the construction on a CREW PRAM in O(log(n)) time by
using O(n) processors for computing the description of the states of the NFA,
resp. O(n log(n)) processors in the worst-case for the output NFA. Previously
known was an O(log(n)) time algorithm using O(n/ log(n)) processors, which
computes an NFA with ǫ-transitions, see [4]. The paper is organized as follows.
The sequential algorithm is presented in Sect. 4. Basic notions on position au-
tomata are recalled in Sect. 2, whereas Sect. 3 deals with the common follow
sets construction of [5].

2 Preliminaries

Let A denote a finite alphabet. We consider non-empty regular expressions over
A, i.e. (bracketed) expressions E built from ǫ and the letters in A, using con-
catenation ·, union + and Kleene star ∗. The regular language defined by a
regular expression E is denoted L(E). Finite automata are denoted as usual as
A = (Q,A, q0, δ, F), with Q as set of states, δ ⊆ Q×A×Q as transition relation,
q0 as initial state and F as set of final states. The language recognized by A is
denoted L(A).

For algorithmic purposes a regular expression E over A is given by some
syntax tree tE . The syntax tree tE has leaves labelled by ǫ or a ∈ A, and the
inner nodes are either binary and labelled by + or ·, or they are unary and
labelled by ∗. The inner nodes of a syntax tree will be named F,G, . . . and we
will denote them as subexpressions of E. For two subexpressions F,G of E we
write F ≤ G (F < G, resp.) if F is an ancestor (a proper ancestor, resp.) of G.
For a subexpression F let firststar(F) denote the largest subexpression G with
G ≤ F such that G∗ is the parent node of G.

A subtree t of tE is a connected subgraph (i.e. a tree) of tE . A subtree t is
called full subtree if it contains all descendants of its root. This means that a full
subtree of tE corresponds to a subexpression of E.

We may suppose without loss of generality that the leaves of tE are labelled
with pairwise distinct letters. This allows to identify the leaves of tE labelled by
A uniquely by their labelling. For example, for E = (a∗ + b)∗ab∗ we replace A
by {a1, a2, b1, b2} and E by (a∗1 + b1)

∗a2b
∗
2.

3 Position Automata

In this section we recall some basic notions related to the construction of position
automata from regular expressions. We follow the definitions from [2, 5].

3.1 Positions and sets of positions

Given a regular expression E, the set pos(E) comprises all positions of E which
are labelled by letters from A. According to our convention, pos(E) ⊆ A. Posi-
tions of E will be named x, y,

Lemma 1. Let E be a regular expression, n = |pos(E)|. Then we can compute
in linear time an equivalent expression E′, L(E) = L(E′), such that E′ has
length O(n).

The size |E| of the expression E is defined as |pos(E)|. Moreover, pos(t) and
|t| are defined analogously for a subtree t of tE . Throughout the paper we denote
by n the size |E| of E. The lemma above says that we may assume that the size
of the syntax tree tE satisfies |tE | ∈ O(n) = O(|pos(tE)|).

For a regular expression E we consider two distinguished subsets of positions,
first(E) and last(E). The set first(E) ⊆ pos(E) contains all positions which can
occur as first letter in some word in L(E). Similarly, last(E) contains all positions
which can occur as last letter in some word in L(E). Formally:

first(E) = {x ∈ pos(E) | xA∗ ∩ L(E) 6= ∅} ,

last(E) = {x ∈ pos(E) | A∗x ∩ L(E) 6= ∅} .

The sets first(E), last(E) can be computed inductively by noting that e.g. first(F+
G) = first(F) ∪ first(G), first(F ∗) = first(F) and first(F · G) = first(F) if
ǫ /∈ L(F), resp. first(F ·G) = first(F)∪first(G) if ǫ ∈ L(F). For a given position
x ∈ pos(E) let follow(x) ⊆ pos(E) contain all positions y which are immediate
successors of x in some word of L(E):

follow(x) = {y ∈ pos(E) | A∗xyA∗ ∩ L(E) 6= ∅} .

As above, follow(x) can be defined recursively by means of follow(x, F) = follow(x)
∩ pos(F). We omit the definition here, since anyway we will not compute the
sets follow(x) globally.

