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Zusammenfassung

Unendliche Spuren stellen einen geeigneten Rahmen fiir die Untersuchung nicht-
terminierender nebenlédufiger Systeme dar. Eine besonders wichtige Eigenschaft
dabei ist die endliche Kontrollierbarkeit (Erkennbarkeit) des Verhaltens der Sy-
steme.

Unter den vielfdltigen Charakterisierungen von Erkennbarkeit im Kontext un-
endlicher Spuren fehlte lange Zeit ein geeignetes Akzeptormodell, d.h. ein auf
Automaten mit verteilter Kontrolle basierendes deterministisches Modell.

Wir beantworten diese wichtige Frage in der vorliegenden Arbeit, indem wir die
Klasse erkennbarer Sprachen unendlicher Spuren durch deterministische asyn-
chrone Muller Automaten charakterisieren. Damit verallgemeinern wir das Theo-
rem von McNaughton {iber unendliche Worter auf unendliche Spuren. Wir defi-
nieren deterministische Sprachen unendlicher Spuren, und zeigen die Aquivalenz
zwischen Erkennbarkeit und dem Booleschen Abschlufl dieser Sprachklasse.

Die Komplementierung nichtdeterministischer Biichi Automaten ist bereits im
Fall der unendlichen Worter ein wichtiges Problem mit interessanten Losungen.
Wir erweitern die Methode des Fortschrittsmafles von N. Klarlund auf asyn-
chron-zellulare Automaten. Voraussetzung war, dafl wir eines der offenen Pro-
blemen im Bereich endlicher Spuren losen, indem wir eine Potenzautomaten-
Konstruktion fiir asynchron-zelluldre Automaten angeben. Diese wird anschlie-
Bend fiir die Komplementierung verwendet, um die Konstruktion moglichst effi-
zient durchzufiihren.
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Einleitung

Das Verhalten nebenlédufiger Systeme, zusammen mit der Problematik des Ent-
wurfs, der Analyse und der Verifikation verteilter Algorithmen, stellt eine Grund-
herausforderung an die formalen Methoden der Informatik dar. Eine fundierte
Behandlung nebenlédufiger Systeme kann jedoch erst in einem formalen Rahmen
erfolgen. Dort herrscht geniigend Abstraktion, um Eigenschaften mit mathema-
tischen Instrumenten prézise formulieren und iiberpriifen zu kénnen.

Eines der frithesten formalen Modelle fiir parallele Systeme wurde Anfang der
60’er Jahre von C. A. Petri vorgestellt. Petri-Netze driicken Parallelitdt in Form
von kooperierenden, verteilten Aktionen aus. Sie stellen auch den Ausgangspunkt
der Theorie der Spuren dar, die in Zusammenhang mit dem Verhalten sicherer
Petri-Netze durch A. Mazurkiewicz [Maz77] eingefithrt wurde.

Die Spurtheorie hat sich seither als geeigneter Rahmen fiir die Untersuchung par-
alleler Systeme erwiesen. Das Konzept der Spuren formalisiert auf einfache Art
den Kern eines nebenléufigen Systems in Form einer Menge atomarer Aktionen,
zusammen mit Abhéngigkeitsbeziehungen zwischen Aktionspaaren. Diese Festle-
gung der statischen Struktur eines nebenlaufigen Systems fiihrt zu einem erstmals
in der Kombinatorik durch Cartier und Foata untersuchten mathematischen Ob-
jekt, dem freien, partiell-kommutativen Monoid [CF69].

Die Spezifikation eines gegebenen Systems besteht aus einer Menge von atomaren
Aktionen Y, zusammen mit einer irreflexiven, symmetrischen Unabhéangigkeits-
oder Kommutationsrelation I C X x 3. Die kausale Unabhéngigkeit wird in
diesem Modell als wechselseitige Relation dargestellt, und es kann keine Aktion
parallel zu sich selbst ausgefiihrt werden.

Intuitiv betrachtet konnen unabhéngige Aktionen gleichzeitig stattfinden, wéh-
rend abhéngige Aktionen zeitlich geordnet werden miissen. Sind zwei Aktionen
a,b unabhéngig, (a,b) € I, so werden zwei sequentielle Beobachtungen uabv
und wbav (u,v € ¥*) miteinander identifiziert. Betrachtet man die Aquivalenz-
relation, die durch Gleichungen dieser Art induziert wird, so stellt sich heraus,
daB sie eine Kongruenzrelation ist. Sie fithrt somit zu einer Monoidstruktur, zum
Monoid der endlichen Spuren. Aus dieser formalsprachlichen Perspektive heraus
sind Spuren Aquivalenzklassen von Wértern, die mittels Kommutation ineinander
iiberfiihrt werden konnen. Diese Sicht entspricht der Darstellung von Nebenlaufig-
keit durch Interleaving.



Von einem weiteren Standpunkt aus entspricht ein paralleler Prozel einer be-
schrifteten partiellen Ordnung, deren Knoten mit Aktionen aus ¥ markiert sind
und deren Kanten die kausalen Zusammenhénge zwischen Aktionen in Form einer
Ordnungsbeziehung ausdriicken. Aus dieser Sicht werden Spuren als Abhéngig-
keitsgraphen angesehen, d.h. als azyklische, beschriftete Graphen mit Kanten
zwischen Knoten mit abhéngigen Markierungen.

Die Theorie endlicher Spuren hat in den letzten Jahren eine ergebnisreiche Ent-
wicklung durchlaufen, sowohl als Erweiterung der Theorie der formalen Sprachen,
als auch im Zusammenhang mit anderen Modellen nebenléufiger Systeme, wie
7.B. Petri-Netze (fiir einen Uberblick sei auf die Monographie [Die90] verwiesen).

Der Ubergang zu unendlichen Spuren erscheint als natiirlicher Schritt, um Eigen-
schaften reaktiver Systeme wie Lebendigkeit oder Fairnefl untersuchen zu kénnen
[Kwi89]. Verteilte Systeme, die unter dem Aspekt dieser beiden Eigenschaften be-
trachtet werden, werden gewoOhnlich entweder axiomatisch beschrieben, zumeist
im Rahmen einer temporalen Logik, oder aber konstruktiv, als Verhalten eines
endlichen Transitionssystems [L190].

Begrifflich wurden unendliche Spuren als Modell fiir nichtterminierende, nebenlaufi-
ge Systeme in verschiedenen Zusammenhéngen eingefiihrt: u.a. fiir Serialisie-
rungsprobleme in verteilten Datenbanksystemen [FR85] und in der Theorie der
Petri-Netze [BD87]. Eine erste formale Definition wird erneut Mazurkiewicz [Maz85]
zugesprochen, der eine unendliche (reelle) Spur als gerichtete, prifixabgeschlos-
sene Menge endlicher Spuren eingefiihrt hat. Im Sinne dieser Definition wird eine
reelle Spur als Grenzwert ihrer endlichen Préfixe angesehen, d.h. das unendliche
Verhalten wird durch endliche Anfangsteile approximiert.

Definiert man unendliche Spuren als unendliche Abhéngigkeitsgraphen, so ent-
sprechen die reellen Spuren den Graphen, deren sdmtliche Knoten eine endliche
Vergangenheit haben. Es handelt sich also um Graphen, die zu einer (unendli-
chen) Sequenz serialisiert werden kénnen (vgl. das folgende Beispiel, in dem die
Spur (abc)? als Hasse-Diagramm dargestellt ist).
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Die bereits erwihnte konstruktive Darstellung mittels Transitionssystemen fiihrt
auf ein fundamentales Konzept, auf die endliche Kontrollierbarkeit (Erkennbar-
keit). Erkennbare Mengen zeichnen sich aufierdem durch eine Vielfalt von Charak-
terisierungen aus, die verschiedene Bereiche wie Logik oder Topologie miteinander
verbinden. So wurde beispielsweise die Untersuchung erkennbarer Mengen unend-
licher Sequenzen innerhalb der Logik initiiert, und zwar durch Biichi’s Ergebnis
der Aquivalenz zwischen Erkennbarkeit und Definierbarkeit in monadischer Logik
2. Stufe [Biic60]. Eine ausfiihrliche Behandlung erkennbarer Mengen unendlicher
Sequenzen erscheint in [PP93, Tho90a].



Erkennbarkeit im Rahmen reeller Spursprachen wurde 1989 erstmals untersucht
[Gas91, BMP90]. Die Definition von P. Gastin [Gas91] entspricht dem klassischen
Ansatz der saturierenden Morphismen. Die Charakterisierungen dieser Sprachfa-
milie mittels der syntaktischen Kongruenz von A. Arnold [Arn85], bzw. mittels
c-rationaler Ausdriicke [GPZ91] zeigten, daf die Definition erkennbarer reeller
Spursprachen adédquat ist. Hingegen fehlte ein geeignetes Erkennungsmodell im
Sinne von endlichen Automaten.

Wiinschenswert fiir eine automatentheoretische Charakterisierung ist das Modell
der asynchronen Automaten, das von W. Zielonka fiir die Erkennung endlicher
Spuren eingefithrt wurde [Zie87]. Asynchrone Automaten sind endliche Automa-
ten mit verteilter Kontrolle und Speicher, d.h. sie stellen Netze autonomer und ko-
operierender endlicher Automaten dar. Die verteilte endliche Kontrolle erlaubt es,
Nebenlaufigkeit als parallele Ausfithrung unabhéngiger Aktionen auszudriicken.
Damit sind sie ausdrucksstéirker als gewohnliche endliche Automaten, die Par-
allelitét lediglich durch Interleaving darstellen. Dariiberhinaus sind sie méchtig
genug, um die Klasse der erkennbaren Sprachen endlicher Spuren zu charakteri-
sieren, wie durch das wichtige Ergebnis von Zielonka gezeigt wird [Zie87, Zie89].
Der Automat der folgenden Abbildung gehort zu einer speziellen Art von asyn-
chronen Automaten, ndmlich zu den asynchron-zelluliren Automaten. Deren
Funktionsweise kann durch das Concurrent-Read-Owner-Write Konzept der P-
RAM Maschine umschrieben werden. Der Automat erkennt die Spur (abc)®.

Als erstes automatentheoretisches Resultat wurde von P. Gastin und A. Petit
gezeigt, dal mit einer geeigneten lokalen Biichi Akzeptanzbedingung die Familie
erkennbarer reeller Spursprachen durch nichtdeterministische Automaten charak-
terisiert werden kann. Dieses Ergebnis verallgemeinerte die Charakterisierung fiir
unendliche Worter auf reelle Spuren. Fiir eine Charakterisierung der Erkennbar-
keit fiir Sprachen unendlicher Worter mittels deterministischer Automaten ist ein
méchtigeres Automatenmodell notwendig, z.B. der Muller Automat. Die Aqui-
valenz beider Automatenmodelle im Wortfall wurde sowohl mit algebraischen
Methoden [Sch73], als auch mit direkten (allerdings aufwendigen) Automaten-
Konstruktionen (beispielsweise die Konstruktion von S. Safra [Saf88]) gezeigt.
Damit war die Frage nach der Aquivalenz nichtdeterministischer Biichi und de-
terministischer Muller Automaten im asynchron (-zellulédren) Modell naheliegend
und besonders interessant. Wir beantworten diese wichtige Frage, indem wir
die Klasse erkennbarer reeller Spursprachen durch deterministische asynchron-
zellulare Muller Automaten charakterisieren und verallgemeinern hierdurch das
Theorem von McNaughton [McN66] iiber unendliche Wérter auf reelle Spuren.

Abschliefend geben wir eine inhaltliche Ubersicht der vorliegenden Arbeit.

Wir beginnen in Kapitel 1 mit einer kurzen Einfithrung der Grundbegriffe der
Spuren, gefolgt von einer Zusammenfassung der wichtigsten Eigenschaften asyn-
chroner Automaten. Der Schwerpunkt liegt dabei auf dem Spezialfall des asyn-
chron-zellularen Automaten, aus dessen einfacher Struktur elementare Figen-



Asynchron-zelluldrer Automat:

Prozessor a
Prozessor b

do forever
read) x := A do forever
§read y:=C read) x ::g
if (ZAY)V(zAy) C (read y:—
then A := Z (write) if (ZAY)V(zAy)

A B then B :=Z (write)

i
/|

Prozessor ¢

do forever
(read) z:=C;y:=A; 2:=B
if (x/\y/\ Z) (x/\y/\z)
then C' := 7 (write)

Abbildung 0.1: Die Programme stellen atomare Aktionen dar. Die gemeinsamen
Variablen A, B, C' werden mit 1 initialisiert.

schaften hervorgehen. Die Konstruktion von Zielonka wird in ihren Grundziigen
vorgestellt, wobei wir in Kapitel 5 auf die technischen Einzelheiten nédher ein-
gehen. Abschlieflend fithren wir Erkennbarkeit im Kontext reeller Spursprachen
ein.

Kapitel 2 ist dem Beweis des Theorems von McNaughton [McN66] fiir reelle Spur-
sprachen gewidmet. Dabei folgen wir einem algebraischen Ansatz, der Schiitzen-
berger’s Beweis entspricht, so wie er in [PP93] vereinfacht vorgestellt wird. Wir
definieren deterministische reelle Spursprachen und zeigen, daf3 die Klasse der er-
kennbaren reellen Spursprachen mit dem Booleschen Abschlufl der Klasse deter-
ministischer Sprachen iibereinstimmt. In einem zweiten (im Gegensatz zu unend-
lichen Wortern) nichttrivialen Teil, werden deterministische asynchron-zellulére
Muller Automaten fiir die Erkennung deterministischer reeller Spursprachen an-
gegeben.

Die deterministischen reellen Spursprachen stellen auch das Thema von Kapi-
tel 3 dar. Zunéchst geben wir eine kurze Begriindung der speziellen Definition
aus der Sicht des Abschlusses unter Booleschen Operationen. Anschlieend cha-
rakterisieren wir diese Sprachklasse mittels deterministischer I-Diamant Biichi
Automaten mit verallgemeinerter Akzeptanzbedingung. /-Diamant Automaten
sind Wortautomaten, die Unabhéngigkeit in Form von Interleaving darstellen.



Wir zeigen, dafi deterministische asynchron-zelluldre Biichi Automaten fiir eine
Charakterisierung deterministischer Sprachen nicht ausreichen.

In Kapitel 4 gehen wir auf eine Unterklasse erkennbarer reeller Spursprachen ein,
und zwar auf die sternfreien Sprachen. Wir verallgemeinern eine bekannte Cha-
rakterisierung der Sternfreiheit indem wir zeigen, daf sie mit der Aperiodizitéit
des syntaktischen Monoids iibereinstimmt.

Die Komplementierung nichtdeterministischer Biichi Automaten ist bereits im
Fall der unendlichen Wérter ein wichtiges Problem mit interessanten Losungen. In
Kapitel 5 erweitern wir die Komplementierungskonstruktion von Klarlund [Kla91]
auf asynchron-zelluldre Automaten. Voraussetzung war, dafl wir eines der offenen
Probleme im Bereich endlicher Spuren losten, indem wir eine Potenzautomaten-
Konstruktion fiir asynchron-zellulire Automaten angaben. Diese wird anschlie-
Bend fiir die Komplementierung verwendet, um die Konstruktion moglichst effi-
zient durchzufiihren.

Kapitel 6 ist schlieflich einigen algorithmischen Uberlegungen beziiglich dem Ab-
geschlossenheitsproblem fiir /-Diamant Automaten gewidmet. Es werden Kriteri-
en fiir die Abgeschlossenheit der Sprachen angegeben, die von Biichi bzw. Muller
Automaten dieser Art akzeptiert werden. Wir zeigen, dafl die Kriterien fiir gewisse
Komplexitatsklassen vollstandig sind.

Zusammenfassend zeigt unsere Arbeit, daf} alle wichtigen Ergebnisse der Theorie
unendlicher Worter eine natiirliche Erweiterung fiir reelle Spursprachen haben.






Kapitel 1

Spursprachen und Erkennbarkeit

Wir leiten diesen Abschnitt mit einer kurzen Einfithrung der grundlegenden Be-
griffe ein, zusammen mit einigen Notationen.

Ein Abhdngigkeitsalphabet ist ein Paar (3, D), wobei ¥ ein endliches Alphabet
und D C X x X eine reflexive, symmetrische Beziehung bezeichnet, die Abhdngig-
keitsrelation. Die komplementére Relation I = (X x X) \ D wird als Unabhdngig-
keitsrelation bezeichnet. Sei =; C ¥* x ¥* die Aquivalenzrelation, die durch die
Menge {(uabv,ubav) | (a,b) € I, u,v € 3*} induziert wird. Die Relation =; ist
eine Kongruenz und das dazugehorige Quotientenmonoid M (X, D) = ¥* /=, wird
als freies, partiell kommutatives Monoid bzw. Monoid endlicher Spuren bezeich-
net. Eine endliche Spur ist damit eine Aquivalenzklasse von Waortern.

Aus einer weiteren Sicht heraus kann eine Spur mit einem Abhdngigkeitsgraphen
identifiziert werden, d.h. mit einem (bis auf Isomorphie) beschrifteten, azykli-
schen, gerichteten Graphen [V, E,A], mit V, E bzw. A : V — ¥ als Knoten-,
Kantenmenge bzw. Beschriftung der Knotenmenge so, daf§ fiir alle u,v € V' gilt:

AMu),\v)) €D <= (u,v) €idyUEUE".

Zu einer Spur t = [a; - - a,] € M(X, D) mit a; € ¥ fiir 1 <i < n wird der da-
zugehorige Abhingigkeitsgraph G(t) gebildet, indem zunéchst eine n-elementige
Knotenmenge V' = {vy,...,v,} so beschriftet wird, dal A\(v;) = a; gilt. Die Kan-
tenmenge ist dabei durch £ = {(v;,v;) | i < j und (A(v;), A(v;)) € D} festgelegt.
Der Begriff des Abhéngigkeitsgraphen kann natiirlich auf unendliche Graphen
erweitert werden. Im folgenden bezeichnet G(X, D) die Menge der endlichen und
unendlichen Abhéngigkeitsgraphen mit abzéhlbarer Knotenmenge V' so, daf} fiir
alle a € X gilt: A7'(a) C V ist eine wohlgeordnete Kette. Mit dieser Festlegung
konnen Knoten als Paare (a,7) mit a € ¥ und i eine abzdhlbare Ordinalzahl dar-
gestellt werden, wobei (a, ) den (i+1)-ten mit a beschrifteten Knoten bezeichnet.
AufG(X, D) sei die Konkatenation gegeben durch [Vi, Ey, A\][Va, E2, o] = [V, E| )],
mit [V, E, \] disjunkte Vereinigung der beiden Abhéingigkeitsgraphen, zusammen
mit zusétzlichen Kanten (vy,v9) € Vi X V3 zwischen Knoten mit abhéngiger Mar-
kierung, (A;(v1), A2(v2)) € D. Die Identitét sei der leere Graph 1 = [(), 0, }]. Wir

9
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konnen nun das w-Produkt analog definieren. Sei (g,,)n>0 C G(X, D) eine Se-
quenz von Abhéngigkeitsgraphen. Dann ist das Produkt g = gog1 ... € G(3, D)
als disjunkte Vereinigung der g, erklart, zusammen mit zusétzlichen Kanten von
gn nach g, mit n < m, zwischen Knoten mit abhéngiger Markierung. Wir
bezeichnen fir L C G(3,D) mit L¥ die w-Iteration von L, d.h. die Menge
LY={g0g1... | gn € L, Vn >0}.

Weiterhin bezeichnen wir mit ¥ die Menge der unendlichen Worter iiber . Es
sei X = ¥* U X% die Menge der endlichen und unendlichen Worter.

Der kanonische Epimorphismus ¢ : ¥* — M(X, D) kann auf 3*° erweitert wer-
den, wobei es sich bei ¢ : ¥*° — G(3, D) nicht mehr um einen Homomorphis-
mus handelt. Die Bildmenge ¢(3X°) C G(X, D) ist die Menge reeller Spuren
und wird mit R(X, D) bezeichnet. Beachte, daf§ R(X, D) kein Untermonoid von
G(X, D) darstellt (es gilt beispielsweise a* € R(3, D) und b € R(X, D), aber fiir
(a,b) € D ist das Produkt a“b keine reelle Spur mehr). Aulerdem ist ¢ weder
mit der Konkatenation, noch mit der w-Iteration vertauschbar: fir L, K € »*
gilt p(LK) = p(L)p(K) bzw. (L) = (¢p(L))* genau dann, wenn L C ¥*.

Abschlieffend seien einige haufig verwendete Bezeichnungen erklart. Fiir a € X
sei D(a) ={b € ¥ | (a,b) € D} bzw. I(a) = ¥\ D(a). Analog seien fiir A C X
die Mengen D(A) = UzeaD(a) bzw. I(A) = ¥\ D(A) erklart. Fiir eine Menge
K sei P(K) die Potenzmenge von K, bzw. | K| die Kardinalitdt von K. Mit K
bezeichnen wir das Komplement von K.

Fir t € R(X, D) sei 0 < |t|, < w die Anzahl der Vorkommen von a in ¢. Dann
bezeichnet alph(t) das Alphabet von ¢, d.h. die Menge {a € ¥ | [t|, > 0}; mit
alphinf(¢) wird das unendlich oft auftretende Alphabet von ¢ bezeichnet, d.h. die
Menge {a € ¥ | |t|l. = w}. Wir verwenden spéter die Bezeichnung alphinf(w)
auch fiir (un)endliche Worter w € X*°. Weiterhin sei fiir eine endliche Spur
t € M(X, D) die Menge der Beschriftungen der maximalen Elemente mit max(t)
bezeichnet.

Die Prifix-Ordnung < auf R(3, D) wird wie folgt erklirt: Es sei u < ¢ genau
dann, wenn ¢ = us fiir ein s € R(X, D) gilt. Fiir zwei Spuren ¢y, t5 bezeichnen wir
dann mit ¢; Mty das Infimum von ¢4, t5. Das Supremum einer Menge Y C R(3, D),
wird (falls es existiert) mit LY bezeichnet.

In den Beweisen werden wir durchgehend Durchschnitte ¢; N ¢, im Sinne von
Faktoren einer Spur verwenden. Sei beispielsweise t = wjugug eine Zerlegung
von u € R(3, D) in Faktoren w;, mit v; € R(X2, D), i = 1,2,3. Dann koénnen
die Faktoren u; mit Untergraphen von t identifiziert werden. Allgemeiner sei
t =uy - Uy = V1 Uy, dann definieren die Graphendurchschnitte w;; = u; N
v; mit 1 < ¢ < mund 1 < j < n Faktoren von ¢. Es gilt u; = wy - wip
bzw. v; = wy;j - - Wy, fir alle ¢, 7. Man beachte, daf8 aus der Darstellung von ¢
folgt: alph(w;;) x alph(wy) C I, fiir alle ¢ < k und j > 1 (bzw. ¢ > k und j < ).
Ein wichtiger Spezialfall hiervon ist mit m = n = 2 das Lemma von Levi.
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1.1 Erkennbarkeit

Ziel dieses Abschnitts ist es, eine knappe Ubersicht iiber Erkennbarkeit im Kon-
text allgemeiner Monoide anzugeben (fiir Einzelheiten siche [Ber79]).

Definition 1.1.1 Sei M ein Monoid. Eine Teilmenge L C M heifst erkennbar,
wenn ein endliches Monoid N und ein Monoid-Homomorphismus h : M — N
derart existieren, daff L = h™'h(L) gilt. Wir sagen in diesem Fall, daf§ L von h
erkannt wird.

Bemerkung 1.1.2 Die obige Definition ist offensichtlich dquivalent zur Existenz
einer Kongruenzrelation R auf M mit endlichem Index, die L saturiert, d.h. so,
dafl L als Vereinigung von Aquivalenzklassen von R darstellbar ist.

