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Zusammenfassung

Unendliche Spuren stellen einen geeigneten Rahmen für die Untersuchung nicht-
terminierender nebenläufiger Systeme dar. Eine besonders wichtige Eigenschaft
dabei ist die endliche Kontrollierbarkeit (Erkennbarkeit) des Verhaltens der Sy-
steme.
Unter den vielfältigen Charakterisierungen von Erkennbarkeit im Kontext un-
endlicher Spuren fehlte lange Zeit ein geeignetes Akzeptormodell, d.h. ein auf
Automaten mit verteilter Kontrolle basierendes deterministisches Modell.
Wir beantworten diese wichtige Frage in der vorliegenden Arbeit, indem wir die
Klasse erkennbarer Sprachen unendlicher Spuren durch deterministische asyn-
chrone Muller Automaten charakterisieren. Damit verallgemeinern wir das Theo-
rem von McNaughton über unendliche Wörter auf unendliche Spuren. Wir defi-
nieren deterministische Sprachen unendlicher Spuren, und zeigen die Äquivalenz
zwischen Erkennbarkeit und dem Booleschen Abschluß dieser Sprachklasse.
Die Komplementierung nichtdeterministischer Büchi Automaten ist bereits im
Fall der unendlichen Wörter ein wichtiges Problem mit interessanten Lösungen.
Wir erweitern die Methode des Fortschrittsmaßes von N. Klarlund auf asyn-
chron-zelluläre Automaten. Voraussetzung war, daß wir eines der offenen Pro-
blemen im Bereich endlicher Spuren lösen, indem wir eine Potenzautomaten-
Konstruktion für asynchron-zelluläre Automaten angeben. Diese wird anschlie-
ßend für die Komplementierung verwendet, um die Konstruktion möglichst effi-
zient durchzuführen.
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Einleitung

Das Verhalten nebenläufiger Systeme, zusammen mit der Problematik des Ent-
wurfs, der Analyse und der Verifikation verteilter Algorithmen, stellt eine Grund-
herausforderung an die formalen Methoden der Informatik dar. Eine fundierte
Behandlung nebenläufiger Systeme kann jedoch erst in einem formalen Rahmen
erfolgen. Dort herrscht genügend Abstraktion, um Eigenschaften mit mathema-
tischen Instrumenten präzise formulieren und überprüfen zu können.

Eines der frühesten formalen Modelle für parallele Systeme wurde Anfang der
60’er Jahre von C. A. Petri vorgestellt. Petri-Netze drücken Parallelität in Form
von kooperierenden, verteilten Aktionen aus. Sie stellen auch den Ausgangspunkt
der Theorie der Spuren dar, die in Zusammenhang mit dem Verhalten sicherer
Petri-Netze durch A. Mazurkiewicz [Maz77] eingeführt wurde.

Die Spurtheorie hat sich seither als geeigneter Rahmen für die Untersuchung par-
alleler Systeme erwiesen. Das Konzept der Spuren formalisiert auf einfache Art
den Kern eines nebenläufigen Systems in Form einer Menge atomarer Aktionen,
zusammen mit Abhängigkeitsbeziehungen zwischen Aktionspaaren. Diese Festle-
gung der statischen Struktur eines nebenläufigen Systems führt zu einem erstmals
in der Kombinatorik durch Cartier und Foata untersuchten mathematischen Ob-
jekt, dem freien, partiell-kommutativen Monoid [CF69].

Die Spezifikation eines gegebenen Systems besteht aus einer Menge von atomaren
Aktionen Σ, zusammen mit einer irreflexiven, symmetrischen Unabhängigkeits-
oder Kommutationsrelation I ⊆ Σ × Σ. Die kausale Unabhängigkeit wird in
diesem Modell als wechselseitige Relation dargestellt, und es kann keine Aktion
parallel zu sich selbst ausgeführt werden.

Intuitiv betrachtet können unabhängige Aktionen gleichzeitig stattfinden, wäh-
rend abhängige Aktionen zeitlich geordnet werden müssen. Sind zwei Aktionen
a, b unabhängig, (a, b) ∈ I, so werden zwei sequentielle Beobachtungen u ab v
und u ba v (u, v ∈ Σ∗) miteinander identifiziert. Betrachtet man die Äquivalenz-
relation, die durch Gleichungen dieser Art induziert wird, so stellt sich heraus,
daß sie eine Kongruenzrelation ist. Sie führt somit zu einer Monoidstruktur, zum
Monoid der endlichen Spuren. Aus dieser formalsprachlichen Perspektive heraus
sind Spuren Äquivalenzklassen von Wörtern, die mittels Kommutation ineinander
überführt werden können. Diese Sicht entspricht der Darstellung von Nebenläufig-
keit durch Interleaving.
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Von einem weiteren Standpunkt aus entspricht ein paralleler Prozeß einer be-
schrifteten partiellen Ordnung, deren Knoten mit Aktionen aus Σ markiert sind
und deren Kanten die kausalen Zusammenhänge zwischen Aktionen in Form einer
Ordnungsbeziehung ausdrücken. Aus dieser Sicht werden Spuren als Abhängig-
keitsgraphen angesehen, d.h. als azyklische, beschriftete Graphen mit Kanten
zwischen Knoten mit abhängigen Markierungen.
Die Theorie endlicher Spuren hat in den letzten Jahren eine ergebnisreiche Ent-
wicklung durchlaufen, sowohl als Erweiterung der Theorie der formalen Sprachen,
als auch im Zusammenhang mit anderen Modellen nebenläufiger Systeme, wie
z.B. Petri-Netze (für einen Überblick sei auf die Monographie [Die90] verwiesen).

Der Übergang zu unendlichen Spuren erscheint als natürlicher Schritt, um Eigen-
schaften reaktiver Systeme wie Lebendigkeit oder Fairneß untersuchen zu können
[Kwi89]. Verteilte Systeme, die unter dem Aspekt dieser beiden Eigenschaften be-
trachtet werden, werden gewöhnlich entweder axiomatisch beschrieben, zumeist
im Rahmen einer temporalen Logik, oder aber konstruktiv, als Verhalten eines
endlichen Transitionssystems [LL90].
Begrifflich wurden unendliche Spuren als Modell für nichtterminierende, nebenläufi-
ge Systeme in verschiedenen Zusammenhängen eingeführt: u.a. für Serialisie-
rungsprobleme in verteilten Datenbanksystemen [FR85] und in der Theorie der
Petri-Netze [BD87]. Eine erste formale Definition wird erneut Mazurkiewicz [Maz85]
zugesprochen, der eine unendliche (reelle) Spur als gerichtete, präfixabgeschlos-
sene Menge endlicher Spuren eingeführt hat. Im Sinne dieser Definition wird eine
reelle Spur als Grenzwert ihrer endlichen Präfixe angesehen, d.h. das unendliche
Verhalten wird durch endliche Anfangsteile approximiert.
Definiert man unendliche Spuren als unendliche Abhängigkeitsgraphen, so ent-
sprechen die reellen Spuren den Graphen, deren sämtliche Knoten eine endliche
Vergangenheit haben. Es handelt sich also um Graphen, die zu einer (unendli-
chen) Sequenz serialisiert werden können (vgl. das folgende Beispiel, in dem die
Spur (abc)ω als Hasse-Diagramm dargestellt ist).

❙❙✇

✚✚❃
��✒

❙❙✇ ��✒

��✒

❅❅❘ ��✒

❅❅❘❅❅❘ ��✒

❙❙✇

a

c

b

a

b

c

a

b

c . . .

Die bereits erwähnte konstruktive Darstellung mittels Transitionssystemen führt
auf ein fundamentales Konzept, auf die endliche Kontrollierbarkeit (Erkennbar-
keit). Erkennbare Mengen zeichnen sich außerdem durch eine Vielfalt von Charak-
terisierungen aus, die verschiedene Bereiche wie Logik oder Topologie miteinander
verbinden. So wurde beispielsweise die Untersuchung erkennbarer Mengen unend-
licher Sequenzen innerhalb der Logik initiiert, und zwar durch Büchi’s Ergebnis
der Äquivalenz zwischen Erkennbarkeit und Definierbarkeit in monadischer Logik
2. Stufe [Büc60]. Eine ausführliche Behandlung erkennbarer Mengen unendlicher
Sequenzen erscheint in [PP93, Tho90a].
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Erkennbarkeit im Rahmen reeller Spursprachen wurde 1989 erstmals untersucht
[Gas91, BMP90]. Die Definition von P. Gastin [Gas91] entspricht dem klassischen
Ansatz der saturierenden Morphismen. Die Charakterisierungen dieser Sprachfa-
milie mittels der syntaktischen Kongruenz von A. Arnold [Arn85], bzw. mittels
c-rationaler Ausdrücke [GPZ91] zeigten, daß die Definition erkennbarer reeller
Spursprachen adäquat ist. Hingegen fehlte ein geeignetes Erkennungsmodell im
Sinne von endlichen Automaten.

Wünschenswert für eine automatentheoretische Charakterisierung ist das Modell
der asynchronen Automaten, das von W. Zielonka für die Erkennung endlicher
Spuren eingeführt wurde [Zie87]. Asynchrone Automaten sind endliche Automa-
ten mit verteilter Kontrolle und Speicher, d.h. sie stellen Netze autonomer und ko-
operierender endlicher Automaten dar. Die verteilte endliche Kontrolle erlaubt es,
Nebenläufigkeit als parallele Ausführung unabhängiger Aktionen auszudrücken.
Damit sind sie ausdrucksstärker als gewöhnliche endliche Automaten, die Par-
allelität lediglich durch Interleaving darstellen. Darüberhinaus sind sie mächtig
genug, um die Klasse der erkennbaren Sprachen endlicher Spuren zu charakteri-
sieren, wie durch das wichtige Ergebnis von Zielonka gezeigt wird [Zie87, Zie89].

Der Automat der folgenden Abbildung gehört zu einer speziellen Art von asyn-
chronen Automaten, nämlich zu den asynchron-zellulären Automaten. Deren
Funktionsweise kann durch das Concurrent-Read-Owner-Write Konzept der P-
RAM Maschine umschrieben werden. Der Automat erkennt die Spur (abc)ω.

Als erstes automatentheoretisches Resultat wurde von P. Gastin und A. Petit
gezeigt, daß mit einer geeigneten lokalen Büchi Akzeptanzbedingung die Familie
erkennbarer reeller Spursprachen durch nichtdeterministische Automaten charak-
terisiert werden kann. Dieses Ergebnis verallgemeinerte die Charakterisierung für
unendliche Wörter auf reelle Spuren. Für eine Charakterisierung der Erkennbar-
keit für Sprachen unendlicher Wörter mittels deterministischer Automaten ist ein
mächtigeres Automatenmodell notwendig, z.B. der Muller Automat. Die Äqui-
valenz beider Automatenmodelle im Wortfall wurde sowohl mit algebraischen
Methoden [Sch73], als auch mit direkten (allerdings aufwendigen) Automaten-
Konstruktionen (beispielsweise die Konstruktion von S. Safra [Saf88]) gezeigt.
Damit war die Frage nach der Äquivalenz nichtdeterministischer Büchi und de-
terministischer Muller Automaten im asynchron (-zellulären) Modell naheliegend
und besonders interessant. Wir beantworten diese wichtige Frage, indem wir
die Klasse erkennbarer reeller Spursprachen durch deterministische asynchron-
zelluläre Muller Automaten charakterisieren und verallgemeinern hierdurch das
Theorem von McNaughton [McN66] über unendliche Wörter auf reelle Spuren.

Abschließend geben wir eine inhaltliche Übersicht der vorliegenden Arbeit.

Wir beginnen in Kapitel 1 mit einer kurzen Einführung der Grundbegriffe der
Spuren, gefolgt von einer Zusammenfassung der wichtigsten Eigenschaften asyn-
chroner Automaten. Der Schwerpunkt liegt dabei auf dem Spezialfall des asyn-
chron-zellulären Automaten, aus dessen einfacher Struktur elementare Eigen-
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Asynchron-zellulärer Automat:
Prozessor a

Prozessor b

Prozessor c

do forever
(read) x := A
(read) y := C
if (x̄ ∧ ȳ) ∨ (x ∧ y)

then A := x̄ (write)

do forever
(read) x := B
(read) y := C
if (x̄ ∧ ȳ) ∨ (x ∧ y)

then B := x̄ (write)

do forever
(read) x := C; y := A; z := B
if (x ∧ ȳ ∧ z̄) ∨ (x̄ ∧ y ∧ z)

then C := x̄ (write)

Abbildung 0.1: Die Programme stellen atomare Aktionen dar. Die gemeinsamen
Variablen A,B,C werden mit 1 initialisiert.

schaften hervorgehen. Die Konstruktion von Zielonka wird in ihren Grundzügen
vorgestellt, wobei wir in Kapitel 5 auf die technischen Einzelheiten näher ein-
gehen. Abschließend führen wir Erkennbarkeit im Kontext reeller Spursprachen
ein.

Kapitel 2 ist dem Beweis des Theorems von McNaughton [McN66] für reelle Spur-
sprachen gewidmet. Dabei folgen wir einem algebraischen Ansatz, der Schützen-
berger’s Beweis entspricht, so wie er in [PP93] vereinfacht vorgestellt wird. Wir
definieren deterministische reelle Spursprachen und zeigen, daß die Klasse der er-
kennbaren reellen Spursprachen mit dem Booleschen Abschluß der Klasse deter-
ministischer Sprachen übereinstimmt. In einem zweiten (im Gegensatz zu unend-
lichen Wörtern) nichttrivialen Teil, werden deterministische asynchron-zelluläre
Muller Automaten für die Erkennung deterministischer reeller Spursprachen an-
gegeben.

Die deterministischen reellen Spursprachen stellen auch das Thema von Kapi-
tel 3 dar. Zunächst geben wir eine kurze Begründung der speziellen Definition
aus der Sicht des Abschlusses unter Booleschen Operationen. Anschließend cha-
rakterisieren wir diese Sprachklasse mittels deterministischer I-Diamant Büchi
Automaten mit verallgemeinerter Akzeptanzbedingung. I-Diamant Automaten
sind Wortautomaten, die Unabhängigkeit in Form von Interleaving darstellen.
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Wir zeigen, daß deterministische asynchron-zelluläre Büchi Automaten für eine
Charakterisierung deterministischer Sprachen nicht ausreichen.
In Kapitel 4 gehen wir auf eine Unterklasse erkennbarer reeller Spursprachen ein,
und zwar auf die sternfreien Sprachen. Wir verallgemeinern eine bekannte Cha-
rakterisierung der Sternfreiheit indem wir zeigen, daß sie mit der Aperiodizität
des syntaktischen Monoids übereinstimmt.
Die Komplementierung nichtdeterministischer Büchi Automaten ist bereits im
Fall der unendlichenWörter ein wichtiges Problem mit interessanten Lösungen. In
Kapitel 5 erweitern wir die Komplementierungskonstruktion von Klarlund [Kla91]
auf asynchron-zelluläre Automaten. Voraussetzung war, daß wir eines der offenen
Probleme im Bereich endlicher Spuren lösten, indem wir eine Potenzautomaten-
Konstruktion für asynchron-zelluläre Automaten angaben. Diese wird anschlie-
ßend für die Komplementierung verwendet, um die Konstruktion möglichst effi-
zient durchzuführen.
Kapitel 6 ist schließlich einigen algorithmischen Überlegungen bezüglich dem Ab-
geschlossenheitsproblem für I-Diamant Automaten gewidmet. Es werden Kriteri-
en für die Abgeschlossenheit der Sprachen angegeben, die von Büchi bzw. Muller
Automaten dieser Art akzeptiert werden. Wir zeigen, daß die Kriterien für gewisse
Komplexitätsklassen vollständig sind.
Zusammenfassend zeigt unsere Arbeit, daß alle wichtigen Ergebnisse der Theorie
unendlicher Wörter eine natürliche Erweiterung für reelle Spursprachen haben.
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Kapitel 1

Spursprachen und Erkennbarkeit

Wir leiten diesen Abschnitt mit einer kurzen Einführung der grundlegenden Be-
griffe ein, zusammen mit einigen Notationen.
Ein Abhängigkeitsalphabet ist ein Paar (Σ, D), wobei Σ ein endliches Alphabet
und D ⊆ Σ×Σ eine reflexive, symmetrische Beziehung bezeichnet, die Abhängig-
keitsrelation. Die komplementäre Relation I = (Σ×Σ) \D wird als Unabhängig-
keitsrelation bezeichnet. Sei ≡I ⊆ Σ∗ × Σ∗ die Äquivalenzrelation, die durch die
Menge {(uabv, ubav) | (a, b) ∈ I, u, v ∈ Σ∗} induziert wird. Die Relation ≡I ist
eine Kongruenz und das dazugehörige Quotientenmonoid IM(Σ, D) = Σ∗/≡I

wird
als freies, partiell kommutatives Monoid bzw. Monoid endlicher Spuren bezeich-
net. Eine endliche Spur ist damit eine Äquivalenzklasse von Wörtern.
Aus einer weiteren Sicht heraus kann eine Spur mit einem Abhängigkeitsgraphen
identifiziert werden, d.h. mit einem (bis auf Isomorphie) beschrifteten, azykli-
schen, gerichteten Graphen [V,E, λ], mit V , E bzw. λ : V → Σ als Knoten-,
Kantenmenge bzw. Beschriftung der Knotenmenge so, daß für alle u, v ∈ V gilt:

(λ(u), λ(v)) ∈ D ⇐⇒ (u, v) ∈ idV ∪ E ∪ E−1.

Zu einer Spur t = [a1 · · · an] ∈ IM(Σ, D) mit ai ∈ Σ für 1 ≤ i ≤ n wird der da-
zugehörige Abhängigkeitsgraph G(t) gebildet, indem zunächst eine n-elementige
Knotenmenge V = {v1, . . . , vn} so beschriftet wird, daß λ(vi) = ai gilt. Die Kan-
tenmenge ist dabei durch E = {(vi, vj) | i < j und (λ(vi), λ(vj)) ∈ D} festgelegt.
Der Begriff des Abhängigkeitsgraphen kann natürlich auf unendliche Graphen
erweitert werden. Im folgenden bezeichnet G(Σ, D) die Menge der endlichen und
unendlichen Abhängigkeitsgraphen mit abzählbarer Knotenmenge V so, daß für
alle a ∈ Σ gilt: λ−1(a) ⊆ V ist eine wohlgeordnete Kette. Mit dieser Festlegung
können Knoten als Paare (a, i) mit a ∈ Σ und i eine abzählbare Ordinalzahl dar-
gestellt werden, wobei (a, i) den (i+1)-ten mit a beschrifteten Knoten bezeichnet.
AufG(Σ, D) sei die Konkatenation gegeben durch [V1, E1, λ1][V2, E2, λ2] = [V,E, λ],
mit [V,E, λ] disjunkte Vereinigung der beiden Abhängigkeitsgraphen, zusammen
mit zusätzlichen Kanten (v1, v2) ∈ V1×V2 zwischen Knoten mit abhängiger Mar-
kierung, (λ1(v1), λ2(v2)) ∈ D. Die Identität sei der leere Graph 1 = [∅, ∅, ∅]. Wir
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können nun das ω-Produkt analog definieren. Sei (gn)n≥0 ⊆ G(Σ, D) eine Se-
quenz von Abhängigkeitsgraphen. Dann ist das Produkt g = g0g1 . . . ∈ G(Σ, D)
als disjunkte Vereinigung der gn erklärt, zusammen mit zusätzlichen Kanten von
gn nach gm mit n < m, zwischen Knoten mit abhängiger Markierung. Wir
bezeichnen für L ⊆ G(Σ, D) mit Lω die ω-Iteration von L, d.h. die Menge
Lω = { g0g1 . . . | gn ∈ L, ∀n ≥ 0 }.

Weiterhin bezeichnen wir mit Σω die Menge der unendlichen Wörter über Σ. Es
sei Σ∞ = Σ∗ ∪ Σω die Menge der endlichen und unendlichen Wörter.

Der kanonische Epimorphismus ϕ : Σ∗ → IM(Σ, D) kann auf Σ∞ erweitert wer-
den, wobei es sich bei ϕ : Σ∞ → G(Σ, D) nicht mehr um einen Homomorphis-
mus handelt. Die Bildmenge ϕ(Σ∞) ⊆ G(Σ, D) ist die Menge reeller Spuren
und wird mit IR(Σ, D) bezeichnet. Beachte, daß IR(Σ, D) kein Untermonoid von
G(Σ, D) darstellt (es gilt beispielsweise aω ∈ IR(Σ, D) und b ∈ IR(Σ, D), aber für
(a, b) ∈ D ist das Produkt aωb keine reelle Spur mehr). Außerdem ist ϕ weder
mit der Konkatenation, noch mit der ω-Iteration vertauschbar: für L,K ∈ Σ∞

gilt ϕ(LK) = ϕ(L)ϕ(K) bzw. ϕ(Lω) = (ϕ(L))ω genau dann, wenn L ⊆ Σ∗.

Abschließend seien einige häufig verwendete Bezeichnungen erklärt. Für a ∈ Σ
sei D(a) = {b ∈ Σ | (a, b) ∈ D} bzw. I(a) = Σ \ D(a). Analog seien für A ⊆ Σ
die Mengen D(A) = ∪a∈AD(a) bzw. I(A) = Σ \ D(A) erklärt. Für eine Menge
K sei P(K) die Potenzmenge von K, bzw. |K| die Kardinalität von K. Mit Kco

bezeichnen wir das Komplement von K.

Für t ∈ IR(Σ, D) sei 0 ≤ |t|a ≤ ω die Anzahl der Vorkommen von a in t. Dann
bezeichnet alph(t) das Alphabet von t, d.h. die Menge {a ∈ Σ | |t|a > 0}; mit
alphinf(t) wird das unendlich oft auftretende Alphabet von t bezeichnet, d.h. die
Menge {a ∈ Σ | |t|a = ω}. Wir verwenden später die Bezeichnung alphinf(w)
auch für (un)endliche Wörter w ∈ Σ∞. Weiterhin sei für eine endliche Spur
t ∈ IM(Σ, D) die Menge der Beschriftungen der maximalen Elemente mit max(t)
bezeichnet.

Die Präfix-Ordnung ≤ auf IR(Σ, D) wird wie folgt erklärt: Es sei u ≤ t genau
dann, wenn t = us für ein s ∈ IR(Σ, D) gilt. Für zwei Spuren t1, t2 bezeichnen wir
dann mit t1⊓t2 das Infimum von t1, t2. Das Supremum einer Menge Y ⊆ IR(Σ, D),
wird (falls es existiert) mit ⊔Y bezeichnet.

In den Beweisen werden wir durchgehend Durchschnitte t1 ∩ t2 im Sinne von
Faktoren einer Spur verwenden. Sei beispielsweise t = u1u2u3 eine Zerlegung
von u ∈ IR(Σ, D) in Faktoren ui, mit ui ∈ IR(Σ, D), i = 1, 2, 3. Dann können
die Faktoren ui mit Untergraphen von t identifiziert werden. Allgemeiner sei
t = u1 · · · um = v1 · · · vn, dann definieren die Graphendurchschnitte wij = ui ∩
vj mit 1 ≤ i ≤ m und 1 ≤ j ≤ n Faktoren von t. Es gilt ui = wi1 · · ·win

bzw. vj = w1j · · ·wmj, für alle i, j. Man beachte, daß aus der Darstellung von t
folgt: alph(wij)× alph(wkl) ⊆ I, für alle i < k und j > l (bzw. i > k und j < l).
Ein wichtiger Spezialfall hiervon ist mit m = n = 2 das Lemma von Levi.
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1.1 Erkennbarkeit

Ziel dieses Abschnitts ist es, eine knappe Übersicht über Erkennbarkeit im Kon-
text allgemeiner Monoide anzugeben (für Einzelheiten siehe [Ber79]).

Definition 1.1.1 Sei M ein Monoid. Eine Teilmenge L ⊆ M heißt erkennbar,
wenn ein endliches Monoid N und ein Monoid-Homomorphismus h : M → N
derart existieren, daß L = h−1h(L) gilt. Wir sagen in diesem Fall, daß L von h
erkannt wird.

Bemerkung 1.1.2 Die obige Definition ist offensichtlich äquivalent zur Existenz
einer Kongruenzrelation R auf M mit endlichem Index, die L saturiert, d.h. so,
daß L als Vereinigung von Äquivalenzklassen von R darstellbar ist.

Die Klasse Rec(M) der erkennbaren Teilmengen von M bildet eine Boolesche
Algebra und ist abgeschlossen unter inversen Homomorphismen.
Eine äquivalente Definition der Erkennbarkeit basiert auf den Begriff des M -
Automaten, der Gegenstand der folgenden Definition ist:

Definition 1.1.3 Sei (M, ·, 1) ein Monoid. Ein M-Automat A ist ein 4-Tupel
(Q, δ, q0, F ), wobei:

• Q ist die Zustandsmenge,

• δ : Q ×M → Q ist die Übergangsfunktion so, daß mit δ(q,m) =: qm für
alle q ∈ Q, m,n ∈ M gilt:

q1 = q und q(mn) = (qm)n,

• q0 ∈ Q ist der Anfangszustand, und

• F ⊆ Q ist die Menge der Endzustände.

Der M-Automat A heißt endlich, wenn die Zustandsmenge Q endlich ist. Er
akzeptiert die Menge L(A) = {m ∈ M | q0m ∈ F}.