3.2 Automata

First, last and follow sets are the basic components of an NFA AE recognizing
L(E), called position automaton in [5]. Let AE = (Q,A, δ, q0, F) be defined by

Q = pos(E) ∪̇{q0}

δ = {(q0, x, x) | x ∈ first(E)} ∪ {(x, y, y) | y ∈ follow(x)}

F =

{

last(E) if ǫ /∈ L(E)
last(E) ∪ {q0} otherwise

Recall for the above definition that pos(E) ⊆ A. The following equivalence is
easy to check:

Proposition 2. For every regular expression E we have L(AE) = L(E).

The construction above yields ǫ-free automata with n + 1 states and O(n2)
transitions. In [5] a refined construction was presented, based on the idea of a
system of common follow sets (CFS system), which is defined as follows:

Definition 3 ([5]). Let E be a regular expression. A CFS system S for E is
given as S = (dec(x))x∈pos(E), where dec(x) ⊆ P(pos(E)) is a decomposition of
follow(x):

follow(x) =
⋃

C∈dec(x)

C .

Let CS = {first(E)} ∪
⋃

x∈pos(E) dec(x). The CFS automaton AS associated

with S is defined as AS = (Q,A, q0, δ, F) where

Q = CS × {0, 1}

q0 =

{

(first(E), 1) if ǫ ∈ L(E)
(first(E), 0) otherwise

δ = {(C, f), x, (C ′, f ′)) | x ∈ C, C ′ ∈ dec(x) and f ′ = 1 ⇔ x ∈ last(E)}

F = CS × {1}

Lemma 4. Let E be a regular expression and let S be a CFS system for E.
Then the CFS automaton AS recognizes L(E).

It is shown in [5] how to obtain a CFS system S for a given regular expression
E such that |CS | ∈ O(n),

∑

C∈CS
|C| ∈ O(n log n) and |dec(x)| ∈ O(log n) for

all x ∈ pos(E). This yields a CFS automaton with O(n) states and O(n log2(n))
transitions.

4 Computing a Common Follow Sets System

4.1 Properties of follow sets

The running time of our algorithm relies heavily on some structural properties
of follow sets which are discussed in the following.

Lemma 5. Let E be a regular expression and let F,G be subexpressions with
E ≤ F ≤ G. Then we have:

1. first(F) ∩ first(G) 6= ∅ implies first(G) ⊆ first(F).
2. F ≤ H ≤ G and ∅ 6= first(G) ⊆ first(F) implies first(G) ⊆ first(H) ⊆

first(F).
3. x ∈ pos(G) \ first(G) implies x /∈ first(F).

The proof of the lemma is a straightforward application of the inductive
definition. An analogous lemma can be also stated for last sets.

The next lemma deals with the relation between follow sets and a decompo-
sition of the syntax tree, which will be used recursively in the definition of the
CFS system. For simplifying the notation we will denote for x ∈ pos(E), E ≤ F ,
the set follow(x)∩pos(F) by followF (x). Analogously, followt(x) denotes the set
follow(x) ∩ pos(t) for a subtree t.

Lemma 6. Given a regular expression E, a syntax tree tE and subexpressions
F,G with E < F < G. Let t, t′ be subtrees of tE such that pos(t) ⊆ pos(F)\pos(G)
and pos(t′) ⊆ pos(G). Then we have for all x, x′, y ∈ pos(E):

1. followF (x) = ∅ for all x ∈ pos(t′) \ last(G);
2. followF (x) = followF (x

′) for all x, x′ ∈ pos(t′) ∩ last(G);
3. followt′(y) = first(G) ∩ pos(t′) for all y ∈ pos(t) with followt′(y) 6= ∅.

4.2 Recursive definition of CFS systems

The CFS system defined in [5] is based on a divide-and-conquer construction.
Consider a subtree t of tE and let F denote the root of t. Let x ∈ pos(t). If
|t| = 1 then we define

C0 = followt(x) = follow(x) ∩ {x}, dec(x, t) = {C0} .