Die Klasse Rec(M) der erkennbaren Teilmengen von M bildet eine Boolesche
Algebra und ist abgeschlossen unter inversen Homomorphismen.

Eine dquivalente Definition der Erkennbarkeit basiert auf den Begriff des M-
Automaten, der Gegenstand der folgenden Definition ist:

Definition 1.1.3 Sei (M,-,1) ein Monoid. Ein M-Automat A ist ein 4-Tupel
(Q7 57 qo, F); wobei:

o () ist die Zustandsmenge,

e : QxM— Q ist die Ubergangsfunktion so, daff mit 5(q,m) =: qm fiir
alle g € Q, myn € M gilt:

gl=q und  q(mn) = (gm)n,

e (o € Q ist der Anfangszustand, und
o [ C Q st die Menge der Endzustinde.

Der M-Automat A heifit endlich, wenn die Zustandsmenge Q) endlich ist. Er
akzeptiert die Menge L(A) = {m € M | gom € F}.

Die nachfolgenden Beziehungen zwischen Akzeptanz durch (endliche) Automaten
und Erkennbarkeit durch Homomorphismen auf (endlichen) Monoide sind leicht
zu verifizieren. Eine Menge L C M, die von einem vollstdndigen M-Automaten
A =1(Q,9,q, F) akzeptiert wird, wird vom folgenden Homomorphismus erkannt
(wobei Q¥ das Transformationsmonoid von @ bezeichnet):

h: M — QY
m = (¢~ qm, Vq€Q)
Es gilt: L=h"Y®), mit ®={fecQ?| flg) € F}
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Umgekehrt kénnen wir zu einem Monoid (N, -, 1) und einem Homomorphismus
h : M — N,der L C M erkennt, einen M-Automaten A = (N,6,1,h(L))
angeben, der L akzeptiert. Die Ubergangsfunktion § : N x M — N wird dabei
erkldrt durch 6(n, m) := nh(m). Der Automat A ist endlich, falls N ein endliches
Monoid ist.

Um auf den Begriff der saturierenden Kongruenzen zuriickzukommen (vgl. Be-
merkung 1.1.2), fithren wir schlielich die syntaktische Kongruenz =p, einer Spra-
che L. C M ein. Dies ist die grobste Kongruenz, die L saturiert, und wird fiir
m,m’ € M wie folgt definiert:

m=rm <= (mmpeL&nmpel, Yn,pe M)

Das zu dieser Kongruenz gehorende Quotientenmonoid M /=, =: Synt(L) wird
als syntaktisches Monoid von L bezeichnet und der kanonische Homomorphismus
h : M — Synt(L) als syntaktischer Morphismus.

Der néchste Satz fait die angegebenen Charakterisierungen erkennbarer Mengen
zusammen:

Satz 1.1.4 Sei M ein Monoid. Folgende Aussagen sind zueinander dquivalent:

1. L C M ist erkennbar.
2. Es existiert ein endlicher Automat A, der L akzeptiert.
3. Das syntaktische Monoid von L, Synt(L), ist endlich.

Wir schliefen diesen Abschnitt mit einigen Bemerkungen zum Begriff des mini-
malen Automaten. Zu einer gegebenen Menge L. C M definieren wir eine Relation
R; € M x M durch:

m Ry m/ = (mnelL & mnel, YneM)

Es ist leicht zu sehen, daf Ry, eine rechtsinvariante Aquivalenzrelation ist, daher
ist die Ubergangsfunktion des nachfolgenden Automaten A, wohldefiniert. Dabei
bezeichnet [m] die Aquivalenzklasse eines Elements m € M:

Ap = (Q@=M/g,.0,q0 =[], F ={[m] [ m € L})
mit §([m], m') = [mm/]

Es gilt L(A) = L und, falls L € Rec(M) erkennbar ist, so ist der Automat A,
endlich und stellt den minimalen Automaten von L dar.

Bemerkung 1.1.5 Im Spezialfall des freien, partiell kommutativen Monoids M =
M(X, D) besitzt der minimale Automat A; = (Q,-, qo, F) einer erkennbaren
Sprache L € Rec(M) die sogenannte I-Diamant Eigenschaft:

Vge@, ¥(ab)el: qg-ab=q-ba
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Der klassische Begriff des M-Automaten fithrt daher auf natiirlichem Wege zur
I-Diamant Eigenschaft, die die Unabhéngigkeit von Aktionspaaren mittels Inter-
leaving ausdriickt. Dabei werden alle Ausfithrungsfolgen einer Sequenz von Ak-
tionen als dquivalente Berechnungspfade im Automaten ermoglicht (dquivalent
im Sinne der Akzeptanz).

Der Nachteil des /-Diamant Automaten besteht allerdings in der zentralisier-
ten Kontrollstruktur, die Nebenldufigkeit nicht direkt ausdriicken kann. Thr we-
sentlicher Vorteil besteht hingegen in ihrer geringen Grofle, verglichen mit dem
verteilten Automatenmodell, das wir jetzt vorstellen.

1.2 Asynchrone Automaten

Das Konzept der asynchronen Automaten ist von W. Zielonka als verteiltes Auto-
matenmodell fiir endliche Spuren eingefiithrt worden [Zie87, Zie89, CMZ90]. Vom
Prinzip her ist ein asynchroner Automat ein Netz von endlichen Automaten, die
als autonome, kooperierende Prozesse arbeiten. Ihre verteilte endliche Kontrolle
ermoglicht eine nebenléaufige Ausfithrung unabhéngiger Aktionen. Im Zusammen-
hang mit anderen parallelen Berechnungsmodellen sei angemerkt, dafl asynchrone
Automaten dquivalent sind zu 1-sicheren, beschrifteten Petri-Netzen.

Die Bedeutung der asynchronen Automaten liegt im herausragenden Ergebnis
von Zielonka iiber die Aquivalenz von Erkennbarkeit in M(X, D) und Akzep-
tanz durch deterministische Automaten dieser Art. Gegenstand unserer Betrach-
tung hier werden die asynchronen und die asynchron-zelluldren Automaten sein.
Spéater werden wir uns hauptséchlich auf die asynchron-zelluldren Automaten
konzentrieren, deren interne Struktur sich als elementarer erweist und , bessere*
Eigenschaften besitzt. Ein weiterer wichtiger Aspekt ist die Tatsache, dafl Zie-
lonka’s Konstruktion genau diesen Automatentyp liefert. Dariiber hinaus liegen
einfache Umwandlungen von einem Modell ins andere vor.

Sei (X, D) ein Abhéngigkeitsalphabet und IM (3, D) das zugehorige freie, partiell
kommutative Monoid. Ein asynchroner Automat iiber (3, D) ist ein 4-Tupel A =
(Q, 9, qo, F') mit:

o () =[[", Q; ist die Zustandsmenge, wobei @); fiir 1 < i < m lokale Zu-
standsmengen darstellen,

e Zu jedem a € ¥ ist eine Indexmenge (Doméne) Dom(a) C {1,...,m}
assoziiert so, dal Dom(a) N Dom(b) = () genau dann gilt, wenn (a,b) € I.

e ) CQXxXXxQ ist die (partiell definierte) globale Ubergangsrelation, die
aus den lokalen Ubergangsrelationen d,, a € 3, besteht mit:

5(1 g H Qz X H Qi7

i€Dom(a) i€Dom(a)
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e g € Q (bzw. I C Q) ist der Anfangszustand (bzw. die Menge der End-
zusténde).

Ein globaler a-Ubergang (¢))1<i<m € 0((¢i)1<i<m, @) ist definiert, wenn der lokale
Ubergang (¢;)icpom(a) € 9a((¢i)icbom(a)) definiert ist, und bewirkt eine Anderung
lediglich auf den lokalen Zustdnden, die zur Doméne von a gehoren, d.h.:

(@i)1<i<m € 0((¢i)1<i<cm,a) =

(QQ)iEDom(a) € 5a((qi)i€Dom(a)7 CL) und
¢;' = q;, falls j ¢ Dom(a).

Der Automat ist endlich, wenn seine Zustandsmenge () endlich ist; er ist de-
terministisch, wenn alle §, (partiell definierte) Funktionen sind. Er akzeptiert
mit u € X* alle Worter, die zu u dquivalent sind bzgl. (X, D). Daher kann die
Spursprache, die von A erkannt wird, durch L(A) = {t € M(X, D) | 6(qo,u) €
F fiir ein u € ¢~ '(t)} definiert werden.

Ein asynchron-zelluldrer Automat iiber dem Abhéngigheitsalphabet (X, D) ist
ein 4-Tupel A = ((Qu)aes; (0a)aes, qo, F'), wobei fiir alle a € X gilt:

e (), stellt eine endliche Menge von lokalen Zustdnden dar,
® ¢y € [laex @, ist der globale Anfangszustand,
o F' CJl,ex Qo ist eine Menge globaler Endzustédnde und

® 60 C (Ihep(a @) X Qa stellt die lokale (partiell definierte) Ubergangsrela-
tion dar.

Der Automat heifit deterministisch, wenn ¢, eine (partiell definierte) Funktion
ist, fiir alle a € X.

Im folgenden verwenden wir die Abkiirzungen Q) 4 fiir [Tyc 4 @b und qu fiir [Tpca qb,
wobei A C 3. Insbesondere wird gp(,) die Bedeutung [],cp(q) ¢ haben, d.h. ¢p()
ist die Projektion eines globalen Zustands ¢ € )y, auf die lokalen Komponenten
b€ Dl(a).

Die globale Ubergangsrelation § C Qs x ¥ x Qs des asynchron-zelluldren Auto-
maten A ist definiert durch:

q/ S 5((]7 a) g q; € 5a(qD(a)) und
q. = q. fiir alle ¢ # a

Damit kann die von A akzeptierte Spursprache L(.A) analog definiert werden
durch L(A) = {t € M(Z, D) | §(qo,u) € F fiir ein u € o' (t)}.

Mit anderen Worten ist die Existenz eines globalen Folgezustands ¢’ € @)y von
g nur durch diejenigen lokalen Komponenten des Zustands ¢ bedingt, die in
Abhingigkeit von a stehen. Weiterhin bewirkt der a-Ubergang lediglich eine
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Anderung der a-Komponente des globalen Zustandes, wobei der neue Wert durch
die b-Komponenten von ¢ mit b € D(a) festgelegt wird. Durch seine verteilte
endliche Kontrolle besitzt ein asynchron-zelluldrer Automat die Féahigkeit, un-
abhingige Aktionen (Ubergéinge) parallel ablaufen zu lassen. Weiterhin ergibt die
Betrachtung der Ubergéinge im Automaten als Lese-Schreibe-Operationenpaar ei-
ne Analogie zum Concurrent-Read-Owner-Write—Prinzip fiir P-RAM Maschinen:
Simultanes Lesen ist erlaubt, wéhrend Schreiboperationen nur im eigenen Bereich
zugelassen sind.

Wir verwenden vorwiegend asynchron-zelluldre Automaten aufgrund einiger mar-
kanter Eigenschaften, die von Automaten der Zielonka-Konstruktion erfiillt wer-
den. Wegen dem héufigen Gebrauch dieser Eigenschaften sollen an dieser Stelle
die Grundziige der Konstruktion von Zielonka zusammengefafit werden (die Be-
weise konnen z.B. [Die90, CMZ90] entnommen werden).

Fiir a € ¥ und Teilalphabete A C ¥ seien die d,- bzw. 04-Préfixe einer endlichen
Spur als kleinste Prifixe definiert, die alle Auftreten des Buchstabens a bzw. aller
Buchstaben aus A enthalten. Formal bedeutet dies:

Oa(t) =M{u <t |t]o = lulo} und O(t) = Uaea Oa(t)
(insbesondere gilt Jy(t) = 1 und Ox(t) = t).

Es gilt beispielsweise 0,(ta) = Op(q)(t)a fiir alle t € M(X, D), a € ¥.

Die Konstruktion von Zielonka beruht auf der Berechnung einer , verteilten* Ab-
bildung, der asynchronen Abbildung (asynchronous mapping, siehe e.g. [Die90]).
Es handelt sich um eine Abbildung px : M(X, D) — @ zu einer Menge @, die fiir
allet € M(X,D), a € ¥ und A, B C ¥ folgende zwei Eigenschaften erfiillt:

e Der Wert 1(0aup(t)) ist durch die Werte pu(94(t)) und p(dp(t)) eindeutig
festgelegt.

o Der Wert 1(0,(ta)) (= p(Op(a)(ta))) ist durch den Buchstaben a und den
Wert 11(Op(a)(t)) eindeutig festgelegt.

Zwischen asynchronen Abbildungen und asynchron-zellularen Automaten besteht
ein grundlegender Zusammenhang, dhnlich dem zwischen Monoid-Homomorphis-
men und endlichen Automaten, wie dies im folgenden gezeigt wird.

Bemerkung 1.2.1 Es seien eine asynchrone Abbildung p : M(X, D) — @ und
eine Menge R C @ gegeben. Dann wird die Sprache p~'(R) vom folgenden asyn-
chron-zelluliren Automaten A, = (Q*, 4, qo, F) erkannt:

§: Q% x M(Z,D) — Q%
S((1(05(t)) bes, a) = (1(Ds(ta)))pes

Man beachte, daB ein a-Ubergang nur die a-Komponente des globalen Zustands
(11(0p(t)))pes dndert, wobei fiir b # a gilt: Oy(ta) = 0,(t). Desweiteren héngt der
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neue lokale Zustand p(9,(ta)) nur von a und dem Wert pp(q)(t) ab, da letzteres
eindeutig durch die Werte (lokalen Zusténde) p(0y(t)) mit b € D(a) festgelegt
wird. Damit ist gezeigt, daBl § wohldefiniert ist und der Ubergangsfunktion eines
asynchron-zellularen Automaten entspricht.

Der Anfangszustand sei gy = (14(1))qex und die Menge der Endzustéinde sei gege-
ben durch F' = { (14(0a(t)))aes | p(t) € R}. Man beachte aulerdem, daf§ fiir alle
te M(S, D) gilt: 6(d0,1) = (1(Ba(1))Jocs.

Nehmen wir nun an, daf§ eine erkennbare Spursprache K C M(3, D) gegeben ist,
die vom Homomorphismus 7 : M(X, D) — S zum endlichen Monoid S erkannt
wird. Die Konstruktion von Zielonka besteht darin, eine endliche Menge () und ei-
ne asynchrone Abbildung p : M(X, D) — @ so zu bestimmen, dafl der Homomor-
phismus 7 durch p faktorisiert wird, d.h. es existiert eine Abbildung 7: @Q — S
derart, dal n = 7 o u (sieche Abbildung 1.1). Mit R = n~!(n(K)) akzeptiert der
oben beschriebene asynchron-zelluldre Automat 4, genau die Sprache K.

Q2 7 (n(K))

I r n=mopu

Abbildung 1.1: n =mo

Eine grundlegende Eigenschaft des Automaten, der aus einer asynchronen Abbil-
dung entsteht, betrifft die lokalen Zustdnde der maximalen Elemente einer (end-
lichen) Spur ¢, max(t): Gilt fiir zwei endliche Spuren max(t;) = max(ty) = M
und 6(qo,t1)e = 6(qo, t2). fir alle c € M, so folgt damit ¢; € L(A) genau dann,
wenn to € L(A). Dies bedeutet, daf} die lokalen Zusténde der maximalen Elemen-
te einer Spur die Akzeptanz durch den Automaten festlegen. Diese Eigenschaft
folgt aus der Beziehung ¢ = Omax()(t), womit der Wert 4(t) durch die Menge
{11(04(t)) | @ € max(t)} festgelegt ist (u ist eine asynchrone Abbildung). Diese
Eigenschaft wird im Kapitel 2 bei der Konstruktion deterministischer asynchron-
zelluldrer Muller Automaten eine wichtige Rolle spielen.

1.3 Erkennbare Sprachen reeller Spuren

Im Rahmen allgemeiner Monoide, wie z.B. des freien Monoids ¥* oder des Mo-
noids der endlichen Spuren M(X, D), haben wir Erkennbarkeit mit Hilfe von er-
kennenden Homomorphismen definiert. Ein &hnlicher Ansatz kann auch fiir reelle
Spursprachen als Ausgangspunkt gewahlt werden.
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Sei n : M(3, D) — S ein Homomorphismus und S ein Monoid. Wir sagen, da8
eine reelle Spursprache L C R(X, D) von n erkannt wird, wenn fiir beliebige
Folgen von endlichen Spuren (t,)n>0, (t,)n>0 € M(X, D), mit n(t,) = n(t,,) fir
alle n > 0, gilt:

tot1...€ L <= tyt)...€ L.

Definition 1.3.1 [Gas91] Sei L C R(X, D). L heifit erkennbar, wenn ein end-
liches Monoid S und ein Homomorphismus n : M(X, D) — S derart existieren,
dafS L von n erkannt wird.

Bemerkung 1.3.2 Es laft sich leicht zeigen, daf} eine Sprache L, die vom Homo-
morphismus 7 erkannt wird, als L = U, oep, 7~ (s)17 " (€)* sich darstellen 148t,
wobei P;, = {(s,e) € 5? | se = s,e> = e und n~!(s)n~(e)* N L # 0}. Die Grund-
lage fiir diese Darstellung ist die Tatsache, dal L genau dann von n erkannt wird,
wenn fiir jedes Paar (s,¢) € S mit se = s, e? = e folgende Saturierungsbedingung
gilt:

N s e NLAD = n (s ) C L

Hierzu sei bemerkt, dafl wir uns auf Paare (s,e) wie oben einschréinken kénnen,
da wir zu einem gegebenen Homomorphismus jede reelle Spur ¢ = ¢(xox; .. .) mit
x; € ¥ als t = toty ... mit t; € M(X, D) faktorisieren kénnen, wobei n(ty) = s
und 7(t,) = e, n > 1 fiir gewisse s,e € S mit se = s und €? = e gilt.

Eine derartige Faktorisierung kann bekanntermafien durch folgendes Ramsey-
Argument erreicht werden: Wir definieren induktiv eine Sequenz (i, A, ),>0 mit
in € N, A, € N und |A4,|] = w und beginnen mit Ay = IN. Sei A,, bereits
definiert und sei 7, = min A,,. Es existiert ein e € S derart, da} die Menge
A={m e A, | n(xi,x;i,+1...Tm-1) = e} unendlich ist, da S endlich ist. Wir
setzen A, = A. Damit erreichen wir, da8 n(z;, %, 41 ... 74,,,~1) unabhingig ist
von p > 0. Sei e, = n(4,%i, 41 ... %, ,—1). Ohne Einschrénkung sei e, = e fiir
alle n > 0 erfiillt (ansonsten wihle eine entsprechende Teilfolge von Indizes). Mit
der Faktorisierung

to = (,0(1’01’1 e xil—l)

th = So(xinxin-u . -$1n+1_1), n>1

und mit s = n(ty) (= s'e fiir ein s’ € S) erreicht man das gewiinschte Ergebnis,
da e? = e und se = s'ee = s'e = s gelten.

Eine alternative Definition von Rec(IR), der erkennbaren reellen Spursprachen,
stiitzt sich auf den Begriff der syntaktischen Kongruenz, wie sie von A. Arnold
[Arn85] fir Sprachen unendlicher Worter eingefiihrt wurde. Sei L C R(X, D)
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gegeben. Zwei endliche Spuren ¢,¢' € M(X, D) heilen syntaktisch dquivalent,
wenn fir alle u, v, w € M(X%, D) gilt:

u(tv)* € L <= u(tv)¥eL
utvw® € L — ut'vw® € L

Wir bezeichnen die syntaktische Kongruenz einer Sprache L mit = und betrach-
ten den zugehorigen kanonischen Epimorphismus n : M(3, D) — M(X, D)/=, .
In Analogie zum Fall der endlichen Spuren bzw. Wérter, kann gezeigt werden,
daf} die syntaktische Kongruenz grober ist als jede Kongruenz, die L saturiert. Im
allgemeinen jedoch ist sie selbst keine saturierende Kongruenz, wohl aber falls L
erkennbar ist. Der folgende Satz fafit drei algebraische Charakterisierungen von
Erkennbarkeit im Kontext reeller Spuren zusammen:

Satz 1.3.3 [Gas91] FEine reelle Spursprache L C R(X, D) ist genau dann er-
kennbar, wenn eine der folgenden dquivalenten Bedingungen erfillt ist:

1. o Y(L) C X ist eine erkennbare Wortsprache.

2. L wird von einem Homomorphismus n : M(X, D) — S erkannt, wobei S
ein endliches Monoid ist.

3. Das syntaktische Monoid von L, Synt(L) = M(3, D)/=,, ist endlich und
der syntaktische Homomorphismus n: M(3, D) — Synt(L) erkennt L.

Bemerkung 1.3.4 Rec(RR) ist eine Boolesche Algebra. Dies folgt aus der ersten
der obigen Charakterisierungen zusammen mit der Tatsache, daf§ die Familie der
erkennbaren Mengen aus ¥* eine Boolesche Algebra bildet (o~ kommutiert mit
den Booleschen Operationen).

Die Erkennung von Sprachen aus R(X, D) durch asynchron-zelluldre Automa-
ten erfordert geeignete zusétzliche Akzeptanzbedingungen fiir unendliche Spuren.
Angelehnt an zwei klassische Akzeptanzbedingungen (Biichi bzw. Muller) wur-
den analoge verteilte Bedingungen vorgeschlagen [GP92], die wir im folgenden
beschreiben.

Sei einen m = (qo,ag, q1,ay,...) ein unendlicher (globaler) Ubergangspfad im
asynchron-zellularen Automaten A, mit ¢, € Qs und a, € X fir alle n > 0
s0, daB gn11 € 0(qn, a,). Wie bereits erwihnt, werden wir lokale Akzeptanzbedin-
gungen angeben und betrachten daher diejenigen lokalen Zustédnde, die auf dem
Pfad 7 unendlich oft vorkommen. Sei also inf,(7) = {q, € Qu | 3N : (¢n)a =
¢.} die Menge der unendlich oft vorkommenden a-Zusténde, a € ¥. Ein asyn-
chron-zelluldrer Automat A = ((Qa)aes; (0a)aes, qo, F') wird nun um eine Tafel
T C Ilaex P(Q.) erweitert, die erlaubt, unendliche Pfade m geméf den Zustands-
mengen (inf,(7)).ex zu akzeptieren.
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Sieht man den um die Tafel T erweiterten Automaten A = ((Qu)aes, (0a)acs,
qo, F,T) als Biichi Automat an, so wird ein unendlicher Ubergangspfad m von A
akzeptiert, wenn ein Tafelelement 7" € T derart existiert, da8 T, C inf,(7) fiir
alle a € X gilt.

Ist A hingegen ein Muller Automat, so wird der unendliche Pfad 7 akzeptiert,
wenn ein 7' € T existiert so, dal T, = inf,(7) fiir alle a € ¥ gilt.

Anders ausgedriickt erfordert die Biichi Bedingung das unendliche Vorkommen
gewisser lokaler Zusténde, wiahrend eine Muller Bedingung erfordert, daf§ die un-
endlich oft wiederholten lokalen Zustédnde genau einem Tafelelement entsprechen.

