About the local detection of termination
of local computations in graphs*

Yves Métivier!, Anca Muscholl?> and Pierre-André Wacrenier!
! LaBRI, Université Bordeaux I, ENSERB,
351 cours de la Libération
33405 Talence, France
2 Institut fiir Informatik, Universitit Stuttgart,
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany

Abstract. In this paper we give a formalization of the problem of locally
detecting the global termination of distributed algorithms on graphs. We
introduce the notion of quasi k—coverings. Using (quasi) k—coverings, we
present methods for showing that it is not possible to detect locally the
global termination of local computations in certain families of graphs.
These methods also allow to show that some knowledge, e.g. the size of
the graph, is necessary in order to solve certain problems in a distributed
way.

Keywords: local detection of termination, local computations, k—covering, quasi
k—covering.

1 Introduction

Local computations on graphs, as given by graph rewriting systems (with pri-
orities and/or forbidden contexts) are a powerful model for local computations
which can be executed in parallel. Rewriting systems provide a general tool for
encoding distributed algorithms and for proving their correctness. This paper is
concerned with the existence of rewriting systems having the property of local
detection of the global termination.

We consider a network of processors with arbitrary topology. It is repre-
sented as a connected, undirected graph where vertices denote processors, and
edges denote direct communication links. An algorithm is encoded by means of
local relabellings. Labels attached to vertices and edges are modified locally, that
is, on a subgraph of fixed radius k of the given graph, according to certain rules
depending on the subgraph, only (such local computations are called k—local).
The relabelling is performed until no more transformation is possible (i.e., until
a “normal form” is obtained). In the terminology of distributed algorithms, we
say that a distributed algorithm terminates whenever it reaches a terminal con-
figuration, i.e. a configuration in which no steps of the algorithm can be applied

* This research was supported by the French-German project PROCOPE. Contact
author: metivier@labri.u-bordeaux.fr.

anymore. We say that a local computation system allows the local detection of
(global) termination if for any computation there is a vertex for which its neigh-
bourhood of a given radius r determines whether or not a normal form has been
reached (we say that global termination is r—locally detected).

The problem of local detection of termination is of interest due to connections
to the following topics:

— composition of local computations;

— what is the minimal information about the network which is necessary for
solving certain problems by distributed algorithms;

— which functions can be computed for a given family of networks.

Our aim in this paper is twofold: first, we present a formalization of the local
detection problem and we introduce some new methods for obtaining impossi-
bility results. More precisely, we extend the notion of coverings, which is known
from algebraic topology [13] and has been already used in distributed computing
for negative results [1,5,7,9], to quasi-coverings. Quasi-coverings capture some
topologies which fail to cope with the classical coverings. We show in this pa-
per that one cannot detect locally the global termination for uniformly labelled
graphs belonging to certain families of connected graphs C. More specifically, it
suffices for our results that C contains some graph G and a nontrivial k—covering
of G, see Prop. 13 (or, some graph G and quasi-coverings of G of arbitrary large
size, see Thm. 20). Our second aim is to discuss some implications of our re-
sults for the borderline between positive and negative results. More precisely,
we are interested in the question whether certain additional knowledge about a
network, which is used in specific graph rewriting systems, is really necessary.
For example, we show that election in T-prime graphs is possible (if and) only
if the size of the graph is provided.

Finally, we note that our asynchronous computational model is an extension
of models studied by Angluin [1] and more recently by Yamashita et.al. [18,19].
As in those papers, our results are obtained for anonymous networks. (Clearly,
if a leader is available, then the termination can be easily detected locally using
standard methods). Some of our results were already known for the ring topology,
see [17] for a survey.

Our paper is organized as follows. Section 2 contains some basic notions.
In Section 3 we define local computations on graphs and the local detection of
normal forms. Section 4 contains some examples for graph rewriting systems.
In Section 5 we describe the application of coverings to the problem of the
local detection of a normal form. In Section 6 we generalize the results to quasi-
coverings, and we apply these methods to T'—prime graphs. We conclude by some
remarks about the connections between the election problem, the size problem
and the problem of local detection of a normal form.

2 Basic notions and notations

2.1 Graphs

The graph-theoretical notations used here are essentially standard [2]. A graph
G is defined as a finite set V(G) of vertices together with a set E(G) C (‘2/)
of edges. We only consider finite, undirected graphs without multiple edges or
self-loops. Let e = {v, v’} be an edge: we say that e is incident with v, and that
v is a neighbour of v’. The set of neighbours of a vertex v, together with v itself,
is denoted Ng(v). A vertex of degree one is called a leaf. A path P from v; to v;
in G is a sequence P = (v1,e1,v9, €9, ...,¢e;_1,v;) of vertices and edges such that
forall 1 < j <4, e; is an edge incident with the vertices v; and vj1. The length
of Pisi—1.If vy = v; then P is called a cycle. If each vertex appears only once
in a path P, then P is called simple. A tree is a connected graph containing no
simple cycle. Any two vertices in a tree are connected by precisely one simple
path. The distance between two vertices u, v is denoted d(u,v).