Suppose now that |t| > 1. Then let t1 be a subtree of t such that 1/3|t| ≤ |t1| ≤
2/3|t| and let t2 = t \ t1. Let F1 denote the root of t1. Clearly, for every position
x ∈ pos(t) we have followt(x) = followt1(x) ∪̇ followt2(x). We distinguish two
cases, depending on x ∈ pos(t1) or x ∈ pos(t2).

i) Let x ∈ pos(t1). If x /∈ last(F1) then by Lem. 6 we have followt2(x) = ∅.
Otherwise, for x ∈ last(F1) then again by Lem. 6 we have followt2(x) =
followt2(x

′) for all x′ ∈ last(F1) ∩ pos(t1).
Let C1 = followt2(x

′) for some x′ ∈ pos(t1) ∩ last(F1) and define dec(x, t) as

dec(x, t) =

{

dec(x, t1) if x /∈ last(F1)
dec(x, t1) ∪ {C1} otherwise

ii) Let x ∈ pos(t2). If followt1(x) 6= ∅ then we have followt1(x) = first(F1) ∩
pos(t1) by Lem. 6.
Let C2 = first(F1) ∩ pos(t1) and define dec(x, t) as

dec(x, t) =

{

dec(x, t2) if followt1(x) = ∅
dec(x, t2) ∪ {C2} otherwise

It can be easily verified that dec(x, t) is a decomposition1 of followt(x),
i.e. followt(x) =

⋃

C∈dec(x,t) C. Hence, we obtain a CFS system C(t) restricted
to t, where

C(t) =
⋃

{dec(x, t) | x ∈ pos(t)} = {C | C ∈ dec(x, t) for some x ∈ pos(t)} .

Note that |C(t)| ≤ |C(t1)| + |C(t2)| + 2. This yields |C(t)| ≤ 3|t| − 2. Similarly,
the following estimations can be easily verified (see also Lem. 4 of [5]):

∑

C∈C(t) |C| ≤ 2|t| log(|t|) + 1 and

|dec(x, t)| ≤ 2 log(|t|) + 1, for all x ∈ pos(t) .

1 In [5] the corresponding set
⋃

C∈dec(x,t) C is just a subset of followt(x). Having
equality here simplifies the recursive definition and the correctness proof of the de-
composition.

5 A Sequential O(n log(n)) Algorithm for Computing a
Common Follow Sets System

We consider now the computation of the sets defined in the previous section.
For C0 = follow(x) ∩ {x} we can determine whether x ∈ follow(x) by checking
whether x ∈ last(S) ∩ first(S) for S = firststar(x). For the recursion step we
have to determine C1, C2 with

C1 = followt2(x) and C2 = first(F1) ∩ pos(t1) .

We want to compute both C1, C2 and the positions x ∈ pos(t) to which C1 or
C2 is added in linear time, i.e. in time O(|t|). As shown below, the computation
of C1 reduces to computing a union of first sets restricted to pos(t2). This yields
two problems: First we need an efficient way to compute intersections of first
sets with a given set of positions. Second, the union of restricted first sets has to
be disjoint. The solution to both problems will rely on a suitable data structure
for first sets. Before discussing the data structure let us consider the set C1 in
more detail2.

Definition 7. Let E ≤ F be regular expressions. We define fnext(F) ⊆ pos(E)
as

fnext(F) =







first(G) if F ·G is the parent node of F
first(F) if F ∗ is the parent node of F
∅ otherwise

Analogously, lprev(F) is defined by replacing first by last and by requiring that
G · F is the parent node of F .

Using the fnext operator we are able to express follow sets as unions of first
sets. Compared with Lem. 3 in [5] we need for expressing followt2(x) at most
one first set which is not contained in F . Of course, this is necessary in order to
be able to determine C1 in time O(|t|):

Proposition 8. Let E be a regular expression with E ≤ F < F1 and let tE be
a syntax tree of E. Let t2 be a subtree with root F and pos(t2)∩ pos(F1) = ∅ and
consider a position x ∈ last(F1). Then we have

followt2
(x) =

⋃

G∈G

(fnext(G) ∩ pos(t2))

where the union is taken over

G = {G | last(G) ⊇ last(F1) and (F < G ≤ F1 or G = firststar(F))} .