Definition 1.3.5 Sei A = ((Qu)aes, (0a)acs, 90, F,T) ein asynchron-zellulirer
Automat. Die von A akzeptierte Sprache L(A) C R(X, D) wird definiert wie

folgt.
e Fualls A ein Biichi Automat ist:

L(A) ={t € R(X,D) | 3 Pfad 7 = (qo, a0, q1, a1, . ..) mit
t=p(apar...) und 3T € T mit T, C inf,(7),V a € ¥}
U{t e M(X, D) [ d(qo, 1) N F # 0}

o Iulls A ein Muller Automat ist:

L(A) ={t € R(X,D) | 3 Pfad m = (qo, a0, q1, a1, - ..) mit
t=p(apar...) und 3T € T mit T, = inf,(7),V a € ¥}
U{t e M(X, D) [ d(qo, 1) N F # 0}

Bemerkung 1.3.6 In der obigen Definition wird die akzeptierte Spursprache
mittels Wortrepriasentanten erklart. Man kann jedoch leicht zeigen, dafl fiir t =
olapay ...) = p(agd) .. .), a; € ¥, ein zu 7 dquivalenter Pfad 7’ = (qo, ay, ¢}, a}, - . .)
existiert, der durch dasselbe Tafelelement 1" € T akzeptiert wird. Dafiir kann fol-
gende Charakterisierung dquivalenter w-Worter benutzt werden ([DGPI1)):

olapay ...) = p(apay ...) =
I@n)nz00 (Yn)nzo € X%, I(kn)nz0, (ln)n>0 € N (ko = lp = 0) mit:
olag, ... ag,.,—1) = p(Tny,) und
elay, ...ay, ) = P(Ynarn) (mit y_y :=1).

Wir wollen anhand eines einfachen Beispiels die beiden Akzeptanzbedingungen
fiir reelle Spuren betrachten:

Beispiel 1.3.7 Es seien (X, D) mit b,c € 3, b # ¢ und D beliebig, und der asyn-
chron-zelluldre Automat A = ((Qq)aes, (0a)aes, qo, F,T) iiber (X, D) gegeben,

mit

1. Qo= {(q0)o} und 6,(¢n(a)) = (o) fiir alle ¢ und a # b, c.
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2. Fir z € {b,c} sei Q. = {(q0)s, 72} und

B /r’x faHS q,z: == (C]O)x
0:(p()) = { (qo). falls ¢ =1,

3. FF=1.
4. T ={T} mit T = ([Taes\{p.c} Qa) X Qb X {(q0)e}-

Es ist leicht zu sehen, dafl der obige Automat mit dem Muller Akzeptanzmodus
die Sprache L(A) = {t € R(X, D) | b € alphinf(¢), |t|. endlich, gerade} erkennt.
Als Biichi Automat hingegen, erkennt er die Sprache L(A) = {t e R(X,D) | b €
alphinf(¢), und (|t|. = w oder ||, gerade)}.

An dieser Stelle sei auch angemerkt, da§ Sprachen der Art Inf(A) := {t €
R(3, D) | alphinf(t) = A} bzw. Ry := {t € R(X, D) | D(alphinf(t)) = D(A)}
erkennbar sind. Es genitigt dafiir, den obigen Automaten angemessen zu erweitern.

Die erste automaten-theoretische Charakterisierung erkennbarer reeller Spurspra-
chen durch asynchrone Automaten geht auf die Arbeiten von P. Gastin und A. Pe-
tit zurtick [GP92]:

Theorem 1.3.8 Rec(R) ist dquivalent zur Familie der reellen Spursprachen,
die durch nichtdeterministische, asynchron (-zelluldre) Biichi Automaten erkannt
werden.

Die Konstruktion von P. Gastin und A. Petit ist modularer Natur und hat als
Ausgangspunkt die Darstellung einer erkennbaren reellen Spursprache mittels
rationaler Operatoren (siehe Bemerkung 1.3.2). Thre Konstruktion ist daher auf-
grund der Konkatenation (und w-Iteration) innerhalb der rationalen Darstellung
inhédrent nichtdeterministisch. Wir werden im Kapitel 2 unter Verwendung eines
algebraischen Ansatzes ([PP93]) eine Konstruktion deterministischer asynchron-
zelluldrer Muller Automaten fiir Rec(R) angeben, womit eine der wichtigen Fra-
gen der Theorie der reellen Spuren (siehe auch [GP92]) beantwortet wird.

Zum Abschluf3 dieser Einfithrung in Erkennbarkeit im Kontext reeller Spuren
sei auf zwei weitere Charakterisierungen von Rec(R) verwiesen. Zunéchst sei
c—Rat(R) die Familie der c-rationalen Sprachen aus R(X, D), d.h. die klein-
ste Teilmenge von P(R(X, D)), die § und {a}, a € X, enthdlt und die unter
Vereinigung U, Konkatenation -, - und w-Iteration abgeschlossen ist, wobei die
[teration auf zusammenhéngende Sprachen eingeschrinkt ist (eine Spursprache
L ist zusammenhéngend, wenn jedes ¢ € L als Abhéngigkeitsgraph gesehen zu-
sammenhéngend ist). Dann gilt:

Theorem 1.3.9 /GPZ91] Rec(R) ist dquivalent zu c—Rat(R).
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Weiterhin betrachten wir die monadische Logik 2. Stufe, deren Formeln ausgehend
von den Pradikaten = <y, x € X und P,(z) gebildet werden, unter Verwendung
der Booleschen Junktoren A,V,— und der Quantoren 3,V (dabei bezeichnen x,y
Individuenvariablen, X Mengenvariable; das Pridikat P,(z) bedeutet, dal z mit
a € ¥ beschriftet ist). Damit gilt:

Theorem 1.3.10 [EM93] Rec(R) ist dquivalent zur Familie der reellen Spur-
sprachen, die durch Formeln der monadischen Logik zweiter Stufe definierbar
sind.
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Kapitel 2

Das Theorem von McNaughton
fiir R(>, D)

Thema des vorliegenden Kapitels ist eine Verallgemeinerung des bekannten Theo-
rems von McNaughton [McN66] von w-Wortsprachen auf Sprachen reeller Spuren.
Wir beantworten mit der Charakterisierung der Familie der erkennbaren Spra-
chen reeller Spuren durch deterministische asynchron-zellulare Muller Automaten
eine der wesentlichen Fragen auf diesem Gebiet. Die Ergebnisse dieses Kapitels
sind auch in [DM93] erschienen.

In den ersten beiden Abschnitten folgen wir Schiitzenberger’s Beweis fiir das
Theorem von McNaughton, so wie er in [PP93] vorgestellt wird. Ubertragen auf
Spuren wird der Beweis wesentlich technischer und aufwendiger (vgl. 2.1.11), wo-
bei die Grundideen beibehalten werden. Als erstes Ergebnis erhalten wir die Aqui-
valenz zwischen der Familie der erkennbaren reellen Spursprachen und dem Boole-
schen Abschlufl der Familie der deterministischen reellen Spursprachen DRec(RR).
Letztere Sprachfamilie ergibt sich als natiirliche Verallgemeinerung der determi-
nistischen w-Wortsprachen, wobei jedoch kein direkter Zusammenhang zu deter-
ministischen (asynchron-zelluldren) Biichi Automaten mehr besteht, wie im Falle
der w-Wortsprachen. Wir diskutieren diesen Aspekt und begriinden die Definition
der Familie DRec(R) in Kapitel 3.

Schlieflich zeigen wir im letzten Abschnitt die Aquivalenz von Erkennbarkeit in
R(X, D) und Akzeptanz durch deterministische asynchron-zellulare Muller Au-
tomaten. Dies ist erneut ein nichttrivialer Schritt, der u.a. auf grundlegenden
Eigenschaften asynchron-zellularer Automaten basiert.

2.1 Algebraische Eigenschaften in Rec(R)
Sei n : M(X,D) — S ein Homomorphismus und S ein Monoid. Wir werden

im folgenden die Bezeichnung M, := n~!(s) fiir s € S durchgehend verwenden,
ohne den darunterliegenden Homomorphismus 7 explizit zu erwéhnen, falls keine
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Verwechslung moglich ist. Weiterhin betrachten wir den préfixfreien Teil IP; von
M,
P = M, \ MM, (mit M, =M\ 1)

P, besteht also aus den Spuren, deren n-Bild s ist und die keinen echten Prifix
in IM, besitzen.

Beziiglich dem Homomorphismus 7 werden wir im ganzen Abschnitt vorausset-
zen, daf} er surjektiv ist und eine alphabetische Information implizit beinhaltet.
Fiir alle ¢,# € M(X, D) soll gelten: mit n(t) = n(t') folgt alph(t) = alph(t').
Diese Eigenschaft kann leicht erzwungen werden, wenn wir S durch ein Unter-
monoid von S x P(X) ersetzen, wobei die Multiplikation in S x P(X) durch
(s, A)(s',A") = (ss', AU A") erklart wird, (1,0) die neue Identitdt bildet und
t — (n(t),alph(t)) der neue Homomorphismus ist. Damit und aufgrund der
Surjektivitdt von n kénnen wir alph(s) fiir s € S als alph(s) = alph(¢) fiir ein
t € n71(s) definieren. Die Menge der idempotenten Elemente von S, {e € S |
e? = e}, wird mit F(S) bezeichnet.

Wie wir im Abschnitt 1.3 gesehen haben, kann eine Sprache L € Rec(RR), die
von n : M(X,D) — S erkannt wird, als Vereinigung von Sprachen der Form
MM, mit (s,e) € P, = {(s,e) | se = s,e € E(S),M;M¥ N L # ()} dargestellt
werden. Da es sich im allgemeinen um keine disjunkte Vereinigung handelt, wollen
wir zunéchst untersuchen, unter welchen Bedingungen zwei Mengen M,M; und
My M, einen nichtleeren Durchschnitt haben.

Zwei Paare (s,¢),(s',¢') € S x E(S) mit se = s, s'¢’ = s heiflen konjugiert!,
wenn x,y € S derart existieren, dafl gilt:

e=xy, € =yr unds = sz.

Bemerkung 2.1.1 Die obige Definition ist wegen s = se = szy = s’y symme-
trisch. Weiterhin stellt die Konjugation eine Aquivalenzrelation auf der Menge
{(s,e) € S x E(S) | se = s} dar, wie man leicht sehen kann.

Der folgende Satz gibt uns nun eine Charakterisierung fiir den nichtleeren Durch-
schnitt zweier Mengen MM und My DMy,.

Satz 2.1.2 Sei S ein endliches Monoid und n : M(3, D) — S ein Homomor-
phismus. Es gilt M;M? N MgMy, # 0 genau dann, wenn die Paare (s,e) und
(s',€") konjugiert sind.

Beweis: Die Definition von konjugierten Paaren und die Surjektivitdt von n
zeigen, dafl die Bedingung hinreichend ist.

Umgekehrt sei ¢ € M;M,; N MyIM;, gegeben. Wir konnen also ¢ auf zweifache
Art faktorisieren, t = toty ... = t(t] ... so, daB ty € My, t, € My, t, € M, und

1Siehe [PP93].
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t/ € My, n > 1, gelten. Da wir Faktoren ¢,, (bzw. t/,) mit n > 1 zusammenfassen
konnen (e, e’ € E(S)), diirfen wir aus Symmetriegriinden voraussetzen, dafl fiir
alle n > 0 gilt:

toth .. b, <toty ...ty <toth.. .t .

Damit existieren Folgen (uy,)n>0, (Vn)n>0 € M(X, D) mit:

toty...t, = tot}...thu, und

toth .t = toti... .ty
Daraus ergeben sich die Beziehungen

! /
bns1 = Uplpy1, by = UpUp, to=tyup und

t = tE)UOUOUﬂ)l e

Es selen nun 0 < ¢ < j so, dal n(w;) = n(u;) =: x gilt (die Existenz wird
durch die Endlichkeit von S garantiert). Mit y := n(v;u;11 ...v;_1) erhalten wir
abschlielend:

s = n(toty...t;) =ntety ... t_)n(u;) = s'x,
¢ = nluw;...uj_1vj_1) =xy und

e = NVlliy1 ... Vj_1Uj) = YT .

O

Korollar 2.1.3 Seien n: M(X, D) — S ein Homomorphismus, S ein endliches
Monoid und L = U(s ¢)ep, MsMg mit Pp = {(s,e) € SxE(S) | 0 # M,M; C L}.
Dann wird L von n genau dann erkannt, wenn Pp unter Konjugation abgeschlos-
sen ist.

Beweis: Wird L von 7 erkannt, so gilt auch Py, = {(s,e) € S x E(S) | M;M¥ N
L # (0} und damit folgt die Aussage.

Sei P, unter Konjugation abgeschlossen und sei (s, e) so, daf M;MY N L > w fiir
ein u € R(X, D). Aufgrund von u € L existiert ein Paar (s',¢’) € Py, mit u €
MyIM¢, und dieses Paar ist nach Satz 2.1.2 konjugiert mit (s, e). Da schlieflich
P;, unter Konjugation abgeschlossen ist, erhalten wir (s, e) € Py. O

Im folgenden benotigen wir fiir A C ¥ die Bezeichnungen Inf(A) und R 4 (vgl. Bei-
spiel 1.3.7):

Inf(A) = {t € R(3, D) | alphinf(t) = A},
Ra={t e R(X,D)| D(alphinf(t)) = D(A) },

wobei fiir t € R(X, D) gilt alphinf(t) = {a € X | |t|, = w}. Speziell werden wir
die Bezeichnungen Inf(s) bzw. Ry (s € S) verwenden, und zwar als Abkiirzungen
fiir Inf(A) bzw. R4, wobei A = alph(s) gilt.
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Bemerkung 2.1.4 Im Spezialfall der vollstiandigen Abhéangigkeitsrelation D =
Y x ¥ gilt Ry = X falls A # (), bzw. Ry = 3*.

Fiir die nun folgende Definition deterministischer Sprachen benétigen wir zuerst
den fiir partielle Ordnungen iiblichen Begriff einer gerichteten Menge:

Definition 2.1.5 FEine nichtleere Menge Y C M(3, D) heifit gerichtet, wenn
stets gilt, daf$ mit t1,to € Y eine obere Schranke t von t1,to mitt € Y existiert.

In [GR93, Kwi90] wurde gezeigt, dafl jede gerichtete Menge reeller Spuren ein
Supremum besitzt.

%
Definition 2.1.6 Sei L C M(X, D). Wir definieren L = {t € R(X,D) | t =
LY fiir eine gerichtete Menge Y C L}.
FEine deterministische reelle Spursprache ist eine endliche Vereinigung von Spra-
_>
chen L NRya, wobei A C 3 und L € Rec(M) eine erkennbare Sprache ist. Die
Familie der deterministischen reellen Spursprachen wird mit DRec(IR) bezeichnet.

Bemerkung 2.1.7

1. Es ist leicht zu sehen, daf jede reelle Spursprache der Form f mit L € Rec(IM)
erkennbar ist. Sei n : M(X, D) — S ein Homomorphismus und S ein endliches

Monoid so, dafl L von n erkannt wird. Es gilt dann f = Us,e)ep MM, mit
P ={(s,e) € S x E(S) | se =s,s € n(L)}, wobei die rechte Seite der letzten
Gleichung aufgrund von Abschlufieigenschaften von Rec(RR) (sieche [GP92]) eine

erkennbare Menge ist.

_>
2. Im Gegensatz zur Definition von L im Wortfall verlangen wir nicht, dafl die
gerichtete Menge Y C L unendlich sein soll und damit erhalten wir die Beziehung
— —
L C L. Die klassische Definition entspricht dann der Einschrankung L N X%,

die hier iiber die Durchschnitte mit R4, A # (), erreicht wird (siehe Bemerkung
2.1.4).

Die folgenden Sétze stellen die technische Grundlage aller Ergebnisse dar. Wir
beginnen mit dem bekannten Lemma von Levi [Lev44].

Lemma 2.1.8 ([CP85]) Es seien ty,ty, 1,29 € M(X, D) mit tyxq = toxs.
Dann gilt

ty =pf, ta = pg, 1 = gy, und x5 = fy
fir p=t1 Mty und geeignete f, g,y € M(X, D) so, daff alph(f) x alph(g) C I.

Lemma 2.1.9 Sei (t,),>0 € M(X, D) eine Folge endlicher Spuren so, daff
Un>o tn existiert.

Dann existiert eine unendliche Unterfolge von Indizes J C IN so, daf (t;)ics
bzgl. der Prdfizordnung eine monoton wachsende Folge ist.
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Beweis: Die Existenz von |, t, erlaubt uns, Lemma 2.1.8 anzuwenden und
damit erhalten wir fiir ¢ < j Spuren p;; :=t; Mt; bzw. fi;, g;; € M(X, D) mit:

ti = pij fij, t; = pijgi; und alph(f;;) x alph(g,;;) € I.

Fiir ein festes ¢ konnen wir ohne Einschrankung annehmen, da8 p;; = p; (bzw. fi; =
fi) fur geeignete p; (bzw. f;) und alle j > i gilt. (Dafiir benttigen wir natiirlich ei-
ne geeignete unendliche Indexunterfolge.) Damit kénnen die obigen Gleichungen
folgendermaflen umgeschrieben werden:

ti = pifi, t; = pigi; und alph(f;) x alph(g,;;) € I.

Aufgrund der Konstruktion erhalten wir fiir ¢ < j die Beziehungen p; < t;
bzw. p; <t fir alle j < k. Mit p; = t; Mt fiir alle 5 < k gilt dann auch
pi < p;. Weiterhin gilt fiir alle ¢ < j:

ti =pigij = pifi-

Aus alph(f;) C alph(g;;) (wegen p; < p;) folgt nun mit der obigen Unabhéngig-
keitsbeziehung alph(f;) x alph(f;) € I. Wegen der Endlichkeit von ¥ bedeutet
dies, dal f; = 1 fiir fast alle ¢ gilt. Wir kénnen daher eine unendliche Indexfolge
J C N so bestimmen, dafl f; = 1 fiir alle i € J gilt und damit ist (¢;);c; eine
monoton wachsende Spurfolge. O

Bemerkung 2.1.10 Man beachte, dafl im letzten Hilfssatz nicht die Erhaltung
des Supremums der urspriinglichen Folge gefordert wird, d.h. es wird nicht ver-
langt, daB | J;c; t; = >0 tn gelten soll. Diese Forderung kann auch nicht gestellt
werden, wie das folgende Beispiel zeigt. Sei ¥ = {a, b, c}, D = {(a,a), (b,b), (¢,c)}
und

P { a’bc™  fiir n gerade

"] ab*c®  fiir n ungerade

Es gilt |50 tn = a®b*¢*, aber weder |,>¢ tan = a®bc® noch |, tont1 = ab*c
ist gleich a?b?c*.

Satz 2.1.11 Gegeben seien die Folgen (t,)n>0, (Wn)n>0 € M(X, D) mit der Fi-
genschaft, daf$ {t,w, | n > 0} eine unendliche, gerichtete Menge ist. Sei x =
Ln>o tntn,.

Dann existieren eine Unterfolge von Indizes (n;);>0 € N und Folgen endlicher
Spuren (8;)i>0,(ui)iz0, (vi)izo € M(X, D) so, daff alph(v;) x alph(sju;) C I fiir
alle 0 <17 < 7, wobei fiir v > 0 die Spuren t,,, w,, folgende Gestalt haben:

tm. = SoUQ """ S;—1U;—15; und

W,

(3

Ui Vg * " Vj—10; .
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Beweis: Da {t,w, | n > 0} gerichtet ist, diirfen wir ohne Einschrinkung
annehmen, dafl t,w, < t, 1w, fir alle n > 0 gilt. Weiterhin kénnen wir mit
Lemma 2.1.9 annehmen, da die Folge (t,),>0 monoton wachsend ist. Fiir 0 <
i < j definieren wir die Folge (z; ;) ;>0 € M(X, D) durch t; = ¢; z;;.

Aufgrund der Links-Kiirzbarkeit von M(X, D) ergibt sich aus den bisherigen Be-
ziehungen w; < z;;w;. Die Anwendung des Lemma von Levi ergibt endliche

Spuren w;;, S;;, ¥;; mit alph(s;;) x alph(y;;) C I und
Wi = Wij Yij, Tij = Wij Sijy Yij < W -

Wir betrachten nun fiir ein festes ¢ > 0 eine Unterfolge von Indizes so, daf§ fiir
geeignete u;,y; gilt: u;; = u; und y;; = y;, fiir alle 7 < j. Damit lassen sich die
obigen Gleichungen umschreiben in alph(s;;) x alph(y;) € I und

Wi = WilYi, Tij = UiSij, Yi < Wj .

Wir werden im folgenden s;,41 mit s;11 (bzw. x;,41 mit x;) bezeichnen und
erhalten

Tij = TiTiv1 - Tjo1 = (WiSiy1) (Uig1Siv2) -+ (Uj-185) = w;sij .

Damit folgt s;; = Sit1Uit1Si42 - - - uj—15;. Mit der Bedingung alph(s;;) xalph(y;) C
I ergibt dies alph(y;) x alph(s;u;) C I fiir alle 0 < ¢ < j. Weiterhin gilt
Yi < Wip1 = Uir1Yir1, und damit auch y; < y;4q fiir ¢ > 0 (wegen alph(y;) x
alph(u;t1) € 1).

Schliefllich kénnen wir mit y; < y;11 Spuren (v;);>0 durch y; 1 = y;v;11 definieren
(setze vp = yp) und erhalten abschlieBend alph(v;) x alph(s;u;) C I fiir j > i > 0,
und (vgl. Abbildung 2.1):

tl’ = tol’o X1 = SoUpSy U185 (Hllt S .= to),

w; = UY; = U VU1~ - - V5.
a

Bemerkung 2.1.12 Durch Zusammenfassen von Faktoren und Umnumerierung
kann die Existenz von Spurfolgen (s;);>0, (1;)i>0, (v;)i>o mit alph(v;) xalph(s;u;) C
I fiir allev >0, j > 0 gezeigt werden.

Beispiel 2.1.13 Sei (X,D) = a — b — ¢ — d. Wir betrachten die Folgen
(tn)n>0, (Wn)ns0 € M(X, D), t, = c(ba)(b?a)--- (b"a)b und w, = d"'b"a. Es
gilt © = [U,so(thwn) = cd?(ba)(ba).... Mit den Bezeichnungen aus Satz 2.1.11
erhalten wir so = ¢b, s; = b fiir i > 1, u; = b'a und v; = d fiir i > 0.

Fiir die nachfolgenden Betrachtungen sei angemerkt, dafl (w,, ),>o eine préfix-freie
Folge ist. Es existiert aber keine erkennbare, prifix-freie Menge K, die (wy)n>0
enthélt. Ersetzt man die Folge (w,,)n>0 durch (w),),>o mit w), = db"a, so dndert
sich die Folge (v;);>0 zu v = d und v, = 1, fiir ¢ > 1. Das folgende Korollar zeigt,
daB v # 1 durch d ¢ D(alphinf(z)) ermoglicht wird.
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Abbildung 2.1: Die Faktorzerlegung von t;w;, wobei w; aus den markierten Be-
reichen besteht.
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Korollar 2.1.14 Gegeben seien L, K C M(3, D) mit K erkennbar und praifiz-
frei, d.h., KMy NK = 0. Seien (t,)n>0 € L, (wn)n>0 C K so, daf {t,w, |n >0}
unendlich und gerichtet ist, und sei v = ||{t,w, | n > 0}. Schlieflich gelte
D(alph(y)) € D(alphinf(z)), fir alle y € K.

Dann existieren eine Unterfolge von Indizes (n;)i>0 € N und Spurfolgen (s;);>o,
(u;)iso € M(3, D) mit x = [ { tn,wn, | © >0} so, dafs gilt:

th, = SoUp " - * Si—1Ui—1S; und Wy,

i = U;.

Beweis: Wir kénnen Satz 2.1.11 anwenden und erhalten eine (unendliche) Folge
von Indizes und Spurfolgen (s;);i>0, (4i)i>0, (Vi)i>0 € M(X, D) mit & = | { t,,wn, |
i >0}, th, = SoUo - - Si—1Ui—1Si, Wy, = UV - - - V;—1v;, und alph(v;) x alph(s;u;) C
I, fiir alle 0 <7 < j. Wir werden zeigen, daf3 die zusétzlichen Bedingungen {iber
die Préfixfreiheit von K und iiber alphinf(z) dazu fiithren, dal v; = 1 fiir alle ¢
angenommen werden kann.