Die nachfolgenden Beziehungen zwischen Akzeptanz durch (endliche) Automaten
und Erkennbarkeit durch Homomorphismen auf (endlichen) Monoide sind leicht
zu verifizieren. Eine Menge L ⊆ M , die von einem vollständigen M -Automaten
A = (Q, δ, q0, F ) akzeptiert wird, wird vom folgenden Homomorphismus erkannt
(wobei QQ das Transformationsmonoid von Q bezeichnet):

h : M → QQ

m 7−→ (q 7→ qm, ∀q ∈ Q)

Es gilt: L = h−1(Φ), mit Φ = {f ∈ QQ | f(q0) ∈ F}
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Umgekehrt können wir zu einem Monoid (N, ·, 1) und einem Homomorphismus
h : M → N , der L ⊆ M erkennt, einen M -Automaten A = (N, δ, 1, h(L))
angeben, der L akzeptiert. Die Übergangsfunktion δ : N × M → N wird dabei
erklärt durch δ(n,m) := nh(m). Der Automat A ist endlich, falls N ein endliches
Monoid ist.
Um auf den Begriff der saturierenden Kongruenzen zurückzukommen (vgl. Be-
merkung 1.1.2), führen wir schließlich die syntaktische Kongruenz ≡L einer Spra-
che L ⊆ M ein. Dies ist die gröbste Kongruenz, die L saturiert, und wird für
m,m′ ∈ M wie folgt definiert:

m ≡L m′ ⇐⇒ (nmp ∈ L ⇔ nm′p ∈ L, ∀n, p ∈ M)

Das zu dieser Kongruenz gehörende Quotientenmonoid M/≡L
=: Synt(L) wird

als syntaktisches Monoid von L bezeichnet und der kanonische Homomorphismus
h : M → Synt(L) als syntaktischer Morphismus.
Der nächste Satz faßt die angegebenen Charakterisierungen erkennbarer Mengen
zusammen:

Satz 1.1.4 Sei M ein Monoid. Folgende Aussagen sind zueinander äquivalent:

1. L ⊆ M ist erkennbar.

2. Es existiert ein endlicher Automat A, der L akzeptiert.

3. Das syntaktische Monoid von L, Synt(L), ist endlich.

Wir schließen diesen Abschnitt mit einigen Bemerkungen zum Begriff des mini-
malen Automaten. Zu einer gegebenen Menge L ⊆ M definieren wir eine Relation
RL ⊆ M ×M durch:

m RL m′ ⇐⇒ (mn ∈ L ⇔ m′n ∈ L, ∀n ∈ M)

Es ist leicht zu sehen, daß RL eine rechtsinvariante Äquivalenzrelation ist, daher
ist die Übergangsfunktion des nachfolgenden Automaten AL wohldefiniert. Dabei
bezeichnet [m] die Äquivalenzklasse eines Elements m ∈ M :

AL = ( Q = M/RL
, δ, q0 = [1], F = {[m] | m ∈ L})

mit δ([m],m′) = [mm′]

Es gilt L(A) = L und, falls L ∈ Rec(M) erkennbar ist, so ist der Automat AL

endlich und stellt den minimalen Automaten von L dar.

Bemerkung 1.1.5 Im Spezialfall des freien, partiell kommutativen MonoidsM =
IM(Σ, D) besitzt der minimale Automat AL = (Q, ·, q0, F ) einer erkennbaren
Sprache L ∈ Rec(IM) die sogenannte I-Diamant Eigenschaft:

∀ q ∈ Q, ∀ (a, b) ∈ I : q · ab = q · ba
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Der klassische Begriff des M -Automaten führt daher auf natürlichem Wege zur
I-Diamant Eigenschaft, die die Unabhängigkeit von Aktionspaaren mittels Inter-
leaving ausdrückt. Dabei werden alle Ausführungsfolgen einer Sequenz von Ak-
tionen als äquivalente Berechnungspfade im Automaten ermöglicht (äquivalent
im Sinne der Akzeptanz).
Der Nachteil des I-Diamant Automaten besteht allerdings in der zentralisier-
ten Kontrollstruktur, die Nebenläufigkeit nicht direkt ausdrücken kann. Ihr we-
sentlicher Vorteil besteht hingegen in ihrer geringen Größe, verglichen mit dem
verteilten Automatenmodell, das wir jetzt vorstellen.

1.2 Asynchrone Automaten

Das Konzept der asynchronen Automaten ist von W. Zielonka als verteiltes Auto-
matenmodell für endliche Spuren eingeführt worden [Zie87, Zie89, CMZ90]. Vom
Prinzip her ist ein asynchroner Automat ein Netz von endlichen Automaten, die
als autonome, kooperierende Prozesse arbeiten. Ihre verteilte endliche Kontrolle
ermöglicht eine nebenläufige Ausführung unabhängiger Aktionen. Im Zusammen-
hang mit anderen parallelen Berechnungsmodellen sei angemerkt, daß asynchrone
Automaten äquivalent sind zu 1–sicheren, beschrifteten Petri-Netzen.
Die Bedeutung der asynchronen Automaten liegt im herausragenden Ergebnis
von Zielonka über die Äquivalenz von Erkennbarkeit in IM(Σ, D) und Akzep-
tanz durch deterministische Automaten dieser Art. Gegenstand unserer Betrach-
tung hier werden die asynchronen und die asynchron-zellulären Automaten sein.
Später werden wir uns hauptsächlich auf die asynchron-zellulären Automaten
konzentrieren, deren interne Struktur sich als elementarer erweist und

”
bessere“

Eigenschaften besitzt. Ein weiterer wichtiger Aspekt ist die Tatsache, daß Zie-
lonka’s Konstruktion genau diesen Automatentyp liefert. Darüber hinaus liegen
einfache Umwandlungen von einem Modell ins andere vor.
Sei (Σ, D) ein Abhängigkeitsalphabet und IM(Σ, D) das zugehörige freie, partiell
kommutative Monoid. Ein asynchroner Automat über (Σ, D) ist ein 4-Tupel A =
(Q, δ, q0, F ) mit:

• Q =
∏m

i=1 Qi ist die Zustandsmenge, wobei Qi für 1 ≤ i ≤ m lokale Zu-
standsmengen darstellen,

• Zu jedem a ∈ Σ ist eine Indexmenge (Domäne) Dom(a) ⊆ {1, . . . ,m}
assoziiert so, daß Dom(a) ∩Dom(b) = ∅ genau dann gilt, wenn (a, b) ∈ I.

• δ ⊆ Q × Σ × Q ist die (partiell definierte) globale Übergangsrelation, die
aus den lokalen Übergangsrelationen δa, a ∈ Σ, besteht mit:

δa ⊆
∏

i∈Dom(a)

Qi ×
∏

i∈Dom(a)

Qi,
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• q0 ∈ Q (bzw. F ⊆ Q) ist der Anfangszustand (bzw. die Menge der End-
zustände).

Ein globaler a-Übergang (q′i)1≤i≤m ∈ δ((qi)1≤i≤m, a) ist definiert, wenn der lokale
Übergang (q′i)i∈Dom(a) ∈ δa((qi)i∈Dom(a)) definiert ist, und bewirkt eine Änderung
lediglich auf den lokalen Zuständen, die zur Domäne von a gehören, d.h.:

(q′i)1≤i≤m ∈ δ((qi)1≤i≤m, a) ⇐⇒
{

(q′i)i∈Dom(a) ∈ δa((qi)i∈Dom(a), a) und
qj

′ = qj, falls j /∈ Dom(a) .

Der Automat ist endlich, wenn seine Zustandsmenge Q endlich ist; er ist de-
terministisch, wenn alle δa (partiell definierte) Funktionen sind. Er akzeptiert
mit u ∈ Σ∗ alle Wörter, die zu u äquivalent sind bzgl. (Σ, D). Daher kann die
Spursprache, die von A erkannt wird, durch L(A) = {t ∈ IM(Σ, D) | δ(q0, u) ∈
F für ein u ∈ ϕ−1(t)} definiert werden.

Ein asynchron-zellulärer Automat über dem Abhängigheitsalphabet (Σ, D) ist
ein 4-Tupel A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F ), wobei für alle a ∈ Σ gilt:

• Qa stellt eine endliche Menge von lokalen Zuständen dar,

• q0 ∈
∏

a∈Σ Qa ist der globale Anfangszustand,

• F ⊆
∏

a∈Σ Qa ist eine Menge globaler Endzustände und

• δa ⊆ (
∏

b∈D(a)Qb)×Qa stellt die lokale (partiell definierte) Übergangsrela-
tion dar.

Der Automat heißt deterministisch, wenn δa eine (partiell definierte) Funktion
ist, für alle a ∈ Σ.
Im folgenden verwenden wir die Abkürzungen QA für

∏

b∈A Qb und qA für
∏

b∈A qb,
wobei A ⊆ Σ. Insbesondere wird qD(a) die Bedeutung

∏

b∈D(a) qb haben, d.h. qD(a)

ist die Projektion eines globalen Zustands q ∈ QΣ auf die lokalen Komponenten
b ∈ D(a).
Die globale Übergangsrelation δ ⊆ QΣ × Σ×QΣ des asynchron-zellulären Auto-
maten A ist definiert durch:

q′ ∈ δ(q, a) ⇔ q′a ∈ δa(qD(a)) und

q′c = qc für alle c 6= a

Damit kann die von A akzeptierte Spursprache L(A) analog definiert werden
durch L(A) = {t ∈ IM(Σ, D) | δ(q0, u) ∈ F für ein u ∈ ϕ−1(t)}.
Mit anderen Worten ist die Existenz eines globalen Folgezustands q′ ∈ QΣ von
q nur durch diejenigen lokalen Komponenten des Zustands q bedingt, die in
Abhängigkeit von a stehen. Weiterhin bewirkt der a-Übergang lediglich eine
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Änderung der a-Komponente des globalen Zustandes, wobei der neue Wert durch
die b-Komponenten von q mit b ∈ D(a) festgelegt wird. Durch seine verteilte
endliche Kontrolle besitzt ein asynchron-zellulärer Automat die Fähigkeit, un-
abhängige Aktionen (Übergänge) parallel ablaufen zu lassen. Weiterhin ergibt die
Betrachtung der Übergänge im Automaten als Lese-Schreibe-Operationenpaar ei-
ne Analogie zum Concurrent-Read-Owner-Write–Prinzip für P-RAM Maschinen:
Simultanes Lesen ist erlaubt, während Schreiboperationen nur im eigenen Bereich
zugelassen sind.
Wir verwenden vorwiegend asynchron-zelluläre Automaten aufgrund einiger mar-
kanter Eigenschaften, die von Automaten der Zielonka-Konstruktion erfüllt wer-
den. Wegen dem häufigen Gebrauch dieser Eigenschaften sollen an dieser Stelle
die Grundzüge der Konstruktion von Zielonka zusammengefaßt werden (die Be-
weise können z.B. [Die90, CMZ90] entnommen werden).
Für a ∈ Σ und Teilalphabete A ⊆ Σ seien die ∂a- bzw. ∂A-Präfixe einer endlichen
Spur als kleinste Präfixe definiert, die alle Auftreten des Buchstabens a bzw. aller
Buchstaben aus A enthalten. Formal bedeutet dies:

∂a(t) = ⊓{u ≤ t | |t|a = |u|a } und ∂A(t) =
⊔

a∈A ∂a(t)
(insbesondere gilt ∂∅(t) = 1 und ∂Σ(t) = t).

Es gilt beispielsweise ∂a(ta) = ∂D(a)(t)a für alle t ∈ IM(Σ, D), a ∈ Σ.
Die Konstruktion von Zielonka beruht auf der Berechnung einer

”
verteilten“ Ab-

bildung, der asynchronen Abbildung (asynchronous mapping, siehe e.g. [Die90]).
Es handelt sich um eine Abbildung µ : IM(Σ, D) → Q zu einer Menge Q, die für
alle t ∈ IM(Σ, D), a ∈ Σ und A,B ⊆ Σ folgende zwei Eigenschaften erfüllt:

• Der Wert µ(∂A∪B(t)) ist durch die Werte µ(∂A(t)) und µ(∂B(t)) eindeutig
festgelegt.

• Der Wert µ(∂a(ta)) (= µ(∂D(a)(ta))) ist durch den Buchstaben a und den
Wert µ(∂D(a)(t)) eindeutig festgelegt.

Zwischen asynchronen Abbildungen und asynchron-zellulären Automaten besteht
ein grundlegender Zusammenhang, ähnlich dem zwischen Monoid-Homomorphis-
men und endlichen Automaten, wie dies im folgenden gezeigt wird.

Bemerkung 1.2.1 Es seien eine asynchrone Abbildung µ : IM(Σ, D) → Q und
eine Menge R ⊆ Q gegeben. Dann wird die Sprache µ−1(R) vom folgenden asyn-
chron-zellulären Automaten Aµ = (QΣ, δ, q0, F ) erkannt:

δ : QΣ × IM(Σ, D) → QΣ,
δ((µ(∂b(t)))b∈Σ, a) = (µ(∂b(ta)))b∈Σ

Man beachte, daß ein a-Übergang nur die a-Komponente des globalen Zustands
(µ(∂b(t)))b∈Σ ändert, wobei für b 6= a gilt: ∂b(ta) = ∂b(t). Desweiteren hängt der
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neue lokale Zustand µ(∂a(ta)) nur von a und dem Wert µD(a)(t) ab, da letzteres
eindeutig durch die Werte (lokalen Zustände) µ(∂b(t)) mit b ∈ D(a) festgelegt
wird. Damit ist gezeigt, daß δ wohldefiniert ist und der Übergangsfunktion eines
asynchron-zellulären Automaten entspricht.
Der Anfangszustand sei q0 = (µ(1))a∈Σ und die Menge der Endzustände sei gege-
ben durch F = { (µ(∂a(t)))a∈Σ | µ(t) ∈ R }. Man beachte außerdem, daß für alle
t ∈ IM(Σ, D) gilt: δ(q0, t) = (µ(∂a(t)))a∈Σ.
Nehmen wir nun an, daß eine erkennbare Spursprache K ⊆ IM(Σ, D) gegeben ist,
die vom Homomorphismus η : IM(Σ, D) → S zum endlichen Monoid S erkannt
wird. Die Konstruktion von Zielonka besteht darin, eine endliche Menge Q und ei-
ne asynchrone Abbildung µ : IM(Σ, D) → Q so zu bestimmen, daß der Homomor-
phismus η durch µ faktorisiert wird, d.h. es existiert eine Abbildung π : Q → S
derart, daß η = π ◦ µ (siehe Abbildung 1.1). Mit R = π−1(η(K)) akzeptiert der
oben beschriebene asynchron-zelluläre Automat Aµ genau die Sprache K.

✲
❄�

�
�

�
�
�✒

K ⊆ IM(Σ, D) S

Q ⊇ π−1(η(K))

µ π

η

η = π ◦ µ

Abbildung 1.1: η = π ◦ µ

Eine grundlegende Eigenschaft des Automaten, der aus einer asynchronen Abbil-
dung entsteht, betrifft die lokalen Zustände der maximalen Elemente einer (end-
lichen) Spur t, max(t): Gilt für zwei endliche Spuren max(t1) = max(t2) = M
und δ(q0, t1)c = δ(q0, t2)c für alle c ∈ M , so folgt damit t1 ∈ L(A) genau dann,
wenn t2 ∈ L(A). Dies bedeutet, daß die lokalen Zustände der maximalen Elemen-
te einer Spur die Akzeptanz durch den Automaten festlegen. Diese Eigenschaft
folgt aus der Beziehung t = ∂max(t)(t), womit der Wert µ(t) durch die Menge
{µ(∂a(t)) | a ∈ max(t)} festgelegt ist (µ ist eine asynchrone Abbildung). Diese
Eigenschaft wird im Kapitel 2 bei der Konstruktion deterministischer asynchron-
zellulärer Muller Automaten eine wichtige Rolle spielen.

1.3 Erkennbare Sprachen reeller Spuren

Im Rahmen allgemeiner Monoide, wie z.B. des freien Monoids Σ∗ oder des Mo-
noids der endlichen Spuren IM(Σ, D), haben wir Erkennbarkeit mit Hilfe von er-
kennenden Homomorphismen definiert. Ein ähnlicher Ansatz kann auch für reelle
Spursprachen als Ausgangspunkt gewählt werden.
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Sei η : IM(Σ, D) → S ein Homomorphismus und S ein Monoid. Wir sagen, daß
eine reelle Spursprache L ⊆ IR(Σ, D) von η erkannt wird, wenn für beliebige
Folgen von endlichen Spuren (tn)n≥0, (t

′
n)n≥0 ⊆ IM(Σ, D), mit η(tn) = η(t′n) für

alle n ≥ 0, gilt:

t0t1 . . . ∈ L ⇐⇒ t′0t
′
1 . . . ∈ L .

Definition 1.3.1 [Gas91] Sei L ⊆ IR(Σ, D). L heißt erkennbar, wenn ein end-
liches Monoid S und ein Homomorphismus η : IM(Σ, D) → S derart existieren,
daß L von η erkannt wird.

Bemerkung 1.3.2 Es läßt sich leicht zeigen, daß eine Sprache L, die vom Homo-
morphismus η erkannt wird, als L =

⋃

(s,e)∈PL
η−1(s)η−1(e)ω sich darstellen läßt,

wobei PL = {(s, e) ∈ S2 | se = s, e2 = e und η−1(s)η−1(e)ω ∩L 6= ∅}. Die Grund-
lage für diese Darstellung ist die Tatsache, daß L genau dann von η erkannt wird,
wenn für jedes Paar (s, e) ∈ S mit se = s, e2 = e folgende Saturierungsbedingung
gilt:

η−1(s)η−1(e)ω ∩ L 6= ∅ =⇒ η−1(s)η−1(e)ω ⊆ L

Hierzu sei bemerkt, daß wir uns auf Paare (s, e) wie oben einschränken können,
da wir zu einem gegebenen Homomorphismus jede reelle Spur t = ϕ(x0x1 . . .) mit
xi ∈ Σ als t = t0t1 . . . mit ti ∈ IM(Σ, D) faktorisieren können, wobei η(t0) = s
und η(tn) = e, n ≥ 1 für gewisse s, e ∈ S mit se = s und e2 = e gilt.

Eine derartige Faktorisierung kann bekanntermaßen durch folgendes Ramsey-
Argument erreicht werden: Wir definieren induktiv eine Sequenz (in, An)n≥0 mit
in ∈ IN, An ⊆ IN und |An| = ω und beginnen mit A0 = IN. Sei An bereits
definiert und sei in = minAn. Es existiert ein e ∈ S derart, daß die Menge
A = {m ∈ An | η(xinxin+1 . . . xm−1) = e} unendlich ist, da S endlich ist. Wir
setzen An+1 = A. Damit erreichen wir, daß η(xinxin+1 . . . xin+p−1) unabhängig ist
von p > 0. Sei en = η(xinxin+1 . . . xin+p−1). Ohne Einschränkung sei en = e für
alle n ≥ 0 erfüllt (ansonsten wähle eine entsprechende Teilfolge von Indizes). Mit
der Faktorisierung

t0 = ϕ(x0x1 . . . xi1−1)

tn = ϕ(xinxin+1 . . . xin+1−1), n ≥ 1

und mit s = η(t0) (= s′e für ein s′ ∈ S) erreicht man das gewünschte Ergebnis,
da e2 = e und se = s′ee = s′e = s gelten.

Eine alternative Definition von Rec(IR), der erkennbaren reellen Spursprachen,
stützt sich auf den Begriff der syntaktischen Kongruenz, wie sie von A. Arnold
[Arn85] für Sprachen unendlicher Wörter eingeführt wurde. Sei L ⊆ IR(Σ, D)
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gegeben. Zwei endliche Spuren t, t′ ∈ IM(Σ, D) heißen syntaktisch äquivalent,
wenn für alle u, v, w ∈ IM(Σ, D) gilt:

u(tv)ω ∈ L ⇐⇒ u(t′v)ω ∈ L

utvwω ∈ L ⇐⇒ ut′vwω ∈ L

Wir bezeichnen die syntaktische Kongruenz einer Sprache L mit ≡L und betrach-
ten den zugehörigen kanonischen Epimorphismus η : IM(Σ, D) → IM(Σ, D)/≡L

.
In Analogie zum Fall der endlichen Spuren bzw. Wörter, kann gezeigt werden,
daß die syntaktische Kongruenz gröber ist als jede Kongruenz, die L saturiert. Im
allgemeinen jedoch ist sie selbst keine saturierende Kongruenz, wohl aber falls L
erkennbar ist. Der folgende Satz faßt drei algebraische Charakterisierungen von
Erkennbarkeit im Kontext reeller Spuren zusammen:

Satz 1.3.3 [Gas91] Eine reelle Spursprache L ⊆ IR(Σ, D) ist genau dann er-
kennbar, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:

1. ϕ−1(L) ⊆ Σ∞ ist eine erkennbare Wortsprache.

2. L wird von einem Homomorphismus η : IM(Σ, D) → S erkannt, wobei S
ein endliches Monoid ist.

3. Das syntaktische Monoid von L, Synt(L) = IM(Σ, D)/≡L
, ist endlich und

der syntaktische Homomorphismus η : IM(Σ, D) → Synt(L) erkennt L.

Bemerkung 1.3.4 Rec(IR) ist eine Boolesche Algebra. Dies folgt aus der ersten
der obigen Charakterisierungen zusammen mit der Tatsache, daß die Familie der
erkennbaren Mengen aus Σ∞ eine Boolesche Algebra bildet (ϕ−1 kommutiert mit
den Booleschen Operationen).

Die Erkennung von Sprachen aus IR(Σ, D) durch asynchron-zelluläre Automa-
ten erfordert geeignete zusätzliche Akzeptanzbedingungen für unendliche Spuren.
Angelehnt an zwei klassische Akzeptanzbedingungen (Büchi bzw. Muller) wur-
den analoge verteilte Bedingungen vorgeschlagen [GP92], die wir im folgenden
beschreiben.
Sei einen π = (q0, a0, q1, a1, . . .) ein unendlicher (globaler) Übergangspfad im
asynchron-zellulären Automaten A, mit qn ∈ QΣ und an ∈ Σ für alle n ≥ 0
so, daß qn+1 ∈ δ(qn, an). Wie bereits erwähnt, werden wir lokale Akzeptanzbedin-
gungen angeben und betrachten daher diejenigen lokalen Zustände, die auf dem
Pfad π unendlich oft vorkommen. Sei also infa(π) = {qa ∈ Qa | ∃∞n : (qn)a =
qa} die Menge der unendlich oft vorkommenden a-Zustände, a ∈ Σ. Ein asyn-
chron-zellulärer Automat A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F ) wird nun um eine Tafel
T ⊆

∏

a∈Σ P(Qa) erweitert, die erlaubt, unendliche Pfade π gemäß den Zustands-
mengen (infa(π))a∈Σ zu akzeptieren.
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Sieht man den um die Tafel T erweiterten Automaten A = ((Qa)a∈Σ, (δa)a∈Σ,
q0, F, T ) als Büchi Automat an, so wird ein unendlicher Übergangspfad π von A
akzeptiert, wenn ein Tafelelement T ∈ T derart existiert, daß Ta ⊆ infa(π) für
alle a ∈ Σ gilt.
Ist A hingegen ein Muller Automat, so wird der unendliche Pfad π akzeptiert,
wenn ein T ∈ T existiert so, daß Ta = infa(π) für alle a ∈ Σ gilt.
Anders ausgedrückt erfordert die Büchi Bedingung das unendliche Vorkommen
gewisser lokaler Zustände, während eine Muller Bedingung erfordert, daß die un-
endlich oft wiederholten lokalen Zustände genau einem Tafelelement entsprechen.

Definition 1.3.5 Sei A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F, T ) ein asynchron-zellulärer
Automat. Die von A akzeptierte Sprache L(A) ⊆ IR(Σ, D) wird definiert wie
folgt.

• Falls A ein Büchi Automat ist:

L(A) = {t ∈ IR(Σ, D) | ∃ Pfad π = (q0, a0, q1, a1, . . .) mit
t = ϕ(a0a1 . . .) und ∃ T ∈ T mit Ta ⊆ infa(π), ∀ a ∈ Σ}

∪ {t ∈ IM(Σ, D) | δ(q0, t) ∩ F 6= ∅} .

• Falls A ein Muller Automat ist:

L(A) = {t ∈ IR(Σ, D) | ∃ Pfad π = (q0, a0, q1, a1, . . .) mit
t = ϕ(a0a1 . . .) und ∃ T ∈ T mit Ta = infa(π), ∀ a ∈ Σ}

∪ {t ∈ IM(Σ, D) | δ(q0, t) ∩ F 6= ∅} .

Bemerkung 1.3.6 In der obigen Definition wird die akzeptierte Spursprache
mittels Wortrepräsentanten erklärt. Man kann jedoch leicht zeigen, daß für t =
ϕ(a0a1 . . .) = ϕ(a′0a

′
1 . . .), a

′
i ∈ Σ, ein zu π äquivalenter Pfad π′ = (q0, a

′
0, q

′
1, a

′
1, . . .)

existiert, der durch dasselbe Tafelelement T ∈ T akzeptiert wird. Dafür kann fol-
gende Charakterisierung äquivalenter ω-Wörter benutzt werden ([DGP91]):

ϕ(a0a1 . . .) = ϕ(a′0a
′
1 . . .) =⇒

∃(xn)n≥0, (yn)n≥0 ⊆ Σ∗, ∃(kn)n≥0, (ln)n≥0 ⊆ IN (k0 = l0 = 0) mit:
ϕ(akn . . . akn+1−1) = ϕ(xnyn) und
ϕ(a′ln . . . a

′
ln+1−1) = ϕ(yn−1xn) (mit y−1 := 1).