2 In the definition below fnext(F) corresponds to first(fnext(F)) in [5].

Proof: Note that for every G ≤ F1 with last(F1) ⊆ last(G) we have
fnext(G) ∩ pos(t2) ⊆ followt2(x). Conversely, consider a position y ∈ followt2(x)
with y /∈ fnext(G), for all F < G ≤ F1 with last(F1) ⊆ last(G). Hence, there
exists some node G, E ≤ G ≤ F , with y ∈ fnext(G) and last(F1) ⊆ last(G).
Clearly, the parent node of G is G∗ (otherwise, fnext(G) ∩ pos(t2) = ∅), thus
y ∈ first(G)∩pos(t2). If G = firststar(F) then we are done. Otherwise G < H =
firststar(F). In this case it is not difficult to verify using Lem. 5 that for allG < H
with first(G) ∩ pos(t2) 6= ∅ we also have first(G) ∩ pos(t2) = first(H) ∩ pos(t2).
Therefore, y ∈ first(H) ∩ pos(t2). �

Our algorithm is based on a suitable order on positions of E, which allows
manipulating first sets efficiently. We use an array called firstdata such that for
each subexpression F of E the set first(F) is a subinterval of firstdata.The crucial
point is the order of positions within firstdata. Consider a fixed syntax tree tE
of E. We first define a forest F by deleting all edges from nodes labelled F · G
to the child labelled G, whenever ǫ /∈ L(F). Let F = {T1, . . . , Tk} be the forest
thus obtained, then we denote the trees Ti as first-trees. Note that each first(F)
is the union of all first(F ′) with F < F ′ where F ′ belongs to the same first-tree
as F .

We define a total order on F as follows. For 1 ≤ i 6= j ≤ k let Ti ≺ Tj

whenever the roots Fi, Fj of Ti, resp. Tj satisfy

– either Fj < Fi, i.e. Fj is an ancestor of Fi,
– or Fi and Fj are incomparable w.r.t. < and Fi lies to the right of Fj .

The order ≺ corresponds thus to a reversed preorder traversal of tE , i.e. right
child—left child—parent node.

Suppose that after renaming F = {T1, . . . , Tk} with Ti ≺ Tj for all i < j.
The array firstdata is given as fdata(T1) · · · fdata(Tk), with fdata(Ti) being the list
of positions corresponding to the yield of Ti. Moreover, by a preorder traversal
of each Ti we can determine for each subexpression F of Ti the subinterval of
fdata(Ti) corresponding to first(F). The set first(F) is described by its starting
position fstart(F) within fdata(Ti) and its length flength(F) = |first(F)|.

Remark 9. (i) Let F,G be subexpressions of E. Then we have ∅ 6= first(F) ⊆
first(G) if and only if fstart(G) ≤ fstart(F) and fstart(G)+flength(G) ≥ fstart(F)+
flength(F), i.e. if the subinterval corresponding to first(G) includes the subin-
terval corresponding to first(F). Moreover, firstdata allows to determine the in-
tersection first(F) ∩ pos(t) in O(|t|) time, where F is a subexpression and t is
subtree of tE (described as set of positions in increasing order).

(ii) A similar data structure lastdata can be defined for the last sets.

We are now ready to describe an algorithm UnionFirst for the following
problem. Given subexpressions F, F1 of E with F < F1 and subtrees t, t2 of F ,
resp. a subtree t1 of F1, where t = t1 ∪̇ t2, pos(F1) ∩ pos(t2) = ∅, and a position
x ∈ last(t1). We want to compute the set C = followt2(x). Recall from Prop. 8
that

C =
⋃

G∈G

(fnext(G) ∩ pos(t2)) ,

with G ∈ G if and only if last(F1) ⊆ last(G), and either F < G ≤ F1 or
G = firststar(F).

function UnionFirst (node F1, tree t2) : nodelist;
var rootlist, tocheck: nodelist; G: node;
begin
rootlist := nil;
tocheck := nil;
G := F1;
while (G 6= root(t2) and last(F1) ⊆ last(G)) do

begin
A := parent expression of G;
if A = G∗ then

rootlist := rootlist \ {H | H ∈ tocheck and first(H) ⊆ first(G)};
rootlist := rootlist ◦G;
tocheck := {G};

else if A = G ·H then
if ǫ ∈ L(G) then rootlist := rootlist ◦H;
else rootlist := H◦ rootlist endif;
tocheck := tocheck ∪{H};

endif;
G := A;

endwhile;
return(rootlist);
end

The proof of the next proposition is omitted for lack of space.

Proposition 10. Let F, F1 be subexpressions of E, E ≤ F < F1, and let tE be
a syntax tree. Let t1 be a subtree with root F1 and let t2 be a subtree with root
F and pos(F1) ∩ pos(t2) = ∅. Let x ∈ last(t1) be a position and let G be defined
as above. Then UnionFirst(F1, t2) yields a list rootlist = (H1, . . . , Hl) of (names
of) subexpressions of E satisfying the following:

1.
⋃l

i=1 first(Hi) =
⋃

G∈G,G 6=firststar(F) fnext(G).