G’ is a subgraph of G if V(G') C V(G) and E(G’) C E(G). A subgraph G’ of
a graph G is called a spanning subgraph if V(G’') = V(G). An acyclic spanning
subgraph of G is called a spanning forest. A spanning forest which is connected
is called a spanning tree.

The subgraph of G induced by a subset V' of V(G) is the subgraph of G
having V' as vertex set and containing all edges of G' between vertices of V.

Let v be a vertex, and k a positive integer. We denote by Bg(v, k) the ball
of radius k with center v; it is the subgraph of G induced by the vertex set

V' ={v eV(Q) |dv,v) <k},

with a distinguished vertex, namely v, called center.

A homomorphism between two graphs G and H is a mapping v: V(G) —
V(H) such that if {u,v} is an edge of G then {y(u),y(v)} is an edge of H. Since
we deal only with graphs without self-loops, this implies that v(u) # y(v), if
{u,v} is an edge of G. Note also that v(Ng(u)) C Ny (v(u)). We say that v is
an isomorphism if +y is bijective and the inverse y~! is also a homomorphism. The
notation G ~ G’ means that G and G’ are isomorphic. A class of graphs will be
any class of graphs in the set-theoretical sense containing all graphs isomorphic
to some of its members.

Coverings are known from algebraic topology and are also related to the
notion of uniform emulation [3,4]. We say that a graph G is a covering of a
graph H if there exists a surjective homomorphism « from G onto H such that
for every vertex v of V(G) the restriction of v to Ng(v) is a bijection onto
Ny (v(v)). In this paper we use special coverings, namely k— coverings.

Definition 1. Let G, G’ be two labelled graphs and let v: V(G) — V(G’) be a
graph homomorphism. Let & > 0 be a positive integer.
Then G is a k—covering of G’ via + if for every vertex v € V(G), the restric-
tion of v on Bg(v, k) is an isomorphism between Bg(v, k) and Be (7(v), k).
The k-covering is called strict if G and G’ are not isomorphic.

A class of graphs is said to be closed under k—coverings (resp. connected
k—coverings), if it contains all k—coverings (resp. connected k—coverings) of its
elements.

3 Local computations in graphs

3.1 Labelled Graphs

Throughout the paper we will consider only connected graphs where vertices
and edges are labelled with labels from a possibly infinite alphabet L. A graph
labelled over L will be denoted by (G, \), where G is a graph and A: V(G) U
E(G) — L is the function labelling vertices and edges. The graph G is called the
underlying graph, and the mapping A is a labelling of G. The class of labelled
graphs over some fixed alphabet L will be denoted by G.

Let (G,A) and (G’,\) be two labelled graphs. Then (G, \) is a subgraph
of (G',)), denoted by (G,\) C (G',\), if G is a subgraph of G’ and X is the
restriction of the labelling X' to V(G) U E(G).

A mapping ¢: V(G) U E(G) — V(G') U E(G’) is a homomorphism from
(G,) to (G',) if ¢ is an graph homomorphism from G to G’ which preserves
the labelling, i.e. such that A (p(x)) = A(z) holds for every x € V(G) U E(G).
The mapping ¢ is an isomorphism, if it is bijective.

An occurrence of (G,) in (G, \') is an isomorphism ¢ between (G, \) and
a subgraph (H,n) of (G', X).

3.2 Local computations

Local computations as considered here can be described in the following general
framework. Let G be the class of L-labelled graphs and let R C G X G be a
binary relation on G. Then R will denote a graph rewriting relation. We assume
that R is closed by isomorphism, i.e. whenever GRG’, if G; ~ G then G1RG}
for some graph G} ~ G’.

Definition 2. Let R C G x G be a graph rewriting relation and let £ > 0 be
an integer.

1. R s a relabelling relation if whenever two labelled graphs are in relation then
the underlying graphs are equal (we say equal, not only isomorphic), i.e.:

(G,NR(H,N) = G=H.

2. R is called k—local if only labels of a ball of radius k may be changed by R,
ie. (G,A\)R(G,XN) implies that there exists a vertex v € V(G) such that

Ax) = N (x) for every z ¢ V(Bg(v,k)) U E(Bg(v,k)).

The relation R is called local, if it is k—local for some k& > 0.

3. An R—normal form of G € G is a graph G’ such that GR*G’, but G'RG”
holds for no G” € G. We say that R is noetherian if there is no infinite
relabelling chain G{ RGoR - - -.

The next definition states that a local relabelling relation R is k—locally gen-
erated if its restriction on centered balls of radius k determines its computation
on any graph.