Sei n: M(X, D) — S ein Homomorphismus auf ein endliches Monoid S so, da§ K
von 7 erkannt wird. Wir diirfen ohne Einschrénkung annehmen, daf n(u;) = n(u;)
fiir alle i, j gilt (dafiir wihlen wir eine Unterfolge von Indizes mit der Eigenschaft
1N(Um,;) = 1(tm,) fiir alle 4, j und definieren s,,, als Sy, 41Um,_ 11" - Sm; DZW. Uy,
als U, 1 11Um, 112" Up, um).

Nun gilt wvg - - v;_ov;—1 < w,, € K fiir alle ¢ > 1. Mit der Beziehung n(u;) =
n(u;—1) folgt unmittelbar n(u;vg - - v;i—2v;—1) = N(Ui—1vg - - - Vi—2v;—1) = N(w;—1),
daher gilt w;vg---v;_ov;_1 € K, fiir alle ¢+ > 1. Da K prifix-frei ist, mufl damit
v; = 1 fiir alle ¢ > 1 gelten. Zusétzlich gilt fiir i = 0: Mit alph(vg) x alph(s;u;) C 1
folgt alph(vg) N D(alphinf(x)) = 0. Da aber alph(vy) C alph(w;) und w; € K
gelten, wiirde vy # 1 der zweiten zusétzlichen Voraussetzung widersprechen. Es
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folgt
tn, = SoUo - Si—1Ui—15; und
O

2.2 Aquivalenz von Rec(R) und dem Booleschen Abschlufl
der Familie deterministischer Sprachen

Ein erster Schritt fiir die Verallgemeinerung des Theorems von McNaughton auf
reelle Spursprachen wird die Aquivalenz der Klasse der erkennbaren reellen Spur-
sprachen und dem Booleschen Abschlul der Klasse der deterministischen Spra-
chen sein. Die néchsten Satze stellen Verallgemeinerungen analoger Ergebnisse im
Spezialfall der w-Wortsprachen dar (vgl. [PP93]). Auf den ersten Blick besteht ein
Unterschied durch die zusétzlichen alphabetischen Informationen, die bei Spur-
sprachen mitgefiihrt werden. Man beachte jedoch, daf} es sich dabei im Spezialfall
D = ¥ x ¥ jeweils um triviale Durchschnitte mit 3 handelt (vgl. Bemerkung
2.1.4).

Im folgenden betrachten wir fiir ein endliches Monoid S und s € S die Teilmenge
der idempotenten Elemente Es; = {e € E(S) | se = s} und die darauf definierte
Halbordnung <, mit e < f genau dann, wenn fe = e gilt. Die Notation e < f
bedeutet, dafl e < f und f £ e gelten. Allgemeiner ist auf S die Halbordnung
<g erklart durch s <f ¢ genau dann, wenn sS C s'S. Beachte, dafl die Halb-
ordnung < die Einschrinkung von <g auf E ist. Weiterhin verwenden wir die
links-invariante Aquivalenzrelation R auf S, mit s R s’ genau dann, wenn die
zugehorigen Rechtsideale gleich sind, d.h. sS = §'S.

Satz 2.2.1 Sei S ein endliches Monoid, s,e € S mit se = s, e € E(S) und
n:M(X, D) — S ein Epimorphismus. Dann gilt:

MM < M,P.NnR., C U]MS]M‘}’

f<e

Beweis: Die erste Inklusion ist leicht einzusehen, wenn man bedenkt, daf fiir eine
Spur u = uguy . .. mit ug € My und u, € M, fiir n > 1, geeignete (u},),>1 C P,
gewdhlt werden konnen. Damit erreicht man u = Li,>ououy - - - upt;, 1, wobei gilt:
Uy - - Upty, € MP..

Fiir die Umkehrung wenden wir Korollar 2.1.14 auf die Spur x = U,,>ot,w, an,
wobei (t,)n>0 € My, (t))n>0 € P, und D(alphinf(x)) = D(alph(e)). Dies ergibt
die Existenz einer Indexfolge (n;);>0 € IN und zweier Spurfolgen (s;);>0, (1;)i>0 C
M(X, D) so, daf t,,, und w,, folgendermaflen dargestellt werden koénnen:

b, = SoUo -+ * Si—1Ui—18;  und  wy, = U,
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wobei weiterhin gilt © = U;>¢t,,w,,. Die Spur = = spups; ... kann nun so fak-
torisiert werden, dafl fir eine Indexfolge (m;);>o und Monoidelemente r € S,
f € E(S) gilt:

r=n(SoUo " Smy) und = 1(Up;Sm41 Smy),  firalle 0 <7 <.

Es ist leicht zu sehen, dafl r»f = r folgt. Weiterhin gilt natiirlich s = r, sowie
f €n(u,)S = eS, und damit f <z e, d.h. f <e. Dies zeigt v € Uy, M,M5.
O

Korollar 2.2.2 Mit den Voraussetzungen des Satzes 2.2.1 gilt:

1. M¥ = M.P, N R,

——
2. Ufge MS]M(}') = Ufge(MsIPf N ]Rf).
Beweis: (1) Man beachte, dafl mit s = e in Satz 2.2.1 ef = e gilt. Weiterhin ist

f < e gleichbedeutend mit ef = f, woraus e = f und die erste Aussage folgt.
(2) Mit Satz 2.2.1 erhalten wir:

Ur<e Uney MM C© Up<e MMy,

wobei die letzte Inklusion mit der Transitivitdt der Halbordnung < folgt. O

—
Upce MM C Up<e(M;PrNRy)  C

Wir kénnen nun das Hauptergebnis dieses Abschnitts zeigen, und zwar die Aqui-
valenz von Rec(R) und dem Booleschen Abschlufl der Familie der deterministi-
schen Sprachen reeller Spuren DRec(RR). Der Beweis verlduft analog zu [PP93].
Erneut erhalten wir die Verallgemeinerung des entsprechenden Resultats fiir w-
Wortsprachen.

Theorem 2.2.3 Sei S ein endliches Monoid und n : M(3, D) — S ein surjek-
tiver Homomorphismus, der L C R(X, D) erkennt. Sei weiterhin P, = { (s,e) €
Sx E(S)|se=s, MJMYNL #0}. Dann lift sich L darstellen als

L= { (U(H\T]Pfﬁﬂf)\ U(MstﬂRf)) :

(s,e)ePr, \f<e f<e

Beweis: Es seien (s,e) € Pp und f € E(S) mit f R e. Damit sind die Paare
(s,e) und (s, f) mit + = e und y = f konjugiert, woraus mit Lemma 2.1.2
(s, f) € Py, folgt. Dies ergibt zusammen mit der trivialen Beziehung e R e:

L= |J MM C |J UMM C L,

(878)GPL (S,B)EPL fRe
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woraus die Darstellung L = U oep, Upre MsM5 folgt. Damit geniigt es, die
Sprache Uy . MsIM¥ als Boolesche Kombination deterministischer Sprachen dar-
zustellen.

Definitionsgeméf ist f R e dquivalent zu ef = f und fe = e. Somit gilt f R e
genau dann, wenn f < e und f £ e gelten.

Die folgende Feststellung spielt eine wichtige Rolle im Beweis. Die Beziehung
f < e hat namlich zur Folge, da$ MMy N M,M5 = 0 (x) gilt. Wiren MM
und MM nicht disjunkt, so wéren (s,e) und (s, f) nach Satz 2.1.2 konjugiert,
d.h. es wiirde sz = s, e = xy und f = yx fiir gewisse z,y € S gelten. Damit
erhielten wir fiir n > 0:

e = ¢ = ayry = afy = vefy = a"e(fy)".

Da S endlich ist, existieren n,q € IN, ¢ # 0 so, daf fiir alle z € S gilt: 2" = 2",
Dies fiithrt jedoch iiber e = z"e(fy)" = x"e(fy)" ™ = e(fy)? = ef(yf)" 'y Eféf

fSzue < f (ie. f &£ e), und widerspricht damit der Voraussetzung iiber f,e.
Schlieflich erhalten wir

U MMy = U MM
FRe [<efte
2 UMM\ UMM (wegen fReh<e=h< f)
f<e f<e
= UMMy U U Mg
f<e f<eg<f
5 e T
22 | JMPrNRy)\ U U DMP, NR,)
f<e f<eg<f
= U(]I\/[sleﬂ]Rf)\ U(Mstme)‘
f<e f<e

O

Mit dem Abschluff von Rec(R) unter Booleschen Operationen und der Erkenn-
barkeit deterministischer Sprachen erhalten wir das angekiindigte Ergebnis:

Korollar 2.2.4 Es gilt:

Rec(R) = Bool(DRec(R)).

2.3 Deterministische asynchrone Muller Automaten

Thema dieses Abschnitts ist eine Konstruktion deterministischer asynchron-zellu-
laren Muller Automaten fiir die Klasse der deterministischen reellen Spurspra-
chen. Mit der in Abschnitt 2.2 gezeigten Aquivalenz von Rec(R) und dem Boo-
leschen Abschlufl der Klasse der deterministischen Sprachen geniigt es nédmlich,
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asynchron-zelluldre Muller fiir diese Unterklasse anzugeben. Genauer gesagt, wer-

%
den wir Automaten fiir Sprachen L mit L € Rec(M) konstruieren (fiir Sprachen
R4, A C X, vgl. Beispiel 1.3.7).
%
Die Idee der Konstruktion besteht in der Einschrankung auf gewisse Sprachen L ,

deren Elemente eine spezielle Form im unendlichen Teil besitzen und daher mit
lokalen Bedingungen erkennbar sind. Konkret werden wir uns auf ein Alphabet

A mit A = alphinf(¢) fir alle ¢ € T einschrinken. AnschlieBend betrachten

_>
wir nur Sprachen L mit der Eigenschaft, dal die Spuren aus L mit L-Préfixen
approximierbar sind, die fiir jede Zusammenhangskomponente von A genau ein
maximales Element besitzen. Das folgende Lemma zeigt, dal wir uns auf solche

L einschranken diirfen.

Lemma 2.3.1 Sei A C X und A = Ur_, A; die Zerlegung in Zusammenhangs-
komponenten, d.h. es gilt:

AixA; CT fir i # 7, und
A; ist zusammenhdngend  fir alle i =1,... k.

Seien weiterhin a; € A;, i = 1,...,k, fest gewdhlt. Wir definieren folgende er-
kennbare Mengen:

My, = {t|alph(t) = A; und max(t) = {a;} }
Py, = My, \ My;M, .

Damit gilt fir L C M(3, D):
% %
LN Il’lf(A) = L]PAJ cee PAJg N IIlf(A)

Beweis: Sei u € L mit alphinf(u) = A = U, A; und betrachten wir eine
Zerlegung u = ugujusg . .. von u, wobei alph(u,) = A fir n > 1, und wouy - - - u, €
L fir n > 0. Weiterhin kénnen wir jedes u,, als Produkt w, = u,1 - Uy, mit
alph(u,;) = A;, 1 <1 < k, schreiben. Betrachte fir n > 1 und 1 < ¢ < k die
Folge wy, jtn11, - ... Da die Teilalphabete A; zusammenhéngend sind, besitzt diese
Folge ein (bzgl. der Préfixordnung) kleinstes Prifix u;, ; mit max(u, ;) = {a;}
und alph(u;, ;) = A;. Damit sind & Folgen (u;, ;)n>1 C P4; definiert so, daf gilt:
Uo* UpUp Uy € LP4 - Pay fiir n > 1. Es gilt natiirlich weiterhin

w={uoUp_1ty - -uy,, | n>1} Daraus folgt u € LIP 41 -+ - P4, NInf(A).
Fiir die Riickrichtung betrachte « = | [{t,w,, | t, € L,w, € Pay---Pag,n >0}
mit alphinf(z) = A. DaP4; - - - Py erkennbar und préfixfrei ist, zusammen mit
der Beziehung D(alph(IP41---Pay)) = D(A), ergibt Korollar 2.1.14 eine Index-
folge (n;);>0 € IN und zwei Folgen endlicher Spuren (s;);>0, (ui)i>o0 € M(2, D)
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mit x = | |;>0 tp,wy, und folgender Darstellung fiir ¢,,, wy,:

tni = SoUpS1 """ Si—1U;—1S; € L
Wp, = U € Pyy---Pyy,
- ..
woraus x € L direkt folgt. |

Fiir das nachfolgende Theorem verwenden wir zur Vereinfachung folgende grund-
legende Eigenschaft der asynchron-zellularen Automaten, die aus der Konstruk-
tion von Zielonka hervorgehen (d.h., die auf einer asynchronen Abbildung beru-
hen): Die lokalen Zustéande der maximalen Elemente einer Spur legen bereits die
Akzeptanz durch den Automaten fest (vgl. die Anmerkung in Abschnitt 1.2).

%
Theorem 2.3.2 Jede reelle Spursprache der Form L, mit L € Rec(M) erkenn-
bar, kann von einem deterministischen asynchron-zelluldren Muller Automaten
erkannt werden.

Beweis: Wegen der Beziehung
n Inf(A))

U (
ACY

2.3.1 Y=

= U L]PA1 ]PAkﬂIIlf(A))
ACY

wobei die Mengen P4 ;,...P4; wie im Lemma 2.3.1 definiert sind, geniigt es
offensichtlich, deterministische asynchron-zelluldre Muller Automaten fiir Spra-

R
chen der Form LIP4;-- Py N Inf(A), A # (), anzugeben. Sei dafir A =
(@) aex, (01)aex, ), F') ein asynchron-zelluldrer Automat, der LIP 41 - - - P4, er-
kennt und aus der Konstruktion von Zielonka hervorgeht. Wir definieren fiir
feF"

LAJ {t < ]R( ) ‘ alphlnf( ) A, t= Unzotn mit to S tl S
und 0'(qp, t,) = f, firn >0}

Sei ohne Einschrinkung A # (). Wir definieren einen deterministischen asyn-
chron-zelluldren Muller Automat A = ((Q,)aes, (0a)aes, Go, ?, T) durch

e (), = QZL X Z/QZ,
® 04((¢:7)p(a)) = (64(qD(@))  a + 1),

® (o = (Q6a70)a627
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und werden zeigen, daB8 La ¢ C L(A) C LIP4;--- P4y NInf(A) folgt.

Durch die Hinzunahme der Z/2Z Komponente in jedem lokalem Zustand errei-
chen wir die Eigenschaft d,(sp()) # s, fiir alle s, € Q,, a € . Damit 148t sich das
Alphabet alphinf(¢) fiir t € R(X, D), eindeutig feststellen; es gilt a € alphinf(t)
genau dann, wenn [inf,(¢)| > 2. Beachte, daf§ inf,(¢) die Menge der lokalen a-
Zustinde bezeichnet, die auf dem mit ¢ beschrifteten Ubergangspfad unendlich
oft wiederholt werden.

Die Tafel 7 wird nun definiert durch

T=(T)aex €T <= s existieren (iq)eex € (Z/2Z)* mit
(i) T,={(fa i)} fiir a € X\ A,
(17)  (fayia) € Ty und |T,| > 2, fira e A.

Es ist leicht zu schen, dafl L4 ; C L(A) gilt.

Umgekehrt sei ¢ € L(A) so, dal ¢t mit 7' € T akzeptiert wird. Mit der obigen
Bemerkung folgt alphinf(t) = {a € ¥ | |T,| > 2} = A, und wir kénnen ¢ als
t = tgt ... faktorisieren, wobei fiir geeignete (iy)aes € (Z/2Z)%) gilt:

alph(t,) = A firn > 1,
3(qo, tot1 -+ tn)a = (fa,ia) firae (X\ A)U{a,...,ax},n >0,
max(ty---t,) NA={ay,...,ar} firn>0.

(Die Existenz einer derartigen Faktorisierung basiert auf der Tatsache, dafl je-
de Zusammenhangskomponente von A = alphinf(t) genau ein a;, 1 < i < k,
enthélt.)

Aufgrund der Definition von LIP4; --- Py ist andererseits max(u) C (X \ A) U
{a1,...,ap} fur allew € LP 41 --- P4y gegeben. Mit B := (X \ A)U{a,...,ax}
folgt daher:

max(LP 4y Pay), max(to---t,) € B und
8'(qpto - tn)B = [B-

Mit der Bedeutung der lokalen Zustédnde der maximalen Elemente fiir die Akzep-
tanz (durch A’) folgt letztendlich ¢ ---t, € LIP41 -+ - P4y. O

Mit Satz 2.3.2 erhalten wir abschlieend das Hauptergebnis dieses Kapitels:

Haupttheorem 2.3.3 Die Klasse der erkennbaren reellen Spursprachen ist iden-
tisch zur Klasse der Sprachen, die von deterministischen asynchron-zelluldren
Muller Automaten erkannt werden.

Beweis: Die erste Inklusion folgt mit Korollar 2.2.4 und Theorem 2.3.2. Fiir die
Riickrichtung ist es leicht zu sehen, daf§ eine asynchron-zelluldre Muller Akzeptanz-
bedingung als Boolesche Kombination von asynchron-zelluldren Biichi Bedingun-
gen umgeschrieben werden kann. O
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Da asynchron-zellulare Automaten automatisch die I-Diamant Eigenschaft besit-
zen, kénnen wir eine weitere automaten-theoretische Charakterisierung folgern.
Man beachte, dafl das folgende Ergebnis auch mit den Sétzen 2.2.4 und 3.3.2 aus
dem néchsten Kapitel folgt.

Korollar 2.3.4 Jede erkennbare, abgeschlossene w-Wortsprache kann mit einem
deterministischen Muller Automaten mit I-Diamant Eigenschaft erkannt werden.

Die Frage, welche deterministischen I-Diamant Muller (bzw. Biichi) Automaten
abgeschlossene Sprachen erkennen, sowie eine komplexititstheoretische Untersu-
chung dieses Problems bilden das Thema von Kapitel 6.



Kapitel 3

Deterministische reelle
Spursprachen

Ziel dieses Kapitels ist die ndhere Untersuchung der Familie der deterministischen
Spursprachen DRec(IR) (siehe Definition 2.1.6). Nach einer kurzen Einleitung,
die den Abschlufl dieser Sprachklasse unter Boolesche Operationen behandelt,
wenden wir uns dem Problem einer geeigneten Charakterisierung durch determi-
nistische Automaten zu. Wir zeigen, da die Aquivalenz zwischen deterministi-
schen Sprachen und deterministischen Biichi Automaten im Falle der asynchron
(-zelluldren) Automaten nicht bestehen kann. Damit ist der enge Zusammen-
hang, der fiir w-Wortsprachen existiert, nicht auf reelle Spuren iibertragbar. Wir
kénnen jedoch eine schwichere Charakterisierung angeben, wonach die determi-
nistischen reellen Spursprachen den abgeschlossenen Wortsprachen entsprechen,
die durch deterministische /-Diamant Biichi Automaten mit einer erweiterten
Akzeptanzbedingung erkannt werden.

3.1 Abschlufleigenschaften deterministischer Sprachen

Wir wollen in diesem Abschnitt die Definition deterministischer Sprachen aus der
Sicht des Abschlusses unter Vereinigung und Durchschnitt erldutern. Wir zeigen,
daBl DRec(IR) unter diesen Operationen abgeschlossen ist. Fiir diese Eigenschaft
kann in der Definition deterministischer Sprachen als endliche Vereinigung von

Sprachen TNR 4 mit L € Rec(M), A C X, weder auf die endliche Vereinigung,
noch auf die Durchschnitte mit R4 verzichtet werden.

Direkt aus der Definition deterministischer Sprachen folgt, da8 DRec(R) unter
der Vereinigung abgeschlossen ist. Es gilt auch:

Satz 3.1.1 DRec(R) ist abgeschlossen unter Durchschnitt.

%
Beweis: Es geniigt zu zeigen, dafl L N ? eine deterministische Sprache ist,
wobei L, K € Rec(M).

37
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Da L, K erkennbar sind, kénnen wir ohne Einschriankung von einem endlichen
Monoid S und einem Homomorphismus 1 : M(X2, D) — S (mit alphabetischer
Information, vgl. 2.1) ausgehen so, dal beide Sprachen von 7 erkannt werden.

Wir zeigen im folgenden, dafl der Durchschnitt f N ? folgende Gestalt hat:

— —
Ink =/ (]I\/[SllPS2 mR@) .
s1 €n(L)
s182 € n(K)
Ist t € L N K, so finden wir eine geeignete Faktorisierung t = vougviu . .. mit
Un, Uy, € M(3, D) so, daB fiir gewisse s1,s2 € S gilt: n(voug...v,) = s; und
n(u,) = so fiir n > 0. Weiterhin fordern wir D(alph(sy)) = D(alphinf(¢)), und
schlieflich wihlen wir die Faktoren w,, prafixfrei mit den obigen Eigenschaften.
Fiir die umgekehrte Richtung betrachten wir eine Spur ¢ = | |,,5¢ tnt], mit (¢,)n>0 €
Ms,, (t)n>0 C Py, und D(alph(sy)) = D(alphinf(¢)). Die Voraussetzungen des

Korollars 2.1.14 sind erfiillt und damit folgt direkt ¢ € T Mit M,, Py, C K gilt
natiirlich auch ¢ € ? a

%
Die Familie der Sprachen L mit L € Rec(IM) ist im Gegensatz zu DRec(R) nicht
unter Durchschnitt abgeschlossen, wie das folgende Beispiel zeigt.

Beispiel 3.1.2 Sei ¥ = {a,b} mit I = {(a,b)}. Betrachte die Sprachen L; =
(aa)*(bb)* und Ly = abLy. Ly und Ly sind beide erkennbar, aber fiﬂf; = {a“b"}

_>
ist das klassische Beispiel einer Sprache, die nicht in der Form L mit L € Rec(M)
dargestellt werden kann.

Schlieflich sei noch erwéhnt, dal DRec(IR) nicht unter Komplement abgeschlos-
sen ist (bereits die Klasse der deterministischen Wortsprachen ist nicht abge-
schlossen unter Komplement).

3.2 Deterministische Automaten fiir DRec(R)

Im Kontext unendlicher Worter entsprechen die deterministischen Sprachen f
mit L € Rec(X*) genau den von deterministischen Biichi Wortautomaten ak-
zeptierten Sprachen. Es stellt sich natiirlich die Frage, ob die Klasse DRec(RR)
nicht analogerweise durch deterministische, asynchron-zelluliare Biichi Automaten
charakterisiert werden kann. Das folgende Beispiel zeigt jedoch, daf die determi-
nistischen asynchron-zelluldren Biichi Automaten ein zu schwaches Automaten-
modell sind. Dies gilt sogar wenn die Akzeptanz so modifiziert werden wiirde,
dafl D(alphinf(¢)) einbezogen ist.
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Beispiel 3.2.1 Sei (X,D) =a—c—>b und L = Ma*b" € Rec(M). Wir zeigen,
daf3 es keinen deterministischen asynchron-zellularen Biichi Automaten gibt, der
T € DRec(R) akzeptiert.

Der Einfachheit halber verwenden wir hier eine leicht verdnderte Akzeptanzbe-
dingung fiir asynchron-zelluldre Biichi Automaten, die sich leicht als gleichwertig
zur Definition 1.3.5 nachweisen laft. Es sei daran erinnert, dafl in der Definiti-
on 1.3.5 jedes Tafelelement fiir jeden Buchstaben a € ¥ eine Teilmenge von @),
enthélt, deren Elemente fiir die Akzeptanz eines Berechnungspfades unendlich oft
wiederholt werden miissen.