Wir wollen anhand eines einfachen Beispiels die beiden Akzeptanzbedingungen
für reelle Spuren betrachten:

Beispiel 1.3.7 Es seien (Σ, D) mit b, c ∈ Σ, b 6= c und D beliebig, und der asyn-
chron-zelluläre Automat A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F, T ) über (Σ, D) gegeben,
mit

1. Qa = {(q0)a} und δa(qD(a)) = (q0)a für alle q und a 6= b, c.



20

2. Für x ∈ {b, c} sei Qx = {(q0)x, rx} und

δx(qD(x)) =

{

rx falls qx = (q0)x
(q0)x falls qx = rx

3. F = ∅.

4. T = {T} mit T = (
∏

a∈Σ\{b,c} Qa)×Qb × {(q0)c}.

Es ist leicht zu sehen, daß der obige Automat mit dem Muller Akzeptanzmodus
die Sprache L(A) = {t ∈ IR(Σ, D) | b ∈ alphinf(t), |t|c endlich, gerade} erkennt.
Als Büchi Automat hingegen, erkennt er die Sprache L(A) = {t ∈ IR(Σ, D) | b ∈
alphinf(t), und (|t|c = ω oder |t|c gerade)}.
An dieser Stelle sei auch angemerkt, daß Sprachen der Art Inf(A) := {t ∈
IR(Σ, D) | alphinf(t) = A} bzw. IRA := {t ∈ IR(Σ, D) | D(alphinf(t)) = D(A)}
erkennbar sind. Es genügt dafür, den obigen Automaten angemessen zu erweitern.

Die erste automaten-theoretische Charakterisierung erkennbarer reeller Spurspra-
chen durch asynchrone Automaten geht auf die Arbeiten von P. Gastin und A. Pe-
tit zurück [GP92]:

Theorem 1.3.8 Rec(IR) ist äquivalent zur Familie der reellen Spursprachen,
die durch nichtdeterministische, asynchron (-zelluläre) Büchi Automaten erkannt
werden.

Die Konstruktion von P. Gastin und A. Petit ist modularer Natur und hat als
Ausgangspunkt die Darstellung einer erkennbaren reellen Spursprache mittels
rationaler Operatoren (siehe Bemerkung 1.3.2). Ihre Konstruktion ist daher auf-
grund der Konkatenation (und ω-Iteration) innerhalb der rationalen Darstellung
inhärent nichtdeterministisch. Wir werden im Kapitel 2 unter Verwendung eines
algebraischen Ansatzes ([PP93]) eine Konstruktion deterministischer asynchron-
zellulärer Muller Automaten für Rec(IR) angeben, womit eine der wichtigen Fra-
gen der Theorie der reellen Spuren (siehe auch [GP92]) beantwortet wird.
Zum Abschluß dieser Einführung in Erkennbarkeit im Kontext reeller Spuren
sei auf zwei weitere Charakterisierungen von Rec(IR) verwiesen. Zunächst sei
c−Rat(IR) die Familie der c-rationalen Sprachen aus IR(Σ, D), d.h. die klein-
ste Teilmenge von P(IR(Σ, D)), die ∅ und {a}, a ∈ Σ, enthält und die unter
Vereinigung ∪, Konkatenation ·, ∗- und ω-Iteration abgeschlossen ist, wobei die
Iteration auf zusammenhängende Sprachen eingeschränkt ist (eine Spursprache
L ist zusammenhängend, wenn jedes t ∈ L als Abhängigkeitsgraph gesehen zu-
sammenhängend ist). Dann gilt:

Theorem 1.3.9 [GPZ91] Rec(IR) ist äquivalent zu c−Rat(IR).
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Weiterhin betrachten wir die monadische Logik 2. Stufe, deren Formeln ausgehend
von den Prädikaten x ≤ y, x ∈ X und Pa(x) gebildet werden, unter Verwendung
der Booleschen Junktoren ∧,∨,¬ und der Quantoren ∃, ∀ (dabei bezeichnen x, y
Individuenvariablen, X Mengenvariable; das Prädikat Pa(x) bedeutet, daß x mit
a ∈ Σ beschriftet ist). Damit gilt:

Theorem 1.3.10 [EM93] Rec(IR) ist äquivalent zur Familie der reellen Spur-
sprachen, die durch Formeln der monadischen Logik zweiter Stufe definierbar
sind.
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Kapitel 2

Das Theorem von McNaughton
für IR(Σ, D)

Thema des vorliegenden Kapitels ist eine Verallgemeinerung des bekannten Theo-
rems von McNaughton [McN66] von ω-Wortsprachen auf Sprachen reeller Spuren.
Wir beantworten mit der Charakterisierung der Familie der erkennbaren Spra-
chen reeller Spuren durch deterministische asynchron-zelluläre Muller Automaten
eine der wesentlichen Fragen auf diesem Gebiet. Die Ergebnisse dieses Kapitels
sind auch in [DM93] erschienen.

In den ersten beiden Abschnitten folgen wir Schützenberger’s Beweis für das
Theorem von McNaughton, so wie er in [PP93] vorgestellt wird. Übertragen auf
Spuren wird der Beweis wesentlich technischer und aufwendiger (vgl. 2.1.11), wo-
bei die Grundideen beibehalten werden. Als erstes Ergebnis erhalten wir die Äqui-
valenz zwischen der Familie der erkennbaren reellen Spursprachen und dem Boole-
schen Abschluß der Familie der deterministischen reellen Spursprachen DRec(IR).
Letztere Sprachfamilie ergibt sich als natürliche Verallgemeinerung der determi-
nistischen ω-Wortsprachen, wobei jedoch kein direkter Zusammenhang zu deter-
ministischen (asynchron-zellulären) Büchi Automaten mehr besteht, wie im Falle
der ω-Wortsprachen. Wir diskutieren diesen Aspekt und begründen die Definition
der Familie DRec(IR) in Kapitel 3.

Schließlich zeigen wir im letzten Abschnitt die Äquivalenz von Erkennbarkeit in
IR(Σ, D) und Akzeptanz durch deterministische asynchron-zelluläre Muller Au-
tomaten. Dies ist erneut ein nichttrivialer Schritt, der u.a. auf grundlegenden
Eigenschaften asynchron-zellulärer Automaten basiert.

2.1 Algebraische Eigenschaften in Rec(IR)

Sei η : IM(Σ, D) → S ein Homomorphismus und S ein Monoid. Wir werden
im folgenden die Bezeichnung IMs := η−1(s) für s ∈ S durchgehend verwenden,
ohne den darunterliegenden Homomorphismus η explizit zu erwähnen, falls keine
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Verwechslung möglich ist. Weiterhin betrachten wir den präfixfreien Teil IPs von
IMs,

IPs := IMs \ IMsIM+ (mit IM+ = IM \ 1)

IPs besteht also aus den Spuren, deren η-Bild s ist und die keinen echten Präfix
in IMs besitzen.
Bezüglich dem Homomorphismus η werden wir im ganzen Abschnitt vorausset-
zen, daß er surjektiv ist und eine alphabetische Information implizit beinhaltet.
Für alle t, t′ ∈ IM(Σ, D) soll gelten: mit η(t) = η(t′) folgt alph(t) = alph(t′).
Diese Eigenschaft kann leicht erzwungen werden, wenn wir S durch ein Unter-
monoid von S × P(Σ) ersetzen, wobei die Multiplikation in S × P(Σ) durch
(s, A)(s′, A′) = (ss′, A ∪ A′) erklärt wird, (1, ∅) die neue Identität bildet und
t 7−→ (η(t), alph(t)) der neue Homomorphismus ist. Damit und aufgrund der
Surjektivität von η können wir alph(s) für s ∈ S als alph(s) = alph(t) für ein
t ∈ η−1(s) definieren. Die Menge der idempotenten Elemente von S, {e ∈ S |
e2 = e}, wird mit E(S) bezeichnet.
Wie wir im Abschnitt 1.3 gesehen haben, kann eine Sprache L ∈ Rec(IR), die
von η : IM(Σ, D) → S erkannt wird, als Vereinigung von Sprachen der Form
IMsIM

ω
e , mit (s, e) ∈ PL = {(s, e) | se = s, e ∈ E(S), IMsIM

ω
e ∩ L 6= ∅} dargestellt

werden. Da es sich im allgemeinen um keine disjunkte Vereinigung handelt, wollen
wir zunächst untersuchen, unter welchen Bedingungen zwei Mengen IMsIM

ω
e und

IMs′IM
ω
e′ einen nichtleeren Durchschnitt haben.

Zwei Paare (s, e), (s′, e′) ∈ S × E(S) mit se = s, s′e′ = s′ heißen konjugiert1,
wenn x, y ∈ S derart existieren, daß gilt:

e = xy, e′ = yx und s′ = sx.

Bemerkung 2.1.1 Die obige Definition ist wegen s = se = sxy = s′y symme-
trisch. Weiterhin stellt die Konjugation eine Äquivalenzrelation auf der Menge
{(s, e) ∈ S × E(S) | se = s} dar, wie man leicht sehen kann.

Der folgende Satz gibt uns nun eine Charakterisierung für den nichtleeren Durch-
schnitt zweier Mengen IMsIM

ω
e und IMs′IM

ω
e′ .

Satz 2.1.2 Sei S ein endliches Monoid und η : IM(Σ, D) → S ein Homomor-
phismus. Es gilt IMsIM

ω
e ∩ IMs′IM

ω
e′ 6= ∅ genau dann, wenn die Paare (s, e) und

(s′, e′) konjugiert sind.

Beweis: Die Definition von konjugierten Paaren und die Surjektivität von η
zeigen, daß die Bedingung hinreichend ist.
Umgekehrt sei t ∈ IMsIM

ω
e ∩ IMs′IM

ω
e′ gegeben. Wir können also t auf zweifache

Art faktorisieren, t = t0t1 . . . = t′0t
′
1 . . . so, daß t0 ∈ IMs, t

′
0 ∈ IMs′ , tn ∈ IMe und

1Siehe [PP93].
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t′n ∈ IMe′ , n ≥ 1, gelten. Da wir Faktoren tn (bzw. t′n) mit n ≥ 1 zusammenfassen
können (e, e′ ∈ E(S)), dürfen wir aus Symmetriegründen voraussetzen, daß für
alle n ≥ 0 gilt:

t′0t
′
1 . . . t

′
n ≤ t0t1 . . . tn ≤ t′0t

′
1 . . . t

′
n+1 .

Damit existieren Folgen (un)n≥0, (vn)n≥0 ⊆ IM(Σ, D) mit:

t0t1 . . . tn = t′0t
′
1 . . . t

′
nun und

t′0t
′
1 . . . t

′
n+1 = t0t1 . . . tnvn

Daraus ergeben sich die Beziehungen

tn+1 = vnun+1, t′n+1 = unvn, t0 = t′0u0 und

t = t′0u0v0u1v1 . . . .

Es seien nun 0 ≤ i < j so, daß η(ui) = η(uj) =: x gilt (die Existenz wird
durch die Endlichkeit von S garantiert). Mit y := η(viui+1 . . . vj−1) erhalten wir
abschließend:

s = η(t0t1 . . . ti) = η(t′0t
′
1 . . . t

′
i−1)η(ui) = s′x,

e′ = η(uivi . . . uj−1vj−1) = xy und

e = η(viui+1 . . . vj−1uj) = yx .

✷

Korollar 2.1.3 Seien η : IM(Σ, D) → S ein Homomorphismus, S ein endliches
Monoid und L =

⋃

(s,e)∈PL
IMsIM

ω
e mit PL = {(s, e) ∈ S×E(S) | ∅ 6= IMsIM

ω
e ⊆ L}.

Dann wird L von η genau dann erkannt, wenn PL unter Konjugation abgeschlos-
sen ist.

Beweis: Wird L von η erkannt, so gilt auch PL = {(s, e) ∈ S ×E(S) | IMsIM
ω
e ∩

L 6= ∅} und damit folgt die Aussage.
Sei PL unter Konjugation abgeschlossen und sei (s, e) so, daß IMsIM

ω
e ∩L ∋ u für

ein u ∈ IR(Σ, D). Aufgrund von u ∈ L existiert ein Paar (s′, e′) ∈ PL mit u ∈
IMs′IM

ω
e′ , und dieses Paar ist nach Satz 2.1.2 konjugiert mit (s, e). Da schließlich

PL unter Konjugation abgeschlossen ist, erhalten wir (s, e) ∈ PL. ✷

Im folgenden benötigen wir fürA ⊆ Σ die Bezeichnungen Inf(A) und IRA (vgl. Bei-
spiel 1.3.7):

Inf(A) = { t ∈ IR(Σ, D) | alphinf(t) = A },
IRA = { t ∈ IR(Σ, D) | D(alphinf(t)) = D(A) },

wobei für t ∈ IR(Σ, D) gilt alphinf(t) = {a ∈ Σ | |t|a = ω}. Speziell werden wir
die Bezeichnungen Inf(s) bzw. IRs (s ∈ S) verwenden, und zwar als Abkürzungen
für Inf(A) bzw. IRA, wobei A = alph(s) gilt.
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Bemerkung 2.1.4 Im Spezialfall der vollständigen Abhängigkeitsrelation D =
Σ× Σ gilt IRA = Σω falls A 6= ∅, bzw. IR∅ = Σ∗.

Für die nun folgende Definition deterministischer Sprachen benötigen wir zuerst
den für partielle Ordnungen üblichen Begriff einer gerichteten Menge:

Definition 2.1.5 Eine nichtleere Menge Y ⊆ IM(Σ, D) heißt gerichtet, wenn
stets gilt, daß mit t1, t2 ∈ Y eine obere Schranke t von t1, t2 mit t ∈ Y existiert.

In [GR93, Kwi90] wurde gezeigt, daß jede gerichtete Menge reeller Spuren ein
Supremum besitzt.

Definition 2.1.6 Sei L ⊆ IM(Σ, D). Wir definieren
−→
L = {t ∈ IR(Σ, D) | t =

⊔Y für eine gerichtete Menge Y ⊆ L}.
Eine deterministische reelle Spursprache ist eine endliche Vereinigung von Spra-

chen
−→
L ∩ IRA, wobei A ⊆ Σ und L ∈ Rec(IM) eine erkennbare Sprache ist. Die

Familie der deterministischen reellen Spursprachen wird mit DRec(IR) bezeichnet.

Bemerkung 2.1.7

1. Es ist leicht zu sehen, daß jede reelle Spursprache der Form
−→
L mit L ∈ Rec(IM)

erkennbar ist. Sei η : IM(Σ, D) → S ein Homomorphismus und S ein endliches

Monoid so, daß L von η erkannt wird. Es gilt dann
−→
L =

⋃

(s,e)∈P IMsIM
ω
e , mit

P = {(s, e) ∈ S × E(S) | se = s, s ∈ η(L)}, wobei die rechte Seite der letzten
Gleichung aufgrund von Abschlußeigenschaften von Rec(IR) (siehe [GP92]) eine
erkennbare Menge ist.

2. Im Gegensatz zur Definition von
−→
L im Wortfall verlangen wir nicht, daß die

gerichtete Menge Y ⊆ L unendlich sein soll und damit erhalten wir die Beziehung

L ⊆
−→
L . Die klassische Definition entspricht dann der Einschränkung

−→
L ∩ Σω,

die hier über die Durchschnitte mit IRA, A 6= ∅, erreicht wird (siehe Bemerkung
2.1.4).

Die folgenden Sätze stellen die technische Grundlage aller Ergebnisse dar. Wir
beginnen mit dem bekannten Lemma von Levi [Lev44].

Lemma 2.1.8 ([CP85]) Es seien t1, t2, x1, x2 ∈ IM(Σ, D) mit t1x1 = t2x2.
Dann gilt

t1 = pf, t2 = pg, x1 = gy, und x2 = fy

für p = t1 ⊓ t2 und geeignete f, g, y ∈ IM(Σ, D) so, daß alph(f)× alph(g) ⊆ I.

Lemma 2.1.9 Sei (tn)n≥0 ⊆ IM(Σ, D) eine Folge endlicher Spuren so, daß
⊔

n≥0 tn existiert.
Dann existiert eine unendliche Unterfolge von Indizes J ⊆ IN so, daß (ti)i∈J
bzgl. der Präfixordnung eine monoton wachsende Folge ist.
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Beweis: Die Existenz von
⊔

n≥0 tn erlaubt uns, Lemma 2.1.8 anzuwenden und
damit erhalten wir für i < j Spuren pij := ti ⊓ tj bzw. fij, gij ∈ IM(Σ, D) mit:

ti = pijfij, tj = pijgij und alph(fij)× alph(gij) ⊆ I .

Für ein festes i können wir ohne Einschränkung annehmen, daß pij = pi (bzw. fij =
fi) für geeignete pi (bzw. fi) und alle j > i gilt. (Dafür benötigen wir natürlich ei-
ne geeignete unendliche Indexunterfolge.) Damit können die obigen Gleichungen
folgendermaßen umgeschrieben werden:

ti = pifi, tj = pigij und alph(fi)× alph(gij) ⊆ I .

Aufgrund der Konstruktion erhalten wir für i < j die Beziehungen pi ≤ tj
bzw. pi ≤ tk für alle j ≤ k. Mit pj = tj ⊓ tk für alle j ≤ k gilt dann auch
pi ≤ pj. Weiterhin gilt für alle i < j:

tj = pigij = pjfj .

Aus alph(fj) ⊆ alph(gij) (wegen pi ≤ pj) folgt nun mit der obigen Unabhängig-
keitsbeziehung alph(fi) × alph(fj) ⊆ I. Wegen der Endlichkeit von Σ bedeutet
dies, daß fi = 1 für fast alle i gilt. Wir können daher eine unendliche Indexfolge
J ⊆ IN so bestimmen, daß fi = 1 für alle i ∈ J gilt und damit ist (ti)i∈J eine
monoton wachsende Spurfolge. ✷

Bemerkung 2.1.10 Man beachte, daß im letzten Hilfssatz nicht die Erhaltung
des Supremums der ursprünglichen Folge gefordert wird, d.h. es wird nicht ver-
langt, daß

⊔

i∈J ti =
⊔

n≥0 tn gelten soll. Diese Forderung kann auch nicht gestellt
werden, wie das folgende Beispiel zeigt. Sei Σ = {a, b, c}, D = {(a, a), (b, b), (c, c)}
und

tn =

{

a2bcn für n gerade
ab2cn für n ungerade

Es gilt
⊔

n≥0 tn = a2b2cω, aber weder
⊔

n≥0 t2n = a2bcω noch
⊔

n≥0 t2n+1 = ab2cω

ist gleich a2b2cω.

Satz 2.1.11 Gegeben seien die Folgen (tn)n≥0, (wn)n≥0 ⊆ IM(Σ, D) mit der Ei-
genschaft, daß { tnwn | n ≥ 0 } eine unendliche, gerichtete Menge ist. Sei x =
⊔

n≥0 tnwn.
Dann existieren eine Unterfolge von Indizes (ni)i≥0 ⊆ IN und Folgen endlicher
Spuren (si)i≥0,(ui)i≥0, (vi)i≥0 ⊆ IM(Σ, D) so, daß alph(vi) × alph(sjuj) ⊆ I für
alle 0 ≤ i < j, wobei für i ≥ 0 die Spuren tni

, wni
folgende Gestalt haben:

tni
= s0u0 · · · si−1ui−1si und

wni
= ui v0 · · · vi−1vi .
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Beweis: Da { tnwn | n ≥ 0 } gerichtet ist, dürfen wir ohne Einschränkung
annehmen, daß tnwn ≤ tn+1wn+1 für alle n ≥ 0 gilt. Weiterhin können wir mit
Lemma 2.1.9 annehmen, daß die Folge (tn)n≥0 monoton wachsend ist. Für 0 ≤
i < j definieren wir die Folge (xi,j)i,j≥0 ⊆ IM(Σ, D) durch tj = ti xij .
Aufgrund der Links-Kürzbarkeit von IM(Σ, D) ergibt sich aus den bisherigen Be-
ziehungen wi ≤ xij wj. Die Anwendung des Lemma von Levi ergibt endliche
Spuren uij, sij, yij mit alph(sij)× alph(yij) ⊆ I und

wi = uij yij , xij = uij sij, yij ≤ wj .

Wir betrachten nun für ein festes i ≥ 0 eine Unterfolge von Indizes so, daß für
geeignete ui, yi gilt: uij = ui und yij = yi, für alle i < j. Damit lassen sich die
obigen Gleichungen umschreiben in alph(sij)× alph(yi) ⊆ I und

wi = uiyi, xij = uisij, yi ≤ wj .

Wir werden im folgenden si,i+1 mit si+1 (bzw. xi,i+1 mit xi) bezeichnen und
erhalten

xij = xixi+1 · · · xj−1 = (uisi+1)(ui+1si+2) · · · (uj−1sj) = uisij .

Damit folgt sij = si+1ui+1si+2 · · · uj−1sj. Mit der Bedingung alph(sij)×alph(yi) ⊆
I ergibt dies alph(yi) × alph(sjuj) ⊆ I für alle 0 ≤ i < j. Weiterhin gilt
yi ≤ wi+1 = ui+1yi+1, und damit auch yi ≤ yi+1 für i ≥ 0 (wegen alph(yi) ×
alph(ui+1) ⊆ I).
Schließlich können wir mit yi ≤ yi+1 Spuren (vi)i≥0 durch yi+1 = yivi+1 definieren
(setze v0 = y0) und erhalten abschließend alph(vi)×alph(sjuj) ⊆ I für j > i ≥ 0,
und (vgl. Abbildung 2.1):

ti = t0x0 · · · xi−1 = s0u0s1 · · · ui−1si (mit s0 := t0),

wi = ui yi = ui v0v1 · · · vi .

✷

Bemerkung 2.1.12 Durch Zusammenfassen von Faktoren und Umnumerierung
kann die Existenz von Spurfolgen (si)i≥0, (ui)i≥0, (vi)i≥0 mit alph(vi)×alph(sjuj) ⊆
I für alle i ≥ 0, j > 0 gezeigt werden.

Beispiel 2.1.13 Sei (Σ, D) = a −−− b −−− c −−− d. Wir betrachten die Folgen
(tn)n≥0, (wn)n≥0 ⊆ IM(Σ, D), tn = c(ba)(b2a) · · · (bna)b und wn = dn+1bna. Es
gilt x =

⊔

n≥0(tnwn) = cdω(ba)(b2a) . . .. Mit den Bezeichnungen aus Satz 2.1.11
erhalten wir s0 = cb, si = b für i ≥ 1, ui = bia und vi = d für i ≥ 0.
Für die nachfolgenden Betrachtungen sei angemerkt, daß (wn)n≥0 eine präfix-freie
Folge ist. Es existiert aber keine erkennbare, präfix-freie Menge K, die (wn)n≥0

enthält. Ersetzt man die Folge (wn)n≥0 durch (w′
n)n≥0 mit w′

n = dbna, so ändert
sich die Folge (vi)i≥0 zu v′0 = d und v′i = 1, für i ≥ 1. Das folgende Korollar zeigt,
daß v′0 6= 1 durch d /∈ D(alphinf(x)) ermöglicht wird.
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Abbildung 2.1: Die Faktorzerlegung von tiwi, wobei wi aus den markierten Be-
reichen besteht.

Korollar 2.1.14 Gegeben seien L,K ⊆ IM(Σ, D) mit K erkennbar und präfix-
frei, d.h., KIM+∩K = ∅. Seien (tn)n≥0 ⊆ L, (wn)n≥0 ⊆ K so, daß { tnwn | n ≥ 0 }
unendlich und gerichtet ist, und sei x =

⊔

{ tnwn | n ≥ 0 }. Schließlich gelte
D(alph(y)) ⊆ D(alphinf(x)), für alle y ∈ K.

Dann existieren eine Unterfolge von Indizes (ni)i≥0 ⊆ IN und Spurfolgen (si)i≥0,
(ui)i≥0 ⊆ IM(Σ, D) mit x =

⊔

{ tni
wni

| i ≥ 0 } so, daß gilt:

tni
= s0u0 · · · si−1ui−1si und wni

= ui.

Beweis: Wir können Satz 2.1.11 anwenden und erhalten eine (unendliche) Folge
von Indizes und Spurfolgen (si)i≥0, (ui)i≥0, (vi)i≥0 ⊆ IM(Σ, D) mit x =

⊔

{ tni
wni

|
i ≥ 0 }, tni

= s0u0 · · · si−1ui−1si, wni
= uiv0 · · · vi−1vi, und alph(vi)×alph(sjuj) ⊆

I, für alle 0 ≤ i < j. Wir werden zeigen, daß die zusätzlichen Bedingungen über
die Präfixfreiheit von K und über alphinf(x) dazu führen, daß vi = 1 für alle i
angenommen werden kann.

Sei η : IM(Σ, D) → S ein Homomorphismus auf ein endliches Monoid S so, daß K
von η erkannt wird. Wir dürfen ohne Einschränkung annehmen, daß η(ui) = η(uj)
für alle i, j gilt (dafür wählen wir eine Unterfolge von Indizes mit der Eigenschaft
η(umi

) = η(umj
) für alle i, j und definieren smi

als smi−1+1umi−1+1 · · · smi
bzw. vmi

als vmi−1+1vmi−1+2 · · · vmi
um).

Nun gilt uiv0 · · · vi−2vi−1 ≤ wni
∈ K für alle i ≥ 1. Mit der Beziehung η(ui) =

η(ui−1) folgt unmittelbar η(uiv0 · · · vi−2vi−1) = η(ui−1v0 · · · vi−2vi−1) = η(wi−1),
daher gilt uiv0 · · · vi−2vi−1 ∈ K, für alle i ≥ 1. Da K präfix-frei ist, muß damit
vi = 1 für alle i ≥ 1 gelten. Zusätzlich gilt für i = 0: Mit alph(v0)×alph(siui) ⊆ I
folgt alph(v0) ∩ D(alphinf(x)) = ∅. Da aber alph(v0) ⊆ alph(wi) und wi ∈ K
gelten, würde v0 6= 1 der zweiten zusätzlichen Voraussetzung widersprechen. Es
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folgt
tni

= s0u0 · · · si−1ui−1si und
wni

= ui.