Definition 3. Let R be a relabelling relation and k& > 0 be an integer. Then R is
called k—locally generated if the following holds: For any labelled graphs (G, \),
(G, X)), (H,n), (H,n') and any vertices v € V(G), w € V(H) such that the balls
B¢ (v, k) and By (w, k) are isomorphic via ¢: V(Bg (v, k)) — V(Bg(w, k)) and
©(v) = w, the following three conditions

1. AMz) = n(e(x)) and N (z) = n'(¢(x)) for all z € V(Bg(v,k)) U E(Bg(v,k))
2. Mz) = N(z), for all z ¢ V(Bg(v,k)) U E(Bg(v,k))
3. n(z) =n'(z), for all x ¢ V(By(w,k)) U E(By(w, k))

imply that (G, \)R(G, X’) holds if and only if (H,n)R(H,n').
R is called locally generated if it is k—locally generated for some k > 0.

Note that if R is k—locally generated, then its restriction to graphs of diam-
eter 2k determines it uniquely for all graphs. Let us also note that a k—locally
generated relabelling relation allows parallel rewritings, since non-overlapping
k-balls may be relabelled independently.

3.3 The local detection of a normal form

We study local computations such that normal forms are characterized by a set
of local configurations.

Definition 4. Let R be a k—locally generated relabelling relation. Let Z be a
subset of G called the class of initial graphs and let T" be a subset of connected
elements of G. We say that T characterizes normal forms obtained from Z if
for any G € T with GR*H we have that H is a normal form if and only if H
contains a subgraph isomorphic to some K € T. (In this case we also say that
H is K—characterized).

Let r be a positive integer. If every element of T has radius bounded by r
then we say that normal forms are r-locally (or locally) characterized.

4 Some examples

In this section we give some examples illustrating the notions defined previously.
Our examples deal with typical problems as computing a spanning tree in a
single-source graph or electing a vertex. We use the notations of Priority Graph
Rewriting Systems [10].

4.1 Spanning tree in a single-source graph

We give in the following two graph rewriting systems which compute a span-
ning tree of a given graph. We assume that initially the graph has exactly one
distinguished vertex labelled A. Our graph rewriting systems encode classical
distributed algorithms (see e.g. [17]). We have chosen these algorithms for sake of
simplicity, although they are not optimal. Proofs and properties of these systems
may be found in [8].

Distributed computation of a spanning tree

The idea of the first algorithm is very simple: any vertex belonging to the
tree may add a neighbour which is not yet in the tree. Vertices will be labelled
by {N, A}, whereas edges will be labelled by {f,t}. Initially exactly one vertex
is labelled A, all other ones are labelled N and every edge is labelled f.

The corresponding rewriting system has one rule:
A f N At A
(@] @] (@]

R: o —

This rewriting system is noetherian. For connected graphs initially labelled as
described above it yields normal forms where the set of t-labelled edges and the
set of incident vertices yield a spanning tree. However, it is obvious that the
termination of this system cannot be locally detected.

Z - P> - 2

o > o 7

Fig. 1. Computation of a spanning tree using R.

Distributed computation of a spanning tree with acknowledgment
A distributed computation of a spanning tree where termination can be de-
tected locally can be obtained by adding an acknowledgment mechanism. The

idea is the following: using the previous system we first remember the direc-
tion in which neighbours are added (expressed as parent-child relation). If every
neighbour of a vertex v has been visited, then v sends an acknowledgment to
its parent node (see rule Rz below). Moreover, if every child of v has sent its
acknowledgment, then v sends itself an acknowledgment to its parent node (see
rule Rs below). The solution given here uses the relation “parent of’, which
is encoded by the labels {0,1,2} with the meaning “i is the parent of (i + 1),
where addition is performed modulo 3. This order relation between two vertices
labelled M is needed in order to ensure that the last rewriting step is performed
on the root. Without this relation the rewriting system computes a spanning
tree, but we cannot locally detect that the algorithm terminates.

The set of vertex-labels is {N, (A, 0), (A, 1), (A, 2),(M,0), (M, 1), (M, 2),R,F},
and edges are labelled as before by {f,t}. Initially the root is labelled (A,0),
any other vertex is labelled N, and every edge is labelled f.

We present the rewriting system in two groups of rules. The first group
describes what happens when a node is visited: the node is labelled A and the
edge traversed is labelled t. As soon as a visited node has a child, it is labelled
M.

(Ak) g (k) (AkFD

Rli

N
O
(M, k) N (MLE) (A, k+1)
Ry : o LI — o t °

The second group encodes the acknowledgment; when a vertex is ready to
send its acknowledgment it is labelled R, and when it has sent its acknowledg-
ment it is labelled F.

R OB B M g

R Be™MP w0 p e M on

Ree B_e OMb L ME) R (MB) (M)
Re: MPem o, BLex

The priority of rules is defined by R; = R; >~ Rs, for all 4,5,1 <3 <2,3<
j < 5. The priority mechanism means that if two rule occurrences overlap, then
the rule with higher priority has to be applied.