Wir betrachten asynchron-zelluldre Biichi Automaten A = ((Qq)aes, (0a)aes,
qo, F', F), wobei die Tafel F C [[,ex; @0 X P(X) um eine alphabetische Kom-
ponente erweitert ist. Wir bezeichnen mit § die globale Ubergangsrelation des
Automaten. Ein Berechnungspfad © = (qo, a0, q1,a1,...), mit ¢, € [lsex Qa,
Gni1 € 6(qn,a,), und a, € X wird akzeptiert, wenn ein (f, A) € F existiert
so, daf gilt:

1. foeinfy(m) ={q, | 31 : (¢n)a = ¢u} fiir alle a € X, und
2. A C alphinf(?).

Nehmen wir an, daf f) = L(A) fiir einen deterministischen asynchron-zelluldren
Biichi Automaten A gilt. Wir werden eine Spur u € R(X, D) induktiv durch eine
Sequenz (uy)n>0 so definieren, dafl u € L(A), aber u ¢ T gilt.

Sei zunéchst ug = 1. Angenommen, fiir n > 0 ist u,, € M(X, D) bereits definiert,
dann gilt u,ca®bt” € T = L(A) und damit existiert ein Paar (f, 1, Ant1) € F
womit u,ca”b” akzeptiert wird; d.h. es existieren k,.1,l,41 > 0 so, dafi gilt:
§(qo, upcakr+1btn+1) = f, .1 (man beachte, daf8 fiir die vorliegende Spur die un-
endliche Wiederholung der lokalen Komponenten von f,, 1 zu einer Aussage iiber
den ,globalen“ Zustand f, fithrt). Weiterhin sei m := max{i < n | f; = fo11},
falls der Zustand f,,.; in der Konstruktion bereits vorgekommen ist; sonst sei
m:=n-+1.

Wir definieren nun w,,,; als

S cbl+t falls m # n+ 1 und u,, € Mca™
LT, cafntt sonst.

Sei u 1= |,>0 u,, und (f, A) € F ein Paar, das in der Folge (f,, A, )n>0 unendlich
oft vorkommt. Durch die alternierende Definition von (uy,),>o gilt:

6(qosUn)ae = fa fiir unendlich viele u, € Mca™

und  8(qo, Un)pe = [y fiir unendlich viele u,, € Mcb" .

und damit wird u mit (f, A) € F akzeptiert, da f, € inf,(u) fiir alle x € {a,b, ¢}
gilt, zusammen mit A C alphinf(u) = X. Andererseits gilt aber u ¢ 7.
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Abschlielend sei angemerkt, dafl eine zusétzliche Information wie z. B. iiber
D(alphinf(u)) ebensowenig fiir die Erkennung der obigen Sprache ausreicht (es
gilt D(alphinf(u)) = D(alphinf(u,ca*d”)) = X fiir alle n > 0).

Ein analoges Beispiel kann mit einem erweiterten Abhéngigkeitsalphabet auch fiir
deterministische asynchrone Biichi Automaten angegeben werden, womit auch
dieses Modell fiir die Charakterisierung von DRec(R) scheitert.

3.3 DRec(R) und /-Diamant Biichi Automaten

Thema dieses Abschnitts ist eine automatentheoretische Charakterisierung der
Klasse DRec(IR). Wir zeigen, dafl die deterministischen reellen Spursprachen ge-
nau den abgeschlossenen (Wort-) Sprachen entsprechen, die von deterministischen
I-Diamant Biichi Automaten mit verallgemeinerter Akzeptanz erkannt werden.
Dabei bezeichnen wir hier als Biichi Automat ein 4-Tupel A = (Q, 9, qo, Fo, F)
mit Endzustandsmenge Fy C @ und Tafel F C P(Q) x P(X). Ein unendliches
Wort w € ¥¢ wird akzeptiert, wenn (F, A) € F und ein mit w markierter Be-
rechnungspfad 7 derart existieren, dal F' C inf(7) und D(alphinf(w)) = D(A)
gelten. Endliche Wérter werden mittels Fy akzeptiert.

Man beachte, dafl die Operationen Vereinigung und Durchschnitt bei diesem Au-
tomatentyp durch die Standard-Produktautomaten-Konstruktion erfolgen kénnen,
wobei im Falle des Durchschnitts die /-Diamant Eigenschaft aufgrund der verall-
gemeinerten Akzeptanzbedingung aufrechterhalten werden kann.

Weiterhin sei angemerkt, dafl mit Satz 3.1.1 gilt: Die von I-Diamant Automaten
erkannten, abgeschlossenen Sprachen sind Urbilder deterministischer Sprachen.
Mit den folgenden Sétzen erreichen wir auch die Umkehrung.

Zunichst vereinbaren wir einige Bezeichnungen. Fiir ) # A, C' C ¥ seien folgende
Mengen definiert:

My = {t € M(X, D) | D(alph(t)) € D(A) A (C'1 D(A)) \ alph(t) # 0},
(mit der Konvention My = {1}), und
Max(C) = {p~1(t) | t = Up>otn, mit max(t,) C C, fiir alle n > 0} C 3.

Weiterhin sei X% = ¢ ' (R4) und Infc(A4) = {w € 3> | A C alphinf(w)}.

Satz 3.3.1 Seien L C M(X, D), A,C C ¥ so, daff max(t) = C, fir allet € L.
Dann gilt:

-7 -1 %
o (L NRa)=¢ (LMac) N Max(C) NInfc(C N D(A) NES.

Beweis: Die Inklusion von links nach rechts kann leicht nachgepriift werden.

Ohne Einschrinkung sei A # ). Sei p = U,>op, mit p, € ¢ 1 (LM4), n > 0. Es
gelte p € Max(C) N X% mit C' N D(A) C alphinf(p). Mit p, € ¢ (LM,) exi-
stieren Spurfolgen (¢,)n>0 C L, (wy)n>0 € Ma ¢ mit p(p,) = t,w,, d.h. p(p) =:
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r = Up>otpwy. Sei ohne Einschrankung a € (C' N D(A)) \ alph(w,) fir alle
n > 0. Mit Satz 2.1.11 existiert eine Darstellung von = mit geeigneten Folgen
($1)n>0, (Un)n>0, (Vn)n>0 € M(X, D) so, daB gilt: alph(s,) = As und alph(v,) =
A, fir n > 1, bzw. alph(u,) = A, C A, fir n > 0 (vgl. Bem. 2.1.12); weiterhin
gilt (A, Ualph(vg)) x A C I und

t, = SouoS1 -+ S, und w, = U, VoUy -+ Up.

Man beachte zunichst, dal Ay # ). Denn sonst folgt aus A, = () (damit auch
A, = 0) zusammen mit a ¢ alph(w,) ein Widerspruch zu a € C N D(A) C
alphinf(z) = A,.

Nach Voraussetzung gilt auch p € Max(C'). Man beachte zunéchst, dafi A, x C' C
I gelten muB (falls A, # 0)). Ansonsten folgt aus b € A, C alphinf(x) und ¢ € C'N
D(b) unmittelbar ¢ € CND(A) C alphinf(z), und mit max(¢,) = C, auch ¢ € As.
Dies widerspricht jedoch der Beziehung Ay x A, C I. Die letzte Uberlegung fihrt

nun zy z FEVE©) Un>00c (thwy,) = Oc(SouovoS1uy « +  Sp—1Un—15y,), und damit auch
v, = 1, fiir alle n > 1. Wegen D(alphinf(x)) = D(A), zusammen mit (w,),>o C
M, ¢, folgt auch vy = 1 und damit die Aussage. O

Satz 3.3.2 Jede deterministische reelle Spursprache kann mit einem determini-
stischen I-Diamant Biichi Automaten mit verallgemeinerter Akzeptanz erkannt
werden.

Beweis: Nach Satz 3.3.1 geniigt es, einen verallgemeinerten Biichi Automaten
mit den obigen Eigenschaften fiir Sprachen der Art Max(C), C' C X, anzuge-
ben. Wir betrachten den Automaten A = (Q = P(X),-, 0, Fy, F) mit folgender
Ubergangsfunktion:

A-a=(ANI(a))U{a}.

Offensichtlich gilt fir w € ¥*: 0 - w = max(p(w)). Die Tafel F C P(Q) sei
definiert wie folgt: F' € F genau dann, wenn fiir alle A € F', a € A Teilalphabete
A = Ay, Aq,..., A; und Buchstaben a; € A;, 0 < i < k, derart existieren, dafl
gilt:

o A, € F, firalle 0 <i<k,
o (aj,a;41) € D, firalle0 <i<k—1,
e qp =aund a, € C.

Die Endzustandsmenge sei definiert durch Fy = {4 | A C C}. Mit der obigen
Eigenschaft der Ubergangsfunktion ist es nicht schwer zu sehen, dafl L(A) =
Max(C) gilt. O
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Korollar 3.3.3 Die Familie {¢'(L) | L € DRec(R)} ist dquivalent zur Fa-
milie der Sprachen, die von deterministischen I-Diamant Biichi Automaten mait
verallgemeinerter Akzeptanz erkannt werden.

Wir schlieflen dieses Kapitel mit einer weiteren Anmerkung zum Automatenmo-
dell.

Betrachte die deterministischen /-Diamant Biichi Automaten mit Tafel F C @) x
P(X). Ein Wort w € ¥¢ wird mit einem Tafelelement (f, A) akzeptiert, wenn
f € inf(w) unendlich oft wiederholt wird und D(alphinf(w)) = D(A) gilt. Wir
zeigen, dafl dies ein schwicheres Automatenmodell ist als das zuerst eingefiihrte.

Beispiel 3.3.4 Sei das Abhéngigkeitsalphabet (X, D) = a —c¢ b —d und die
Wortsprache L., = {w € X¢ | |w|, = |w|, = w} gegeben. Es gilt: L, ist das
Urbild einer deterministischen reellen Spursprache, aber kein deterministischer
I-Diamant Biichi Automat A = (Q, 0, qo, F) mit Tafel F C @ x P(X) erkennt
L,p. Denn gibe es einen solchen Automaten A4, so wiirde eine abgeschlossene,

erkennbare Wortsprache L C >X* mit Ly, = f N E?Z,b} existieren. Mit dem Theo-
rem von Mezei [Ber79] 148t sich aber ¢(L) € Rec(IM) als endliche Vereinigung
direkter Produkte K x M mit K € Rec({a,c}*), M € Rec({b,d}*) schreiben. Da-
mit 148t sich die abgeschlossene Sprache L = ¢~ 'p(L) als endliche Vereinigung
von o (K M) darstellen.

Nun betrachte das Wort v = a"c"b"d" und v~ € L, = f N E‘{’Z’b}, fiir ein
n > 0. Ohne Einschrankung sei 0 < ¢ < n so, dal u™a"c"b"d? € L fiir unendlich
viele m > 0 erfiillt ist (der Fall u™a™c"b? € L verlduft analog). Mit der obigen
Darstellung von L folgt fiir ein Paar von Sprachen K, M mit ¢~ *(KM) C L und
fiir eine unendliche Folge m; < mg < ... aus N: u;'.a"c" € K bzw. u,b"d* € M
fiir m = m; (u,, bezeichne die Projektion von u auf {z,y}*).

Sei mg fest und n geniigend grofl so, daf fiir ein geeignetes p € IN gilt: ug”fga"c”*pN
C K (beachte K erkennbar). Andererseits gilt uy b"d? € M fiir i > 1. Mit
@ Y(KM) C L folgt abschliefend

(uzga"c")(cpub"féﬂ)(cpug?j*ml) . (c”uglf_mk‘l_lbndq) e L,

und damit folgt z := (ugfga”c")(cpugléﬂ)(cpug?j_ml) s (Puyg YL €

AuBerdem gilt z € Ry cqp = Ryqpy, aber gleichzeitig z ¢ Lq .

—
L.



Kapitel 4

Sternfreie und aperiodische reelle
Spursprachen

Im Rahmen der Untersuchung erkennbarer Sprachen entsteht durch die Ein-
schrankung auf rationale Ausdriicke, die keine Iteration enthalten diirfen und
dafiir die Komplement-Operation erlauben, eine besonders interessante Sprach-
familie. Die sternfreien Sprachen wurden auf vielfache Art charakterisiert, u.a.
im Kontext des freien Monoids ¥* und der w-Wortsprachen. Vom algebraischen
Standpunkt aus ist Sternfreiheit dquivalent zu einer fundamentalen Varietiat von
Monoide, der aperiodischen (d.h. gruppenfreien) Monoide. Schiitzenberger’s be-
kanntes Theorem iiber die Aquivalenz von Sternfreiheit und Aperiodizitdt im
freien Monoid [Sch65] ist eines der klassischen Ergebnisse der Varietétentheo-
rie. Die Erweiterung zu w-Wortsprachen ist ein Ergebnis von D. Perrin [Per].
Ein analoges Resultat wurde auch fiir freie, partiell kommutative Monoide erzielt
[GRS91].

Eine weitere bedeutungsvolle Charakterisierung der Sternfreiheit entsteht im
Rahmen der Logik, wenn sie auf die Logik 1. Stufe eingeschrénkt wird. Wéahrend
die monadische Logik 2. Stufe die gesamte Familie der erkennbaren reellen Spur-
sprachen erfaft, erweist sich die Einschrankung auf Logik 1. Stufe dquivalent zur
Sternfreiheit [EM93].

Wir wollen in diesem Kapitel den Zusammenhang zwischen Sternfreiheit und
Aperiodizitdt betrachten und verweisen auf die Charakterisierung im Rahmen
der Logik in [Tho90b, TZ90, EM93].

Im folgenden bezeichnen wir mit SF(M) die Familie der sternfreien Sprachen
endlicher Spuren, d.h. SF(IM) ist die kleinste Familie von Sprachen aus M(X, D),
die die leere Menge (), sowie die einelementigen Mengen {a}, a € X, enthilt,
und unter Konkatenation und Booleschen Operationen abgeschlossen ist [GRS91].
Analog definieren wir:

Definition 4.0.5 Die Familie der sternfreien reellen Spursprachen, SF(R), ist
die kleinste Familie F C P(R(X, D)) mit den Eigenschaften:
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1. SE(M) C F.
2. Firalle L,K € F mit L C M(X,D) gilt LK € F.

3. F ist abgeschlossen unter den Booleschen Operationen U, N und dem Kom-
plement ©° (wobei die Komplementierung bzgl. R(3, D) durchgefiihrt wird).

Bemerkung 4.0.6 Man beachte, da8 fir L € SF(R), L € M(3, D), das Kom-
plement bzgl. M(X, D) durch L N M(3, D) gegeben ist.

Ein Monoid S heifit aperiodisch, wenn es fiir ein n > 0 die Gleichung 2" = 2" *!
erfiillt. Es ist leicht zu sehen, dafi dies genau die Monoide charakterisiert, die nur
triviale Untergruppen enthalten.

Definition 4.0.7 FEine reelle Spursprache L € R(X, D) heifit aperiodisch, wenn
ein endliches, aperiodisches Monoid S und ein Homomorphismus n: M(X, D) —
S emistieren so, daff L von n erkannt wird.

Die Familie der aperiodischen reellen Spursprachen wird mit AP(IR) bezeichnet.

Bemerkung 4.0.8 Wir erhalten eine dquivalente Definition, wenn wir fordern,
daf das syntaktische Monoid Synt(L) endlich und aperiodisch ist.

Zusétzlich zu den Notationen des Abschnitts 2.1 werden wir im folgenden fiir
einen Homomorphismus 7 : ¥* — S zu einem (endlichen) Monoid S und fiir
s € S folgende Bezeichnungen verwenden:

X, =n""(s), P, = X,\ X, 2.

Damit enthélt P, alle Worter, die durch n auf s abgebildet werden, aber keinen
echten Prafix mit dieser Eigenschaft besitzen.

Weiterhin bezeichnen wir mit SF(3°°) bzw. AP(X>°) (analog SF(X*) bzw. AP(X*))
die Familie der sternfreien bzw. aperiodischen Sprachen (un)endlicher Worter
(bzw. endlicher Worter) . Fiir den folgenden Satz setzen wir voraus, da8 fiir jeden
Homomorphismus 1 : M(3, D) — S gilt: mit n(¢t) = n(t’) folgt alph(¢) = alph(t'),
fiir alle ¢, ¢ (sieche Abschnitt 2.1; beachte auch, dafl die Aperiodizitéit des Monoids
erhalten bleibt).

Theorem 4.0.9 Sei L € Rec(R) eine erkennbare reelle Spursprache. Folgende
Aussagen sind dquivalent:

1. L € SF(R).
2. L € AP(R).

3. Synt(L) ist aperiodisch.
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4. L ldfit sich als endliche Vereinigung von Sprachen K N¥ darstellen, wobei
K,N* € SF(M).

5. L ist eine Boolesche Kombination von Sprachen der Form ? N R4, wobei
K € SF(M) und A C X..

Beweis: Die Aquivalenz von 2. und 3. ist eine Konsequenz der Eigenschaft der
syntaktischen Kongruenz einer Sprache L C Rec(RR), die grobste Kongruenz zu
sein, die L saturiert [Gas91].

2 = 4: Diese Implikation folgt unmittelbar aus der bekannten Darstellung einer
erkennbaren reellen Spursprache als endliche Vereinigung von Sprachen der Art
M,M¥, zusammen mit der Aquivalenz zwischen AP(IM) und SF(IM).

5= 1:Sein: M(X, D) — S ein Homomorphismus zu einem endlichen, aperiodi-

schen Monoid S, der K € SF(M) erkennt. Das Komplement von ? kann nun
folgendermaBen dargestellt werden (vgl. [Per]):

E = (Mm ( U Mle<E7D>)CO) |

z€S y mit zyen(K)

dat € R(X,D)\ K genau dann gilt, wenn ein endliches Préfix v < ¢ von ¢
derart existiert, daf fiir alle uv’ < ¢t mit v € M(X, D) folgt: uu' ¢ K. Mit
SF(M) = AP(M) folgt anschliefiend die Behauptung.

1 = 2: Fiir diese Implikation geniigt es zu zeigen, dafl aus L € SF(R) die
Sternfreiheit von p~'(L) C £ folgt. Die Begriindung liegt in der Aquivalenz
SF(X*®) = AP(X*), zusammen mit der Tatsache, da L und ¢ !(L) dasselbe
syntaktische Monoid besitzen.

Im folgenden fiithren wir Induktion iiber den sternfreien Ausdruck, der L darstellt.
Sei zuniichst L € SF(M). Mit SF(IM) = AP(IM) folgt direkt p~!(L) € SF(X*) =
AP(YX").

Seinun L = Ly U Ly (bzw. L = Ly N Ly, bzw. L = L$°), mit ¢~ *(L;) € SF(X>),
i = 1,2. Damit folgt ebenfalls ¢! (L) € SF(X>), aufgrund der Vertauschbarkeit
von ¢~ ! mit den Booleschen Operationen.

SchlieBlich sei L = L;Ly. Im folgenden bezeichnen wir L} = ¢'(L;) € SF(X¥),
bzw. Ly = ¢~ (L) € SF(X). Weiterhin sei LLp die D-Shuffle Operation, die fiir
K, Ky C X*° definiert ist durch

*
KlLUDKQ = {uovoulvl...|un,vn€§] , UpUq - .. EKh Vo1 - . . EKQ

und alph(v,) x alph(u,,) C I, fir n < m}
Insbesondere gilt hier wegen L] C ¥*:

Liwp Ly = {uvp . . . upvw | ug, v € X%, w € X°°, uguy ... uy, € LY,
vov1 - .. vyw € Lh und alph(v;) x alph(ug) C I, firi <k <n} .
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Es sei nun fir ¢ = 1,2, ; : ¥* — S; ein Homomorphismus, der L} erkennt.
Aufgrund der Aquivalenz SF(X>) = AP(X>°) konnen wir voraussetzen, da8 Sy, Sy
aperiodische Monoide sind.

Wir bezeichnen im folgenden mit P C Sy x Sy die Menge P = { (s2,€3) € Sy xSy |
S22 = S, €3 = €3, X, X¥ N Ly # 0}. Ohne Einschréinkung sei X; = 7, ' (1) =
{1}, wobei mit 1 die Identitdt in Sy (bzw. das leere Wort) bezeichnet wird. Wegen
Xy = {1} kann L; C 3> dargestellt werden als L) = Uy, e,)ep X Xo- Fiir L)
gilt natiirlich L} = ny *n;(L}). Offensichtlich kann nun die Wortsprache ¢~!(L) =
L wp L}, dargestellt werden als

Lll LLp LIQ = U U (Xsl LLp XSQ)X;; .

s1eni(Ly) (s2,e2)€EP

Die Wortsprachen L}, i = 1,2, sind aber abgeschlossen, d.h. es gilt ¢~ 1p(L}) = L.
Damit sind fiir s; € S;, 1 = 1,2, X, bzw. X, ebenfalls abgeschlossen. Aus
[GRS91] folgt unmittelbar die Sternfreiheit des D-Shuffle zweier sternfreien, ab-
geschlossenen Wortsprachen, und damit gilt X, wup X, € SF(3*). Weiterhin ist

ez € So idempotent, und es 1Bt sich zeigen, da§ X¢ = X.,IP., € SF(X*) eben-
falls sternfrei ist [Per]. Zusammen mit der obigen Darstellung fiir ¢ (L) folgt
die Behauptung.

4 = 1: Es geniigt zu zeigen, daf§ N“ sternfrei ist, wobei ohne Einschrénkung N =
N* € SF(M) gilt. Sei S ein endliches, aperiodisches Monoid und n : M(X, D) —
S ein Homomorphismus, der N erkennt. Fiir s € S bezeichnen wir mit Ny C
N die Teilmenge N N #7~'(s). Wir kénnen nun wegen N = U ep NN mit
P = {(s,e) € n(N)?* | se = s,e € E(S)} uns auf N¥ mit idempotenten e €
E(S) einschrénken. Fiir A C X sei N/, = (N. \ N.My) N {t € M(%,D) |
D(alph(t)) € D(A)} die Untermenge von N., deren Elemente ¢ keinen echten
Prifix in N, besitzen und fiir die D(alph(t)) C D(A) gilt. Mit der Implikation 5
= 1 (zusammen mit R4 € SF(IR)) geniigt es zu zeigen:

—
N = | (NN, 4N Ra).
ACY

Die Inklusion der linken in der rechten Seite ist leicht zu sehen. Fiir die umgekehr-
te Inklusion kénnen wir mit zwei Folgen (¢,)n>0 € Ne bzw. (wy)n>0 € N/ 4 und
xz = [{thw, | n > 0} Korollar 2.1.14 anwenden. Damit existieren Spurfolgen
(Sn)nzo, (Un)nzo Q M(E7 D) mit:

bn = SoUp "+ Sp—1Up—18, ~ und Wy, = Uy,

(eventuell unter Verwendung einer Unterfolge von Indizes). Mit der iiblichen Zu-
sammenfassung von Faktoren findet man eine Indexfolge (n;);>¢ so, dafl fir geeig-
nete s € S, f € E(S) mit sf = s gilt: n(souo - - - 5py) = s und 9(tn, Sp, 41~ Snppy) =
f, fiir alle s > 0. Es folgt s = e, daher auch ef = e. Andererseits gilt f = n(u,)zr =
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ez fiir ein z € S, damit auch ef = f (wegen e € F(S)) und schlielich folgen
e= fund z € N¥.

2 = 5: Folgt direkt mit Theorem 2.2.3, zusammen mit der Aquivalenz zwischen
Sternfreiheit und Aperiodizitat in M(3, D). O
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Kapitel 5

Komplementierung asynchroner
Biichi Automaten

Die Komplementierung nichtdeterministischer Biichi Automaten fiir w-Wortspra-
chen markierte in den 60’er Jahren den Anfangspunkt der Untersuchung von
Erkennbarkeit im Kontext unendlicher Worter [Biic60]. Urspriinglich fiir die Ent-
scheidbarkeit der monadischen Logik zweiter Stufe mit Nachfolgerelation benotigt,
erwies sich eine effiziente Komplementierung fiir Biichi Automaten als grundle-
gend in verschiedenen Theorien temporaler Logik.