Moreover, first(Hi)∩ first(Hj) = ∅ for all i 6= j.
2. Let T (Hi) denote the first-tree in the forest F containing Hi. Then T (Hi) �

T (Hj) for all 1 ≤ i < j ≤ k. Moreover, if T (Hi) = T (Hj) then Hi precedes
Hj w.r.t. preorder (in tE).

3. UnionFirst(F1, t2) runs in O(|t2|) steps.

Remark 11. Given the assertion of Prop. 10 it is not hard to verify that the
set

⋃

G∈G(fnext(G) ∩ pos(t2)) can be computed in O(|t2|) steps using rootlist

and firstdata. More precisely, we can precompute in time O(|t2|) a list fdata(t2)
corresponding to pos(t2) sorted as firstdata. Next, we scan rootlist and fdata(t2)
in parallel, building the intersection. Hereby we use Rem. 9 in order to determine
in constant time whether a position belongs to a set first(G). Note that rootlist

has at most |t2| elements, since the while loop in UnionFirst is executed at
most |t2| times. Finally, if S = firststar(F) is defined we can check whether
last(F1) ⊆ last(S) in O(1) time and compute first(S) ∩ pos(t2) in time O(|t2|).

Theorem 12. Given a regular expression E and a syntax tree tE for E of size
O(|E|) = O(n). We can compute a CFS system S for E in time O(n log(n)).
Therefore, we can compute an NFA AS for E of size |AS | in time O(n log(n) +
|AS |). The worst-case complexity of the algorithm is thus O(n log2(n)).

Proof: Recall the recursive definition of dec(x, t) given in Sect. 4.2. For
a position x ∈ pos(t1) we test whether x ∈ last(F1) in constant time (using
lastdata), whereas C1 = followt2(x) can be computed in time O(|t2|). The case
where x ∈ pos(t2) is dual. Here, the set C2 = first(F1)∩pos(t1) can be determined
in constant time, whereas determining which x ∈ pos(t2) satisfy followt1(x) 6= ∅
requires O(|t1|) steps. To see this, note that for a position y ∈ C2 we have
{x ∈ pos(t2) | followt1(x) 6= ∅} = precede(y) ∩ pos(t2), where precede(y) is
defined as the dual of follow(y), i.e., precede(y) = {x | A∗xyA∗ ∩ L(E) 6= ∅}.
Moreover, by duality we have precede(y)∩ pos(t2) =

⋃

G∈G(lprev(G)∩ pos(t2)),
with G ∈ G if first(F1) ⊆ first(G), and either F < G ≤ F1 or G = firststar(F).

Therefore, we can compute in time O(|t|) the sets dec(x, t) from dec(x, t1) and
dec(x, t2) for all positions x of t. Hence, our algorithm runs in time O(n log(n)).
Finally, outputting the transitions of the NFA AS is possible in time O(|AS |).

�

In the parallel setting we have again an output-size optimal algorithm on a
CREW PRAM, as stated below. For lack of space we omit the proofs.

Theorem 13. Given a regular expression E and a syntax tree tE for E of size
O(|E|) = O(n). We can compute a CFS system S for E on a CREW PRAM in
time O(log(n)) using O(n) processors. Therefore, we can compute an NFA AS

for E of size |AS | in time O(log(n)) using O(n+ |AS |/ log(n)) processors (i.e.,
O(n log(n)) processors in the worst case).

Acknowledgment: We thank Volker Diekert for many comments and con-
tributions and to the anonymous referees for suggestions which helped improving
the presentation.

References
1. G. Berry and R. Sethi. From regular expressions to deterministic automata. Theo-

retical Computer Science, 48:117–126, 1986.
2. A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical Com-

puter Science, 120:197–213, 1993.
3. A. Ehrenfeucht and P. Zeiger. Complexity measures for regular expressions. Journal

of Computer and System Sciences, 12:134–146, 1976.
4. A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University

Press, 1989.
5. J. Hromkovic̆, S. Seibert, and T. Wilke. Translating regular expressions into small ǫ-

free nondeterministic finite automata. In Proc. of the 14th Ann. Symp. on Theor. As-
pects of Comp. Sci. (STACS’97), no. 1200 in LNCS, p. 55–66, 1997. Springer.