The rewriting system above computes a spanning tree in a distributed way
and it has the property that termination can be detected locally: a normal form
is obtained as soon as a vertex labelled R has only F—labelled adjacent vertices.

4.2 Election in a prime ring

The algorithm below has been given by A. Mazurkiewicz [14] for oriented rings
with prime size n. The labels are words over the alphabet {A, B} of length at
most n. Initially all labels are equal to the empty word e. The algorithm can be
described by the three rules given in the following. The first rule is

€ € € A
Ri: o——o — 0——0
In the next rule we assume that the word m is not empty.

m € m B
Ry: o——o0 — 0 ——o
For the last rule we assume that 0 < |x| < n and |x| < |m| holds. We denote by
myy the |x|th letter of m.

m xm‘x‘

m X
O ——0 — o ——

R3 :
The relabelling system above is noetherian and in every normal form the la-
bels are conjugated words, i.e. words obtained by cyclic permutations. If n is
prime, then this property implies that all labels in a normal form are different.
Hence, the vertex elected could be the one with the lexicographical smallest label.
Clearly, a vertex labelled by a word of length n knows whether it is the elected
vertex. However, no vertex can detect locally that the algorithm terminated.

AB
B

A

AH

|

>
>
>

o
R

Fig. 2. Election in a prime oriented ring

The above result has been generalized to the family of T—prime graphs [15],
which is defined as follows. Let G = (V, E) be a connected graph of size n, and
let r be an integer dividing n. We say that G is r—factorizable if G admits a
spanning forest with trees all of size r. The graph G is said to be T'—prime if it is
not r—factorizable for any integer n > r > 1. The main idea of the algorithm is
to construct a partition of the graph into connected subgraphs. Each subgraph is
defined by a spanning tree and has a leader (root) with weight equal to the size
of the subgraph; all other vertices of the subgraph have zero weight. Initially
we consider a partition such that every subgraph consists of a single vertex.
We assume that at least one processor starts the computation. Then there is
at least one duel between two adjacent vertices from which we obtain a new
partition, with at least one element containing two vertices (in this case we say
that the algorithm has started). A leader L with weight w looks for an adjacent

subgraph having a leader L’ with weight w’ such that w > w’. In this case,
their spanning trees (i.e., the two corresponding subgraphs) are combined and L
remains the leader with the weight w-+w’, whereas the weight of L’ becomes zero.
The algorithm terminates when only one tree is left. Clearly, the elected vertex
knows that it has been elected if it knows the size of the graph. From results
obtained in the next sections we will deduce that this knowledge is necessary.

5 Local computations, k-coverings and local detection of
normal forms

We study in this section the connections between the three notions introduced
previously: local detection of normal forms, k—coverings and local computations.

5.1 Local computations and k—coverings

First we recall some basic properties of local computations and k-coverings [9].

Lemma 5. Let G be a k—covering of G' via v and let vi,vo € V(G) be such
that v1 # va. If v(v1) = y(v2) then Bg(vi, k) N Bg(va, k) = 0.

Proof. Let v € Bg(v1, k) N Bg(ve, k). From the hypothesis, the vertices vq and
vg belong to Ba(v, k) and v(v1) = v(ve). We get a contradiction to the fact that
the restriction of v to Bg (v, k) is a one-to-one correspondence between B (v, k)
and Bg(v(v), k).

This lemma yields immediately:

Corollary 6. Let v be a graph homomorphism from G to G’.

1. Suppose v is a k-covering and let vi, vy be two different vertices of V(G)
verifying y(v1) = y(va). Then d(vy,ve) > 2k.

2. The homomorphism v is a k-covering if and only if for every v € V(G') the
inverse image v~ (Bg (v, k)) is a disjoint union of graphs each isomorphic
to Bg: (v, k).

Lemma 7. Let G’ be a connected graph and let G be a k—covering of G' via .
Then there exists an integer q such that

Yo e V(G'), card(y (v)) = q.

Proof. Let v,v’" be vertices of G', v' € Ng/(v). Then v € V(Bg (v, k)) and
from Corollary 6 it follows that the inverse image of Bg/(v,k) is a union of
pairwise disjoint balls in G, each of these balls being isomorphic to Bg (v, k).
Thus card(y~1(v)) = card(y~1(v’)). Since G’ is connected we have by transitivity
card(y~(u)) = card(y~1(v)) for all u,u’ € V(G'), which yields the desired
result.

Definition 8. Let G be a k—covering of G’ via v, and let ¢ be such that
card(y~!(v)) = ¢ holds for all v € V(G").

Then the integer ¢ is called the number of sheets of the covering G’. In this
case we speak of a g-sheeted covering.

Remark 9. 1. If ¢ = 1 then G and G’ are isomorphic. Moreover, if G is a
k—covering of G’ via -y, then G is a k' —covering of G’ via ~y for every k' with
0<k <Ek.