Von den existierenden Losungen des Komplementierungsproblems fiir Wortauto-
maten haben wir die elegante Methode des Fortschrittsmafles von N. Klarlund
[Kla91] ausgewéhlt, um asynchron-zelluldre Biichi Automaten zu komplementie-
ren. Der Ausgangspunkt dieser Konstruktion ist ein klassischer Potenzautomat,
wodurch bei asynchron-zelluldren Automaten die erste Schwierigkeit auftritt. Das
Problem der Determinisierung fiir asynchron (zelluldre) Automaten war lange
Zeit offen. Etwa zur selben Zeit, zu der die vorliegende Arbeit entstand, ist eine
weitere Potenzautomaten-Konstruktion fiir asynchrone Automaten durch Klar-
lund et. al. entstanden [KMS94]. Die Ergebnisse dieses Kapitels erscheinen in
[Mus94]. Im folgenden Abschnitt stellen wir eine Determinisierungs-Konstruktion
fiir asynchron-zelluléire Automaten vor, die auf dem Begriff der asynchronen Ab-
bildung von Zielonka (vergleiche Abschnitt 1.2) beruht.

5.1 Determinisierung asynchron-zellulirer Automaten

Ein wesentlicher Aspekt in der Konstruktion von Zielonka fiir asynchron-zellulare
Automaten ist durch eine zeitliche Markierung mit beschrianktem Wertebereich
gegeben. Diese erlaubt, die Aktualitit von indirekt iibertragener Information fest-
zustellen, indem z.B. fiir zwei Prozesse a, b bestimmt wird, welcher von den bei-
den das letzte Vorkommen des Prozesses ¢ “gesehen” hat. Im folgenden werden
wir fir A, B C X mit d4 p5(t) den Préfix 04(95(t)) von t € M(X, D) bezeich-
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nen, sowie statt oy (t), direkt 9,(t) schreiben. Die Abbildung v : M(X, D) —
{0,...,[3[}¥*%, die die Zeitmarkierung realisiert, ist nun induktiv definiert:

e v(1)(a,b) =0.
o Fiir ¢t # 0,(t) sei v(t)(a,b) = v(0.p(t))(a, a).
o Fiir t = 0,(t) mit t # 1 sei

v(t)(a,a) = min{n > 0| n # v(t)(a,c) fur alle ¢ # a}.

Der Wert v(t) der Zeitmarkierung fiir eine Spur ¢t € M(X, D) stellt grundlegende
Informationen iiber Ordnungs-Beziehungen zwischen Prifixen 0,(t) von t, a € ¥,
bereit. Genauer gilt fiir t € M(X, D), a,b,c € %:

Ocalt) = Ocp(t) — v(t)(c,a) = v(t)(c,b)

Beachte weiterhin die leicht tiberpriifbare Beziehung v(04(t))(c, a) = v(t)(c, a) fir
a € A. Esselennun t € M(X, D), A, B C ¥ gegeben. Weiterhin seien die Mengen
Cop = {c € X | 0ca(t) = 0cp(t)} fiir alle a,b € AU B bekannt (beispielsweise
durch den Wert v(t), oder alternativ, iiber die Werte v(04(t)), v(0p(t))). Damit
kann fiir jedes ¢ € ¥ bestimmt werden, welcher der drei verschiedenen Fille
vorliegt: 0. a(t) = 0e.p(t), 0.a(t) < O, p(t) oder 0. p(t) < O a(t).

Faktum 5.1.1 ([CMZ93, Die90]) Die Abbildung v ist asynchron.

Fiir die Determinisierung von nichtdeterministischen asynchron-zellularen Auto-
maten nehmen wir die Zeitmarkierung v als Basis und erweitern sie durch eine
Abbildung p, die alle Abldufe des gegebenen asynchron-zelluldren Automaten
A= ((Qu)aes, (0a)aes, qo, F') beschreibt.

Im folgenden werden wir die Menge der globalen Zustdnde dea Automaten A,
[Taes Qu, mit @ bezeichnen. Weiterhin bezeichnen wir mit R4(t), t € M(X, D),
die Menge der Abldufe des Automaten A auf der Spur ¢, die im Startzustand
go beginnen. Ein Ablauf r € R4(¢) im Automaten A wird dabei als Abbildung
r: Vi — Uaez Q. angesehen, d.h. als Beschriftung des Abhéngigkeitsgraphen
Vi, By, \y] von ¢ mit lokalen Zusténden so, dal r sowohl mit der alphabetischen
Beschriftung ), als auch mit den lokalen Ubergangsrelationen (0a)aecs konsistent
ist. Genauer, sei (a,n,) € V; ein Knoten und betrachte die Ablaufbeschriftung
qp = 1(b,np), wobei (b, np) der letzte mit b beschriftete Knoten vor (a, n,) ist, falls
ein solcher existiert. Ansonsten sei ¢, = (qo), festgelegt. Dann wird gefordert, dafl
die Abbildung r die Beziehung r(a,n,) € da((q)ben(a)) erfiillt.

Weiterhin bezeichnen wir fiir v € M(X, D) und einen Ablauf r € R(u) mit
d(r,u) € @ den globalen Zustand, der im Ablauf r auf der Spur w erreicht wird.
Sei nun p : M(Z, D) — P(Q¥) definiert fiir t € M(X, D) durch

p(t) = {f € Q¥ | Ir € Ru(t) so, daB f(a) = §(r,0,(t)), Va € L}.
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Damit entspricht jedes Element f von p(t) einem Ablauf r auf ¢ so, daf fiir alle
a,b € ¥ gilt: f(a), ist der lokale b-Zustand, der im Ablauf r auf dem Préfix 0y ,(t)
von t erreicht wird. Der folgende Satz legt die Basis des Potenzautomaten des
Automaten A = ((Qu)aes, (0a)aes, o, F)-

Satz 5.1.2 Die Abbildung (v, p) ist asynchron. Zusdtzlich gilt:
L(A) = {t e M(2, D) | 3¢/ = (¢])acs € F, 3f € p(t) : f(a)a=q], VaeX}.

Beweis: Durch Faktum 5.1.1 ist bereits bekannt, dal die erste Komponente
der obigen Abbildung (v) asynchron ist. Es seien nun t € M(X, D), a € %,
A, B C ¥. Angenommen, der Wert p(Jp(,)(t)) und der Buchstabe a sind gegeben,
so definieren wir R C Q> durch g € R genau dann, wenn fiir ein f € p(dp(q)(t))
gilt:

o g(b) = f(b), fiir b # a;
o g(a) =q = (qI/)xez, wobei

1. ¢.' = f(¢), fir  # a, mit ¢ € D(a) so, daBl 0, ,(t) < 0,.(¢) fiir alle
be D(a) (dh., esgilt 0,.(t) = 0r,p(a)(t));

2. q)' € 5a((f(b)b)beD(a))-

Fiir jedes Paar f,g wie oben, mit ¢ = f(a) und ¢ = g(a), werden wir im

nédchsten Abschnitt die Bezeichnung ¢ (i; ¢ verwenden. Dies bedeutet, daff fiir
einen Ablauf r € R4(0,(ta)) von A auf dem Prifix d,(ta) gilt: ¢ = 6(r, 9,(t)) und
q = 0(r, 0,(ta)).
Es ist leicht zu sehen, dafl R = p(0,(ta)) gilt, da Ablaufe auf 0,(ta) genau durch
Erweiterung von Ablaufen auf dem Préfix Op(,)(t) mittels einem a-Ubergang
entstehen. Man beachte weiterhin, daf3 die obige Bedingung mit der Beziehung
v(t)(z,0) = v(Op(a(t))(x,b), fiir alle b € D(a), iiberpriift werden kann (siehe
auch die Bemerkung vor Faktum 5.1.1).
Wir betrachten nun A, B C X, t; = 0a(t), to = 0p(t), s = t; Mty mit ¢; = su und
to = sv, wobei alph(u) x alph(v) C I gilt. Weiterhin bezeichnen wir mit C' die
Menge

C={ceX|0.(t1) = 0.(ta) }.

Angenommen, die Werte p(t;), p(ts) sind gegeben. Dann definieren wir R C Q*
durch f € R genau dann, wenn fiir gewisse f; € p(t;) (i = 1,2), die die Beziehung
fi(c) = fa(c) fiir alle ¢ € C erfiillen, gilt (a,b € X):

fl (a)b falls 8a(t2) S 6a(t1)
f(a)b = { fg((l)b falls aho(tg) < 8;,7,2(252)
fi(d)y sonst, fiir ein d mit 0y 4(t2) = Op.a(t1).
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Wir werden anschlieend zeigen, daf§ f auch im letzten Fall der obigen Festlegung
wohldefiniert ist. Zunéchst sei die Bedeutung der Definition erklédrt. Die Grundi-
dee besteht darin, daf Abldufe des Automaten auf den Spuren t; bzw. t5 mitein-
ander kombinierbar sind, falls sie denselben globalen Zustand auf dem gemeinsa-
men Prifix s = ¢; Mty erreichen. Mit der Beziehung 0c(t1) = 0c(t2) = Oc(s) = s
(vgl. [CMZ93, Die90]) gilt fiir zwei Abldufe r; € R4(t;) und dazugehorige Abbil-
dungen f; mit f;(a) = 6(r;, 04(t;)), a € X:

file) = fale),Yee C = 6(r1,8) = d(re, s)

(Man beachte, dafl mit max(s) C C auch 0,(s) = 04c(s) = Ou(t;) fiir ein ge-
eignetes ¢ € C, i = 1,2 gilt.) Damit ist die Abbildung r, die die Knoten des
Abhéngigkeitsgraphen von t; U t5 mit lokalen Zustinden geméfl dem Ablauf
auf dem Faktor su bzw. gemafl r, auf dem Faktor v beschriftet, ein wohldefinier-
ter Ablauf des Automaten A auf t; Ll t5. Die obige Abbildung f entspricht aber
genau dem Ablauf r, da fiir alle a,b € X gilt:

1. 8b7a(t) = 81,7,1(151), falls 8a(t2) S 8a(t1);

2. Opa(t) = Opa(ta), falls Opc(ta) < Opa(tz). Beachte, dal in diesem Fall gilt:
Opalt) £ s.

3. SchlieBlich seien 0,(t1) < Ou(t2) und Op4(t2) < Op(t2) erfiillt. Ohne Ein-
schrankung sei Op4(t2) # 1 (ansonsten wihle d = a) und betrachte die
Menge C" = {d € X | 044(t2) = Ouc(t2) (= 04(s))}. Im folgenden be-
zeichnen wir mit s den gemeinsamen Prifix von s und 9,(t2), d.h. es sei
s = 5M0,(t2), mit s = 'z bzw. 0,(ty) = s’y fiir geeignete z,y € M(3, D),
wobei alph(z) x alph(y) C I. Man beachte, dal max(s") C C".

Aufgrund der Beziehung 0y, (t2) < Ohc(t2) = Oh(s) gilt offensichtlich auch
Opa(ta) = Ob(s") = Opor(s), und damit auch s’ # 1 bzw. C" # 0. Es folgt
Opa(te) = Opa(s’) = Opa(s) fiir ein geeignetes d € max(s’) C C’. Es geniigt
zu zeigen, dafl 04(s) = 04(t1) gilt. Aufgrund der Definition von C', ¢ x,y
folgt unmittelbar C’ N alph(z) = (). Nehmen wir nun an, da8 d € alph(u)
gilt. Wegen d € max(s’) existiert auch ein e € alph(y) (damit e € alph(v))
mit (d,e) € D (ansonsten wiirde 0,(t2) < s gelten). Damit wire ein Wi-
derspruch zu d € alph(u) erreicht. Schlielich folgt daraus mit t; = s'zu
die Beziehung 0,(t1) = 9a(s’) (= 0a(s)). Somit erhalten wir die gewiinschte
Gleichheit abja(tg) = 8b7d(t1).

Ein Buchstabe d mit 1 # 0 4(t2) = 0p.4(t1) wird nun konkret wie folgt berechnet:
unter Verwendung von v(ty), v(t2) bestimmen wir zunéchst C' und das Alphabet
von v, alph(v) [CMZ93]; unter erneuter Verwendung von v(ty) wird anschlieBend
C" berechnet. Schlielich wihlen wir d € C'ND(alph(v)) so, dal Oy (t1) < Opa(t1)
(unter Verwendung von v(t;)). Damit folgt:

Bpa(t1) T 0, () 1€ By galts) < Dpalts) < Bpo(ts) = Dro(ty) < Dpa(ty).
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Theorem 5.1.3 Gegeben sei ein nichtdeterministischer asynchron-zelluldrer Au-
tomat A = ((Qu)aes, (0a)acs, o, F). Dann kann ein deterministischer asynchron-
zellulirer Automat A = (Qu)acs, (0a)acs, Go, F) effektiv konstruiert werden so,
dap L(A) = L(A). Der Automat A besitzt 2°N™) globale Zustinde, wobei N die

Anzahl der globalen Zustinde von A ist.

Beweis: Folgt direkt aus Satz 5.1.2 zusammen mit Bemerkung 1.2.1. O

Abschlieflend sei an dieser Stelle angemerkt, dafl die Konstruktion von Zielonka
ebenfalls angewendet werden kann, wenn der gegebene asynchron-zelluldre Auto-
mat als Wortautomat angesehen wird und mittels einer gewhnlichen Potenzauto-
maten-Konstruktion determinisiert wird. Unter Verwendung des minimalen Au-
tomaten kann anschlieBend eine Variante der Konstruktion von Zielonka [CMZ93]
angewendet werden, wodurch ein einfach exponentieller Anstieg der Zustandsan-
zahl entsteht. Man beachte jedoch, dafl in der hier vorgestellten Konstruktion nur
erreichbare Zustande eingehen, im Gegensatz zum vorher beschriebenen Ansatz.

5.2 Komplementierung asynchron-zelluldrer Biichi Auto-
maten

Fiir die Komplement-Konstruktion fiir asynchron-zellulare Biichi Automaten ver-
wenden wir die Methode des Fortschrittsmafies (progress measure), die von Klar-
lund [Kla91] eingesetzt wurde, um Biichi bzw. Streett Wortautomaten effizient zu
komplementieren. Die Grundidee seiner Konstruktion besteht in der Berechnung
eines Fortschrittsmafles auf einem gerichteten, azyklischen (Berechnungs-) Gra-
phen G = (V, E), dessen samtliche Pfade darauf iiberpriift werden sollen, daf} sie
eine vorgegebene Bedingung stets nur endlich oft erfiillen. Das Fortschrittsmafl
ist die lokale Zusicherung der global zu erfiillenden Bedingung, und die Existenz
eines geeigneten Fortschrittsmafles ist gleichbedeutend damit, dafl jeder Pfad die
vorgegebene Bedingung nur endlich oft bestétigt. Intuitiv quantifiziert das Fort-
schrittsmaf} eines Knotens v € V| wieweit dieser Knoten davon entfernt ist, dafl
alle von ihm ausgehenden Pfade die obige Eigenschaft besitzen.

Unser Ausgangspunkt ist ein asynchron-zellularer Automat A mit einer leicht mo-
difizierten Biichi Akzeptanz-Bedingung. Diese gibt fiir jeden Buchstaben hochstens
einen lokalen Zustand vor, der unendlich oft wiederholt werden muf}. Zusétzlich
spezifiziert die Akzeptanzbedingung das Alphabet, das unendlich oft wiederholt
wird, d.h. die Menge alphinf(¢). Formal gesehen werden wir einen Automaten
A = ((Qu)aes (0a)aes, G0, T) mit T C Q x P(X) x P(X) betrachten (wobei
Q = [uex Qo die Menge der globalen Zusténde in A bezeichnet). Im folgenden

sei A :U,I;l A; die Zerlegung von A in Zusammenhangskomponenten (d.h. jedes
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A, ist als Abhéngigkeitsgraph zusammenhéngend, und es gilt A; x A; C I fiir alle
i # 7). Ein Element der Tafel T wird ein Tripel (¢, A, {a1, ..., ax}) sein, mit der
Einschrinkung a; € A;, fiir alle 1 <7 < k.

Im folgenden verwenden wir die Bezeichnung R 4(t) fiir die Menge der Abldufe
von A auf einer reellen Spur t € R(X, D) (durch Erweiterung der im vorigen
Abschnitt angegebenen Definition eines Ablaufs). Ein Ablauf r € R4(t) wird mit
dem Tafelelement (¢, A, {ay,...,a;}) akzeptieren, wenn A = alphinf(t) erfiillt
ist und jeder lokale Zustand ¢/ mit a € AU {ay,...,a;} unendlich oft wiederholt
wird (bzw. einen Haltezustand darstellt), d.h.,

e A = alphinf(¢) und
e Fiirallea € AU {ay,...,a} gilt ¢/ € inf,(r) mit

inf,(r) :={¢a € Qo | Vn < [t|o In < m < |t|o : r(a,m) = q.}.

Man beachte, daB der Ubergang von der klassischen Biichi Bedingung mit Tafel
T C Iaes P(Q.) zur obigen Bedingung einfach durch Verwendung der Buch-
staben a; (1 < i < k) geschieht, indem die Information iiber die durchlaufenen
Zusténde Uy a, To (wobeil T' = (15)4ex € T) durch a; gesammelt wird. Die um-
gekehrte Transformation ist trivial, da lediglich die Menge der Buchstaben, die
unendlich oft auftreten, zusdtzlich (nichtdeterministisch) iiberpriift werden muf.
Firt € R(X,D), a € 3,0 <n < |t|, sei tla,n] = M{u <t | |ul, =n+1} der
kleinste Préfix von ¢, der die ersten n 4+ 1 Vorkommen des Buchstaben a enthilt
(beachte max(t[a,n]) = {a}). Weiterhin sei

Ua(t) = {(g,n) | n < [tla; ¢ € 6(qo,t[a,n])}

die Menge der globalen Zustéinde, die auf den Préfixen t[a,n| erreicht werden
kann. Insbesondere fir a = a;, 1 <i < k, verwenden wir die Abkiirzung U;(t) fiir
U,,(t).

Fiir alle n+1 < |t|a, ¢, ¢ € Ua(t) mit ¢ € (¢, t[a,n]~! t{a,n + 1]) verwenden wir
im folgenden die Notation (g, n) (g n+1).

Schliefllich werden wir durchgehend den Begriff eines Berechnungs(unter)graphen
fiir (einen Untergraph von) (U,(t), a—t>) verwenden.

Der néchste Satz legt die Grundlage des Komplement-Automaten von A. Es seien
N :=|Q|und F; := {q € Q| qu, = ¢, }, wobei ¢/ = (¢})qex die erste Komponente
des einzigen Elements der Tafel T von A sein wird.

Satz 5.2.1 Sei A= ((Qu)acs, (0a)acs, @0, {(¢7, A, {ay,...,ax})}) ein asynchron-
zelluldrer Biichi Automat mit ¢/ € Q, ACY, a; € A; fiir1 <i<k.

Sei t € R(X, D) mit alphinf(t) = A. Dann gilt t ¢ L(A) genau dann, wenn eine
Familie von Berechnungs-Untergraphen (G;(t))1<i<x mit G;(t) = (Vi(t), Ei(t)),
und Abbildungen (®;)1<i<x, ©; : U;(t) — {0,1,...,2N + 1} derart existieren, dafs
folgende Bedingungen fir alle 1 <1 < k erfillt sind:
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1. e Vi(t)={(q,n) € Ui(t) | Bi(q,n) # 2N + 1},
o Ei(t) C{((g,n), (¢, n+1) € Vi(t)’ | (g,n) % (¢,n + 1)},

e Fir alle (q,n) BN (¢',n+ 1) mit (q,n) € Vi(t) gilt auch (¢',n+1) €
Vi(t).

2. Jede Abbildung ®; : U;(t) — {0,1,...,2N + 1} erfillt dabei folgende Bedin-
gungen, wobei (g,n), (¢'n+ 1) € Ui(t):

(i) ®; ist schwach monoton fallend bzgl. der Ubergangsrelation Ly
(¢:0) ¥ (¢;n+1) = @i(a.n) = ®i(din+1)
(i1) Fir(q,n) BN (¢',n+1) mit ;(q,n) = ®;(¢',n+1) gilt entweder q' ¢ F;
oder ®;(q,n) € {0,2,...,2N} U {2N + 1}.

(111) Sei(qn,n)n>0 C Vi(t) eine unendliche Folge so, daf$ (¢n,n) U (s, Nt
1), n > 0. Dann gilt

T}Lrgoq)i(qn,n) e {1,3,...,2N — 1}.

3. Es existiert ein endliches Prifixty <t vont, to € M(X, D), mit |to|a = |t]a
fir alle a ¢ A so, daf$ jeder Ablaufr € Ra(ty) eine der beiden Bedingungen
erfullt:

o Entweder gilt §(r,t0)q # ¢! fiir ein a € A,
o oder es gilt (6(r, 0, (t0)), [tola; — 1) € Vi(¢) fiir ein 1 <i < k.

Bemerkung 5.2.2 Jede Abbildung ®; ist im Sinne von Klarlund ein Pseudo-
Fortschrittsmaf, das beziiglich dem Wertebereich {0,2,...,2/N} nicht stationér
ist (vgl. [Kla91]). Der Wert des Fortschrittsmafles fiir einen Knoten v gibt an, wie-
weit die in v startenden Berechnungspfade davon entfernt sind, die entsprechende
Komponente des Endzustands ¢ nur endlich oft zu wiederholen.

Bedingung (3) des Satzes ist eine Zusicherung dafiir, dafl die nicht in den Berech-
nungs-Untergraphen G;(t), 1 < i < k, erfaften Zustdnde nicht zu einem Ablauf
r € R4(t) synchronisierbar sind. Dies bedeutet, daf jeder Ablauf r auf ¢ entwe-
der wegen inf,(r) # {¢/} fiir ein a ¢ alphinf(¢) ablehnt, oder aber wegen der
Existenz eines Indizes n;, 1 < i < k, mit (0(r, t[a;, n;]),n;) € Vi(t) (damit auch
(0(r, t[a;,n]),n) € Vi(t) fur alle n > n;).

Beweis von 5.2.1: Angenommen, es existieren Berechnungsuntergraphen G;(t),
Gi(t) = (Vi(t), Ei(t)), und zugehorige Abbildungen (®;), 1 < i < k so, dafl die
Voraussetzungen des Satzes erfiillt sind. Sei r € R4(t) ein A-Ablauf auf t. Mit
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Bemerkung 5.2.2 geniigt es den Fall zu betrachten, in dem fiir geeignete 1 <i <k
und n; € N gilt: (§(r, t[a;,n]),n) € Vi(t) fir alle n > n,.

Sei im folgenden g, := d(r, t[a;, n]) fiir n > n;. Mit der Monotonie der Abbildung
®; konnen wir annehmen, dafl ®;(g,,n) = ®;(qn,, n;) fiir alle n > n; gilt. Weiterhin
folgt mit (2iii): ®;(qn,,ni) ¢ {0,2,...,2N} U{2N + 1}, und somit erfolgt iiber
Bedingung (2ii) g, ¢ F; fiir alle n > n;. Damit haben wir gezeigt, dafl kein Ablauf
von A auf t akzeptierend ist.

Fiir die Riickrichtung sei ¢t ¢ L(.A) mit alphinf(¢) = A. Sei w; die Menge der
abzdhlbaren Ordinalzahlen. Wir folgen dem Ansatz von Klarlund [Kla91] und
definieren zunichst FortschrittsmaBe ®; mit Wertebereich w. Im folgenden ver-
wenden wir fiir (¢,n) € U;(t) die Bezeichnung N, (q,n) fiir die Menge der echten

Nachfolger von (g,n) in (U;(t) \ Vi(t),cgt), d.h.,

N+(Q>n) = {(q/7m) | m>n, Elq =dqn;qn+1y- - - dm = q/ € Uz(t) \ V;(t)
wobei (g, k) 2y (Gr+1,k+ 1), Vn < k <m}.