✷

2.2 Äquivalenz von Rec(IR) und dem Booleschen Abschluß
der Familie deterministischer Sprachen

Ein erster Schritt für die Verallgemeinerung des Theorems von McNaughton auf
reelle Spursprachen wird die Äquivalenz der Klasse der erkennbaren reellen Spur-
sprachen und dem Booleschen Abschluß der Klasse der deterministischen Spra-
chen sein. Die nächsten Sätze stellen Verallgemeinerungen analoger Ergebnisse im
Spezialfall der ω-Wortsprachen dar (vgl. [PP93]). Auf den ersten Blick besteht ein
Unterschied durch die zusätzlichen alphabetischen Informationen, die bei Spur-
sprachen mitgeführt werden. Man beachte jedoch, daß es sich dabei im Spezialfall
D = Σ × Σ jeweils um triviale Durchschnitte mit Σω handelt (vgl. Bemerkung
2.1.4).
Im folgenden betrachten wir für ein endliches Monoid S und s ∈ S die Teilmenge
der idempotenten Elemente Es = {e ∈ E(S) | se = s} und die darauf definierte
Halbordnung ≤, mit e ≤ f genau dann, wenn fe = e gilt. Die Notation e < f
bedeutet, daß e ≤ f und f 6≤ e gelten. Allgemeiner ist auf S die Halbordnung
≤R erklärt durch s ≤R s′ genau dann, wenn sS ⊆ s′S. Beachte, daß die Halb-
ordnung ≤ die Einschränkung von ≤R auf Es ist. Weiterhin verwenden wir die
links-invariante Äquivalenzrelation R auf S, mit s R s′ genau dann, wenn die
zugehörigen Rechtsideale gleich sind, d.h. sS = s′S.

Satz 2.2.1 Sei S ein endliches Monoid, s, e ∈ S mit se = s, e ∈ E(S) und
η : IM(Σ, D) → S ein Epimorphismus. Dann gilt:

IMsIM
ω
e ⊆

−−−→
IMsIPe ∩ IRe ⊆

⋃

f≤e

IMsIM
ω
f .

Beweis: Die erste Inklusion ist leicht einzusehen, wenn man bedenkt, daß für eine
Spur u = u0u1 . . . mit u0 ∈ IMs und un ∈ IMe für n ≥ 1, geeignete (u′

n)n≥1 ⊆ IPe

gewählt werden können. Damit erreicht man u = ⊔n≥0u0u1 · · · unu
′
n+1, wobei gilt:

u0u1 · · · unu
′
n+1 ∈ IMsIPe.

Für die Umkehrung wenden wir Korollar 2.1.14 auf die Spur x = ⊔n≥0tnwn an,
wobei (tn)n≥0 ⊆ IMs, (t

′
n)n≥0 ⊆ IPe und D(alphinf(x)) = D(alph(e)). Dies ergibt

die Existenz einer Indexfolge (ni)i≥0 ⊆ IN und zweier Spurfolgen (si)i≥0, (ui)i≥0 ⊆
IM(Σ, D) so, daß tni

und wni
folgendermaßen dargestellt werden können:

tni
= s0u0 · · · si−1ui−1si und wni

= ui,



31

wobei weiterhin gilt x = ⊔i≥0tni
wni

. Die Spur x = s0u0s1 . . . kann nun so fak-
torisiert werden, daß für eine Indexfolge (mi)i≥0 und Monoidelemente r ∈ S,
f ∈ E(S) gilt:

r = η(s0u0 · · · sm1
) und f = η(umi

smi+1 · · · smj
), für alle 0 ≤ i < j .

Es ist leicht zu sehen, daß rf = r folgt. Weiterhin gilt natürlich s = r, sowie
f ∈ η(un)S = eS, und damit f ≤R e, d.h. f ≤ e. Dies zeigt x ∈

⋃

f≤e IMsIM
ω
f .

✷

Korollar 2.2.2 Mit den Voraussetzungen des Satzes 2.2.1 gilt:

1. IMω
e =

−−−→
IMeIPe ∩ IRe

2.
⋃

f≤e IMsIM
ω
f =

⋃

f≤e(
−−−→
IMsIPf ∩ IRf ).

Beweis: (1) Man beachte, daß mit s = e in Satz 2.2.1 ef = e gilt. Weiterhin ist
f ≤ e gleichbedeutend mit ef = f , woraus e = f und die erste Aussage folgt.
(2) Mit Satz 2.2.1 erhalten wir:

⋃

f≤e IMsIM
ω
f ⊆

⋃

f≤e(
−−−→
IMsIPf ∩ IRf ) ⊆

⋃

f≤e

⋃

h≤f IMsIM
ω
h ⊆

⋃

h≤e IMsIM
ω
h ,

wobei die letzte Inklusion mit der Transitivität der Halbordnung ≤ folgt. ✷

Wir können nun das Hauptergebnis dieses Abschnitts zeigen, und zwar die Äqui-
valenz von Rec(IR) und dem Booleschen Abschluß der Familie der deterministi-
schen Sprachen reeller Spuren DRec(IR). Der Beweis verläuft analog zu [PP93].
Erneut erhalten wir die Verallgemeinerung des entsprechenden Resultats für ω-
Wortsprachen.

Theorem 2.2.3 Sei S ein endliches Monoid und η : IM(Σ, D) → S ein surjek-
tiver Homomorphismus, der L ⊆ IR(Σ, D) erkennt. Sei weiterhin PL = { (s, e) ∈
S × E(S) | se = s, IMsIM

ω
e ∩ L 6= ∅ }. Dann läßt sich L darstellen als

L =
⋃

(s,e)∈PL





⋃

f≤e

(
−−−→
IMsIPf ∩ IRf ) \

⋃

f<e

(
−−−→
IMsIPf ∩ IRf )



 .

Beweis: Es seien (s, e) ∈ PL und f ∈ E(S) mit f R e. Damit sind die Paare
(s, e) und (s, f) mit x = e und y = f konjugiert, woraus mit Lemma 2.1.2
(s, f) ∈ PL folgt. Dies ergibt zusammen mit der trivialen Beziehung e R e:

L =
⋃

(s,e)∈PL

IMsIM
ω
e ⊆

⋃

(s,e)∈PL

⋃

fRe

IMsIM
ω
f ⊆ L ,
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woraus die Darstellung L =
⋃

(s,e)∈PL

⋃

f R e IMsIM
ω
f folgt. Damit genügt es, die

Sprache
⋃

f R e IMsIM
ω
f als Boolesche Kombination deterministischer Sprachen dar-

zustellen.
Definitionsgemäß ist f R e äquivalent zu ef = f und fe = e. Somit gilt f R e
genau dann, wenn f ≤ e und f 6< e gelten.
Die folgende Feststellung spielt eine wichtige Rolle im Beweis. Die Beziehung
f < e hat nämlich zur Folge, daß IMsIM

ω
e ∩ IMsIM

ω
f = ∅ (∗) gilt. Wären IMsIM

ω
e

und IMsIM
ω
f nicht disjunkt, so wären (s, e) und (s, f) nach Satz 2.1.2 konjugiert,

d.h. es würde sx = s, e = xy und f = yx für gewisse x, y ∈ S gelten. Damit
erhielten wir für n ≥ 0:

e = e2 = xyxy = xfy
f<e
= xefy = xne(fy)n.

Da S endlich ist, existieren n, q ∈ IN, q 6= 0 so, daß für alle z ∈ S gilt: zn+q = zn.

Dies führt jedoch über e = xne(fy)n = xne(fy)n+q = e(fy)q = ef(yf)q−1y
ef=f
∈

fS zu e ≤ f (i.e. f 6< e), und widerspricht damit der Voraussetzung über f, e.
Schließlich erhalten wir

⋃

f R e

IMsIM
ω
f =

⋃

f≤e,f 6<e

IMsIM
ω
f

(∗)
=

⋃

f≤e

IMsIM
ω
f \

⋃

f<e

IMsIM
ω
f (wegen f R e, h < e ⇒ h < f)

=
⋃

f≤e

IMsIM
ω
f \

⋃

f<e

⋃

g≤f

IMsIM
ω
g

2.2.2
=

⋃

f≤e

(
−−−→
IMsIPf ∩ IRf ) \

⋃

f<e

⋃

g≤f

(
−−−→
IMsIPg ∩ IRg)

=
⋃

f≤e

(
−−−→
IMsIPf ∩ IRf ) \

⋃

f<e

(
−−−→
IMsIPf ∩ IRf ) .

✷

Mit dem Abschluß von Rec(IR) unter Booleschen Operationen und der Erkenn-
barkeit deterministischer Sprachen erhalten wir das angekündigte Ergebnis:

Korollar 2.2.4 Es gilt:

Rec(IR) = Bool (DRec(IR)).

2.3 Deterministische asynchrone Muller Automaten

Thema dieses Abschnitts ist eine Konstruktion deterministischer asynchron-zellu-
lären Muller Automaten für die Klasse der deterministischen reellen Spurspra-
chen. Mit der in Abschnitt 2.2 gezeigten Äquivalenz von Rec(IR) und dem Boo-
leschen Abschluß der Klasse der deterministischen Sprachen genügt es nämlich,
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asynchron-zelluläre Muller für diese Unterklasse anzugeben. Genauer gesagt, wer-

den wir Automaten für Sprachen
−→
L mit L ∈ Rec(IM) konstruieren (für Sprachen

IRA, A ⊆ Σ, vgl. Beispiel 1.3.7).

Die Idee der Konstruktion besteht in der Einschränkung auf gewisse Sprachen
−→
L ,

deren Elemente eine spezielle Form im unendlichen Teil besitzen und daher mit
lokalen Bedingungen erkennbar sind. Konkret werden wir uns auf ein Alphabet

A mit A = alphinf(t) für alle t ∈
−→
L einschränken. Anschließend betrachten

wir nur Sprachen L mit der Eigenschaft, daß die Spuren aus
−→
L mit L-Präfixen

approximierbar sind, die für jede Zusammenhangskomponente von A genau ein
maximales Element besitzen. Das folgende Lemma zeigt, daß wir uns auf solche
−→
L einschränken dürfen.

Lemma 2.3.1 Sei A ⊆ Σ und A =
⋃k

i=1 Ai die Zerlegung in Zusammenhangs-
komponenten, d.h. es gilt:

Ai × Aj ⊆ I für i 6= j, und
Ai ist zusammenhängend für alle i = 1, . . . , k.

Seien weiterhin ai ∈ Ai, i = 1, . . . , k, fest gewählt. Wir definieren folgende er-
kennbare Mengen:

IMA,i = { t | alph(t) = Ai und max(t) = {ai} }

IPA,i = IMA,i \ IMA,iIM+ .

Damit gilt für L ⊆ IM(Σ, D):

−→
L ∩ Inf(A) =

−−−−−−−−−→
LIPA,1 · · · IPA,k ∩ Inf(A).

Beweis: Sei u ∈
−→
L mit alphinf(u) = A =

⋃k
i=1 Ai und betrachten wir eine

Zerlegung u = u0u1u2 . . . von u, wobei alph(un) = A für n ≥ 1, und u0u1 · · · un ∈
L für n ≥ 0. Weiterhin können wir jedes un als Produkt un = un,1 · · · un,k mit
alph(un,i) = Ai, 1 ≤ i ≤ k, schreiben. Betrachte für n ≥ 1 und 1 ≤ i ≤ k die
Folge un,iun+1,i . . .. Da die Teilalphabete Ai zusammenhängend sind, besitzt diese
Folge ein (bzgl. der Präfixordnung) kleinstes Präfix u′

n,i mit max(u′
n,i) = {ai}

und alph(u′
n,i) = Ai. Damit sind k Folgen (u′

n,i)n≥1 ⊆ IPA,i definiert so, daß gilt:
u0 · · · un−1u

′
n,1 · · · u

′
n,k ∈ LIPA,1 · · · IPA,k für n ≥ 1. Es gilt natürlich weiterhin

u =
⊔

{u0 · · · un−1u
′
n,1 · · · u

′
n,k | n ≥ 1 }. Daraus folgt u ∈

−−−−−−−−−→
LIPA,1 · · · IPA,k ∩ Inf(A).

Für die Rückrichtung betrachte x =
⊔

{tnwn | tn ∈ L,wn ∈ IPA,1 · · · IPA,k, n ≥ 0}
mit alphinf(x) = A. Da IPA,1 · · · IPA,k erkennbar und präfixfrei ist, zusammen mit
der Beziehung D(alph(IPA,1 · · · IPA,k)) = D(A), ergibt Korollar 2.1.14 eine Index-
folge (ni)i≥0 ⊆ IN und zwei Folgen endlicher Spuren (si)i≥0, (ui)i≥0 ⊆ IM(Σ, D)
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mit x =
⊔

i≥0 tni
wni

und folgender Darstellung für tni
, wni

:

tni
= s0u0s1 · · · si−1ui−1si ∈ L

wni
= ui ∈ IPA,1 · · · IPA,k ,

woraus x ∈
−→
L direkt folgt. ✷

Für das nachfolgende Theorem verwenden wir zur Vereinfachung folgende grund-
legende Eigenschaft der asynchron-zellulären Automaten, die aus der Konstruk-
tion von Zielonka hervorgehen (d.h., die auf einer asynchronen Abbildung beru-
hen): Die lokalen Zustände der maximalen Elemente einer Spur legen bereits die
Akzeptanz durch den Automaten fest (vgl. die Anmerkung in Abschnitt 1.2).

Theorem 2.3.2 Jede reelle Spursprache der Form
−→
L , mit L ∈ Rec(IM) erkenn-

bar, kann von einem deterministischen asynchron-zellulären Muller Automaten
erkannt werden.

Beweis: Wegen der Beziehung

−→
L =

⋃

A⊆Σ

(
−→
L ∩ Inf(A))

2.3.1
=

⋃

A⊆Σ

(
−−−−−−−−−→
LIPA,1 · · · IPA,k ∩ Inf(A)),

wobei die Mengen IPA,1, . . . IPA,k wie im Lemma 2.3.1 definiert sind, genügt es
offensichtlich, deterministische asynchron-zelluläre Muller Automaten für Spra-

chen der Form
−−−−−−−−−→
LIPA,1 · · · IPA,k ∩ Inf(A), A 6= ∅, anzugeben. Sei dafür A′ =

((Q′
a)a∈Σ, (δ

′
a)a∈Σ, q

′
0, F

′) ein asynchron-zellulärer Automat, der LIPA,1 · · · IPA,k er-
kennt und aus der Konstruktion von Zielonka hervorgeht. Wir definieren für
f ∈ F ′:

LA,f = { t ∈ IR(Σ, D) | alphinf(t) = A, t = ⊔n≥0tn mit t0 ≤ t1 ≤ . . .

und δ′(q′0, tn) = f, für n ≥ 0 }

Sei ohne Einschränkung A 6= ∅. Wir definieren einen deterministischen asyn-
chron-zellulären Muller Automat A = ((Qa)a∈Σ, (δa)a∈Σ, q0, ∅, T ) durch

• Qa = Q′
a × ZZ/2ZZ,

• δa((q, i)D(a)) = (δ′a(qD(a)), ia + 1),

• q0 = (q′0a, 0)a∈Σ,
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und werden zeigen, daß LA,f ⊆ L(A) ⊆
−−−−−−−−−→
LIPA,1 · · · IPA,k ∩ Inf(A) folgt.

Durch die Hinzunahme der ZZ/2ZZ Komponente in jedem lokalem Zustand errei-
chen wir die Eigenschaft δa(sD(a)) 6= sa für alle sa ∈ Qa, a ∈ Σ. Damit läßt sich das
Alphabet alphinf(t) für t ∈ IR(Σ, D), eindeutig feststellen; es gilt a ∈ alphinf(t)
genau dann, wenn |infa(t)| ≥ 2. Beachte, daß infa(t) die Menge der lokalen a-
Zustände bezeichnet, die auf dem mit t beschrifteten Übergangspfad unendlich
oft wiederholt werden.
Die Tafel T wird nun definiert durch

T = (Ta)a∈Σ ∈ T ⇐⇒ es existieren (ia)a∈Σ ∈ (ZZ/2ZZ)Σ mit

(i) Ta = {(fa, ia)} für a ∈ Σ \ A,

(ii) (fa, ia) ∈ Ta und |Ta| ≥ 2, für a ∈ A .

Es ist leicht zu sehen, daß LA,f ⊆ L(A) gilt.
Umgekehrt sei t ∈ L(A) so, daß t mit T ∈ T akzeptiert wird. Mit der obigen
Bemerkung folgt alphinf(t) = { a ∈ Σ | |Ta| ≥ 2 } = A, und wir können t als
t = t0t1 . . . faktorisieren, wobei für geeignete (ia)a∈Σ ∈ (ZZ/2ZZ)Σ) gilt:

alph(tn) = A für n ≥ 1,
δ(q0, t0t1 · · · tn)a = (fa, ia) für a ∈ (Σ \ A) ∪ {a1, . . . , ak}, n ≥ 0,
max(t0 · · · tn) ∩ A = {a1, . . . , ak} für n ≥ 0.

(Die Existenz einer derartigen Faktorisierung basiert auf der Tatsache, daß je-
de Zusammenhangskomponente von A = alphinf(t) genau ein ai, 1 ≤ i ≤ k,
enthält.)
Aufgrund der Definition von LIPA,1 · · · IPA,k ist andererseits max(u) ⊆ (Σ \ A) ∪
{a1, . . . , ak} für alle u ∈ LIPA,1 · · · IPA,k gegeben. Mit B := (Σ \A) ∪ {a1, . . . , ak}
folgt daher:

max(LIPA,1 · · · IPA,k), max(t0 · · · tn) ⊆ B und
δ′(q′0, t0 · · · tn)B = fB.

Mit der Bedeutung der lokalen Zustände der maximalen Elemente für die Akzep-
tanz (durch A′) folgt letztendlich t0 · · · tn ∈ LIPA,1 · · · IPA,k. ✷

Mit Satz 2.3.2 erhalten wir abschließend das Hauptergebnis dieses Kapitels:

Haupttheorem 2.3.3 Die Klasse der erkennbaren reellen Spursprachen ist iden-
tisch zur Klasse der Sprachen, die von deterministischen asynchron-zellulären
Muller Automaten erkannt werden.

Beweis: Die erste Inklusion folgt mit Korollar 2.2.4 und Theorem 2.3.2. Für die
Rückrichtung ist es leicht zu sehen, daß eine asynchron-zelluläre Muller Akzeptanz-
bedingung als Boolesche Kombination von asynchron-zellulären Büchi Bedingun-
gen umgeschrieben werden kann. ✷
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Da asynchron-zelluläre Automaten automatisch die I-Diamant Eigenschaft besit-
zen, können wir eine weitere automaten-theoretische Charakterisierung folgern.
Man beachte, daß das folgende Ergebnis auch mit den Sätzen 2.2.4 und 3.3.2 aus
dem nächsten Kapitel folgt.

Korollar 2.3.4 Jede erkennbare, abgeschlossene ω-Wortsprache kann mit einem
deterministischen Muller Automaten mit I-Diamant Eigenschaft erkannt werden.

Die Frage, welche deterministischen I-Diamant Muller (bzw. Büchi) Automaten
abgeschlossene Sprachen erkennen, sowie eine komplexitätstheoretische Untersu-
chung dieses Problems bilden das Thema von Kapitel 6.



Kapitel 3

Deterministische reelle
Spursprachen

Ziel dieses Kapitels ist die nähere Untersuchung der Familie der deterministischen
Spursprachen DRec(IR) (siehe Definition 2.1.6). Nach einer kurzen Einleitung,
die den Abschluß dieser Sprachklasse unter Boolesche Operationen behandelt,
wenden wir uns dem Problem einer geeigneten Charakterisierung durch determi-
nistische Automaten zu. Wir zeigen, daß die Äquivalenz zwischen deterministi-
schen Sprachen und deterministischen Büchi Automaten im Falle der asynchron
(-zellulären) Automaten nicht bestehen kann. Damit ist der enge Zusammen-
hang, der für ω-Wortsprachen existiert, nicht auf reelle Spuren übertragbar. Wir
können jedoch eine schwächere Charakterisierung angeben, wonach die determi-
nistischen reellen Spursprachen den abgeschlossenen Wortsprachen entsprechen,
die durch deterministische I-Diamant Büchi Automaten mit einer erweiterten
Akzeptanzbedingung erkannt werden.

3.1 Abschlußeigenschaften deterministischer Sprachen

Wir wollen in diesem Abschnitt die Definition deterministischer Sprachen aus der
Sicht des Abschlusses unter Vereinigung und Durchschnitt erläutern. Wir zeigen,
daß DRec(IR) unter diesen Operationen abgeschlossen ist. Für diese Eigenschaft
kann in der Definition deterministischer Sprachen als endliche Vereinigung von

Sprachen
−→
L ∩ IRA mit L ∈ Rec(IM), A ⊆ Σ, weder auf die endliche Vereinigung,

noch auf die Durchschnitte mit IRA verzichtet werden.
Direkt aus der Definition deterministischer Sprachen folgt, daß DRec(IR) unter
der Vereinigung abgeschlossen ist. Es gilt auch:

Satz 3.1.1 DRec(IR) ist abgeschlossen unter Durchschnitt.

Beweis: Es genügt zu zeigen, daß
−→
L ∩

−→
K eine deterministische Sprache ist,

wobei L,K ∈ Rec(IM).

37
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Da L,K erkennbar sind, können wir ohne Einschränkung von einem endlichen
Monoid S und einem Homomorphismus η : IM(Σ, D) → S (mit alphabetischer
Information, vgl. 2.1) ausgehen so, daß beide Sprachen von η erkannt werden.

Wir zeigen im folgenden, daß der Durchschnitt
−→
L ∩

−→
K folgende Gestalt hat:

−→
L ∩

−→
K =

⋃

s1 ∈ η(L)
s1s2 ∈ η(K)

(

−−−−→
IMs1IPs2 ∩ IRs2

)

.

Ist t ∈
−→
L ∩

−→
K , so finden wir eine geeignete Faktorisierung t = v0u0v1u1 . . . mit

vn, un ∈ IM(Σ, D) so, daß für gewisse s1, s2 ∈ S gilt: η(v0u0 . . . vn) = s1 und
η(un) = s2 für n ≥ 0. Weiterhin fordern wir D(alph(s2)) = D(alphinf(t)), und
schließlich wählen wir die Faktoren un präfixfrei mit den obigen Eigenschaften.
Für die umgekehrte Richtung betrachten wir eine Spur t =

⊔

n≥0 tnt
′
n mit (tn)n≥0 ⊆

IMs1 , (t
′
n)n≥0 ⊆ IPs2 und D(alph(s2)) = D(alphinf(t)). Die Voraussetzungen des

Korollars 2.1.14 sind erfüllt und damit folgt direkt t ∈
−→
L . Mit IMs1IPs2 ⊆ K gilt

natürlich auch t ∈
−→
K . ✷

Die Familie der Sprachen
−→
L mit L ∈ Rec(IM) ist im Gegensatz zu DRec(IR) nicht

unter Durchschnitt abgeschlossen, wie das folgende Beispiel zeigt.

Beispiel 3.1.2 Sei Σ = {a, b} mit I = {(a, b)}. Betrachte die Sprachen L1 =

(aa)∗(bb)∗ und L2 = abL1. L1 und L2 sind beide erkennbar, aber
−→
L1∩

−→
L2 = {aωbω}

ist das klassische Beispiel einer Sprache, die nicht in der Form
−→
L mit L ∈ Rec(IM)

dargestellt werden kann.

Schließlich sei noch erwähnt, daß DRec(IR) nicht unter Komplement abgeschlos-
sen ist (bereits die Klasse der deterministischen Wortsprachen ist nicht abge-
schlossen unter Komplement).

3.2 Deterministische Automaten für DRec(IR)

Im Kontext unendlicher Wörter entsprechen die deterministischen Sprachen
−→
L

mit L ∈ Rec(Σ∗) genau den von deterministischen Büchi Wortautomaten ak-
zeptierten Sprachen. Es stellt sich natürlich die Frage, ob die Klasse DRec(IR)
nicht analogerweise durch deterministische, asynchron-zelluläre Büchi Automaten
charakterisiert werden kann. Das folgende Beispiel zeigt jedoch, daß die determi-
nistischen asynchron-zellulären Büchi Automaten ein zu schwaches Automaten-
modell sind. Dies gilt sogar wenn die Akzeptanz so modifiziert werden würde,
daß D(alphinf(t)) einbezogen ist.
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Beispiel 3.2.1 Sei (Σ, D) = a−−c−−b und L = IMa+b+ ∈ Rec(IM). Wir zeigen,
daß es keinen deterministischen asynchron-zellulären Büchi Automaten gibt, der
−→
L ∈ DRec(IR) akzeptiert.
Der Einfachheit halber verwenden wir hier eine leicht veränderte Akzeptanzbe-
dingung für asynchron-zelluläre Büchi Automaten, die sich leicht als gleichwertig
zur Definition 1.3.5 nachweisen läßt. Es sei daran erinnert, daß in der Definiti-
on 1.3.5 jedes Tafelelement für jeden Buchstaben a ∈ Σ eine Teilmenge von Qa

enthält, deren Elemente für die Akzeptanz eines Berechnungspfades unendlich oft
wiederholt werden müssen.
Wir betrachten asynchron-zelluläre Büchi Automaten A = ((Qa)a∈Σ, (δa)a∈Σ,
q0, F, F), wobei die Tafel F ⊆

∏

a∈Σ Qa × P(Σ) um eine alphabetische Kom-
ponente erweitert ist. Wir bezeichnen mit δ die globale Übergangsrelation des
Automaten. Ein Berechnungspfad π = (q0, a0, q1, a1, . . .), mit qn ∈

∏

a∈Σ Qa,
qn+1 ∈ δ(qn, an), und an ∈ Σ wird akzeptiert, wenn ein (f, A) ∈ F existiert
so, daß gilt:

1. fa ∈ infa(π) = {qa | ∃
∞n : (qn)a = qa} für alle a ∈ Σ, und

2. A ⊆ alphinf(t).

Nehmen wir an, daß
−→
L = L(A) für einen deterministischen asynchron-zellulären

Büchi Automaten A gilt. Wir werden eine Spur u ∈ IR(Σ, D) induktiv durch eine

Sequenz (un)n≥0 so definieren, daß u ∈ L(A), aber u /∈
−→
L gilt.