2. Lemma 7 holds already for classical coverings, hence for k-coverings as well.
We have included the proof for the sake of completeness.

3. It is easy to show that if G is a g-sheeted covering of G’ via ~, then for every
acyclic subgraph H of G’ the inverse image yv~!(H) is a disjoint union of ¢
graphs isomorphic to H.

The relation between classical coverings and k-coverings is established in the
next lemma.

Lemma 10. Let k > 0. Let G, G’ be two graphs and v: V(G) — V(G') a graph
homomorphism.

Then G is a k-covering of G’ if and only if G is a covering of G’ satisfying the
following property: for every cycle C = (vi,e1,v9,€2,...,€;,v;01 = v1) of length
i < 2k+1 the inverse image v~ (C) is a disjoint union of graphs isomorphic to

C.

Proof. If G is a k-covering of G’ then every cycle C of length at most 2k + 1
is contained in some centered ball of radius k, hence the result. Conversely,
suppose G is a covering of G’ via v verifying the above property. Assume that
v € V(G"), v € y1(v') and H' is a breadth-first spanning tree of Bg:(v', k)
with root v’. Hence, H' has depth at most k. The inverse image v '(H’) is
a disjoint union of graphs isomorphic to H’, see Remark 9. Let H ~ H' be
the connected component of y~1(H’) containing v, i.e. H is a tree rooted in v.
Every non-tree edge €/ = {2/,y'} with 2/,y’ € Bg/(v', k), ¢ ¢ E(H') belongs
to a cycle C’ contained in Bg/(v', k) where all edges up to ¢ belong to the
spanning tree H'. Moreover, |C’| < 2k + 1. Since y~1(C) is a disjoint union of
copies of C’ it follows that for z,y € V(H) with v(z) = 2/, v(y) = ¢’ the edge
{x,y} € v 1({z',y'}) belongs to E(G). Hence, the subgraph induced by V (H)
is isomorphic to Bg/(v'). By Corollary 6 G is a k-covering of G'.

The question whether a graph has nontrivial finite or infinite connected k-
coverings is undecidable [6]. However, we have the following simple special case:

Lemma 11. Let k > 0 be given. Suppose G' and ¢’ € E(G') are such that
(V(G"),E(G")\ {€'}) is connected, but € belongs to no simple cycle of length at
most 2k + 1.

Then there exists for every q > 1 a connected, q-sheeted k-covering G of G'.

10

Proof. Let G, = (V(G'), E(G') \ {¢/}) and define G, as the disjoint union of
q copies of G,. We identify w.lo.g. V(G.) with the set V(G’) x {1,...,q}.
Suppose e’ = {z,y}. Then we define G by letting V(G) = V(G,) and E(G) =
E(Ge) U {{(x,i),(y,i +1)} | 0 <i < g} (with addition modulo ¢). The natural
morphism mapping (x, %) to x is clearly a covering and G is connected. By Lemma
10 G is a k-covering of G'.

The next lemma establishes the connection between k-coverings and k-locally
generated relabelling relations.

Lemma 12. Let R be a k-locally generated relabelling relation and let (G, A1) be
a k-covering of (G', \}) via . Moreover, let (G', \{)R*(G', \,). Then a labelling
X2 of G exists such that (G, A\1)R*(G, A2) and (G, A2) is a k-covering of (G, \).

Proof. Tt suffices to show the claim for the case (G', \])R(G’, \}). Suppose that
the relabelling step changes labels in Bgr (v, k) only, for some vertex v € V(G’).
We may apply this relabelling step to each of the (disjoint) labelled balls of
v~ Y(Bgr (v, k)), since they are isomorphic to Bg (v, k). This yields the labelling
Ao of G which satisfies the claim.

5.2 Applications to termination detection

Proposition 13. Let Z C G be a class of connected labelled graphs and let R be
a k—locally generated relabelling relation. Assume that I contains graphs G, G’
and G is a non-isomorphic k—covering of G'. Let r < k.

Then normal forms obtained from I cannot be r—locally characterized.

Proof. Let G be a non-isomorphic, connected k-covering of G’ via v: V(G) —
V(G"). Moreover, let G'R" ' H, RH}. By Lemma 12 we obtain a new labelling
of G, say Hy, such that H;y is a k-covering of H{ (via) and GR*Hy. Suppose
that Hj{RH) holds via vertex v'. Then we may apply this relabelling step to
exactly one of the connected components of v~!(Bp; (v, k)) (being isomorphic
to By (v, k)) obtaining the labelled graph Hs. Now, if normal forms are r-locally
characterized for some r < k, then H} is K-characterized for some K € T. This
implies that H, is K-characterized, too, which contradicts the fact that Hs is
not a normal form.