Der Berechnungs-Untergraph G;(t) = (V;(t), E;(t)) wird nun zusammen mit der
Abbildung ®; : Ui(t) — w; mittels transfiniter Induktion definiert. Sei Vj =
Vi(t) = 0. Nehmen wir an, die Sequenz (V,,)a<p sei fiir & < 8 < wy bereits defi-
niert, wobei die Knotenmengen V,, C U;(t) paarweise disjunkt sind und V;(t) =
Ua<gva gﬂt.

Gilt fiir alle (g,n) € Ui(t) \ Vi(t): Ny(¢,n) N F; x N 2 (), so setzen wir Vj :=
U;(t) \ Vi(t) und V,, = 0 fiir alle 5 < v < wy.

Ansonsten wihlen wir ein (¢, n) € U;(t) \ Vi(t) mit Ny(¢,n) N EF; x N = . Sei
nun V3 definiert durch

v {len)}  falls Ny(g,n) =0
g N, (gq,n) sonst,

und setze abschlieBend V;(t) = V;(t) U Vj.

Damit kann ®; : U;(t) — w; definiert werden durch ®;(¢q,n) := 3 genau dann,
wenn (q,n) € Vj gilt (beachte, daf die Mengen V,,, @ < wy, paarweise disjunkt
sind).

Das somit definierte Fortschrittsmaf ®; ist offensichtlich schwach monoton fallend
beziiglich der Ubergangsrelation 2. Gilt fiir (¢, n), (¢, n+1) € Uj(¢) mit (g, n) %
(¢,n+1) und ®;(¢,n) = ®;(¢',n+1), so folgt unmittelbar aus der Konstruktion:

q ¢ F (5.1)

Aus der Konstruktion folgt auflerdem die Existenz einer Ordinalzahl 5y < w; mit

U;(t)\ Vi(t) = Vs, so, daB By = L{a < wy | Vo # 0}. Es gilt nun entweder V3, = ()
oder zu jedem (g,,n) € Vj, existiert ein unendlicher Pfad in Vg, (¢,,n) uf
a;.t

(Gns1,m+ 1) = -+ der einen Zustand aus F; unendlich oft wiederholt:
|{m2n|Qm€Fz}|:OO (52)
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SchlieBlich wird, wie in [Kla91], das Fortschrittsma8 ®; zu einem Pseudo-Fort-
schrittsmaBl ®; : U;(t) — {0,1,...,2N + 1} abgeschwécht, wodurch ein endlicher
Wertebereich entsteht. Fiir @ < w; sei das Prédikat const(a) wahr, wenn ein
unendlicher Pfad (g,,n) uf (Gnt1,m + 1) %W in U;(t) derart existiert, dafl
®;(gm, m) = a fiir alle m > n erfiillt ist. Wegen der durch N beschrinkten Weite

des Berechnungsgraphen (Ul(t),a%t) existieren nach dem Prinzip von Dirichlet
hochstens N Ordinalzahlen 0 < a; < ... < ay < wy (M < N), die const(a) =
erfiillen.

Mit ap = 0 und apr4q = wy wird ®; : U;(t) — {0,1,...,2N + 1} definiert fiir
(g,n) € Vi(t) durch:

Bi(g,n) = 2k —1 falls Di(g,n) =ay, 1<k<M
AL = o falls apr1 > Pi(q,n) > ag, 0 < k< M

Fiir (g,n) € U;(t) \ Vi(t) sei auBerdem ®;(q,n) := 2N + 1.

Die Abbildung ®; erfiillt Bedingung (2iii): sonst gébe es ein n € IN und eine
Folge (Gm,m)m>n C U;(t) mit (¢, m) uf (Gm+1,m+ 1), m > n, mit ®;(¢,, m) =
®;(qn,n) = 2k, fur alle m > n und ein geeignetes k < M. Mit der Monotonie
von ®;, sowie der Tatsache, daB w; wohlgeordnet ist, gidbe es ein n’ > n und ein
ap < a < agyq mit &Di(qn/,n’) = @(qm,m) = q, fiir alle m > n’. Somit wiirde
const(a) gelten und der Definition der (o;)1<;<p widersprechen.

Mit der Definition von ®; folgt schlieflich fiir alle (¢,n),(¢’,n + 1) € U;(t) mit

(q,n) oy (¢,n+1) und ®;(q,n) = ®;(¢,n +1):
¢ ¢ F, oder ®;(q,n)e{0,2,...,2N} U{2N +1}.

Es bleibt nur noch zu zeigen, da} der Zustandsraum, der nicht durch die Fort-
schrittsmafle (®;);<;<x erfafit wird, nicht zu einem A-Ablauf von ¢ synchronisiert
werden kann (Bedingung (3)).

Angenommen, fiir jedes endliche Prifix to < t mit |to|, = [t|, fiir alle a € A,
existiert ein Ablauf r € R4(ty) auf ty so, daB zugleich d(r,ty), = ¢/ fiir alle
a € Aund (5(r,0,(t0)), [tola, — 1) € Us(t) \ Vi(t) gilt. Sei t = tot; - - - t, wobei
alph(t;) = A, fiir alle 1 <14 < k. Wir wéahlen ¢, grof§ genug so, dal max(tp) N A =
{ay,...,ax} und alph(9,,(to)~'t;) = A; gelten. Wir koénnen nun die Tatsache
verwenden, dafl von jedem Knoten aus U;(t) \ Vi(t) # 0 ein Berechnungspfad
ausgeht, auf dem ein Zustand aus F; unendlich oft wiederholt wird (5.2). Damit
existiert fiir jedes ¢ ein Ablauf r; auf dem zusammenhéngenden Suffix ¢;, der im
globalen Zustand d(r, ,,(to)) startet so, daB ¢/, € inf,, (r;) erfiillt ist. Wir konnen
nun einen Widerspruch herleiten, indem wir einen akzeptierenden Ablauf r’ fiir
t wie folgt konstruieren: ’ entspricht r auf dem Préfix ¢y bzw. r; auf dem Suffix
t;, 1 < i < k. Offensichtlich gilt ¢/ € inf,(r'), fiir alle a € AU {ay,...,ax}, und
somit wiirde der Widerspruch t € L(.A) folgen. 0

Wir sind nun in der Lage, einen asynchron-zelluldren Biichi Automaten B zu
definieren so, dafl B die Sprache L(.A)®NInf(A) erkennt. Dabei sei A = ((Qa)aes,
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(0a)aes, @0, {(¢7, A, {ay,...,ar})}). Wir folgen weiterhin der Konstruktion von
Klarlund und definieren B so, daf} ein geeignetes Pseudo-Fortschrittsmaf geraten
wird. Zusétzlich werden wir die Berechnungs-Untergraphen (G;(t))1<i<r raten.
Der Komplement-Automat basiert auf dem Potenzautomaten, der in Abschnitt
5.1 als A, mit u = (v, p) konstruiert wurde. Sei im folgenden der Potenzauto-
mat von ((Qq)aex(0a)aes; o) durch A, = ((Qa)aes, (6a)aes, §o) bezeichnet (End-
zustande werden im folgenden aufier acht gelassen). Weiterhin bezeichnen wir mit
2N +1]% die Menge der partiellen Abbildungen von @ nach {0,1,...,2N + 1},
und mit dom(f) die Definitionsmenge einer partiellen Abbildung f € [2N +1]%.
Es sei B = ((Sa)aes, (Ad)aes, Z, T) definiert durch:

L S Qa fiirag_f{al,...,ak}
| Qo x 2N +1]9 x P(Q) sonst

Weiterhin sei fiir alle a € {ay,...,a;} und alle (§u, g, Ay) € S, folgende
Bedingung erfiillt:

dom(ay,) = {f(a) | f € R, wobei ¢, = (N, R) fiir ein N}.

(D.h., N bzw. R bezeichnen die v- bzw. p-Komponente des lokalen Zustan-
des im Potenzautomaten.)

2. Sei a ¢ {ai,...,ax}. Dann gilt s, € A, ((Sp)pep(a)) genau dann, wenn s), =
0a((@)ben(a)), mit s, = G bzw. s, € {G} x [2N + 19 x P(Q), fiir alle
be D(a).

Fir a = a;, 1 <1 <k, seien s, = (Ga, @a, Ag) und s/, = (., o, AL). Dann
gilt s, € Ay((Sp)ben(a)) genau dann, wenn

o G, = 0((@)een(), fiir G = s, b € D(a) \ {a};

e Fiir alle ¢ € dom(a,), ¢’ € dom(a),) mit ¢ @ ¢’ gilt (fir die Notation

a

“ siehe Beweis von Satz 5.1.2.):

(a) aa(q) = g (q) und
(b) Aus a,(q) = ol (¢') folgt ¢, # qf oder a,(q) € {0,2,...,2N} oder

a,(q) = 2N + 1.
dom(ar) falls A, =0
{¢' € dom(c) | ¢ € dom(a,) N A, mit
[ ] Afz = (a
q @ ¢ und

a.(q) = al(q¢') € {0,2,...,2N}} sonst.

3. (s/,A{a,...,a;}) € T genau dann, wenn fiir ein v € M(X, D) mit
Ga = (¥(0a(w)), p(0a(u))), @ € ¥ und Abbildungen a, € [2N +1]¢, a €
{a, ..., a;}, gilt:
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(a) st € {Ga, a,0), fiir alle a € {ay,...,ax}, bzw. s/ = G,, sonst.
(b) Sei C = AU{ay,...,a;}. Dann erfiillt jedes f € p(9c(u))

e Entweder f(a), # ¢/, fiir ein a € A,

e oder a,(f(a)) # 2N + 1, fur ein a € {a,...,a;}.

(c) Fiir alle sp € Z, a € ¥ gilt: (s0)a = (Go)a bzw. (50)a = ((G0)a> ¥, D),
fiir ein o, € [2N 4 1]9.

Satz 5.2.3 Es gilt: L(B) = L(A)*° NInf(A).

Beweis: Wir nehmen zunéchst an, daf§ alphinf(f) = A und t ¢ L(A) gelten.
Mit Satz 5.2.1 erhalten wir Berechnungs-Untergraphen (G;(t))1<i<x und Pseudo-
Fortschrittsmafle (P;)1<i<, die die drei Bedingungen erfiillen. Ein akzeptierender
Ablauf des Automaten B auf ¢ kann unmittelbar erklért werden:

1. Fiir a ¢ {ay,...,a;} und n < |t|a, sei 7(a,n) = 6(qo, t|a, n])q.
2. Fira=a; 1 <1<k, seir(a,n)= (a0, As), wobei

e G, = 6(Go, t[a, n))..
e Mit ¢, = (N, R) sei dom(ay,) ={f(a) € Q| f € R}.
e Fiir alle ¢ € dom(a,) sei a,(q) = ®;(q,n).

Schliefflich ist die obige Komponente A, deterministisch berechnet.

Bedingung (2iii) aus Satz 5.2.1 erzwingt fiir a € {a4, ..., ax} die Existenz lokaler
Zustande (Pg,aq, D) € inf,(r), wobei p, = (¥(0a(w)), p(0u(u))) fiir ein gewisses
u € M(3,D) und a, € [2N + 1J% gilt. Wire dies fiir ein a € {ay,...,a}
nicht erfiillt, so gébe es einen Index n, € N so, da r(a,n) = ((Gn)a, Mnar Ana)
mit A,, # 0, fur alle n > n,. Damit kénnte ein unendlicher Untergraph von
Vi(t) erzeugt werden, mit Knotenmenge U,>p, Anq X {n}. Darauf lafit sich das
Lemma von Konig anwenden, womit ein unendlicher Pfad mit konstantem Wert
in {0,2,...,2N} und damit ein Widerspruch erzielt werden.

Fiir a € A gilt inf,(r) = {p,}. Die Bedingung (3) des Satzes 5.2.1 sichert nun zu,
daB keine Abbildung f € p(0c(u)) existiert so, da f(a), = ¢/ fiir alle a € A,
bzw. a.(f(a)) = 2N + 1, fur alle a € {ay, ..., ax}.

Fiir die Riickrichtung sei r ein akzeptierender B-Ablauf auf ¢, mit Tafelele-
ment (s, A,{ay,...,a}). Damit gilt zunichst alphinf(t) = A. Erneut gibt es
eine kanonische Beziehung zwischen akzeptierenden Ablaufen und Berechnungs-
Untergraphen bzw. Pseudo-FortschrittsmaBe: fiir a = a; und A(r,t[a,n]), =
(Ga, ay Ag) sei (qg,n) € Vi(t) genau dann, wenn «,(q) € {0,1,...,2N}. Fir
q € dom(qy,) setze ®;(q,n) := a,(q).

Mit s/ € Q, x [2N + 19 x {0} ist es leicht zu sehen, dafi Bedingung (2iii) aus
Satz 5.2.1 erfiillt ist. SchlieBlich sei ¢, € M(X, D) ein Prifix von ¢, ty < ¢, mit
A(r,tg)e = s) fiir a € AU {ay,...,a;} und |to|, = |t], fiir alle @ € A. Mit dem
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zweiten Teil der Definition der Tafel ist auch die Synchronisations-Bedingung (3)
aus Satz 5.2.1 unmittelbar erfiillt. a

Abschlielend kénnen wir das Ergebnis dieses Abschnitts im folgenden Theorem
zusammenfassen:

Theorem 5.2.4 Sei A = ((Qa)acs, (0a)acs, qo, T) ein (nichtdeterministischer)
asynchron-zelluldrer Biichi Automat mit Tafel T C (Jl,ex Qu) X P(X) X P(X)
und N globalen Zustdinden.

Dann kann ein asynchron-zelluldrer Biichi Automat B = ((S4)aes, (Ad)aes, So, T')
(mit Tafel T' C (Tlaex Sa) X P(X) x P(X)) effektiv angegeben werden so, dafs
L(B) = L(A)® gilt. Der Komplement-Automat B hat 2°N™) globale Zustinde
(fir [] = 2).

Abschlielend wollen wir noch anmerken, dafl wenn wir lediglich an einem Komple-
ment-Automaten mit /-Diamant Eigenschaft interessiert wéren, eine alternati-
ve Konstruktion existiert. Es handelt sich um die Konstruktion von Pécuchet
[Péc86], die auf saturierenden Morphismen basiert und einen Automaten mit
20(N*) Zustinde ergibt.



Kapitel 6

[-Diamant Automaten

In den bisherigen Betrachtungen haben wir uns auf Automaten mit verteilter
Kontrolle konzentriert, die die nebenldufige Ausfithrung unabhingiger Aktionen
erlauben. Wenn man hingegen den klassischen Ansatz der M-Automaten [Eil74]
fiir das Monoid der endlichen Spuren M = M = M(X, D) verfolgt, so werden
deterministische Wortautomaten A = (Q, d, qo, F') mit I-Diamant Eigenschaft be-
trachtet (siehe Abbildung 6.1). Mit der I-Diamant Eigenschaft wird Nebenlaufig-

Va1, q2,q3

Abbildung 6.1: I-Diamant Eigenschaft

keit in Form von Interleaving ausgedriickt, indem alle sequentiellen Ausfithrungen
einer Spur dasselbe Ubergangsverhalten im Automaten zeigen.

Im folgenden bezeichnen wir mit [L] den Abschluff einer Wortsprache L C ¥
bzgl. dem Abhiingigkeitsalphabet (X, D), d.h. es sei [L] = ¢ 'p(L), wobei ¢ :
¥* — R(X, D) die kanonische Abbildung bezeichnet. Eine Sprache L C ¥
heifit abgeschlossen, wenn L = [L] gilt.

Wihrend die von I-Diamant Automaten erkannten Sprachen aus >* abgeschlos-
sen sind, ist dies beim Ubergang zu Sprachen aus £, d.h. zu Muller bzw.
Biichi Automaten, nicht mehr gegeben. Darin liegt ein wesentlicher Nachteil
dieses Automatenmodells und damit der Grund dafiir, das asynchrone Modell
mit lokaler Akzeptanz fiir die Charakterisierung erkennbarer reeller Spurspra-
chen dem 7-Diamant Modell vorzuziehen. Mit der ersten Charakterisierung der
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Familie Rec(R) durch nichtdeterministische, asynchron-zelluldre Biichi Automa-
ten [GP92] bzw. mit dem Ergebnis des Kapitels 2 gilt aber: jede erkennbare
reelle Spursprache kann mit einem nichtdeterministischen I-Diamant Automa-
ten mit (verallgemeinerter) Biichi Bedingung, bzw. mit einem deterministischen
I-Diamant Muller Automaten akzeptiert werden. Diese Eigenschaft des Automa-
tenmodells macht natiirlich die Frage nach der Abgeschlossenheit der erkannten
Sprachen aus ¥“ sehr interessant.

6.1 Deterministische /-Diamant Muller Automaten

In diesem Abschnitt zeigen wir, dafl eine natiirliche Einschriankung der /-Diamant
Muller Automaten existiert, die die Familie der erkennbaren reellen Spursprachen
charakterisiert. Im gesamten Abschnitt betrachten wir durchgehend deterministi-
sche Muller Automaten, daher werden wir den Zusatz “deterministisch” héufig
weglassen.

Mit dem nachfolgenden bekannten Beispiel von Gastin/Petit wird ersichtlich, daf
die I-Diamant Eigenschaft nicht die Abgeschlossenheit der von Muller Automaten
akzeptierten Sprachen zusichert.

Beispiel 6.1.1 Sei (X,D) = a —c —0b und betrachte den Automaten A aus
Abbildung 6.2. Sei ¢; der Anfangszustand und betrachte die einelementige Tafel
T ={T} mit T = {q1,q2,q3,qa}. Der Automat A ist [-Diamant, aber L(A) ist
nicht abgeschlossen: es gilt ndmlich (abcbac)” € L(A), aber (abc)” ¢ L(A).

Abbildung 6.2: T = {{q1, 92,93, 94} }

Das néchste Beispiel, das von K. Reinhardt angegeben wurde, zeigt eine wei-
tere negative Eigenschaft von [-Diamant Muller Automaten. Damit wird ge-
zeigt, daB der Abschlufl [L(A)] der von einem I-Diamant Muller Automaten
A akzeptierten Sprache im allgemeinen nicht erkennbar bleibt. Dieses Verhal-
ten verdeutlicht einen wesentlichen Unterschied zu I-Diamant Biichi Automaten.
Beim letzteren 1a83t sich die akzeptierte Sprache L = L(.A) darstellen als endliche
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Vereinigung von Sprachen KN¥ mit K, N = N* C ¥* erkennbar und abge-
schlossen. Damit kann ¢(L) dargestellt werden als ¢(L) = U ¢(K)p(N)Y,

endlic

wobei p(K), o(N) C M(X, D) erkennbare Spursprachen sind. Mit den Abschluf-
eigenschaften der Klasse Rec(IR) ist ¢(L) eine erkennbare reelle Spursprache und
schlieBlich folgt, daf [L(.A)] = ¢~ '¢(L) eine erkennbare Wortsprache ist.

Beispiel 6.1.2 Sei weiterhin (X, D) = a —c —b und betrachte den Automaten
A aus Abbildung 6.3.

Abbildung 6.3: T = {T'} mit T' = {2, 3,4}, Anfangszustand ¢y = 3.

Es gilt L(A) C {a,b,c}*((ba)*cc)”. Offensichtlich ist L(A) nicht abgeschlossen
und der Abschlufl [L(.A)] ist nicht erkennbar, da gilt:

[L(A)] N ({a,b} cc)” ={ugccuycc...| wobel |uy|a = |uylp, fir alle n > 1}.

Aus den obigen Beispielen ist es ersichtlich, dafl eine Einschrankung der Tafeln
notwendig ist, um sicherzustellen, da} die akzeptierten Sprachen abgeschlossen
sind. Wir geben eine solche Einschrankung fiir reduzierte Tafeln, die im folgenden
definiert werden. Zuvor vereinbaren wir folgende Notation fiir einen (determini-
stischen) Automaten A = (Q, d, qo) und ein Wort u € ¥¢: mit inf(q, u) bezeichnen
wir die Menge der Zustinde, die auf dem Ubergangspfad, der mit u beschriftet
ist und in Zustand ¢ startet, unendlich oft vorkommen. Nun heifit eine Tafel
T C P(Q) reduziert, wenn fiir jedes Element T € T ein Wort u € X¢ derart
existiert, da§ T = inf(qo, u) gilt.

Fiir die angekiindigte Einschrankung der Tafeln benttigen wir folgende

Definition 6.1.3 Sei A = (Q,0,q0,T) ein Muller Automat.

1. Fir g € Q und v € X* sei 7(q,v) = {(q,u) | u ist ein Prifiz von v} die
Menge der Zustinde, die auf dem Ubergangspfad vorkommen, der mit v
beschriftet ist und in q startet.
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2. FEine Tafel T C P(Q) heifit abgeschlossen, wenn fir alle T € T,q € T und
v € X* mit 0(q,v) = q und T = 7(q,v) gilt:

Yw e X' p(w)=p) = 71(qw)eT.

Die Aussage des folgenden Satzes findet man in dhnlicher Form in [GP91], jedoch
ohne eine algorithmische Behandlung des Abgeschlossenheitsproblems.

Satz 6.1.4 Sei A = (Q,6,q0,T) ein deterministischer I-Diamant Muller Auto-
mat mit reduzierter Tafel T. Dann ist die von A akzeptierte Sprache L(A) genau
dann abgeschlossen, wenn die Tafel T gemdfs Definition 6.1.3 abgeschlossen ist.

Beweis: Nehmen wir zunéchst an, die Sprache L(A) sei abgeschlossen und
betrachten ein Element 7" € T der Tafel. Mit der Annahme iiber die Reduziertheit
der Tafel existieren Worter u,v € ¥* und ein Zustand ¢ € @ so, daf} gilt:

d(qo,u) =q, 6(qg,v)=¢q und 7(¢q,v)=T.

Sei w € ¥* ein zu v dquivalentes Wort, d.h. p(w) = ¢(v). Wegen uv® € L(A)
zusammen mit der Abgeschlossenheit von L(A) gilt auch vw® € L(A). Nun ist A
deterministisch, woraus d(g, w) = ¢ folgt und somit auch inf(qo, uw®) = 7(q, w).
Damit folgt unmittelbar die Aussage 7(q,w) € T.

Fiir die Riickrichtung sei die Tafel 7 abgeschlossen. Es gentigt nun zu zeigen, dafl
fur alle (a,b) € I gilt: ab = ba (vgl. [DGPI1]), wobei wir mit = die syntaktische
Kongruenz der Sprache L(A) bezeichnen. (Fiir die Definition der syntaktischen
Kongruenz siehe Abschnitt 1.3.)

Sei zundchst wabvw® € L(A), wobei im folgenden (a,b) € I gilt. Da der Au-
tomat A die I-Diamant Eigenschaft hat, folgt daraus d(qo, uabv) = §(qo, ubav)
und somit direkt die Aussage ubavw® € L(A). Schliefllich betrachten wir ein
Wort u(abv)” € L(A), mit u,v € ¥*. Offensichtlich existieren ganze Zahlen
r,s > 0 und ein ¢ € Q so, daB der Ubergangspfad faktorisiert werden kann als
d(qo, u(abv)") = q, 6(q, (abv)*) = q und es gilt inf(qo, u(abv)¥) = 7(q, (abv)*®) € T.
Die Abgeschlossenheit der Tafel T erzwingt 7(q, (bav)®) € T und daraus folgt
direkt u(bav)” € L(A). O

Der letzte Satz gibt eine vollstdndige Charakterisierung der I-Diamant Muller
Automaten, die abgeschlossene Sprachen erkennen. Um einen effizienten Algo-
rithmus fiir dieses Problem angeben zu koénnen, benttigen wir eine verfeinerte
Charakterisierung der Tafeln.