Sei zunächst u0 = 1. Angenommen, für n ≥ 0 ist un ∈ IM(Σ, D) bereits definiert,

dann gilt unca
ωbω ∈

−→
L = L(A) und damit existiert ein Paar (fn+1, An+1) ∈ F

womit unca
ωbω akzeptiert wird; d.h. es existieren kn+1, ln+1 > 0 so, daß gilt:

δ(q0, unca
kn+1bln+1) = fn+1 (man beachte, daß für die vorliegende Spur die un-

endliche Wiederholung der lokalen Komponenten von fn+1 zu einer Aussage über
den

”
globalen“ Zustand fn+1 führt). Weiterhin sei m := max{i ≤ n | fi = fn+1},

falls der Zustand fn+1 in der Konstruktion bereits vorgekommen ist; sonst sei
m := n+ 1.
Wir definieren nun un+1 als

un+1 =

{

un c b
ln+1 falls m 6= n+ 1 und um ∈ IMca+

un c a
kn+1 sonst.

Sei u :=
⊔

n≥0 un und (f, A) ∈ F ein Paar, das in der Folge (fn, An)n≥0 unendlich
oft vorkommt. Durch die alternierende Definition von (un)n≥0 gilt:

δ(q0, un)a,c = fa,c für unendlich viele un ∈ IMca+

und δ(q0, un)b,c = fb,c für unendlich viele un ∈ IMcb+ .

und damit wird u mit (f, A) ∈ F akzeptiert, da fx ∈ infx(u) für alle x ∈ {a, b, c}

gilt, zusammen mit A ⊆ alphinf(u) = Σ. Andererseits gilt aber u /∈
−→
L .
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Abschließend sei angemerkt, daß eine zusätzliche Information wie z. B. über
D(alphinf(u)) ebensowenig für die Erkennung der obigen Sprache ausreicht (es
gilt D(alphinf(u)) = D(alphinf(unca

ωbω)) = Σ für alle n ≥ 0).
Ein analoges Beispiel kann mit einem erweiterten Abhängigkeitsalphabet auch für
deterministische asynchrone Büchi Automaten angegeben werden, womit auch
dieses Modell für die Charakterisierung von DRec(IR) scheitert.

3.3 DRec(IR) und I-Diamant Büchi Automaten

Thema dieses Abschnitts ist eine automatentheoretische Charakterisierung der
Klasse DRec(IR). Wir zeigen, daß die deterministischen reellen Spursprachen ge-
nau den abgeschlossenen (Wort-) Sprachen entsprechen, die von deterministischen
I-Diamant Büchi Automaten mit verallgemeinerter Akzeptanz erkannt werden.
Dabei bezeichnen wir hier als Büchi Automat ein 4-Tupel A = (Q, δ, q0, F0,F)
mit Endzustandsmenge F0 ⊆ Q und Tafel F ⊆ P(Q) × P(Σ). Ein unendliches
Wort w ∈ Σω wird akzeptiert, wenn (F,A) ∈ F und ein mit w markierter Be-
rechnungspfad π derart existieren, daß F ⊆ inf(π) und D(alphinf(w)) = D(A)
gelten. Endliche Wörter werden mittels F0 akzeptiert.
Man beachte, daß die Operationen Vereinigung und Durchschnitt bei diesem Au-
tomatentyp durch die Standard-Produktautomaten-Konstruktion erfolgen können,
wobei im Falle des Durchschnitts die I-Diamant Eigenschaft aufgrund der verall-
gemeinerten Akzeptanzbedingung aufrechterhalten werden kann.
Weiterhin sei angemerkt, daß mit Satz 3.1.1 gilt: Die von I-Diamant Automaten
erkannten, abgeschlossenen Sprachen sind Urbilder deterministischer Sprachen.
Mit den folgenden Sätzen erreichen wir auch die Umkehrung.

Zunächst vereinbaren wir einige Bezeichnungen. Für ∅ 6= A,C ⊆ Σ seien folgende
Mengen definiert:

IMA,C = {t ∈ IM(Σ, D) | D(alph(t)) ⊆ D(A) ∧ (C ∩D(A)) \ alph(t) 6= ∅},
(mit der Konvention IM∅,C = {1}), und
Max(C) = {ϕ−1(t) | t = ⊔n≥0tn, mit max(tn) ⊆ C, für alle n ≥ 0} ⊆ Σ∞.

Weiterhin sei Σ∞
A = ϕ−1(IRA) und Inf⊆(A) = {w ∈ Σ∞ | A ⊆ alphinf(w)}.

Satz 3.3.1 Seien L ⊆ IM(Σ, D), A,C ⊆ Σ so, daß max(t) = C, für alle t ∈ L.
Dann gilt:

ϕ−1(
−→
L ∩ IRA) =

−−−−−−−−→
ϕ−1(LIMA,C) ∩Max(C) ∩ Inf⊆(C ∩D(A)) ∩ Σ∞

A .

Beweis: Die Inklusion von links nach rechts kann leicht nachgeprüft werden.
Ohne Einschränkung sei A 6= ∅. Sei p = ⊔n≥0pn mit pn ∈ ϕ−1(LIMA), n ≥ 0. Es
gelte p ∈ Max(C) ∩ Σ∞

A mit C ∩ D(A) ⊆ alphinf(p). Mit pn ∈ ϕ−1(LIMA) exi-
stieren Spurfolgen (tn)n≥0 ⊆ L, (wn)n≥0 ⊆ IMA,C mit ϕ(pn) = tnwn, d.h. ϕ(p) =:
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x = ⊔n≥0tnwn. Sei ohne Einschränkung a ∈ (C ∩ D(A)) \ alph(wn) für alle
n ≥ 0. Mit Satz 2.1.11 existiert eine Darstellung von x mit geeigneten Folgen
(sn)n≥0, (un)n≥0, (vn)n≥0 ⊆ IM(Σ, D) so, daß gilt: alph(sn) = As und alph(vn) =
Av für n ≥ 1, bzw. alph(un) = Au ⊆ As, für n ≥ 0 (vgl. Bem. 2.1.12); weiterhin
gilt (Av ∪ alph(v0))× As ⊆ I und

tn = s0u0s1 · · · sn und wn = un v0v1 · · · vn.

Man beachte zunächst, daß As 6= ∅. Denn sonst folgt aus As = ∅ (damit auch
Au = ∅) zusammen mit a /∈ alph(wn) ein Widerspruch zu a ∈ C ∩ D(A) ⊆
alphinf(x) = Av.
Nach Voraussetzung gilt auch p ∈ Max(C). Man beachte zunächst, daß Av×C ⊆
I gelten muß (falls Av 6= ∅). Ansonsten folgt aus b ∈ Av ⊆ alphinf(x) und c ∈ C∩
D(b) unmittelbar c ∈ C∩D(A) ⊆ alphinf(x), und mit max(tn) = C, auch c ∈ As.
Dies widerspricht jedoch der Beziehung As×Av ⊆ I. Die letzte Überlegung führt

nun zu x
p∈Max(C)

= ⊔n≥0∂C(tnwn) = ∂C(s0u0v0s1u1 · · · sn−1un−1sn), und damit auch
vn = 1, für alle n ≥ 1. Wegen D(alphinf(x)) = D(A), zusammen mit (wn)n≥0 ⊆
IMA,C , folgt auch v0 = 1 und damit die Aussage. ✷

Satz 3.3.2 Jede deterministische reelle Spursprache kann mit einem determini-
stischen I-Diamant Büchi Automaten mit verallgemeinerter Akzeptanz erkannt
werden.

Beweis: Nach Satz 3.3.1 genügt es, einen verallgemeinerten Büchi Automaten
mit den obigen Eigenschaften für Sprachen der Art Max(C), C ⊆ Σ, anzuge-
ben. Wir betrachten den Automaten A = (Q = P(Σ), ·, ∅, F0,F) mit folgender
Übergangsfunktion:

A · a = (A ∩ I(a)) ∪ {a}.

Offensichtlich gilt für w ∈ Σ∗: ∅ · w = max(ϕ(w)). Die Tafel F ⊆ P(Q) sei
definiert wie folgt: F ∈ F genau dann, wenn für alle A ∈ F , a ∈ A Teilalphabete
A = A0, A1, . . . , Ak und Buchstaben ai ∈ Ai, 0 ≤ i ≤ k, derart existieren, daß
gilt:

• Ai ∈ F , für alle 0 ≤ i ≤ k,

• (ai, ai+1) ∈ D, für alle 0 ≤ i ≤ k − 1,

• a0 = a und ak ∈ C.

Die Endzustandsmenge sei definiert durch F0 = {A | A ⊆ C}. Mit der obigen
Eigenschaft der Übergangsfunktion ist es nicht schwer zu sehen, daß L(A) =
Max(C) gilt. ✷
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Korollar 3.3.3 Die Familie {ϕ−1(L) | L ∈ DRec(IR)} ist äquivalent zur Fa-
milie der Sprachen, die von deterministischen I-Diamant Büchi Automaten mit
verallgemeinerter Akzeptanz erkannt werden.

Wir schließen dieses Kapitel mit einer weiteren Anmerkung zum Automatenmo-
dell.
Betrachte die deterministischen I-Diamant Büchi Automaten mit Tafel F ⊆ Q×
P(Σ). Ein Wort w ∈ Σω wird mit einem Tafelelement (f, A) akzeptiert, wenn
f ∈ inf(w) unendlich oft wiederholt wird und D(alphinf(w)) = D(A) gilt. Wir
zeigen, daß dies ein schwächeres Automatenmodell ist als das zuerst eingeführte.

Beispiel 3.3.4 Sei das Abhängigkeitsalphabet (Σ, D) = a −−c b −−d und die
Wortsprache La,b = {w ∈ Σω | |w|a = |w|b = ω} gegeben. Es gilt: La,b ist das
Urbild einer deterministischen reellen Spursprache, aber kein deterministischer
I-Diamant Büchi Automat A = (Q, δ, q0,F) mit Tafel F ⊆ Q × P(Σ) erkennt
La,b. Denn gäbe es einen solchen Automaten A, so würde eine abgeschlossene,

erkennbare Wortsprache L ⊆ Σ∗ mit La,b =
−→
L ∩Σ∞

{a,b} existieren. Mit dem Theo-
rem von Mezei [Ber79] läßt sich aber ϕ(L) ∈ Rec(IM) als endliche Vereinigung
direkter Produkte K×M mit K ∈ Rec({a, c}∗), M ∈ Rec({b, d}∗) schreiben. Da-
mit läßt sich die abgeschlossene Sprache L = ϕ−1ϕ(L) als endliche Vereinigung
von ϕ−1(KM) darstellen.

Nun betrachte das Wort u = ancnbndn und uω ∈ La,b =
−→
L ∩ Σ∞

{a,b}, für ein
n ≥ 0. Ohne Einschränkung sei 0 ≤ q ≤ n so, daß umancnbndq ∈ L für unendlich
viele m ≥ 0 erfüllt ist (der Fall umancnbq ∈ L verläuft analog). Mit der obigen
Darstellung von L folgt für ein Paar von Sprachen K,M mit ϕ−1(KM) ⊆ L und
für eine unendliche Folge m1 < m2 < . . . aus IN: um

a,ca
ncn ∈ K bzw. um

b,db
ndq ∈ M

für m = mi (ux,y bezeichne die Projektion von u auf {x, y}∗).
Sei m0 fest und n genügend groß so, daß für ein geeignetes p ∈ IN gilt: um0

a,ca
ncn+pIN

⊆ K (beachte K erkennbar). Andererseits gilt umi

b,db
ndq ∈ M für i ≥ 1. Mit

ϕ−1(KM) ⊆ L folgt abschließend

(um0

a,ca
ncn)(cpum1+1

b,d )(cpum2−m1

b,d ) . . . (cpu
mk−mk−1−1
b,d bndq) ∈ L,

und damit folgt z := (um0

a,ca
ncn)(cpum1+1

b,d )(cpum2−m1

b,d ) · · · (cpu
mk−mk−1

b,d ) . . . ∈
−→
L .

Außerdem gilt z ∈ IR{b,c,d} = IR{a,b}, aber gleichzeitig z /∈ La,b.



Kapitel 4

Sternfreie und aperiodische reelle
Spursprachen

Im Rahmen der Untersuchung erkennbarer Sprachen entsteht durch die Ein-
schränkung auf rationale Ausdrücke, die keine Iteration enthalten dürfen und
dafür die Komplement-Operation erlauben, eine besonders interessante Sprach-
familie. Die sternfreien Sprachen wurden auf vielfache Art charakterisiert, u.a.
im Kontext des freien Monoids Σ∗ und der ω-Wortsprachen. Vom algebraischen
Standpunkt aus ist Sternfreiheit äquivalent zu einer fundamentalen Varietät von
Monoide, der aperiodischen (d.h. gruppenfreien) Monoide. Schützenberger’s be-
kanntes Theorem über die Äquivalenz von Sternfreiheit und Aperiodizität im
freien Monoid [Sch65] ist eines der klassischen Ergebnisse der Varietätentheo-
rie. Die Erweiterung zu ω-Wortsprachen ist ein Ergebnis von D. Perrin [Per].
Ein analoges Resultat wurde auch für freie, partiell kommutative Monoide erzielt
[GRS91].
Eine weitere bedeutungsvolle Charakterisierung der Sternfreiheit entsteht im
Rahmen der Logik, wenn sie auf die Logik 1. Stufe eingeschränkt wird. Während
die monadische Logik 2. Stufe die gesamte Familie der erkennbaren reellen Spur-
sprachen erfaßt, erweist sich die Einschränkung auf Logik 1. Stufe äquivalent zur
Sternfreiheit [EM93].
Wir wollen in diesem Kapitel den Zusammenhang zwischen Sternfreiheit und
Aperiodizität betrachten und verweisen auf die Charakterisierung im Rahmen
der Logik in [Tho90b, TZ90, EM93].
Im folgenden bezeichnen wir mit SF(IM) die Familie der sternfreien Sprachen
endlicher Spuren, d.h. SF(IM) ist die kleinste Familie von Sprachen aus IM(Σ, D),
die die leere Menge ∅, sowie die einelementigen Mengen {a}, a ∈ Σ, enthält,
und unter Konkatenation und Booleschen Operationen abgeschlossen ist [GRS91].
Analog definieren wir:

Definition 4.0.5 Die Familie der sternfreien reellen Spursprachen, SF(IR), ist
die kleinste Familie F ⊆ P(IR(Σ, D)) mit den Eigenschaften:

43



44

1. SF(IM) ⊆ F .

2. Für alle L,K ∈ F mit L ⊆ IM(Σ, D) gilt LK ∈ F .

3. F ist abgeschlossen unter den Booleschen Operationen ∪, ∩ und dem Kom-
plement co (wobei die Komplementierung bzgl. IR(Σ, D) durchgeführt wird).

Bemerkung 4.0.6 Man beachte, daß für L ∈ SF(IR), L ⊆ IM(Σ, D), das Kom-
plement bzgl. IM(Σ, D) durch Lco ∩ IM(Σ, D) gegeben ist.

Ein Monoid S heißt aperiodisch, wenn es für ein n > 0 die Gleichung xn = xn+1

erfüllt. Es ist leicht zu sehen, daß dies genau die Monoide charakterisiert, die nur
triviale Untergruppen enthalten.

Definition 4.0.7 Eine reelle Spursprache L ∈ IR(Σ, D) heißt aperiodisch, wenn
ein endliches, aperiodisches Monoid S und ein Homomorphismus η : IM(Σ, D) →
S existieren so, daß L von η erkannt wird.
Die Familie der aperiodischen reellen Spursprachen wird mit AP(IR) bezeichnet.

Bemerkung 4.0.8 Wir erhalten eine äquivalente Definition, wenn wir fordern,
daß das syntaktische Monoid Synt(L) endlich und aperiodisch ist.

Zusätzlich zu den Notationen des Abschnitts 2.1 werden wir im folgenden für
einen Homomorphismus η : Σ∗ → S zu einem (endlichen) Monoid S und für
s ∈ S folgende Bezeichnungen verwenden:

Xs = η−1(s), Ps = Xs \XsΣ
+.

Damit enthält Ps alle Wörter, die durch η auf s abgebildet werden, aber keinen
echten Präfix mit dieser Eigenschaft besitzen.
Weiterhin bezeichnen wir mit SF(Σ∞) bzw. AP(Σ∞) (analog SF(Σ∗) bzw. AP(Σ∗))
die Familie der sternfreien bzw. aperiodischen Sprachen (un)endlicher Wörter
(bzw. endlicher Wörter) . Für den folgenden Satz setzen wir voraus, daß für jeden
Homomorphismus η : IM(Σ, D) → S gilt: mit η(t) = η(t′) folgt alph(t) = alph(t′),
für alle t, t′ (siehe Abschnitt 2.1; beachte auch, daß die Aperiodizität des Monoids
erhalten bleibt).

Theorem 4.0.9 Sei L ∈ Rec(IR) eine erkennbare reelle Spursprache. Folgende
Aussagen sind äquivalent:

1. L ∈ SF(IR).

2. L ∈ AP(IR).

3. Synt(L) ist aperiodisch.



45

4. L läßt sich als endliche Vereinigung von Sprachen KNω darstellen, wobei
K,N∗ ∈ SF(IM).

5. L ist eine Boolesche Kombination von Sprachen der Form
−→
K ∩ IRA, wobei

K ∈ SF(IM) und A ⊆ Σ.

Beweis: Die Äquivalenz von 2. und 3. ist eine Konsequenz der Eigenschaft der
syntaktischen Kongruenz einer Sprache L ⊆ Rec(IR), die gröbste Kongruenz zu
sein, die L saturiert [Gas91].
2 ⇒ 4: Diese Implikation folgt unmittelbar aus der bekannten Darstellung einer
erkennbaren reellen Spursprache als endliche Vereinigung von Sprachen der Art
IMsIM

ω
e , zusammen mit der Äquivalenz zwischen AP(IM) und SF(IM).

5 ⇒ 1: Sei η : IM(Σ, D) → S ein Homomorphismus zu einem endlichen, aperiodi-

schen Monoid S, der K ∈ SF(IM) erkennt. Das Komplement von
−→
K kann nun

folgendermaßen dargestellt werden (vgl. [Per]):

−→
K

co

=
⋃

x∈S



IMx





⋃

y mit xy∈η(K)

IMy IR(Σ, D)





co

 ,

da t ∈ IR(Σ, D) \
−→
K genau dann gilt, wenn ein endliches Präfix u ≤ t von t

derart existiert, daß für alle uu′ ≤ t mit u′ ∈ IM(Σ, D) folgt: uu′ /∈ K. Mit
SF(IM) = AP(IM) folgt anschließend die Behauptung.
1 ⇒ 2: Für diese Implikation genügt es zu zeigen, daß aus L ∈ SF(IR) die
Sternfreiheit von ϕ−1(L) ⊆ Σ∞ folgt. Die Begründung liegt in der Äquivalenz
SF(Σ∞) = AP(Σ∞), zusammen mit der Tatsache, daß L und ϕ−1(L) dasselbe
syntaktische Monoid besitzen.
Im folgenden führen wir Induktion über den sternfreien Ausdruck, der L darstellt.
Sei zunächst L ∈ SF(IM). Mit SF(IM) = AP(IM) folgt direkt ϕ−1(L) ∈ SF(Σ∗) =
AP(Σ∗).
Sei nun L = L1 ∪ L2 (bzw. L = L1 ∩ L2, bzw. L = Lco

1 ), mit ϕ−1(Li) ∈ SF(Σ∞),
i = 1, 2. Damit folgt ebenfalls ϕ−1(L) ∈ SF(Σ∞), aufgrund der Vertauschbarkeit
von ϕ−1 mit den Booleschen Operationen.
Schließlich sei L = L1L2. Im folgenden bezeichnen wir L′

1 = ϕ−1(L1) ∈ SF(Σ∗),
bzw. L′

2 = ϕ−1(L2) ∈ SF(Σ∞). Weiterhin sei D die D-Shuffle Operation, die für
K1, K2 ⊆ Σ∞ definiert ist durch

K1 D K2 = {u0v0u1v1 . . . | un, vn ∈ Σ∗, u0u1 . . . ∈ K1, v0v1 . . . ∈ K2

und alph(vn)× alph(um) ⊆ I, für n < m }

Insbesondere gilt hier wegen L′
1 ⊆ Σ∗:

L′
1 D L′

2 = {u0v0 . . . unvnw | uk, vk ∈ Σ∗, w ∈ Σ∞, u0u1 . . . un ∈ L′
1,

v0v1 . . . vnw ∈ L′
2 und alph(vi)× alph(uk) ⊆ I, für i < k ≤ n } .
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Es sei nun für i = 1, 2, ηi : Σ∗ → Si ein Homomorphismus, der L′
i erkennt.

Aufgrund der Äquivalenz SF(Σ∞) = AP(Σ∞) können wir voraussetzen, daß S1, S2

aperiodische Monoide sind.
Wir bezeichnen im folgenden mit P ⊆ S2×S2 die Menge P = { (s2, e2) ∈ S2×S2 |
s2e2 = s2, e22 = e2, Xs2X

ω
e2
∩ L′

2 6= ∅ }. Ohne Einschränkung sei X1 = η−1
2 (1) =

{1}, wobei mit 1 die Identität in S2 (bzw. das leere Wort) bezeichnet wird. Wegen
Xω

1 = {1} kann L′
2 ⊆ Σ∞ dargestellt werden als L′

2 =
⋃

(s2,e2)∈P Xs2X
ω
e2
. Für L′

1

gilt natürlich L′
1 = η−1

1 η1(L
′
1). Offensichtlich kann nun die Wortsprache ϕ−1(L) =

L′
1 D L′

2 dargestellt werden als

L′
1 D L′

2 =
⋃

s1∈η1(L′
1
)

⋃

(s2,e2)∈P

(Xs1 D Xs2)X
ω
e2

.

Die Wortsprachen L′
i, i = 1, 2, sind aber abgeschlossen, d.h. es gilt ϕ−1ϕ(L′

i) = L′
i.

Damit sind für si ∈ Si, i = 1, 2, Xs1 bzw. Xs2 ebenfalls abgeschlossen. Aus
[GRS91] folgt unmittelbar die Sternfreiheit des D-Shuffle zweier sternfreien, ab-
geschlossenen Wortsprachen, und damit gilt Xs1 D Xs2 ∈ SF(Σ∗). Weiterhin ist

e2 ∈ S2 idempotent, und es läßt sich zeigen, daß Xω
e2

=
−−−−→
Xe2IPe2 ∈ SF(Σ∞) eben-

falls sternfrei ist [Per]. Zusammen mit der obigen Darstellung für ϕ−1(L) folgt
die Behauptung.
4 ⇒ 1: Es genügt zu zeigen, daß Nω sternfrei ist, wobei ohne Einschränkung N =
N∗ ∈ SF(IM) gilt. Sei S ein endliches, aperiodisches Monoid und η : IM(Σ, D) →
S ein Homomorphismus, der N erkennt. Für s ∈ S bezeichnen wir mit Ns ⊆
N die Teilmenge N ∩ η−1(s). Wir können nun wegen Nω =

⋃

(s,e)∈P NsN
ω
e mit

P = {(s, e) ∈ η(N)2 | se = s, e ∈ E(S)} uns auf Nω
e mit idempotenten e ∈

E(S) einschränken. Für A ⊆ Σ sei N ′
e,A = (Ne \ NeIM+) ∩ {t ∈ IM(Σ, D) |

D(alph(t)) ⊆ D(A)} die Untermenge von Ne, deren Elemente t keinen echten
Präfix in Ne besitzen und für die D(alph(t)) ⊆ D(A) gilt. Mit der Implikation 5
⇒ 1 (zusammen mit IRA ∈ SF(IR)) genügt es zu zeigen:

Nω
e =

⋃

A⊆Σ

(
−−−−→
NeN

′
e,A ∩ IRA).

Die Inklusion der linken in der rechten Seite ist leicht zu sehen. Für die umgekehr-
te Inklusion können wir mit zwei Folgen (tn)n≥0 ⊆ Ne bzw. (wn)n≥0 ⊆ N ′

e,A und
x :=

⊔

{ tnwn | n ≥ 0 } Korollar 2.1.14 anwenden. Damit existieren Spurfolgen
(sn)n≥0, (un)n≥0 ⊆ IM(Σ, D) mit:

tn = s0u0 · · · sn−1un−1sn und wn = un ,

(eventuell unter Verwendung einer Unterfolge von Indizes). Mit der üblichen Zu-
sammenfassung von Faktoren findet man eine Indexfolge (ni)i≥0 so, daß für geeig-
nete s ∈ S, f ∈ E(S) mit sf = s gilt: η(s0u0 · · · sn0

) = s und η(uni
sni+1 · · · sni+1

) =
f , für alle i ≥ 0. Es folgt s = e, daher auch ef = e. Andererseits gilt f = η(un)x =
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ex für ein x ∈ S, damit auch ef = f (wegen e ∈ E(S)) und schließlich folgen
e = f und x ∈ Nω

e .
2 ⇒ 5: Folgt direkt mit Theorem 2.2.3, zusammen mit der Äquivalenz zwischen
Sternfreiheit und Aperiodizität in IM(Σ, D). ✷
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Kapitel 5

Komplementierung asynchroner
Büchi Automaten

Die Komplementierung nichtdeterministischer Büchi Automaten für ω-Wortspra-
chen markierte in den 60’er Jahren den Anfangspunkt der Untersuchung von
Erkennbarkeit im Kontext unendlicher Wörter [Büc60]. Ursprünglich für die Ent-
scheidbarkeit der monadischen Logik zweiter Stufe mit Nachfolgerelation benötigt,
erwies sich eine effiziente Komplementierung für Büchi Automaten als grundle-
gend in verschiedenen Theorien temporaler Logik.