Proposition 13 may be easily generalized in the following way

Proposition 14. LetZ C G be a class of labelled graphs, and let R be a k—locally
generated relabelling relation. Assume that T contains labelled graphs G,G' and
G is a connected, q-sheeted k—covering of G' wvia v with ¢ > 2. Then normal
forms obtained from G are not K—characterized for any labelled graph K such
that v~ (K) is a disjoint union of graphs isomorphic to K.

From Lemma 11 and Proposition 13 we obtain a more general result:

11

Theorem 15. Let T be a class of connected labelled graphs closed under con-
nected k-coverings and let R be a k—locally generated relabelling relation. Assume
that a graph G € Z and an edge e € E(Q) exist such that (V(G), E(G) \ {e}) is
connected, but e belongs to no cycle of length at most 2k + 1. Let r < k.

Then normal forms obtained from I cannot be r—locally characterized.

Recall that a graph G is a homeomorphic image of G’ if G can be obtained
from G’ by subdivision of edges.

Corollary 16. Let Z be a class of connected labelled graphs closed under con-

nected k-coverings and under homeomorphisms, and containing at least one non-

tree graph. Let R be a k—locally generated relabelling relation and let v < k.
Then normal forms obtained from I cannot be r—locally characterized.

Our result is quite powerful: local computations are very general, they in-
clude relabelling with an infinite number of labels and an infinite number of
rules, provided that the diameter of the rules is bounded by some constant. The
relabelling relation may be deterministic or not. For Proposition 13 and Theo-
rem 15, T may be infinite provided that the diameter of the graphs is uniformly
bounded. As an illustration, we give some concrete applications:

Corollary 17. There is no local computation system allowing the local detection
of termination which solves one of the following problems on uniformly labelled
graphs:

— computing the size of a graph;

— computing the sum, product, minimum or maximum of the integers labelling
the vertices of a graph;

— solving the majority problem, i.e. determining for a graph with nodes labelled
by A or B whether the number of vertices labelled by A is greater than the
number of vertices labelled by B.

We note that these results were already known in the case of rings [17].

6 Quasi k—coverings and local detection of normal forms:
the case of T'—prime graphs

In this section we introduce the notion of quasi k-coverings, which allows to
extend the results of the previous section to certain families of graphs, e.g. to
T-prime graphs.

6.1 Quasi k-coverings

Definition 18. Let G, G’ be two labelled graphs and let v: V(G) — V(G’) be
a graph homomorphism. Let &k > 0 be a positive integer.

Then G is a quasi k— covering of G’ of size s if there exist a finite or infinite
k-covering Gg of G’ via ¢, vertices vy € V(Gy), v € V(G), and an integer r > 0
such that

12

1. Bg(v,r) is isomorphic via ¢ to Bg,(vo,),
2. card(V(Bg(v,7))) > s, and
3. ¥ = d o ¢ when restricted to V(Bg(v,)).

The question whether a graph has nontrivial finite or infinite k-coverings is
recursively equivalent to the property of being a quasi k-covering. Hence, by
[6] the property introduced above is in general undecidable. We can replace in
the previous definition k-coverings by classical coverings, thus obtaining quasi
coverings. The question whether a graph is a quasi covering of another graph
becomes now decidable, it can be solved in NP.

The idea behind quasi k-coverings is to enable the simulation of local com-
putations on a given graph in a restricted area of a larger graph, such that
the simulation can lead to false conclusions. The restricted area where we can
perform the simulation will shrink while the number of simulated steps increases.

Consider a quasi k-covering G of G’ via . This means that a vertex z € V(G)
and an integer r > 0 exist such that Bg(z,7) is isomorphic to a subgraph of a
k-covering G of G’. More precisely, B (z,r) is isomorphic via ¢ to Bg,(20,7),
where Gy is a k-covering of G’ via §. Moreover, card(V(Bg(z,r))) > s and
vy=do¢on V(Bg(zr)).

Fix now a spanning tree T of G’, then 6 }(T) C V(Gy) is a disjoint union
of copies of T (see Remark 9). Let J = {Ty,T1,...,T,} € v 1(T) C V(G) be
such that for all vertices u € V(T;), 0 < i < g, the ball Bg(u, k) is included in
Bg(z,7). Suppose also w.l.o.g. that z € V(Tp).

We consider in the following the undirected graph H = ({0,... ,q}, F) with
{i,j} € F if and only if for some x € V(T;), y € V(T}) there is an edge {z,y} €
E(G). By means of H we obtain a distance d on J given by d(T;,T;) = du (i, 7).
Note that the degree of vertices of H is bounded by card(E(G")) —card(V(G’))+
1. Hence, for each d > 1 by choosing s sufficiently large (depending on G’ k, d)
we obtain d(Tp,T;) > d for some T; € J.