Satz 6.1.5 Sei A = (Q,6,q0,T) ein deterministischer I-Diamant Muller Auto-
mat mit reduzierter Tafel T. Es gilt: die Tafel T ist genau dann abgeschlossen,
wenn die beiden nachfolgenden Bedingungen erfillt sind:

1. FiraleT € T, q € Q, (a,b) € I mit {q,6(q,a),5(q,ab)} C T gilt auch
TU{d(q,b)} €T.
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2. FiralleT € T, q € Q, (a,b) € T mit {q,9(q,a),0(q,ab)} C T mit der
zusdtzlichen Voraussetzung, dafs ein Wort v € ¥* existiert mit

6(q,abv) =q und  7((g,ab),v) = (T"\ {d(g,a)}) U {d(q, )},
gilt auch (T'\ {d(q,a)}) U{d(¢g,b)} € T.

Beweis: Angenommen, die Tafel 7 ist abgeschlossen. Es seien T € T und (a,b) €
I so, daB {q,d(q,a),d(q,ab)} C T gilt. Mit der Voraussetzung, dafl die Tafel T
reduziert ist, existieren Worter u, v, w € ¥* mit §(qo, u) = ¢, (¢, v) = ¢, 7(¢q,v) =
T, 0(q,abw) = ¢ und 7(q,abw) C T. Daraus folgt unmittelbar 7(¢, vabw) = T
und damit auch 7(g, vbaw) = T U {6(q,b)} € T. Fiir die zweite Bedingung des
Satzes sei v € ¥* so, daB d(q,abv) = ¢ zusammen mit 7(d(q,ab),v) = (T '\
{6(q,a)}) U{0(g,b)} gilt. Damit folgt (g, abv) = T U {d(q,b)} bzw. 7(g,bav) =
(T'\ {0(q,a)}) U {d(g,b)}. Wir kénnen nun die erste Bedingung anwenden und
schlieen, da T"U{d(q,b)} € T ein Tafelelement ist, daher auch (T"\ {d(q,a)})U
{5l eT.

Fiir die Riickrichtung seien die beiden Bedingungen 1. und 2. erfiillt. Wir be-
trachten ein Tafelelement T° € 7T, zusammen mit ¢ € T und v € ¥X* so, dafl
d(q,v) = ¢ und 7(q,v) = T gelten. Sei weiterhin w € ¥* ein zu v dquiva-
lentes Wort. Wir wollen zeigen, dafl 7(¢,w) € 7. Ohne Einschrénkung seien
v,w von der Form v = wvjabvy und w = wvibavy fir (a,b) € I und gewisse
v, vy € X' Mit ¢ := 0(q,v1) erhalten wir 7(q, abvevy) = T, zusammen mit
7(q, w) = 7(q1, bavyvy). Abhéngig davon, ob nun 6(q;,a) € 7(d(q1, ba),vovy) gilt
oder nicht, folgern wir mit einer der beiden Bedingungen, dafl 7(q,w) € T erfiillt
ist:

e Falls§(q1,a) € 7(6(q1, ba), vavy), so folgt mit der ersten Bedingung 7(q, w) =
{6(q1,0)} UT(6(q1,ba), vevy) =T U{d(qr,b)} € T.

e Ansonsten wenden wir die zweite Bedingung an und erhalten abschliefend
ernent 7(q,w) = (T'\ {8(q1,a)}) U {3(q, b)} € T

O

Im zweiten Teil dieses Abschnitts zeigen wir, dafl das Abgeschlossenheitspro-
blem fiir deterministische /-Diamant Muller Automaten NL-vollsténdig ist (wo-
bei NL die Komplexitatsklasse NSPACE(log(n)) bezeichnet). Wir verwenden im
folgenden den Abschlufl von NL unter Komplement ([Imm88, Sze88]) und die
NL-Vollstandigkeit des Erreichbarkeitsproblems 2-GAP in (gerichteten) Graphen
mit Ausgangsgrad hochstens 2.

Bemerkung 6.1.6 Die Frage, ob zu einem gegebenem Muller Automaten A =
(Q,9,q0, T) und Abhéngigkeitsalphabet (X, D) der Automat deterministisch ist
und die /-Diamant Eigenschaft hat, kann in DSPACE(log(n)) beantwortet wer-
den.
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Satz 6.1.7 Sei (X, D) gegeben. Die Frage, ob die Tafel eines deterministischen,
I-Diamant Muller Automaten A = (Q,0,qo, T) reduziert ist, ist NL-vollstandig.

Beweis: Es ist leicht zu sehen, dal die Frage mit nichtdeterministischen lo-
garithmischen Platz beantwortet werden kann: fiir jedes T' € T wird ¢ € T
geraten und iiberpriift, dafl es von qq erreichbar ist; anschliefend wird v € £
(mit |Q] = n) geraten und 6(q,v) = ¢ und 7(q,v) = T gleichzeitig iiberpriift,
indem die Bedingung 7(¢q,v) C T aufrechterhalten wird, zusammen mit einem
Hochzéhlen der durchlaufenen Zusténde aus 7', geméafl ihrer Reihenfolge in der
Eingabe. Im positiven Fall wird zum néchsten 7" € T {ibergegangen.

Fiir die Harte kann eine einfache Reduktion von 2-GAP auf das vorliegende Pro-
blem angegeben werden. O

Der obige Satz zeigt also, dafi bereits die Preprocessing-Phase des Abgeschlos-
senheitsproblems NL-vollsténdig ist. Interessanterweise bleibt das Problem NL-
vollsténdig auch unter der Annahme, dal die Reduziertheit der Tafel bekannt
ist.

Theorem 6.1.8 FEs seien (X, D) und ein deterministischer I-Diamant Muller
Automat A = (Q,0,qo, T) mit reduzierter Tafel T gegeben. Die Frage, ob L(A)
abgeschlossen ist, st NL-vollstindig.

Beweis: Wir zeigen zunéchst, dafl die beiden Bedingungen des Satzes 6.1.5 nicht-
deterministisch mit logarithmischen Platz beantwortet werden konnen. Wih-
rend dies fiir die erste Bedingung offensichtlich ist, geniigt es fiir die zweite
Bedingung zu iiberpriifen, dafi fiir gewisse T € T, {q,d(q,a),0(q,ab)} C T
ein Wort v € X9 (mit |Q| = n) derart existiert, daB8 d(q,abv) = ¢ und
7(0(q,ab),v) = (T'\ {0(g,a)}) U {0(g,b)} gelten. Dies kann analog zum Beweis
von Satz 6.1.7 durchgefiihrt werden.

Fiir die Hérte des Problems geniigt es, ein Alphabet mit 3 Buchstaben zu be-
trachten, (X,D) = a —c —b. Sei G = ({p,q,x1,...,2,}, E) eine Instanz von
2-GAP, wobei nach der Existenz eines Pfades von p nach ¢ gefragt wird. Die Kan-
ten aus E werden beliebig mit b, ¢ beschriftet so, dafl von keinem Knoten zwei
Kanten mit derselben Beschriftung ausgehen. Ohne Einschriankung geht von p
genau eine Kante aus (beschriftet mit 0), und ¢ hat keine ausgehende Kante,
dafiir eine mit ¢ beschriftete eingehende Kante. Wir fiigen zwei neue Knoten r, s
und folgende zusétzliche Kanten ein: (¢,b,7), (r,a,p), (¢,a,s), (s,b,p), (p,c,s),
(s,¢,q), (q,¢,2;), (x;,¢,p) fiir 1 <7 < n (sieche Abbildung 6.4).

Nun gibt es eventuell Knoten z;, die zwei mit ¢ beschriftete ausgehende Kanten
haben. Um den Determinismus wiederherzustellen, konnen 2 Kanten (x;,c,y),
(x;,¢,y') mit y # 3 durch die Einfithrung eines neuen Knotens z}, zusammen
mit neuen Kanten (x;,c,x}), (z,b,y), (z},¢,y') ersetzt werden. Weiterhin kann
der Nichtdeterminismus, der durch Knoten ¢ verursacht wird, behoben werden
durch die Einfithrung neuer Knoten y;, 1 < ¢ < n — 1 und die Ersetzung der
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7N
N/

Z;

Abbildung 6.4: Reduktion von 2-GAP.

Kanten {(q,c,z;) | 1 <1i <n} durch die Kanten {(y;,b,yi+1), (y;,¢,2;) | 1 <i <
n—1,1<ji<n—-1}U{(¢,¢,v1), (Yn-1,b,2,)}

Wir betrachten den entstandenen Graphen als deterministischen /-Diamant Mul-
ler Automaten mit Anfangszustand ¢ und Tafel T = {T}, T}, wobei T} = Q =
{r,s,p,q, 2, 75,y; | 1 <i<n,1<j<n-—1}und Ty, = T; \ {r}. Man beachte
auch, daf die Tafel reduziert ist. Mit Satz 6.1.5 gilt schlieflich, daf8 die Tafel (und
damit L(A)) genau dann abgeschlossen ist, wenn kein Pfad von p nach ¢ in G
existiert. O

6.2 Nichtdeterministische /-Diamant Biichi Automaten

Wir zeigen in diesem Abschnitt, dafl das Problem der Abgeschlossenheit der von
einem nichtdeterministischen I-Diamant Biichi Automaten akzeptierten Sprache
wesentlich schwieriger ist als fiir Muller Automaten. Im Biichi Fall ist es ndmlich
ein PSPACE-vollstandiges Problem (wobei PSPACE die Klasse der im polynomi-
ellen Platz l6sbaren Probleme bezeichnet). Dies bedeutet, da$ der Ubergang von
Biichi zu Muller Automaten einen exponentiellen Anstieg in der Gréfe hervorruft
(wobei die Grofle auch die Tafelgrofie berticksichtigt).

Zunichst einige Bemerkungen zum Automatenmodell. Wir wissen mit [GP92],
daBl die Familie der erkennbaren, abgeschlossenen w-Wortsprachen genau charak-
terisierbar ist durch I-Diamant Automaten mit verallgemeinerter Biichi Akzep-
tanz. D.h., mit Automaten der Art A = (Q, 6, qo,T), mit 7 C P(Q). Ein Wort
w € X¥ wird von A akzeptiert, wenn ein 7" € 7 und ein mit w beschrifteter
Ubergangspfad 7 derart existieren, daB inf(7) D T gilt, d.h. jeder Zustand aus T
wird in 7 unendlich oft wiederholt. (Dabei bezeichnet fiir einen Ubergangspfad
= (qo, a0, q1, 01, -.), ¢n € Q,a, € ¥, inf(7) die Menge {¢g € Q | I®°n: ¢, = q}.)
Die nachfolgende Konstruktion von V. Diekert zeigt jedoch, dafi gewohnliche
Biichi Automaten mit /-Diamant Eigenschaft genauso méchtig sind wie die ver-
allgemeinerten /-Diamant Biichi Automaten.
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Mit dem Ergebnis des Kapitels 2 kénnen wir einen deterministischen asynchron-
zelluldiren Muller Automaten A = ((Qa)aes, (0a)aes, 0, T) als Ausgangspunkt
wéhlen. Im Laufe der Berechnung wird ein Tafelelement 7" = (7, ),ex geraten und
anschliefend tiberpriift, dafl genau die lokalen Komponenten von 7" unendlich oft
wiederholt werden.

Sei @ = [lsex Qo die Menge der globalen Zusténde von Aund d: Q x X — Q die
globale Ubergangsfunktion. Ohne Einschrinkung sei § so, daB fiir alle g € Q, a €
¥, ¢, € Qq mit ¢, = 0a((q)pen(a)) ilt: ¢, # qo. Damit gilt fiir ein Wort w € 3¢,
das mit 7' € T akzeptiert wird: alphinf(w) = {a € X | |T,| > 2}. SchlieBlich sei
fir Ap = {a € ¥ | |T,| > 2} die Menge lokaler Zustande Sy = U,eca, T definiert.
Betrachte nun den nichtdeterministischen Biichi Automaten A" = (@', ¥, qo, F)
mit Q' = Q U U (Q x P(S7) x {T}) und der Ubergangsrelation &' C Q' x ¥ x @’

gegeben durch
e ¢ €d(q,a), falls ¢ € §(q,a) gilt.
e (¢,A,T) € d(q,a), falls ¢ € §(q,a) und A C S gelten.
o (A,T)ed((q,A,T),a), falls ¢ € 6(q,a), a € Ar, ¢, € Sr und

1. Entweder A" =), falls AU {¢.} = Sr,
2. oder 0 £ A C AU{q,}.

Es ist nicht schwer zu sehen, daff der Automat die /-Diamant Eigenschaft hat.
SchlieBlich folgt mit F = U {(¢ = (¢a)aes,0,T) | Va ¢ Ar : T, = {q.}} die
TET

Behauptung L(A") = ¢ *(L(A)).

Nun zuriick zum Problem der Abgeschlossenheit fiir /-Diamant Biichi Automa-
ten. Der folgende Satz gibt fiir ein Abhéngigkeitsalphabet (X, D) eine Charak-
terisierung derjenigen Automaten, die eine abgeschlossenen Sprache erkennen.
Analog zu Muller Automaten betrachten wir nur reduzierte Endzustandsmengen
F, d.h. fiir jeden Zustand f € F existiert ein Ubergangspfad 7 mit f € inf(r).
Weiterhin vereinbaren wir folgende Notation: fir A = (Q,0d,q, F)) bedeutet
¢ € 6p(q,u) fir u € ¥*, daB ein mit u beschrifteter Pfad von ¢ nach ¢’ exi-
stiert, der durch einen Zustand aus F’ fiihrt.

Satz 6.2.1 Sei A = (Q,0,qo, F) ein nichtdeterministischer I-Diamant Biichi
Automat. Dann gilt: L(A) ist abgeschlossen genau dann, wenn fir alle q,q', s € Q,
x,y € X* und (a,b) € I mit

q € d(qo, ), ¢ €0(q,a)NF, s€d(qd,b) und q e d(s,y)

positive ganze Zahlen p < n, m < 2n (mit n = |Q|) und ein Zustand ¢" € Q
derart existieren, dafS gilt:

q¢" € 0(qo, x(bay)’) und q" € 6r(q", (bay)™).
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Beweis: Nehmen wir an, es gilt L(A) = [L(A)] und betrachten wir ¢,¢’,s € Q,
x,y € ¥* so, daf} die Voraussetzungen des Satzes erfiillt sind. Es gilt x(aby)* €
L(A) und damit auch x(bay)” € L(A). Ein akzeptierender Pfad fiir z(bay)” kann
nun ohne weiteres wie im Satz angegeben faktorisiert werden.

Umgekehrt sei =, die syntaktische Kongruenz von L = L(.A). Mit [DGP] geniigt
es zu zeigen, dafl ab =, ba fiir alle (a,b) € I gilt. Zunichst gilt offensichtlich
zabyz* € L genau dann, wenn zbayz* € L. Betrachte nun z(aby)” € L. Damit
existieren k,! < |Q| und ein Zustand ¢ € Q mit ¢ € §(qo, x(aby)*) und ¢ €
dr(q, (aby)").

Es geniigt, den Fall zu betrachten, in dem ¢ € 0(q,a) N F gilt, wobei ¢ €
5(q', by(aby)™!) (ansonsten kann direkt die I-Diamant Eigenschaft angewendet
werden). SchlieBlich folgt mit 3’ = y(bay)'~* die Existenz eines Zustands ¢” € Q
und Indizes p, m mit ¢" € §(qo, z(bay)* (bay')?) und ¢" € 5r(q", (bay')™), und dies
ergibt x(bay)” € L. O

Bemerkung 6.2.2 Es geniigt, die obige Eigenschaft fiir alle Worter xz,y € ¥*
mit beschriinkter Linge |z| < 2" baw. |y| < 22"° zu iiberpriifen (mit n = |Q|).

Satz 6.2.3 Gegeben sei ein Abhdngigkeitsalphabet (3, D) und ein nichtdeter-
ministischer I-Diamant Biichi Automat A = (Q, 6, qo, F'). Das Problem, ob L(.A)
abgeschlossen ist, liegt in PSPACE.

Beweis: Wir zeigen, dafl die Negation der Charakterisierung des Satzes 6.2.1
in PSPACE {iberpriift werden kann. Eine nichtdeterministische Turing Maschine
M rét zuerst q,¢',s € @, (a,b) € I und iiberpriift ¢ € d(q,a) N F' zusammen
mit s € 6(¢’,b). AnschlieBend simuliert M den Potenzautomaten von A und rit
on-line ein Wort x € ¥* mit |x| < 2". Dies kann mit O(n) Platz durchgefiihrt wer-
den. Sei R; C (@ die erreichte Zustandsmenge. Die Turing Maschine M iiberpriift
q € Ry und rédt Zustandsmengen R, ..., R3, C (. Darauf wird erneut der Po-
tenzautomat von A simuliert, und zwar rit M on-line ein Wort y mit |y| < 92n”
und iiberpriift gleichzeitig, dafl A(R;,bay) = R;y1 fiir alle 7 gilt (wobei A die
Ubergangsfunktion des Potenzautomaten ist). Genauer, sei R; = {qu, ... s ngi}-
Fiir alle 7 und alle 1 < j < n; generiert M schrittweise die Menge S;; C @) der
Folgezustidnde von gj; beziiglich dem gleichzeitig geratenen Wort bay. Wenn ein
Endzustand durchlaufen wird, so markiert M die Folgezusténde. Gleichzeitig si-
muliert M den Potenzautomaten auf y ausgehend von s und verfolgt die Zustands-
menge S C (). Nach dieser Phase iiberpriift M, dal ¢ € S und R;,; = U?;l Sji
fiir alle ¢ gilt. SchlieBlich iiberpriift M fiir alle ¢ € Q und p < n, m < 2n mit
¢" € R,N Ry, ob ein Pfad von ¢” nach ¢” (durch die Zustandsmengen R;)
durch die Endzustandsmenge F' fithrt (anhand der Markierungen), und lehnt ab,
falls dies der Fall ist. O

Theorem 6.2.4 Gegeben sei ein Abhdngigkeitsalphabet (3, D) und ein nichtde-
terministischer I-Diamant Biichi Automat A = (Q,9,qo, F'). Das Problem, ob
L(A) abgeschlossen ist, ist PSPACE-hart.
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Beweis: Wir reduzieren im folgenden das Totalitéts-Problem “L(A) = $*7
[MS72] fiir nichtdeterministische endliche Automaten auf das vorliegende Pro-
blem. Sei A" = (Q',I',d',s,F’) ein endlicher Automat tiber dem Alphabet I
Es seien nun a,b ¢ I' und betrachte das Alphabet ¥ = I' U {a, b} mit der Un-
abhéngigkeitsrelation I = {(a,b)}. Sei A = (Q, 3,9, qo, F') ein nichtdeterministi-
scher Biichi Automat mit Zustandsmenge @ = Q' U {qo, 1, ..., 7}, Endzustinde
F = {2,7} und Ubergangsrelation § gegeben durch die folgende Abbildung (mit
¢ € I beliebig):

O——F - @ VfeF

Abbildung 6.5: Reduktion vom Totalitédtsproblem.

Offensichtlich gilt w € L(A) genau dann, wenn & € X*, (yn)n>1 C X* derart
existieren, dafl w = zy ys ... gilt, mit

1. entweder z € I'", y,, € (ab+ba)I'" und y,, € abI'* fiir unendlich viele n > 1,

2. oder x € T' L(A"), y, € (ab+ ba)TL(A") und y,, € bal'L(A’) fiir unendlich

viele n > 1.

Somit ist L(A) abgeschlossen genau dann, wenn L(A") = T'* gilt. O



Abschlieflende Bemerkungen und
Ausblick

In der vorliegenden Arbeit haben wir wesentliche Aspekte der automatentheore-
tischen Charakterisierung erkennbarer reeller Spursprachen untersucht. Wir ha-
ben das Theorem von McNaughton auf reelle Spuren erweitert, indem wir die
Aquivalenz zwischen Erkennbarkeit und Akzeptanz durch deterministische asyn-
chron-zellulare Muller Automaten gezeigt haben. Wir haben zunéchst determi-
nistische Spursprachen definiert und gezeigt, daf§ die Klasse erkennbarer reeller
Spursprachen mit dem Booleschen Abschlufl der Klasse deterministischer Spra-
chen iibereinstimmt.

Die Problematik einer geeigneten Charakterisierung deterministischer reeller Spur-
sprachen zeigt hingegen, dafl Fragen beziiglich der Definition von asynchron-
zelluléren Biichi Automaten und/oder deterministischer Sprachen offen bleiben.
In diesem Zusammenhang sollte hinzugefiigt werden, daf3 ein alternativer Weg fiir
die Untersuchung deterministischer Sprachen existiert, ndmlich die topologische
Charakterisierung. In der Theorie der unendlichen Worter entsprechen die deter-
ministischen Sprachen der G5 Stufe in der Borel Hierarchie. In Zusammenarbeit
mit P. Gastin (Univ. Paris 6) und A. Petit (Univ. Paris Sud) wurde dieser Aspekt
fiir reelle Spursprachen untersucht. Es stellte sich heraus, dafl eine analoge Cha-
rakterisierung, d.h. als Durchschnitt abzdhlbar vieler offener Mengen existiert,
und zwar beziiglich der Metrik, die zum Monoid komplexer Spuren C(X, D) als
Vervollstéandigung von M (3, D) fiihrt [Die93]. Dieses Ergebnis spricht daher eher
fiir die Definition deterministischer Spursprachen.

Wir haben weiterhin die Familie sternfreier reeller Spursprachen untersucht und
gezeigt, daB klassische Resultate wie die Aquivalenz zur Aperiodizitit von w-
Worter auf reelle Spuren iibertragen werden konnen. In diesem Bereich gibt es
verschiedene weitere Fragen, deren Untersuchung vielversprechend zu sein scheint.
Ein Beispiel waren die lokal testbaren Sprachen, fiir deren Definition es einen
nicht sehr zufriedenstellenden Ansatz in [GRS91] fiir Sprachen endlicher Spuren
gegeben hat. Eine partielle Losung dieses Problems kénnte z.B. darin bestehen,
nicht nur die Faktoren u einer bestimmten Lénge in der gegebenen Spur t = xuy
zu betrachten, sondern sie zu Tripeln (u, D(alph(z)), D(alph(y))) zu erweitern.
Ein solcher Ansatz wiirde direkt zu einer Kongruenzrelation fithren.
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Die in dieser Arbeit entwickelte Potenzautomaten-Konstruktion fiir asynchron--
zelluldre Automaten 16st ein interessantes Problem in der Theorie endlicher Spu-
ren, das Problem der direkten Determinisierung. Wir verwenden im entschei-
denden Mafle die Zeitmarkierungsfunktion der Zielonka-Konstruktion. Dies fiihrt
natiirlich zur Frage der Notwendigkeit der Zeitmarkierung innerhalb einer sol-
chen Konstruktion. Wir vermuten allerdings, dafl unsere Konstruktion beziiglich
der GroBe des Potenzautomaten optimal ist. Im direkten Zusammenhang stellt
sich natiirlich auch die Frage nach der Gréfle des Komplement-Automaten. Im
Fall der w-Wortsprachen ist beispielsweise durch ein Beispiel von Max Michel
[Mic88] die untere Schranke 2°e™ fiir die Grofie des Komplement-Automaten
bekannt. Fiir asynchron-zelluldre Automaten kann durchaus erwartet werden, dafl
sowohl bei der Determinisierung als auch bei der Komplementierung von Biichi
Automaten die Grofle des Alphabets eine Rolle spielt.
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