Von den existierenden Lösungen des Komplementierungsproblems für Wortauto-
maten haben wir die elegante Methode des Fortschrittsmaßes von N. Klarlund
[Kla91] ausgewählt, um asynchron-zelluläre Büchi Automaten zu komplementie-
ren. Der Ausgangspunkt dieser Konstruktion ist ein klassischer Potenzautomat,
wodurch bei asynchron-zellulären Automaten die erste Schwierigkeit auftritt. Das
Problem der Determinisierung für asynchron (zelluläre) Automaten war lange
Zeit offen. Etwa zur selben Zeit, zu der die vorliegende Arbeit entstand, ist eine
weitere Potenzautomaten-Konstruktion für asynchrone Automaten durch Klar-
lund et. al. entstanden [KMS94]. Die Ergebnisse dieses Kapitels erscheinen in
[Mus94]. Im folgenden Abschnitt stellen wir eine Determinisierungs-Konstruktion
für asynchron-zelluläre Automaten vor, die auf dem Begriff der asynchronen Ab-
bildung von Zielonka (vergleiche Abschnitt 1.2) beruht.

5.1 Determinisierung asynchron-zellulärer Automaten

Ein wesentlicher Aspekt in der Konstruktion von Zielonka für asynchron-zelluläre
Automaten ist durch eine zeitliche Markierung mit beschränktem Wertebereich
gegeben. Diese erlaubt, die Aktualität von indirekt übertragener Information fest-
zustellen, indem z.B. für zwei Prozesse a, b bestimmt wird, welcher von den bei-
den das letzte Vorkommen des Prozesses c “gesehen” hat. Im folgenden werden
wir für A,B ⊆ Σ mit ∂A,B(t) den Präfix ∂A(∂B(t)) von t ∈ IM(Σ, D) bezeich-
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nen, sowie statt ∂{a}(t), direkt ∂a(t) schreiben. Die Abbildung ν : IM(Σ, D) →
{0, . . . , |Σ|}Σ×Σ, die die Zeitmarkierung realisiert, ist nun induktiv definiert:

• ν(1)(a, b) = 0.

• Für t 6= ∂a,b(t) sei ν(t)(a, b) = ν(∂a,b(t))(a, a).

• Für t = ∂a(t) mit t 6= 1 sei

ν(t)(a, a) = min{n > 0 | n 6= ν(t)(a, c) für alle c 6= a} .

Der Wert ν(t) der Zeitmarkierung für eine Spur t ∈ IM(Σ, D) stellt grundlegende
Informationen über Ordnungs-Beziehungen zwischen Präfixen ∂a(t) von t, a ∈ Σ,
bereit. Genauer gilt für t ∈ IM(Σ, D), a, b, c ∈ Σ:

∂c,a(t) = ∂c,b(t) ⇐⇒ ν(t)(c, a) = ν(t)(c, b)

Beachte weiterhin die leicht überprüfbare Beziehung ν(∂A(t))(c, a) = ν(t)(c, a) für
a ∈ A. Es seien nun t ∈ IM(Σ, D), A,B ⊆ Σ gegeben. Weiterhin seien die Mengen
Ca,b = {c ∈ Σ | ∂c,a(t) = ∂c,b(t)} für alle a, b ∈ A ∪ B bekannt (beispielsweise
durch den Wert ν(t), oder alternativ, über die Werte ν(∂A(t)), ν(∂B(t))). Damit
kann für jedes c ∈ Σ bestimmt werden, welcher der drei verschiedenen Fälle
vorliegt: ∂c,A(t) = ∂c,B(t), ∂c,A(t) < ∂c,B(t) oder ∂c,B(t) < ∂c,A(t).

Faktum 5.1.1 ([CMZ93, Die90]) Die Abbildung ν ist asynchron.

Für die Determinisierung von nichtdeterministischen asynchron-zellulären Auto-
maten nehmen wir die Zeitmarkierung ν als Basis und erweitern sie durch eine
Abbildung ρ, die alle Abläufe des gegebenen asynchron-zellulären Automaten
A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F ) beschreibt.
Im folgenden werden wir die Menge der globalen Zustände dea Automaten A,
∏

a∈Σ Qa, mit Q bezeichnen. Weiterhin bezeichnen wir mit RA(t), t ∈ IM(Σ, D),
die Menge der Abläufe des Automaten A auf der Spur t, die im Startzustand
q0 beginnen. Ein Ablauf r ∈ RA(t) im Automaten A wird dabei als Abbildung
r : Vt → ˙⋃

a∈Σ Qa angesehen, d.h. als Beschriftung des Abhängigkeitsgraphen
[Vt, Et, λt] von t mit lokalen Zuständen so, daß r sowohl mit der alphabetischen
Beschriftung λt als auch mit den lokalen Übergangsrelationen (δa)a∈Σ konsistent
ist. Genauer, sei (a, na) ∈ Vt ein Knoten und betrachte die Ablaufbeschriftung
qb = r(b, nb), wobei (b, nb) der letzte mit b beschriftete Knoten vor (a, na) ist, falls
ein solcher existiert. Ansonsten sei qb = (q0)b festgelegt. Dann wird gefordert, daß
die Abbildung r die Beziehung r(a, na) ∈ δa((qb)b∈D(a)) erfüllt.
Weiterhin bezeichnen wir für u ∈ IM(Σ, D) und einen Ablauf r ∈ RA(u) mit
δ(r, u) ∈ Q den globalen Zustand, der im Ablauf r auf der Spur u erreicht wird.
Sei nun ρ : IM(Σ, D) → P(QΣ) definiert für t ∈ IM(Σ, D) durch

ρ(t) = {f ∈ QΣ | ∃r ∈ RA(t) so, daß f(a) = δ(r, ∂a(t)), ∀ a ∈ Σ} .
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Damit entspricht jedes Element f von ρ(t) einem Ablauf r auf t so, daß für alle
a, b ∈ Σ gilt: f(a)b ist der lokale b-Zustand, der im Ablauf r auf dem Präfix ∂b,a(t)
von t erreicht wird. Der folgende Satz legt die Basis des Potenzautomaten des
Automaten A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F ).

Satz 5.1.2 Die Abbildung (ν, ρ) ist asynchron. Zusätzlich gilt:

L(A) = {t ∈ IM(Σ, D) | ∃qf = (qfa )a∈Σ ∈ F, ∃f ∈ ρ(t) : f(a)a = qfa , ∀ a ∈ Σ}.

Beweis: Durch Faktum 5.1.1 ist bereits bekannt, daß die erste Komponente
der obigen Abbildung (ν) asynchron ist. Es seien nun t ∈ IM(Σ, D), a ∈ Σ,
A,B ⊆ Σ. Angenommen, der Wert ρ(∂D(a)(t)) und der Buchstabe a sind gegeben,
so definieren wir R ⊆ QΣ durch g ∈ R genau dann, wenn für ein f ∈ ρ(∂D(a)(t))
gilt:

• g(b) = f(b), für b 6= a;

• g(a) = q′ = (qx
′)x∈Σ, wobei

1. qx
′ = f(c)x für x 6= a, mit c ∈ D(a) so, daß ∂x,b(t) ≤ ∂x,c(t) für alle

b ∈ D(a) (d.h., es gilt ∂x,c(t) = ∂x,D(a)(t));

2. qa
′ ∈ δa((f(b)b)b∈D(a)).

Für jedes Paar f, g wie oben, mit q = f(a) und q′ = g(a), werden wir im

nächsten Abschnitt die Bezeichnung q
(a)
→ q′ verwenden. Dies bedeutet, daß für

einen Ablauf r ∈ RA(∂a(ta)) von A auf dem Präfix ∂a(ta) gilt: q = δ(r, ∂a(t)) und
q′ = δ(r, ∂a(ta)).
Es ist leicht zu sehen, daß R = ρ(∂a(ta)) gilt, da Abläufe auf ∂a(ta) genau durch
Erweiterung von Abläufen auf dem Präfix ∂D(a)(t) mittels einem a-Übergang
entstehen. Man beachte weiterhin, daß die obige Bedingung mit der Beziehung
ν(t)(x, b) = ν(∂D(a)(t))(x, b), für alle b ∈ D(a), überprüft werden kann (siehe
auch die Bemerkung vor Faktum 5.1.1).
Wir betrachten nun A,B ⊆ Σ, t1 = ∂A(t), t2 = ∂B(t), s = t1 ⊓ t2 mit t1 = su und
t2 = sv, wobei alph(u) × alph(v) ⊆ I gilt. Weiterhin bezeichnen wir mit C die
Menge

C = {c ∈ Σ | ∂c(t1) = ∂c(t2)}.

Angenommen, die Werte ρ(t1), ρ(t2) sind gegeben. Dann definieren wir R ⊆ QΣ

durch f ∈ R genau dann, wenn für gewisse fi ∈ ρ(ti) (i = 1, 2), die die Beziehung
f1(c) = f2(c) für alle c ∈ C erfüllen, gilt (a, b ∈ Σ):

f(a)b =











f1(a)b falls ∂a(t2) ≤ ∂a(t1)
f2(a)b falls ∂b,C(t2) < ∂b,a(t2)
f1(d)b sonst, für ein d mit ∂b,a(t2) = ∂b,d(t1).
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Wir werden anschließend zeigen, daß f auch im letzten Fall der obigen Festlegung
wohldefiniert ist. Zunächst sei die Bedeutung der Definition erklärt. Die Grundi-
dee besteht darin, daß Abläufe des Automaten auf den Spuren t1 bzw. t2 mitein-
ander kombinierbar sind, falls sie denselben globalen Zustand auf dem gemeinsa-
men Präfix s = t1 ⊓ t2 erreichen. Mit der Beziehung ∂C(t1) = ∂C(t2) = ∂C(s) = s
(vgl. [CMZ93, Die90]) gilt für zwei Abläufe ri ∈ RA(ti) und dazugehörige Abbil-
dungen fi mit fi(a) = δ(ri, ∂a(ti)), a ∈ Σ:

f1(c) = f2(c), ∀c ∈ C =⇒ δ(r1, s) = δ(r2, s)

(Man beachte, daß mit max(s) ⊆ C auch ∂a(s) = ∂a,c(s) = ∂a,c(ti) für ein ge-
eignetes c ∈ C, i = 1, 2 gilt.) Damit ist die Abbildung r, die die Knoten des
Abhängigkeitsgraphen von t1 ⊔ t2 mit lokalen Zuständen gemäß dem Ablauf r1
auf dem Faktor su bzw. gemäß r2 auf dem Faktor v beschriftet, ein wohldefinier-
ter Ablauf des Automaten A auf t1 ⊔ t2. Die obige Abbildung f entspricht aber
genau dem Ablauf r, da für alle a, b ∈ Σ gilt:

1. ∂b,a(t) = ∂b,a(t1), falls ∂a(t2) ≤ ∂a(t1);

2. ∂b,a(t) = ∂b,a(t2), falls ∂b,C(t2) < ∂b,a(t2). Beachte, daß in diesem Fall gilt:
∂b,a(t) 6≤ s.

3. Schließlich seien ∂a(t1) < ∂a(t2) und ∂b,a(t2) ≤ ∂b,C(t2) erfüllt. Ohne Ein-
schränkung sei ∂b,a(t2) 6= 1 (ansonsten wähle d = a) und betrachte die
Menge C ′ = {d ∈ Σ | ∂d,a(t2) = ∂d,C(t2) (= ∂d(s))}. Im folgenden be-
zeichnen wir mit s′ den gemeinsamen Präfix von s und ∂a(t2), d.h. es sei
s′ = s ⊓ ∂a(t2), mit s = s′x bzw. ∂a(t2) = s′y für geeignete x, y ∈ IM(Σ, D),
wobei alph(x)× alph(y) ⊆ I. Man beachte, daß max(s′) ⊆ C ′.

Aufgrund der Beziehung ∂b,a(t2) ≤ ∂b,C(t2) = ∂b(s) gilt offensichtlich auch
∂b,a(t2) = ∂b(s

′) = ∂b,C′(s), und damit auch s′ 6= 1 bzw. C ′ 6= ∅. Es folgt
∂b,a(t2) = ∂b,d(s

′) = ∂b,d(s) für ein geeignetes d ∈ max(s′) ⊆ C ′. Es genügt
zu zeigen, daß ∂d(s) = ∂d(t1) gilt. Aufgrund der Definition von C ′, s′, x, y
folgt unmittelbar C ′ ∩ alph(x) = ∅. Nehmen wir nun an, daß d ∈ alph(u)
gilt. Wegen d ∈ max(s′) existiert auch ein e ∈ alph(y) (damit e ∈ alph(v))
mit (d, e) ∈ D (ansonsten würde ∂a(t2) ≤ s gelten). Damit wäre ein Wi-
derspruch zu d ∈ alph(u) erreicht. Schließlich folgt daraus mit t1 = s′xu
die Beziehung ∂d(t1) = ∂d(s

′) (= ∂d(s)). Somit erhalten wir die gewünschte
Gleichheit ∂b,a(t2) = ∂b,d(t1).

Ein Buchstabe d mit 1 6= ∂b,a(t2) = ∂b,d(t1) wird nun konkret wie folgt berechnet:
unter Verwendung von ν(t1), ν(t2) bestimmen wir zunächst C und das Alphabet
von v, alph(v) [CMZ93]; unter erneuter Verwendung von ν(t2) wird anschließend
C ′ berechnet. Schließlich wählen wir d ∈ C ′∩D(alph(v)) so, daß ∂b,C(t1) ≤ ∂b,d(t1)
(unter Verwendung von ν(t1)). Damit folgt:

∂b,d(t1)
d/∈alph(u)

= ∂b,d(s)
d∈C′

= ∂b,d,a(t2) ≤ ∂b,a(t2) ≤ ∂b,C(t2) = ∂b,C(t1) ≤ ∂b,d(t1).
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✷

Theorem 5.1.3 Gegeben sei ein nichtdeterministischer asynchron-zellulärer Au-
tomat A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F ). Dann kann ein deterministischer asynchron-
zellulärer Automat Ã = ((Q̃a)a∈Σ, (δ̃a)a∈Σ, q̃0, F̃ ) effektiv konstruiert werden so,

daß L(A) = L(Ã). Der Automat Ã besitzt 2O(N |Σ|) globale Zustände, wobei N die
Anzahl der globalen Zustände von A ist.

Beweis: Folgt direkt aus Satz 5.1.2 zusammen mit Bemerkung 1.2.1. ✷

Abschließend sei an dieser Stelle angemerkt, daß die Konstruktion von Zielonka
ebenfalls angewendet werden kann, wenn der gegebene asynchron-zelluläre Auto-
mat als Wortautomat angesehen wird und mittels einer gewöhnlichen Potenzauto-
maten-Konstruktion determinisiert wird. Unter Verwendung des minimalen Au-
tomaten kann anschließend eine Variante der Konstruktion von Zielonka [CMZ93]
angewendet werden, wodurch ein einfach exponentieller Anstieg der Zustandsan-
zahl entsteht. Man beachte jedoch, daß in der hier vorgestellten Konstruktion nur
erreichbare Zustände eingehen, im Gegensatz zum vorher beschriebenen Ansatz.

5.2 Komplementierung asynchron-zellulärer Büchi Auto-
maten

Für die Komplement-Konstruktion für asynchron-zelluläre Büchi Automaten ver-
wenden wir die Methode des Fortschrittsmaßes (progress measure), die von Klar-
lund [Kla91] eingesetzt wurde, um Büchi bzw. Streett Wortautomaten effizient zu
komplementieren. Die Grundidee seiner Konstruktion besteht in der Berechnung
eines Fortschrittsmaßes auf einem gerichteten, azyklischen (Berechnungs-) Gra-
phen G = (V,E), dessen sämtliche Pfade darauf überprüft werden sollen, daß sie
eine vorgegebene Bedingung stets nur endlich oft erfüllen. Das Fortschrittsmaß
ist die lokale Zusicherung der global zu erfüllenden Bedingung, und die Existenz
eines geeigneten Fortschrittsmaßes ist gleichbedeutend damit, daß jeder Pfad die
vorgegebene Bedingung nur endlich oft bestätigt. Intuitiv quantifiziert das Fort-
schrittsmaß eines Knotens v ∈ V , wieweit dieser Knoten davon entfernt ist, daß
alle von ihm ausgehenden Pfade die obige Eigenschaft besitzen.
Unser Ausgangspunkt ist ein asynchron-zellulärer AutomatAmit einer leicht mo-
difizierten Büchi Akzeptanz-Bedingung. Diese gibt für jeden Buchstaben höchstens
einen lokalen Zustand vor, der unendlich oft wiederholt werden muß. Zusätzlich
spezifiziert die Akzeptanzbedingung das Alphabet, das unendlich oft wiederholt
wird, d.h. die Menge alphinf(t). Formal gesehen werden wir einen Automaten
A = ((Qa)a∈Σ, (δa)a∈Σ, q0, T ) mit T ⊆ Q × P(Σ) × P(Σ) betrachten (wobei
Q =

∏

a∈Σ Qa die Menge der globalen Zustände in A bezeichnet). Im folgenden

sei A = ˙⋃k

i=1 Ai die Zerlegung von A in Zusammenhangskomponenten (d.h. jedes
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Ai ist als Abhängigkeitsgraph zusammenhängend, und es gilt Ai×Aj ⊆ I für alle
i 6= j). Ein Element der Tafel T wird ein Tripel (qf , A, {a1, . . . , ak}) sein, mit der
Einschränkung ai ∈ Ai, für alle 1 ≤ i ≤ k.
Im folgenden verwenden wir die Bezeichnung RA(t) für die Menge der Abläufe
von A auf einer reellen Spur t ∈ IR(Σ, D) (durch Erweiterung der im vorigen
Abschnitt angegebenen Definition eines Ablaufs). Ein Ablauf r ∈ RA(t) wird mit
dem Tafelelement (qf , A, {a1, . . . , ak}) akzeptieren, wenn A = alphinf(t) erfüllt
ist und jeder lokale Zustand qfa mit a ∈ Ā∪{a1, . . . , ak} unendlich oft wiederholt
wird (bzw. einen Haltezustand darstellt), d.h.,

• A = alphinf(t) und

• Für alle a ∈ Ā ∪ {a1, . . . , ak} gilt qfa ∈ infa(r) mit

infa(r) := {qa ∈ Qa | ∀n < |t|a ∃n ≤ m < |t|a : r(a,m) = qa}.

Man beachte, daß der Übergang von der klassischen Büchi Bedingung mit Tafel
T ⊆

∏

a∈Σ P(Qa) zur obigen Bedingung einfach durch Verwendung der Buch-
staben ai (1 ≤ i ≤ k) geschieht, indem die Information über die durchlaufenen
Zustände

⋃

a∈Ai
Ta (wobei T = (Ta)a∈Σ ∈ T ) durch ai gesammelt wird. Die um-

gekehrte Transformation ist trivial, da lediglich die Menge der Buchstaben, die
unendlich oft auftreten, zusätzlich (nichtdeterministisch) überprüft werden muß.
Für t ∈ IR(Σ, D), a ∈ Σ, 0 ≤ n < |t|a, sei t[a, n] = ⊓{u ≤ t | |u|a = n + 1} der
kleinste Präfix von t, der die ersten n+ 1 Vorkommen des Buchstaben a enthält
(beachte max(t[a, n]) = {a}). Weiterhin sei

Ua(t) = {(q, n) | n < |t|a, q ∈ δ(q0, t[a, n])}

die Menge der globalen Zustände, die auf den Präfixen t[a, n] erreicht werden
kann. Insbesondere für a = ai, 1 ≤ i ≤ k, verwenden wir die Abkürzung Ui(t) für
Uai(t).
Für alle n+1 < |t|a, q, q

′ ∈ Ua(t) mit q′ ∈ δ(q, t[a, n]−1 t[a, n+1]) verwenden wir

im folgenden die Notation (q, n)
a,t
→ (q′, n+ 1).

Schließlich werden wir durchgehend den Begriff eines Berechnungs(unter)graphen

für (einen Untergraph von) (Ua(t),
a,t
→) verwenden.

Der nächste Satz legt die Grundlage des Komplement-Automaten von A. Es seien
N := |Q| und Fi := {q ∈ Q | qai = qfai}, wobei q

f = (qfa )a∈Σ die erste Komponente
des einzigen Elements der Tafel T von A sein wird.

Satz 5.2.1 Sei A = ((Qa)a∈Σ, (δa)a∈Σ, q0, {(q
f , A, {a1, . . . , ak})}) ein asynchron-

zellulärer Büchi Automat mit qf ∈ Q, A ⊆ Σ, ai ∈ Ai für 1 ≤ i ≤ k.
Sei t ∈ IR(Σ, D) mit alphinf(t) = A. Dann gilt t /∈ L(A) genau dann, wenn eine
Familie von Berechnungs-Untergraphen (Gi(t))1≤i≤k mit Gi(t) = (Vi(t), Ei(t)),
und Abbildungen (Φi)1≤i≤k, Φi : Ui(t) → {0, 1, . . . , 2N +1} derart existieren, daß
folgende Bedingungen für alle 1 ≤ i ≤ k erfüllt sind:
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1. • Vi(t) = {(q, n) ∈ Ui(t) | Φi(q, n) 6= 2N + 1},

• Ei(t) ⊆ {((q, n), (q′, n+ 1)) ∈ Vi(t)
2 | (q, n)

ai,t→ (q′, n+ 1)},

• Für alle (q, n)
ai,t→ (q′, n + 1) mit (q, n) ∈ Vi(t) gilt auch (q′, n + 1) ∈

Vi(t).

2. Jede Abbildung Φi : Ui(t) → {0, 1, . . . , 2N +1} erfüllt dabei folgende Bedin-
gungen, wobei (q, n), (q′, n+ 1) ∈ Ui(t):

(i) Φi ist schwach monoton fallend bzgl. der Übergangsrelation
ai,t→:

(q, n)
ai,t→ (q′, n+ 1) =⇒ Φi(q, n) ≥ Φi(q

′, n+ 1)

(ii) Für (q, n)
ai,t→ (q′, n+1) mit Φi(q, n) = Φi(q

′, n+1) gilt entweder q′ /∈ Fi

oder Φi(q, n) ∈ {0, 2, . . . , 2N} ∪ {2N + 1}.

(iii) Sei (qn, n)n≥0 ⊆ Vi(t) eine unendliche Folge so, daß (qn, n)
ai,t→ (qn+1, n+

1), n ≥ 0. Dann gilt

lim
n→∞

Φi(qn, n) ∈ {1, 3, . . . , 2N − 1}.

3. Es existiert ein endliches Präfix t0 ≤ t von t, t0 ∈ IM(Σ, D), mit |t0|a = |t|a
für alle a /∈ A so, daß jeder Ablauf r ∈ RA(t0) eine der beiden Bedingungen
erfüllt:

• Entweder gilt δ(r, t0)a 6= qfa für ein a ∈ Ā,

• oder es gilt (δ(r, ∂ai(t0)), |t0|ai − 1) ∈ Vi(t) für ein 1 ≤ i ≤ k.

Bemerkung 5.2.2 Jede Abbildung Φi ist im Sinne von Klarlund ein Pseudo-
Fortschrittsmaß, das bezüglich dem Wertebereich {0, 2, . . . , 2N} nicht stationär
ist (vgl. [Kla91]). Der Wert des Fortschrittsmaßes für einen Knoten v gibt an, wie-
weit die in v startenden Berechnungspfade davon entfernt sind, die entsprechende
Komponente des Endzustands qf nur endlich oft zu wiederholen.

Bedingung (3) des Satzes ist eine Zusicherung dafür, daß die nicht in den Berech-
nungs-Untergraphen Gi(t), 1 ≤ i ≤ k, erfaßten Zustände nicht zu einem Ablauf
r ∈ RA(t) synchronisierbar sind. Dies bedeutet, daß jeder Ablauf r auf t entwe-
der wegen infa(r) 6= {qfa} für ein a /∈ alphinf(t) ablehnt, oder aber wegen der
Existenz eines Indizes ni, 1 ≤ i ≤ k, mit (δ(r, t[ai, ni]), ni) ∈ Vi(t) (damit auch
(δ(r, t[ai, n]), n) ∈ Vi(t) für alle n ≥ ni).