Lemma 19. Let G,G',v,J,d be as above, with d(Ty,T;) > 1 for some T; € J,
1 > 2k. Let R be a k-locally generated relabelling relation and suppose G' RGY.
Moreover, assume that for every T, € J with d(Ty,T;) < 1 and for every vertex
u € V(T;) the labelled balls Be(u, k) and Bg:(y(u), k) are isomorphic via .

Then a labelled graph G1 exists such that GR*G1 holds. Moreover, for every
T; € J with d(Tp, T;) <1 —2k and for every vertex v € V(T;) the labelled balls
Bg, (v, k) and Bgr (v(v), k) are isomorphic via -y.

Proof. Let G’ RG hold via a relabelling step which changes only the relabelling
of Bg:(v', k). We can simulate this step on each v € y~1(v') with v € V(T}) and
d(Ty, T;) < 1. Let Gy denote the graph obtained in this way.

Suppose that w € V(T;) and d(To,T;) < I — 2k holds, and let w' = v(w).
If Bg:/(v',k) N Bg(w', k) = @ then Bg(v,k) N Bg(w, k) = 0 holds for all v €
vy~ L(v") N UresV(T), and the result holds by induction. Hence assume that
Bg:(v',k) N Bgr(w', k) # () and let v be the unique vertex in 4~ 1(v’) such that
Bg(v, k) N Bg(w, k) # 0. Moreover, let v € V(7)) and note that d(Tp,T;) <

13

d(To,T;) + 2k < l. Therefore, the labelled balls Bg, (w, k) and Bg, (w', k) are

isomorphic.

6.2 Local detection of termination and quasi k-coverings

Lemma 19 yields a more general result on the impossibility of detecting termi-
nation locally.

Theorem 20. Let Z be a class of connected labelled graphs and let R be a k-
locally generated relabelling relation. Suppose that some G' € T has connected
quasi k-coverings in L of arbitrary large size. Let r < k.

Then normal forms obtained from I cannot be r-locally characterized.

Proof. Let C be arelabelling chain of lengthnon G, C = (G’ = G|, G4, ... ,GL,),
such that G, is a normal form. Let G be a quasi k-covering of G’ of size s. For s
sufficiently large we have for some T; € J that d(Tp,T;) > 2k(n + 1) (recall the
definition of J and d from Lemma 19).

We can apply Lemma 19 with { = 2k(n + 1 — m) for the mth relabelling
step of C. We obtain thus a relabelling G,, of G with GR*G,, such that G,, is
a normal form. However, we have simulated no step of C on vertices belonging
to V(T;) with d(Top,T;) = 2k(n + 1) (recall that such vertices still have balls of
radius k isomorphic to their image by). Hence, this contradicts the fact that
G, is a normal form.

Clearly, we cannot use the results of the previous section for the family of
T-prime graphs, because no connected non-isomorphic k-covering of a T'—prime
graph is T—prime. But we can apply Theorem 20. For this, suppose that G’ is a
connected T-prime graph containing an edge €’ such that (V(G'), E(G') \ {¢'})
is still connected, but e’ belongs to no cycle of length at most 2k + 1. The
construction from Lemma 11 can be easily modified such that we obtain a quasi
k-covering of size at least (¢ — 2)card(V(G")) which is also T-prime. For this, it
suffices to subdivide the edge {z4—1,%0} until the size of the graph obtained is
prime (hence, the graph obtained is T-prime).

As in the previous section it follows that

Corollary 21. There is no local computation system with local detection of ter-
mination where all input graphs are uniformly labelled by the same label, which
solves one of the following problems:

— computing the size of T—prime graphs;

— computing the sum, product, minimum or mazimum of the integers labelling
the vertices of a T—prime graph;

— solving the magority problem for the family of T—prime graphs.

Remark 22. Recall that there is an election algorithm for T-prime graphs which
uses the size of the graph as additional knowledge. The natural question which
arises is whether this knowledge is necessary. Theorem 20 provides an indirect

14

positive answer to this question. More precisely, suppose that the election prob-
lem could be solved with local detection of termination on uniformly labelled
T-prime graphs (i.e. labelled by a fixed constant). Then we could compute after
the election the size of the graph, thus contradicting the previous corollary.

Moreover, we note that the construction of Theorem 20 can be slightly mod-
ified in order to obtain the impossibility result for the election problem for T-
prime graphs directly.

7 Final remarks

We consider the following three problems: the election problem (ELECT), the
local detection of termination (LDT) and computing the size of the graph (SIZE).

We note that ELECT and LDT are equivalent with respect to local computa-
tions: if we can solve the election problem for a class of graphs Z, then we can also
detect the termination of a local computation system on Z locally. Conversely, if
we have a class of uniformly labelled graphs Z and a local computation system
with local termination detection such that every element of 7 is reducible, then
we can solve ELECT on 7.