Beweis von 5.2.1: Angenommen, es existieren Berechnungsuntergraphen Gi(t),
Gi(t) = (Vi(t), Ei(t)), und zugehörige Abbildungen (Φi), 1 ≤ i ≤ k so, daß die
Voraussetzungen des Satzes erfüllt sind. Sei r ∈ RA(t) ein A-Ablauf auf t. Mit
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Bemerkung 5.2.2 genügt es den Fall zu betrachten, in dem für geeignete 1 ≤ i ≤ k
und ni ∈ IN gilt: (δ(r, t[ai, n]), n) ∈ Vi(t) für alle n ≥ ni.
Sei im folgenden qn := δ(r, t[ai, n]) für n ≥ ni. Mit der Monotonie der Abbildung
Φi können wir annehmen, daß Φi(qn, n) = Φi(qni

, ni) für alle n ≥ ni gilt. Weiterhin
folgt mit (2iii): Φi(qni

, ni) /∈ {0, 2, . . . , 2N} ∪ {2N + 1}, und somit erfolgt über
Bedingung (2ii) qn /∈ Fi für alle n ≥ ni. Damit haben wir gezeigt, daß kein Ablauf
von A auf t akzeptierend ist.
Für die Rückrichtung sei t /∈ L(A) mit alphinf(t) = A. Sei ω1 die Menge der
abzählbaren Ordinalzahlen. Wir folgen dem Ansatz von Klarlund [Kla91] und
definieren zunächst Fortschrittsmaße Φ̃i mit Wertebereich ω1. Im folgenden ver-
wenden wir für (q, n) ∈ Ui(t) die Bezeichnung N+(q, n) für die Menge der echten

Nachfolger von (q, n) in (Ui(t) \ Vi(t),
ai,t→), d.h.,

N+(q, n) = {(q′,m) | m > n, ∃q = qn, qn+1, . . . , qm = q′ ∈ Ui(t) \ Vi(t)

wobei (qk, k)
ai,t→ (qk+1, k + 1), ∀n ≤ k < m} .

Der Berechnungs-Untergraph Gi(t) = (Vi(t), Ei(t)) wird nun zusammen mit der
Abbildung Φ̃i : Ui(t) → ω1 mittels transfiniter Induktion definiert. Sei V0 =
Vi(t) = ∅. Nehmen wir an, die Sequenz (Vα)α<β sei für α < β < ω1 bereits defi-
niert, wobei die Knotenmengen Vα ⊆ Ui(t) paarweise disjunkt sind und Vi(t) =
∪α<βVα gilt.
Gilt für alle (q, n) ∈ Ui(t) \ Vi(t): N+(q, n) ∩ Fi × IN 6= ∅, so setzen wir Vβ :=
Ui(t) \ Vi(t) und Vγ = ∅ für alle β < γ < ω1.
Ansonsten wählen wir ein (q, n) ∈ Ui(t) \ Vi(t) mit N+(q, n) ∩ Fi × IN = ∅. Sei
nun Vβ definiert durch

Vβ :=

{

{(q, n)} falls N+(q, n) = ∅
N+(q, n) sonst,

und setze abschließend Vi(t) = Vi(t) ∪ Vβ.
Damit kann Φ̃i : Ui(t) → ω1 definiert werden durch Φ̃i(q, n) := β genau dann,
wenn (q, n) ∈ Vβ gilt (beachte, daß die Mengen Vα, α < ω1, paarweise disjunkt
sind).
Das somit definierte Fortschrittsmaß Φ̃i ist offensichtlich schwach monoton fallend

bezüglich der Übergangsrelation
ai,t→. Gilt für (q, n), (q′, n+1) ∈ Ui(t) mit (q, n)

ai,t→
(q′, n+1) und Φ̃i(q, n) = Φ̃i(q

′, n+1), so folgt unmittelbar aus der Konstruktion:

q′ /∈ Fi. (5.1)

Aus der Konstruktion folgt außerdem die Existenz einer Ordinalzahl β0 < ω1 mit
Ui(t)\Vi(t) = Vβ0

so, daß β0 = ⊔{α < ω1 | Vα 6= ∅}. Es gilt nun entweder Vβ0
= ∅

oder zu jedem (qn, n) ∈ Vβ0
existiert ein unendlicher Pfad in Vβ0

, (qn, n)
ai,t→

(qn+1, n+ 1)
ai,t→ · · · , der einen Zustand aus Fi unendlich oft wiederholt:

|{m ≥ n | qm ∈ Fi}| = ∞ . (5.2)
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Schließlich wird, wie in [Kla91], das Fortschrittsmaß Φ̃i zu einem Pseudo-Fort-
schrittsmaß Φi : Ui(t) → {0, 1, . . . , 2N + 1} abgeschwächt, wodurch ein endlicher
Wertebereich entsteht. Für α < ω1 sei das Prädikat const(α) wahr, wenn ein

unendlicher Pfad (qn, n)
ai,t→ (qn+1, n + 1)

ai,t→ · · · in Ui(t) derart existiert, daß
Φ̃i(qm,m) = α für alle m ≥ n erfüllt ist. Wegen der durch N beschränkten Weite

des Berechnungsgraphen (Ui(t),
ai,t→) existieren nach dem Prinzip von Dirichlet

höchstens N Ordinalzahlen 0 < α1 < . . . < αM < ω1 (M ≤ N), die const(α) =
erfüllen.
Mit α0 = 0 und αM+1 := ω1 wird Φi : Ui(t) → {0, 1, . . . , 2N + 1} definiert für
(q, n) ∈ Vi(t) durch:

Φi(q, n) =

{

2k − 1 falls Φ̃i(q, n) = αk, 1 ≤ k ≤ M

2k falls αk+1 > Φ̃i(q, n) > αk, 0 ≤ k ≤ M

Für (q, n) ∈ Ui(t) \ Vi(t) sei außerdem Φi(q, n) := 2N + 1.
Die Abbildung Φi erfüllt Bedingung (2iii): sonst gäbe es ein n ∈ IN und eine

Folge (qm,m)m≥n ⊆ Ui(t) mit (qm,m)
ai,t→ (qm+1,m+ 1), m ≥ n, mit Φi(qm,m) =

Φi(qn, n) = 2k, für alle m ≥ n und ein geeignetes k ≤ M . Mit der Monotonie
von Φ̃i, sowie der Tatsache, daß ω1 wohlgeordnet ist, gäbe es ein n′ ≥ n und ein
αk < α < αk+1 mit Φ̃i(qn′ , n′) = Φ̃i(qm,m) = α, für alle m ≥ n′. Somit würde
const(α) gelten und der Definition der (αi)1≤i≤M widersprechen.
Mit der Definition von Φi folgt schließlich für alle (q, n), (q′, n + 1) ∈ Ui(t) mit

(q, n)
ai,t→ (q′, n+ 1) und Φi(q, n) = Φi(q

′, n+ 1):

q′ /∈ Fi oder Φi(q, n) ∈ {0, 2, . . . , 2N} ∪ {2N + 1}.

Es bleibt nur noch zu zeigen, daß der Zustandsraum, der nicht durch die Fort-
schrittsmaße (Φi)1≤i≤k erfaßt wird, nicht zu einem A-Ablauf von t synchronisiert
werden kann (Bedingung (3)).
Angenommen, für jedes endliche Präfix t0 ≤ t mit |t0|a = |t|a für alle a ∈ Ā,
existiert ein Ablauf r ∈ RA(t0) auf t0 so, daß zugleich δ(r, t0)a = qfa für alle
a ∈ Ā und (δ(r, ∂ai(t0)), |t0|ai − 1) ∈ Ui(t) \ Vi(t) gilt. Sei t = t0t1 · · · tk, wobei
alph(ti) = Ai für alle 1 ≤ i ≤ k. Wir wählen t0 groß genug so, daß max(t0)∩A =
{a1, . . . , ak} und alph(∂ai(t0)

−1ti) = Ai gelten. Wir können nun die Tatsache
verwenden, daß von jedem Knoten aus Ui(t) \ Vi(t) 6= ∅ ein Berechnungspfad
ausgeht, auf dem ein Zustand aus Fi unendlich oft wiederholt wird (5.2). Damit
existiert für jedes i ein Ablauf ri auf dem zusammenhängenden Suffix ti, der im
globalen Zustand δ(r, ∂ai(t0)) startet so, daß qfai ∈ infai(ri) erfüllt ist. Wir können
nun einen Widerspruch herleiten, indem wir einen akzeptierenden Ablauf r′ für
t wie folgt konstruieren: r′ entspricht r auf dem Präfix t0 bzw. ri auf dem Suffix
ti, 1 ≤ i ≤ k. Offensichtlich gilt qfa ∈ infa(r

′), für alle a ∈ Ā ∪ {a1, . . . , ak}, und
somit würde der Widerspruch t ∈ L(A) folgen. ✷

Wir sind nun in der Lage, einen asynchron-zellulären Büchi Automaten B zu
definieren so, daß B die Sprache L(A)co∩Inf(A) erkennt. Dabei sei A = ((Qa)a∈Σ,
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(δa)a∈Σ, q0, {(q
f , A, {a1, . . . , ak})}). Wir folgen weiterhin der Konstruktion von

Klarlund und definieren B so, daß ein geeignetes Pseudo-Fortschrittsmaß geraten
wird. Zusätzlich werden wir die Berechnungs-Untergraphen (Gi(t))1≤i≤k raten.
Der Komplement-Automat basiert auf dem Potenzautomaten, der in Abschnitt
5.1 als Aµ mit µ = (ν, ρ) konstruiert wurde. Sei im folgenden der Potenzauto-
mat von ((Qa)a∈Σ(δa)a∈Σ, q0) durch Aµ = ((Q̃a)a∈Σ, (δ̃a)a∈Σ, q̃0) bezeichnet (End-
zustände werden im folgenden außer acht gelassen). Weiterhin bezeichnen wir mit
[2N + 1]Qp die Menge der partiellen Abbildungen von Q nach {0, 1, . . . , 2N + 1},
und mit dom(f) die Definitionsmenge einer partiellen Abbildung f ∈ [2N + 1]Qp .
Es sei B = ((Sa)a∈Σ, (∆a)a∈Σ, I, T ) definiert durch:

1.
Sa =

{

Q̃a für a /∈ {a1, . . . , ak}

Q̃a × [2N + 1]Qp × P(Q) sonst

Weiterhin sei für alle a ∈ {a1, . . . , ak} und alle (q̃a, αa, Aa) ∈ Sa folgende
Bedingung erfüllt:

dom(αa) = {f(a) | f ∈ R, wobei q̃a = (N,R) für ein N}.

(D.h., N bzw. R bezeichnen die ν- bzw. ρ-Komponente des lokalen Zustan-
des im Potenzautomaten.)

2. Sei a /∈ {a1, . . . , ak}. Dann gilt s′a ∈ ∆a((sb)b∈D(a)) genau dann, wenn s′a =

δ̃a((q̃b)b∈D(a)), mit sb = q̃b bzw. sb ∈ {q̃b} × [2N + 1]Qp × P(Q), für alle
b ∈ D(a).

Für a = ai, 1 ≤ i ≤ k, seien sa = (q̃a, αa, Aa) und s′a = (q̃′a, α
′
a, A

′
a). Dann

gilt s′a ∈ ∆a((sb)b∈D(a)) genau dann, wenn

• q̃′a = δ̃((q̃b)b∈D(a)), für q̃b = sb, b ∈ D(a) \ {a};

• Für alle q ∈ dom(αa), q
′ ∈ dom(α′

a) mit q
(a)
→ q′ gilt (für die Notation

(a)
→ siehe Beweis von Satz 5.1.2.):

(a) αa(q) ≥ α′
a(q

′) und

(b) Aus αa(q) = α′
a(q

′) folgt q′a 6= qfa oder αa(q) ∈ {0, 2, . . . , 2N} oder
αa(q) = 2N + 1.

• A′
a =























dom(α′
a) falls Aa = ∅

{q′ ∈ dom(α′
a) | ∃q ∈ dom(αa) ∩ Aa mit

q
(a)
→ q′ und

αa(q) = α′
a(q

′) ∈ {0, 2, . . . , 2N}} sonst.

3. (sf , A, {a1, . . . , ak}) ∈ T genau dann, wenn für ein u ∈ IM(Σ, D) mit
q̃a = (ν(∂a(u)), ρ(∂a(u))), a ∈ Σ und Abbildungen αa ∈ [2N + 1]Qp , a ∈
{a1, . . . , ak}, gilt:
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(a) sfa ∈ {q̃a, αa, ∅), für alle a ∈ {a1, . . . , ak}, bzw. s
f
a = q̃a, sonst.

(b) Sei C = Ā ∪ {a1, . . . , ak}. Dann erfüllt jedes f ∈ ρ(∂C(u))

• Entweder f(a)a 6= qfa , für ein a ∈ Ā,

• oder αa(f(a)) 6= 2N + 1, für ein a ∈ {a1, . . . , ak}.

(c) Für alle s0 ∈ I, a ∈ Σ gilt: (s0)a = (q̃0)a bzw. (s0)a = ((q̃0)a, αa, ∅),
für ein αa ∈ [2N + 1]Qp .

Satz 5.2.3 Es gilt: L(B) = L(A)co ∩ Inf(A).

Beweis: Wir nehmen zunächst an, daß alphinf(t) = A und t /∈ L(A) gelten.
Mit Satz 5.2.1 erhalten wir Berechnungs-Untergraphen (Gi(t))1≤i≤k und Pseudo-
Fortschrittsmaße (Φi)1≤i≤k, die die drei Bedingungen erfüllen. Ein akzeptierender
Ablauf des Automaten B auf t kann unmittelbar erklärt werden:

1. Für a /∈ {a1, . . . , ak} und n < |t|a, sei r(a, n) = δ̃(q̃0, t[a, n])a.

2. Für a = ai, 1 ≤ i ≤ k, sei r(a, n) = (q̃a, αa, Aa), wobei

• q̃a = δ̃(q̃0, t[a, n])a.

• Mit q̃a = (N,R) sei dom(αa) = {f(a) ∈ Q | f ∈ R}.

• Für alle q ∈ dom(αa) sei αa(q) = Φi(q, n).

Schließlich ist die obige Komponente Aa deterministisch berechnet.
Bedingung (2iii) aus Satz 5.2.1 erzwingt für a ∈ {a1, . . . , ak} die Existenz lokaler
Zustände (p̃a, αa, ∅) ∈ infa(r), wobei p̃a = (ν(∂a(u)), ρ(∂a(u))) für ein gewisses
u ∈ IM(Σ, D) und αa ∈ [2N + 1]Qp gilt. Wäre dies für ein a ∈ {a1, . . . , ak}
nicht erfüllt, so gäbe es einen Index na ∈ IN so, daß r(a, n) = ((q̃n)a, αn,a, An,a)
mit An,a 6= ∅, für alle n ≥ na. Damit könnte ein unendlicher Untergraph von
Vi(t) erzeugt werden, mit Knotenmenge ∪n≥na

An,a × {n}. Darauf läßt sich das
Lemma von König anwenden, womit ein unendlicher Pfad mit konstantem Wert
in {0, 2, . . . , 2N} und damit ein Widerspruch erzielt werden.
Für a ∈ Ā gilt infa(r) = {p̃a}. Die Bedingung (3) des Satzes 5.2.1 sichert nun zu,
daß keine Abbildung f ∈ ρ(∂C(u)) existiert so, daß f(a)a = qfa für alle a ∈ Ā,
bzw. αa(f(a)) = 2N + 1, für alle a ∈ {a1, . . . , ak}.
Für die Rückrichtung sei r ein akzeptierender B-Ablauf auf t, mit Tafelele-
ment (sf , A, {a1, . . . , ak}). Damit gilt zunächst alphinf(t) = A. Erneut gibt es
eine kanonische Beziehung zwischen akzeptierenden Abläufen und Berechnungs-
Untergraphen bzw. Pseudo-Fortschrittsmaße: für a = ai und ∆(r, t[a, n])a :=
(q̃a, αa, Aa) sei (q, n) ∈ Vi(t) genau dann, wenn αa(q) ∈ {0, 1, . . . , 2N}. Für
q ∈ dom(αa) setze Φi(q, n) := αa(q).
Mit sfa ∈ Q̃a × [2N + 1]Qp × {∅} ist es leicht zu sehen, daß Bedingung (2iii) aus
Satz 5.2.1 erfüllt ist. Schließlich sei t0 ∈ IM(Σ, D) ein Präfix von t, t0 < t, mit
∆(r, t0)a = sfa für a ∈ Ā ∪ {a1, . . . , ak} und |t0|a = |t|a für alle a ∈ Ā. Mit dem
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zweiten Teil der Definition der Tafel ist auch die Synchronisations-Bedingung (3)
aus Satz 5.2.1 unmittelbar erfüllt. ✷

Abschließend können wir das Ergebnis dieses Abschnitts im folgenden Theorem
zusammenfassen:

Theorem 5.2.4 Sei A = ((Qa)a∈Σ, (δa)a∈Σ, q0, T ) ein (nichtdeterministischer)
asynchron-zellulärer Büchi Automat mit Tafel T ⊆ (

∏

a∈Σ Qa) × P(Σ) × P(Σ)
und N globalen Zuständen.
Dann kann ein asynchron-zellulärer Büchi Automat B = ((Sa)a∈Σ, (∆a)a∈Σ, s0, T

′)
(mit Tafel T ′ ⊆ (

∏

a∈Σ Sa) × P(Σ) × P(Σ)) effektiv angegeben werden so, daß

L(B) = L(A)co gilt. Der Komplement-Automat B hat 2O(N |Σ|) globale Zustände
(für |Σ| ≥ 2).

Abschließend wollen wir noch anmerken, daß wenn wir lediglich an einem Komple-
ment-Automaten mit I-Diamant Eigenschaft interessiert wären, eine alternati-
ve Konstruktion existiert. Es handelt sich um die Konstruktion von Pécuchet
[Péc86], die auf saturierenden Morphismen basiert und einen Automaten mit
2O(N2) Zustände ergibt.



Kapitel 6

I-Diamant Automaten

In den bisherigen Betrachtungen haben wir uns auf Automaten mit verteilter
Kontrolle konzentriert, die die nebenläufige Ausführung unabhängiger Aktionen
erlauben. Wenn man hingegen den klassischen Ansatz der M -Automaten [Eil74]
für das Monoid der endlichen Spuren M = IM = IM(Σ, D) verfolgt, so werden
deterministische Wortautomaten A = (Q, δ, q0, F ) mit I-Diamant Eigenschaft be-
trachtet (siehe Abbildung 6.1). Mit der I-Diamant Eigenschaft wird Nebenläufig-
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Abbildung 6.1: I-Diamant Eigenschaft

keit in Form von Interleaving ausgedrückt, indem alle sequentiellen Ausführungen
einer Spur dasselbe Übergangsverhalten im Automaten zeigen.
Im folgenden bezeichnen wir mit [L] den Abschluß einer Wortsprache L ⊆ Σ∞

bzgl. dem Abhängigkeitsalphabet (Σ, D), d.h. es sei [L] = ϕ−1ϕ(L), wobei ϕ :
Σ∞ → IR(Σ, D) die kanonische Abbildung bezeichnet. Eine Sprache L ⊆ Σ∞

heißt abgeschlossen, wenn L = [L] gilt.
Während die von I-Diamant Automaten erkannten Sprachen aus Σ∗ abgeschlos-
sen sind, ist dies beim Übergang zu Sprachen aus Σ∞, d.h. zu Muller bzw.
Büchi Automaten, nicht mehr gegeben. Darin liegt ein wesentlicher Nachteil
dieses Automatenmodells und damit der Grund dafür, das asynchrone Modell
mit lokaler Akzeptanz für die Charakterisierung erkennbarer reeller Spurspra-
chen dem I-Diamant Modell vorzuziehen. Mit der ersten Charakterisierung der
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Familie Rec(IR) durch nichtdeterministische, asynchron-zelluläre Büchi Automa-
ten [GP92] bzw. mit dem Ergebnis des Kapitels 2 gilt aber: jede erkennbare
reelle Spursprache kann mit einem nichtdeterministischen I-Diamant Automa-
ten mit (verallgemeinerter) Büchi Bedingung, bzw. mit einem deterministischen
I-Diamant Muller Automaten akzeptiert werden. Diese Eigenschaft des Automa-
tenmodells macht natürlich die Frage nach der Abgeschlossenheit der erkannten
Sprachen aus Σω sehr interessant.

6.1 Deterministische I-Diamant Muller Automaten

In diesem Abschnitt zeigen wir, daß eine natürliche Einschränkung der I-Diamant
Muller Automaten existiert, die die Familie der erkennbaren reellen Spursprachen
charakterisiert. Im gesamten Abschnitt betrachten wir durchgehend deterministi-
sche Muller Automaten, daher werden wir den Zusatz “deterministisch” häufig
weglassen.
Mit dem nachfolgenden bekannten Beispiel von Gastin/Petit wird ersichtlich, daß
die I-Diamant Eigenschaft nicht die Abgeschlossenheit der von Muller Automaten
akzeptierten Sprachen zusichert.

Beispiel 6.1.1 Sei (Σ, D) = a −−c −−b und betrachte den Automaten A aus
Abbildung 6.2. Sei q1 der Anfangszustand und betrachte die einelementige Tafel
T = {T} mit T = {q1, q2, q3, q4}. Der Automat A ist I-Diamant, aber L(A) ist
nicht abgeschlossen: es gilt nämlich (abcbac)ω ∈ L(A), aber (abc)ω /∈ L(A).
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Abbildung 6.2: T = {{q1, q2, q3, q4}}

Das nächste Beispiel, das von K. Reinhardt angegeben wurde, zeigt eine wei-
tere negative Eigenschaft von I-Diamant Muller Automaten. Damit wird ge-
zeigt, daß der Abschluß [L(A)] der von einem I-Diamant Muller Automaten
A akzeptierten Sprache im allgemeinen nicht erkennbar bleibt. Dieses Verhal-
ten verdeutlicht einen wesentlichen Unterschied zu I-Diamant Büchi Automaten.
Beim letzteren läßt sich die akzeptierte Sprache L = L(A) darstellen als endliche
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Vereinigung von Sprachen KNω, mit K,N = N+ ⊆ Σ∗ erkennbar und abge-
schlossen. Damit kann ϕ(L) dargestellt werden als ϕ(L) =

⋃

endlich
ϕ(K)ϕ(N)ω,

wobei ϕ(K), ϕ(N) ⊆ IM(Σ, D) erkennbare Spursprachen sind. Mit den Abschluß-
eigenschaften der Klasse Rec(IR) ist ϕ(L) eine erkennbare reelle Spursprache und
schließlich folgt, daß [L(A)] = ϕ−1ϕ(L) eine erkennbare Wortsprache ist.

Beispiel 6.1.2 Sei weiterhin (Σ, D) = a−−c−−b und betrachte den Automaten
A aus Abbildung 6.3.
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Abbildung 6.3: T = {T} mit T = {2, 3, 4}, Anfangszustand q0 = 3.

Es gilt L(A) ⊆ {a, b, c}∗((ba)∗cc)ω. Offensichtlich ist L(A) nicht abgeschlossen
und der Abschluß [L(A)] ist nicht erkennbar, da gilt:

[L(A)] ∩ ({a, b}∗cc)ω = {u0 cc u1 cc . . . | wobei |un|a = |un|b, für alle n ≥ 1}.

Aus den obigen Beispielen ist es ersichtlich, daß eine Einschränkung der Tafeln
notwendig ist, um sicherzustellen, daß die akzeptierten Sprachen abgeschlossen
sind. Wir geben eine solche Einschränkung für reduzierte Tafeln, die im folgenden
definiert werden. Zuvor vereinbaren wir folgende Notation für einen (determini-
stischen) Automaten A = (Q, δ, q0) und ein Wort u ∈ Σω: mit inf(q, u) bezeichnen
wir die Menge der Zustände, die auf dem Übergangspfad, der mit u beschriftet
ist und in Zustand q startet, unendlich oft vorkommen. Nun heißt eine Tafel
T ⊆ P(Q) reduziert, wenn für jedes Element T ∈ T ein Wort u ∈ Σω derart
existiert, daß T = inf(q0, u) gilt.
Für die angekündigte Einschränkung der Tafeln benötigen wir folgende

Definition 6.1.3 Sei A = (Q, δ, q0, T ) ein Muller Automat.

1. Für q ∈ Q und v ∈ Σ∗ sei τ(q, v) = { δ(q, u) | u ist ein Präfix von v} die
Menge der Zustände, die auf dem Übergangspfad vorkommen, der mit v
beschriftet ist und in q startet.
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2. Eine Tafel T ⊆ P(Q) heißt abgeschlossen, wenn für alle T ∈ T , q ∈ T und
v ∈ Σ∗ mit δ(q, v) = q und T = τ(q, v) gilt:

∀w ∈ Σ∗ : ϕ(w) = ϕ(v) ⇒ τ(q, w) ∈ T .

Die Aussage des folgenden Satzes findet man in ähnlicher Form in [GP91], jedoch
ohne eine algorithmische Behandlung des Abgeschlossenheitsproblems.

Satz 6.1.4 Sei A = (Q, δ, q0, T ) ein deterministischer I-Diamant Muller Auto-
mat mit reduzierter Tafel T . Dann ist die von A akzeptierte Sprache L(A) genau
dann abgeschlossen, wenn die Tafel T gemäß Definition 6.1.3 abgeschlossen ist.

Beweis: Nehmen wir zunächst an, die Sprache L(A) sei abgeschlossen und
betrachten ein Element T ∈ T der Tafel. Mit der Annahme über die Reduziertheit
der Tafel existieren Wörter u, v ∈ Σ∗ und ein Zustand q ∈ Q so, daß gilt:

δ(q0, u) = q, δ(q, v) = q und τ(q, v) = T.

Sei w ∈ Σ∗ ein zu v äquivalentes Wort, d.h. ϕ(w) = ϕ(v). Wegen uvω ∈ L(A)
zusammen mit der Abgeschlossenheit von L(A) gilt auch uwω ∈ L(A). Nun ist A
deterministisch, woraus δ(q, w) = q folgt und somit auch inf(q0, uw

ω) = τ(q, w).
Damit folgt unmittelbar die Aussage τ(q, w) ∈ T .
Für die Rückrichtung sei die Tafel T abgeschlossen. Es genügt nun zu zeigen, daß
für alle (a, b) ∈ I gilt: ab ≡ ba (vgl. [DGP91]), wobei wir mit ≡ die syntaktische
Kongruenz der Sprache L(A) bezeichnen. (Für die Definition der syntaktischen
Kongruenz siehe Abschnitt 1.3.)
Sei zunächst uabvwω ∈ L(A), wobei im folgenden (a, b) ∈ I gilt. Da der Au-
tomat A die I-Diamant Eigenschaft hat, folgt daraus δ(q0, uabv) = δ(q0, ubav)
und somit direkt die Aussage ubavwω ∈ L(A). Schließlich betrachten wir ein
Wort u(abv)ω ∈ L(A), mit u, v ∈ Σ∗. Offensichtlich existieren ganze Zahlen
r, s ≥ 0 und ein q ∈ Q so, daß der Übergangspfad faktorisiert werden kann als
δ(q0, u(abv)

r) = q, δ(q, (abv)s) = q und es gilt inf(q0, u(abv)
ω) = τ(q, (abv)s) ∈ T .