The first assertion is easily seen by letting the elected vertex compute a
spanning tree and observe whether a normal form has been reached. For the
other direction assume that normal forms obtained from Z with respect to a
local computation system of radius k are characterized by a set of labelled graphs
T. Moreover, suppose that every graph in Z is reducible and let r» be an upper
bound for the radius of each element of T'. Consider a normal form G obtained
from H € Z and two vertices u,v such that both Bg(u,r) and Bg(v,r) contain
a subgraph isomorphic to an element of T'. Since T' characterizes exactly normal
forms the balls Bg(u,r) and Bg(v,r) contain each a subgraph from T due to
the last step of the relabelling chain from H to G. Hence, the distance between
u and v is at most 4r. A simple relabelling system with forbidden contexts of
radius 2r can now be used in order to elect one of the vertices u having the
property that Bg(u,r) contains a subgraph isomorphic to an element of T' (thus
labelled by T'): every path of length less or equal 2r with extremities labelled
by T changes the label of one of its extremities into N. A vertex labelled by T
with no further neighbours labelled by T at distance less or equal 4r becomes
elected.

On the other hand, there is also an easy reduction from SIZE to ELECT, since
the size of the graph can be computed along a rooted spanning tree. However,
ELECT is more difficult than SIZE, a fact which can be seen considering the
class of hypercubes. Clearly, each vertex in a hypercube can compute locally its
degree n, thus also the size 2" of the graph. However, by symmetry arguments
it can be easily shown that no local computation system can solve ELECT for
the class of hypercubes. To see this, assume R is a relabelling system of radius
k and let H, be the hypercube with 2" nodes, n > 2k. Then we can define a
mapping for on H,, by letting for(b1...b,) = b1 ...bogbogy1 ...by (b; € {0,1}).
Clearly, for each vertex x the balls By, (z, k) and By, (far(x), k) are disjoint and

15

isomorphic. We can simulate each relabelling step of R on both balls in parallel.
This simulation satisfies the condition that the labelled balls of radius k& with
center y, resp. for(y) are isomorphic via for. We can summarize:

Proposition 23. The election problem (ELECT) is equivalent to the termina-
tion problem (LDT). The size problem is reducible to the election problem and
the election is not reducible to the size problem.

References

1. D. Angluin, Local and global properties in networks of processors, Proceedings of
the 12th Symposium on theory of computing, (1980), pp. 82-93.

2. C. Berge, Graphes et Hypergraphes, Dunod (1983).

3. H.-L. Bodlaender and J. Van Leeuwen, Simulation of large networks on smaller
networks, Information and Control 71 (1986) 143-180.

4. H.-L. Bodlaender, The classification of coverings of processor networks, J. Parallel
Distrib. Comput. 6 (1989) 166-182.

5. B. Courcelle and Y. Métivier, Coverings and minors : application to local computa-
tions in graphs, Europ. J. Combinatorics 15 (1994) 127-138.

6. F. Demichelis and W. Zielonka, Decidability questions for graph k-coverings, Tech-
nical Report, LaBRI, 1997.

7. M. J. Fisher, N. A. Lynch and M. Merritt, Fasy impossibility proofs for distributed
consensus problems, Distrib. Comput. 1 (1986) 26—29.

8. I. Litovsky and Y. Métivier, Computing trees with graph rewriting systems with
priorities, In: Tree automata and languages, M. Nivat and A. Podelski (editors),
Elsevier Science Publishers B.V., (1992) 115-139.

9. L. Litovsky, Y. Métivier and W. Zielonka, On the recognition of families of graphs
with local computations, Information and Computation 118, No 1 (1995) 110-119.
10. I. Litovsky, Y. Métivier and E. Sopena, Different local controls for graph relabelling

systems, Math. Syst. Theory 28, (1995) 41-65.

11. I. Litovsky, Y. Métivier and E. Sopena, Checking global graph properties by means of
local computations: the majority problem, Electronic Notes in Theoretical Computer
Science 1 (1995).

12. N. A. Lynch, Distributed algorithms, Morgan Kaufman Publishers (1996).

13. W. S. Massey, A basic course in algebraic topology, Graduate texts in mathematics,
Springer-Verlag (1991).

14. A. Mazurkiewicz, Solvability of asynchronous ranking problem, Inform. Proc. Let-
ters 28, (1988) 221-224.

15. Y. Métivier, N. Saheb and P.-A. Wacrenier, A distributed algorithm for computing
a spanning tree, Technical report, LaBRI 1152-96, (1996).

16. M. Raynal, Distributed algorithms and protocols, Wiley and sons (1988).

17. G. Tel, Introduction to distributed algorithms, Cambridge University Press (1994).

18. M. Yamashita and T. Kameda, Computing on anonymous networks: Part I - Char-
acterizing the solvable cases, IEEE Transactions on parallel and distributed systems
7, No 1, (1996) 69-89.

19. M. Yamashita and T. Kameda, Computing on anonymous networks: Part II -
decision and membership problems, IEEE Transactions on parallel and distributed
systems 7, No 1, (1996) 90-96.

16