Die Abgeschlossenheit der Tafel T erzwingt τ(q, (bav)s) ∈ T und daraus folgt
direkt u(bav)ω ∈ L(A). ✷

Der letzte Satz gibt eine vollständige Charakterisierung der I-Diamant Muller
Automaten, die abgeschlossene Sprachen erkennen. Um einen effizienten Algo-
rithmus für dieses Problem angeben zu können, benötigen wir eine verfeinerte
Charakterisierung der Tafeln.

Satz 6.1.5 Sei A = (Q, δ, q0, T ) ein deterministischer I-Diamant Muller Auto-
mat mit reduzierter Tafel T . Es gilt: die Tafel T ist genau dann abgeschlossen,
wenn die beiden nachfolgenden Bedingungen erfüllt sind:

1. Für alle T ∈ T , q ∈ Q, (a, b) ∈ I mit {q, δ(q, a), δ(q, ab)} ⊆ T gilt auch
T ∪ {δ(q, b)} ∈ T .
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2. Für alle T ∈ T , q ∈ Q, (a, b) ∈ I mit {q, δ(q, a), δ(q, ab)} ⊆ T mit der
zusätzlichen Voraussetzung, daß ein Wort v ∈ Σ∗ existiert mit

δ(q, abv) = q und τ(δ(q, ab), v) = (T \ {δ(q, a)}) ∪ {δ(q, b)},

gilt auch (T \ {δ(q, a)}) ∪ {δ(q, b)} ∈ T .

Beweis: Angenommen, die Tafel T ist abgeschlossen. Es seien T ∈ T und (a, b) ∈
I so, daß {q, δ(q, a), δ(q, ab)} ⊆ T gilt. Mit der Voraussetzung, daß die Tafel T
reduziert ist, existieren Wörter u, v, w ∈ Σ∗ mit δ(q0, u) = q, δ(q, v) = q, τ(q, v) =
T , δ(q, abw) = q und τ(q, abw) ⊆ T . Daraus folgt unmittelbar τ(q, vabw) = T
und damit auch τ(q, vbaw) = T ∪ {δ(q, b)} ∈ T . Für die zweite Bedingung des
Satzes sei v ∈ Σ∗ so, daß δ(q, abv) = q zusammen mit τ(δ(q, ab), v) = (T \
{δ(q, a)}) ∪ {δ(q, b)} gilt. Damit folgt τ(q, abv) = T ∪ {δ(q, b)} bzw. τ(q, bav) =
(T \ {δ(q, a)}) ∪ {δ(q, b)}. Wir können nun die erste Bedingung anwenden und
schließen, daß T ∪{δ(q, b)} ∈ T ein Tafelelement ist, daher auch (T \ {δ(q, a)})∪
{δ(q, b)} ∈ T .
Für die Rückrichtung seien die beiden Bedingungen 1. und 2. erfüllt. Wir be-
trachten ein Tafelelement T ∈ T , zusammen mit q ∈ T und v ∈ Σ∗ so, daß
δ(q, v) = q und τ(q, v) = T gelten. Sei weiterhin w ∈ Σ∗ ein zu v äquiva-
lentes Wort. Wir wollen zeigen, daß τ(q, w) ∈ T . Ohne Einschränkung seien
v, w von der Form v = v1abv2 und w = v1bav2 für (a, b) ∈ I und gewisse
v1, v2 ∈ Σ∗. Mit q1 := δ(q, v1) erhalten wir τ(q1, abv2v1) = T , zusammen mit
τ(q, w) = τ(q1, bav2v1). Abhängig davon, ob nun δ(q1, a) ∈ τ(δ(q1, ba), v2v1) gilt
oder nicht, folgern wir mit einer der beiden Bedingungen, daß τ(q, w) ∈ T erfüllt
ist:

• Falls δ(q1, a) ∈ τ(δ(q1, ba), v2v1), so folgt mit der ersten Bedingung τ(q, w) =
{δ(q1, b)} ∪ τ(δ(q1, ba), v2v1) = T ∪ {δ(q1, b)} ∈ T .

• Ansonsten wenden wir die zweite Bedingung an und erhalten abschließend
erneut τ(q, w) = (T \ {δ(q1, a)}) ∪ {δ(q1, b)} ∈ T .

✷

Im zweiten Teil dieses Abschnitts zeigen wir, daß das Abgeschlossenheitspro-
blem für deterministische I-Diamant Muller Automaten NL-vollständig ist (wo-
bei NL die Komplexitätsklasse NSPACE(log(n)) bezeichnet). Wir verwenden im
folgenden den Abschluß von NL unter Komplement ([Imm88, Sze88]) und die
NL-Vollständigkeit des Erreichbarkeitsproblems 2-GAP in (gerichteten) Graphen
mit Ausgangsgrad höchstens 2.

Bemerkung 6.1.6 Die Frage, ob zu einem gegebenem Muller Automaten A =
(Q, δ, q0, T ) und Abhängigkeitsalphabet (Σ, D) der Automat deterministisch ist
und die I-Diamant Eigenschaft hat, kann in DSPACE(log(n)) beantwortet wer-
den.
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Satz 6.1.7 Sei (Σ, D) gegeben. Die Frage, ob die Tafel eines deterministischen,
I-Diamant Muller Automaten A = (Q, δ, q0, T ) reduziert ist, ist NL-vollständig.

Beweis: Es ist leicht zu sehen, daß die Frage mit nichtdeterministischen lo-
garithmischen Platz beantwortet werden kann: für jedes T ∈ T wird q ∈ T
geraten und überprüft, daß es von q0 erreichbar ist; anschließend wird v ∈ ΣO(n)

(mit |Q| = n) geraten und δ(q, v) = q und τ(q, v) = T gleichzeitig überprüft,
indem die Bedingung τ(q, v) ⊆ T aufrechterhalten wird, zusammen mit einem
Hochzählen der durchlaufenen Zustände aus T , gemäß ihrer Reihenfolge in der
Eingabe. Im positiven Fall wird zum nächsten T ′ ∈ T übergegangen.
Für die Härte kann eine einfache Reduktion von 2-GAP auf das vorliegende Pro-
blem angegeben werden. ✷

Der obige Satz zeigt also, daß bereits die Preprocessing-Phase des Abgeschlos-
senheitsproblems NL-vollständig ist. Interessanterweise bleibt das Problem NL-
vollständig auch unter der Annahme, daß die Reduziertheit der Tafel bekannt
ist.

Theorem 6.1.8 Es seien (Σ, D) und ein deterministischer I-Diamant Muller
Automat A = (Q, δ, q0, T ) mit reduzierter Tafel T gegeben. Die Frage, ob L(A)
abgeschlossen ist, ist NL-vollständig.

Beweis: Wir zeigen zunächst, daß die beiden Bedingungen des Satzes 6.1.5 nicht-
deterministisch mit logarithmischen Platz beantwortet werden können. Wäh-
rend dies für die erste Bedingung offensichtlich ist, genügt es für die zweite
Bedingung zu überprüfen, daß für gewisse T ∈ T , {q, δ(q, a), δ(q, ab)} ⊆ T
ein Wort v ∈ ΣO(n) (mit |Q| = n) derart existiert, daß δ(q, abv) = q und
τ(δ(q, ab), v) = (T \ {δ(q, a)}) ∪ {δ(q, b)} gelten. Dies kann analog zum Beweis
von Satz 6.1.7 durchgeführt werden.
Für die Härte des Problems genügt es, ein Alphabet mit 3 Buchstaben zu be-
trachten, (Σ, D) = a −−c −−b. Sei G = ({p, q, x1, . . . , xn}, E) eine Instanz von
2-GAP, wobei nach der Existenz eines Pfades von p nach q gefragt wird. Die Kan-
ten aus E werden beliebig mit b, c beschriftet so, daß von keinem Knoten zwei
Kanten mit derselben Beschriftung ausgehen. Ohne Einschränkung geht von p
genau eine Kante aus (beschriftet mit b), und q hat keine ausgehende Kante,
dafür eine mit c beschriftete eingehende Kante. Wir fügen zwei neue Knoten r, s
und folgende zusätzliche Kanten ein: (q, b, r), (r, a, p), (q, a, s), (s, b, p), (p, c, s),
(s, c, q), (q, c, xi), (xi, c, p) für 1 ≤ i ≤ n (siehe Abbildung 6.4).
Nun gibt es eventuell Knoten xi, die zwei mit c beschriftete ausgehende Kanten
haben. Um den Determinismus wiederherzustellen, können 2 Kanten (xi, c, y),
(xi, c, y

′) mit y 6= y′ durch die Einführung eines neuen Knotens x′
i, zusammen

mit neuen Kanten (xi, c, x
′
i), (x

′
i, b, y), (x

′
i, c, y

′) ersetzt werden. Weiterhin kann
der Nichtdeterminismus, der durch Knoten q verursacht wird, behoben werden
durch die Einführung neuer Knoten yi, 1 ≤ i ≤ n − 1 und die Ersetzung der
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Abbildung 6.4: Reduktion von 2-GAP.

Kanten {(q, c, xi) | 1 ≤ i ≤ n} durch die Kanten {(yi, b, yi+1), (yj , c, xj) | 1 ≤ i <
n− 1, 1 ≤ j ≤ n− 1} ∪ {(q, c, y1), (yn−1, b, xn)}.

Wir betrachten den entstandenen Graphen als deterministischen I-Diamant Mul-
ler Automaten mit Anfangszustand q und Tafel T = {T1, T2}, wobei T1 = Q =
{r, s, p, q, xi, x

′
i, yj | 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1} und T2 = T1 \ {r}. Man beachte

auch, daß die Tafel reduziert ist. Mit Satz 6.1.5 gilt schließlich, daß die Tafel (und
damit L(A)) genau dann abgeschlossen ist, wenn kein Pfad von p nach q in G
existiert. ✷

6.2 Nichtdeterministische I-Diamant Büchi Automaten

Wir zeigen in diesem Abschnitt, daß das Problem der Abgeschlossenheit der von
einem nichtdeterministischen I-Diamant Büchi Automaten akzeptierten Sprache
wesentlich schwieriger ist als für Muller Automaten. Im Büchi Fall ist es nämlich
ein PSPACE-vollständiges Problem (wobei PSPACE die Klasse der im polynomi-
ellen Platz lösbaren Probleme bezeichnet). Dies bedeutet, daß der Übergang von
Büchi zu Muller Automaten einen exponentiellen Anstieg in der Größe hervorruft
(wobei die Größe auch die Tafelgröße berücksichtigt).

Zunächst einige Bemerkungen zum Automatenmodell. Wir wissen mit [GP92],
daß die Familie der erkennbaren, abgeschlossenen ω-Wortsprachen genau charak-
terisierbar ist durch I-Diamant Automaten mit verallgemeinerter Büchi Akzep-
tanz. D.h., mit Automaten der Art A = (Q, δ, q0, T ), mit T ⊆ P(Q). Ein Wort
w ∈ Σω wird von A akzeptiert, wenn ein T ∈ T und ein mit w beschrifteter
Übergangspfad π derart existieren, daß inf(π) ⊇ T gilt, d.h. jeder Zustand aus T
wird in π unendlich oft wiederholt. (Dabei bezeichnet für einen Übergangspfad
π = (q0, a0, q1, a1, . . .), qn ∈ Q, an ∈ Σ, inf(π) die Menge {q ∈ Q | ∃∞n : qn = q}.)

Die nachfolgende Konstruktion von V. Diekert zeigt jedoch, daß gewöhnliche
Büchi Automaten mit I-Diamant Eigenschaft genauso mächtig sind wie die ver-
allgemeinerten I-Diamant Büchi Automaten.
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Mit dem Ergebnis des Kapitels 2 können wir einen deterministischen asynchron-
zellulären Muller Automaten A = ((Qa)a∈Σ, (δa)a∈Σ, q0, T ) als Ausgangspunkt
wählen. Im Laufe der Berechnung wird ein Tafelelement T = (Ta)a∈Σ geraten und
anschließend überprüft, daß genau die lokalen Komponenten von T unendlich oft
wiederholt werden.
Sei Q =

∏

a∈Σ Qa die Menge der globalen Zustände von A und δ : Q×Σ → Q die
globale Übergangsfunktion. Ohne Einschränkung sei δ so, daß für alle q ∈ Q, a ∈
Σ, q′a ∈ Qa mit q′a = δa((qb)b∈D(a)) gilt: q

′
a 6= qa. Damit gilt für ein Wort w ∈ Σω,

das mit T ∈ T akzeptiert wird: alphinf(w) = {a ∈ Σ | |Ta| ≥ 2}. Schließlich sei
für AT = {a ∈ Σ | |Ta| ≥ 2} die Menge lokaler Zustände ST =

⋃

a∈AT
Ta definiert.

Betrachte nun den nichtdeterministischen Büchi Automaten A′ = (Q′, δ′, q0, F )
mit Q′ = Q ∪

⋃

T∈T
(Q×P(ST )×{T}) und der Übergangsrelation δ′ ⊆ Q′×Σ×Q′

gegeben durch

• q′ ∈ δ′(q, a), falls q′ ∈ δ(q, a) gilt.

• (q′, A, T ) ∈ δ′(q, a), falls q′ ∈ δ(q, a) und A ⊆ ST gelten.

• (q′, A′, T ) ∈ δ′((q, A, T ), a), falls q′ ∈ δ(q, a), a ∈ AT , q
′
a ∈ ST und

1. Entweder A′ = ∅, falls A ∪ {q′a} = ST ,

2. oder ∅ 6= A′ ⊆ A ∪ {q′a}.

Es ist nicht schwer zu sehen, daß der Automat die I-Diamant Eigenschaft hat.
Schließlich folgt mit F =

⋃

T∈T
{(q = (qa)a∈Σ, ∅, T ) | ∀a /∈ AT : Ta = {qa}} die

Behauptung L(A′) = ϕ−1(L(A)).

Nun zurück zum Problem der Abgeschlossenheit für I-Diamant Büchi Automa-
ten. Der folgende Satz gibt für ein Abhängigkeitsalphabet (Σ, D) eine Charak-
terisierung derjenigen Automaten, die eine abgeschlossenen Sprache erkennen.
Analog zu Muller Automaten betrachten wir nur reduzierte Endzustandsmengen
F , d.h. für jeden Zustand f ∈ F existiert ein Übergangspfad π mit f ∈ inf(π).
Weiterhin vereinbaren wir folgende Notation: für A = (Q, δ, q0, F ) bedeutet
q′ ∈ δF (q, u) für u ∈ Σ∗, daß ein mit u beschrifteter Pfad von q nach q′ exi-
stiert, der durch einen Zustand aus F führt.

Satz 6.2.1 Sei A = (Q, δ, q0, F ) ein nichtdeterministischer I-Diamant Büchi
Automat. Dann gilt: L(A) ist abgeschlossen genau dann, wenn für alle q, q′, s ∈ Q,
x, y ∈ Σ∗ und (a, b) ∈ I mit

q ∈ δ(q0, x), q
′ ∈ δ(q, a) ∩ F, s ∈ δ(q′, b) und q ∈ δ(s, y)

positive ganze Zahlen p ≤ n, m ≤ 2n (mit n = |Q|) und ein Zustand q′′ ∈ Q
derart existieren, daß gilt:

q′′ ∈ δ(q0, x(bay)
p) und q′′ ∈ δF (q

′′, (bay)m).
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Beweis: Nehmen wir an, es gilt L(A) = [L(A)] und betrachten wir q, q′, s ∈ Q,
x, y ∈ Σ∗ so, daß die Voraussetzungen des Satzes erfüllt sind. Es gilt x(aby)ω ∈
L(A) und damit auch x(bay)ω ∈ L(A). Ein akzeptierender Pfad für x(bay)ω kann
nun ohne weiteres wie im Satz angegeben faktorisiert werden.
Umgekehrt sei ≡L die syntaktische Kongruenz von L = L(A). Mit [DGP] genügt
es zu zeigen, daß ab ≡L ba für alle (a, b) ∈ I gilt. Zunächst gilt offensichtlich
xabyzω ∈ L genau dann, wenn xbayzω ∈ L. Betrachte nun x(aby)ω ∈ L. Damit
existieren k, l ≤ |Q| und ein Zustand q ∈ Q mit q ∈ δ(q0, x(aby)

k) und q ∈
δF (q, (aby)

l).
Es genügt, den Fall zu betrachten, in dem q′ ∈ δ(q, a) ∩ F gilt, wobei q ∈
δ(q′, by(aby)l−1) (ansonsten kann direkt die I-Diamant Eigenschaft angewendet
werden). Schließlich folgt mit y′ = y(bay)l−1 die Existenz eines Zustands q′′ ∈ Q
und Indizes p,m mit q′′ ∈ δ(q0, x(bay)

k(bay′)p) und q′′ ∈ δF (q
′′, (bay′)m), und dies

ergibt x(bay)ω ∈ L. ✷

Bemerkung 6.2.2 Es genügt, die obige Eigenschaft für alle Wörter x, y ∈ Σ∗

mit beschränkter Länge |x| ≤ 2n bzw. |y| ≤ 22n
2

zu überprüfen (mit n = |Q|).

Satz 6.2.3 Gegeben sei ein Abhängigkeitsalphabet (Σ, D) und ein nichtdeter-
ministischer I-Diamant Büchi Automat A = (Q, δ, q0, F ). Das Problem, ob L(A)
abgeschlossen ist, liegt in PSPACE.

Beweis: Wir zeigen, daß die Negation der Charakterisierung des Satzes 6.2.1
in PSPACE überprüft werden kann. Eine nichtdeterministische Turing Maschine
M rät zuerst q, q′, s ∈ Q, (a, b) ∈ I und überprüft q′ ∈ δ(q, a) ∩ F zusammen
mit s ∈ δ(q′, b). Anschließend simuliert M den Potenzautomaten von A und rät
on-line ein Wort x ∈ Σ∗ mit |x| ≤ 2n. Dies kann mit O(n) Platz durchgeführt wer-
den. Sei R1 ⊆ Q die erreichte Zustandsmenge. Die Turing Maschine M überprüft
q ∈ R1 und rät Zustandsmengen R2, . . . , R3n ⊆ Q. Darauf wird erneut der Po-
tenzautomat von A simuliert, und zwar rät M on-line ein Wort y mit |y| ≤ 22n

2

und überprüft gleichzeitig, daß ∆(Ri, bay) = Ri+1 für alle i gilt (wobei ∆ die
Übergangsfunktion des Potenzautomaten ist). Genauer, sei Ri = {q1i, . . . , qni,i}.
Für alle i und alle 1 ≤ j ≤ ni generiert M schrittweise die Menge Sji ⊆ Q der
Folgezustände von qji bezüglich dem gleichzeitig geratenen Wort bay. Wenn ein
Endzustand durchlaufen wird, so markiert M die Folgezustände. Gleichzeitig si-
muliert M den Potenzautomaten auf y ausgehend von s und verfolgt die Zustands-
menge S ⊆ Q. Nach dieser Phase überprüft M, daß q ∈ S und Ri+1 =

⋃ni

j=1 Sji

für alle i gilt. Schließlich überprüft M für alle q′′ ∈ Q und p ≤ n, m ≤ 2n mit
q′′ ∈ Rp ∩ Rp+m, ob ein Pfad von q′′ nach q′′ (durch die Zustandsmengen Ri)
durch die Endzustandsmenge F führt (anhand der Markierungen), und lehnt ab,
falls dies der Fall ist. ✷

Theorem 6.2.4 Gegeben sei ein Abhängigkeitsalphabet (Σ, D) und ein nichtde-
terministischer I-Diamant Büchi Automat A = (Q, δ, q0, F ). Das Problem, ob
L(A) abgeschlossen ist, ist PSPACE-hart.
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Beweis: Wir reduzieren im folgenden das Totalitäts-Problem “L(A)
?
= Σ∗”

[MS72] für nichtdeterministische endliche Automaten auf das vorliegende Pro-
blem. Sei A′ = (Q′,Γ, δ′, s, F ′) ein endlicher Automat über dem Alphabet Γ.
Es seien nun a, b /∈ Γ und betrachte das Alphabet Σ = Γ ∪ {a, b} mit der Un-
abhängigkeitsrelation I = {(a, b)}. Sei A = (Q,Σ, δ, q0, F ) ein nichtdeterministi-
scher Büchi Automat mit Zustandsmenge Q = Q′ ∪ {q0, 1, . . . , 7}, Endzustände
F = {2, 7} und Übergangsrelation δ gegeben durch die folgende Abbildung (mit
c ∈ Γ beliebig):
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Abbildung 6.5: Reduktion vom Totalitätsproblem.

Offensichtlich gilt w ∈ L(A) genau dann, wenn x ∈ Σ∗, (yn)n≥1 ⊆ Σ∗ derart
existieren, daß w = xy1y2 . . . gilt, mit

1. entweder x ∈ Γ+, yn ∈ (ab+ba)Γ+ und yn ∈ abΓ+ für unendlich viele n ≥ 1,

2. oder x ∈ ΓL(A′), yn ∈ (ab + ba) ΓL(A′) und yn ∈ baΓL(A′) für unendlich
viele n ≥ 1.

Somit ist L(A) abgeschlossen genau dann, wenn L(A′) = Γ∗ gilt. ✷



Abschließende Bemerkungen und
Ausblick

In der vorliegenden Arbeit haben wir wesentliche Aspekte der automatentheore-
tischen Charakterisierung erkennbarer reeller Spursprachen untersucht. Wir ha-
ben das Theorem von McNaughton auf reelle Spuren erweitert, indem wir die
Äquivalenz zwischen Erkennbarkeit und Akzeptanz durch deterministische asyn-
chron-zelluläre Muller Automaten gezeigt haben. Wir haben zunächst determi-
nistische Spursprachen definiert und gezeigt, daß die Klasse erkennbarer reeller
Spursprachen mit dem Booleschen Abschluß der Klasse deterministischer Spra-
chen übereinstimmt.

Die Problematik einer geeigneten Charakterisierung deterministischer reeller Spur-
sprachen zeigt hingegen, daß Fragen bezüglich der Definition von asynchron-
zellulären Büchi Automaten und/oder deterministischer Sprachen offen bleiben.
In diesem Zusammenhang sollte hinzugefügt werden, daß ein alternativer Weg für
die Untersuchung deterministischer Sprachen existiert, nämlich die topologische
Charakterisierung. In der Theorie der unendlichen Wörter entsprechen die deter-
ministischen Sprachen der Gδ Stufe in der Borel Hierarchie. In Zusammenarbeit
mit P. Gastin (Univ. Paris 6) und A. Petit (Univ. Paris Sud) wurde dieser Aspekt
für reelle Spursprachen untersucht. Es stellte sich heraus, daß eine analoge Cha-
rakterisierung, d.h. als Durchschnitt abzählbar vieler offener Mengen existiert,
und zwar bezüglich der Metrik, die zum Monoid komplexer Spuren C(Σ, D) als
Vervollständigung von IM(Σ, D) führt [Die93]. Dieses Ergebnis spricht daher eher
für die Definition deterministischer Spursprachen.

Wir haben weiterhin die Familie sternfreier reeller Spursprachen untersucht und
gezeigt, daß klassische Resultate wie die Äquivalenz zur Aperiodizität von ω-
Wörter auf reelle Spuren übertragen werden können. In diesem Bereich gibt es
verschiedene weitere Fragen, deren Untersuchung vielversprechend zu sein scheint.
Ein Beispiel wären die lokal testbaren Sprachen, für deren Definition es einen
nicht sehr zufriedenstellenden Ansatz in [GRS91] für Sprachen endlicher Spuren
gegeben hat. Eine partielle Lösung dieses Problems könnte z.B. darin bestehen,
nicht nur die Faktoren u einer bestimmten Länge in der gegebenen Spur t = xuy
zu betrachten, sondern sie zu Tripeln (u,D(alph(x)), D(alph(y))) zu erweitern.
Ein solcher Ansatz würde direkt zu einer Kongruenzrelation führen.
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Die in dieser Arbeit entwickelte Potenzautomaten-Konstruktion für asynchron--
zelluläre Automaten löst ein interessantes Problem in der Theorie endlicher Spu-
ren, das Problem der direkten Determinisierung. Wir verwenden im entschei-
denden Maße die Zeitmarkierungsfunktion der Zielonka-Konstruktion. Dies führt
natürlich zur Frage der Notwendigkeit der Zeitmarkierung innerhalb einer sol-
chen Konstruktion. Wir vermuten allerdings, daß unsere Konstruktion bezüglich
der Größe des Potenzautomaten optimal ist. Im direkten Zusammenhang stellt
sich natürlich auch die Frage nach der Größe des Komplement-Automaten. Im
Fall der ω-Wortsprachen ist beispielsweise durch ein Beispiel von Max Michel
[Mic88] die untere Schranke 2O(n logn) für die Größe des Komplement-Automaten
bekannt. Für asynchron-zelluläre Automaten kann durchaus erwartet werden, daß
sowohl bei der Determinisierung als auch bei der Komplementierung von Büchi
Automaten die Größe des Alphabets eine Rolle spielt.
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