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Abstract

We present direct subset automata constructions for asynchronous (asyn-
chronous cellular, resp.) automata. This provides a solution to the prob-
lem of direct determinization for automata with distributed control for
languages of finite traces. We use the subset automaton construction
and apply Klarlund’s progress measure technique in order to complement
non-deterministic asynchronous cellular Büchi automata for infinite traces.
Both constructions yield a super-exponential blow-up in the size of local
states sets.

1 Introduction

Infinite Mazurkiewicz traces provide a sound framework for studying non-termina-
ting concurrent systems, such as e.g. distributed operating systems or transaction
systems. Basically, a concurrent system is viewed as a labelled partial order of
a special form. The labelling corresponds to a (finite) set Σ of atomic actions.
The partial ordering is based on a fixed symmetric, reflexive dependence relation
D ⊆ Σ×Σ, denoting pairs of actions which cannot be executed in parallel. Espe-
cially interesting are systems where the behaviour can be described by finite state
devices. The family of recognizable languages of infinite traces, Rec(R(Σ, D)),
has been introduced by means of recognizing homomorphisms [9]. Various char-
acterizations have been obtained for this class, including automata-theoretic and
logical aspects [10, 6, 8], which generalize the well-understood framework of ω-
languages. We are interested in automata with distributed control, more precisely
in asynchronous (asynchronous cellular, resp.) automata. They play a basic role
in the theory of Mazurkiewicz traces, as finite automata do for sequential sys-
tems. For example, Zielonka’s important theorem states the equivalence between
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recognizability for languages of finite traces and acceptance by deterministic asyn-
chronous cellular automata. For languages of infinite traces a natural counterpart
of the classical Büchi acceptance condition [10] yields the equivalence between
Rec(R(Σ, D)) and the class of languages of infinite traces which are accepted
by non-deterministic Büchi asynchronous cellular automata. As in the special
case of ω-languages, recognizability of languages of infinite traces can also be
characterized by deterministic automata, by using the analogue of the more pow-
erful Muller acceptance condition [6]. This generalizes McNaughton’s theorem
to languages of infinite traces. All these results hold also for the asynchronous
automaton model, due to a straightforward transformation from asynchronous
cellular to asynchronous automata.
The closure of Rec(R(Σ, D)) under complementation is easily seen from the defi-
nition by recognizing homomorphisms (or the acceptance by deterministic Muller
automata). We present in this paper a direct proof based on automata by ex-
hibiting a complementation procedure for non-deterministic asynchronous cellular
Büchi automata. We use the notion of progress measures, which has been intro-
duced by Klarlund [11] for complementing Büchi (and Streett) ω-automata. We
will apply progress measures locally to computation subgraphs of asynchronous
automata.
A basic component of several constructions for ω-automata [20, 11] is the usual
subset automaton of Rabin and Scott. In the case of asynchronous automata, no
subset construction has been so far available, in spite of several attempts [18, 5].
We present in Sect. 3 subset constructions for asynchronous (asynchronous cellu-
lar, resp.) automata relying on Cori/Métivier’s notion of asynchronous mapping
[2]. Based on the bounded time-stamping of Zielonka’s construction we exhibit
natural mappings which turn out to be asynchronous and thus can be directly
translated into asynchronous (asynchronous cellular, resp.) automata. The deter-
ministic automata obtained provide the full information of asynchronous subset
automata. The highly technical part is the proof of correctness, i.e. showing that
the above mappings are asynchronous, which requires a detailed analysis of prefix
relations in a given trace.
We consider here two models of trace automata with distributed control (asyn-
chronous and asynchronous cellular, resp.), due to size considerations which may
be significant and determine their practical use. Asynchronous automata seem
to be more advantageous, since they are more compact, in general; the cellular
model is easier to understand, due to canonical relations to the prefix structure of
a trace. The determinization ideas are closely related and in both cases a super-
exponential blow-up of size results. However we are interested in the precise size
of the subset automata obtained.
Related ideas with respect to determinization have been developed independently
in [12], where a subset construction for asynchronous automata essentially match-
ing the lower bound is presented. We note that the superexponential lower bound
for the size blow-up obtained in [12] holds by the same argument for the cellular
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model, too.
We consider infinite traces only in Sect. 4, where we use the subset automa-
ton introduced previously and apply the progress measure of Klarlund [11] to
asynchronous cellular Büchi automata. We obtain a size blow-up for the global
state space of 2N

O(1)
. Note that we can obtain a deterministic automaton for the

complementation problem using deterministic asynchronous Muller automata,
applying the algebraic construction given in [6]. This yields however a blow-up
for the set of global states at least doubly exponential, since we have to compute
the syntactic monoid and to apply usual determinization, as well as Zielonka’s
construction.
A preliminary version of this paper appeared in [16]. In this paper we additionally
consider the asynchronous model with regard to determinization constructions.
Moreover, we present here a more involved subset construction which improves
the size of the subset automata.

2 Preliminaries

Throughout this paper we denote by (Σ, D) a finite dependence alphabet, i.e. a
finite alphabet Σ together with a reflexive, symmetric dependence relation D ⊆
Σ×Σ. The complementary relation I = (Σ×Σ)\D, called independence relation,
induces an equivalence relation ≡I on Σ∗, generated by the pairs (uabv, ubav),
with u, v ∈ Σ∗, (a, b) ∈ I. The relation ≡I turns out to be a congruence. The
quotient monoid M(Σ, D) = Σ∗/ ≡I was called trace monoid by Mazurkiewicz
[13] and it was first used in combinatorics for rearrangement problems [1]. The
canonical surjective homomorphism associated to ≡I will be denoted by ϕ : Σ∗ →
M(Σ, D). For a ∈ Σ, A ⊆ Σ, let D(a) = {b ∈ Σ | (a, b) ∈ D} and D(A) =
⋃

a∈A D(a).
By definition, a trace t is a congruence class of words and it may be represented by
words. A natural, unique representation is given by considering labelled partial
orders. We identify a trace t with a dependence graph, i.e. with a (isomorphism
class of a) labelled directed, acyclic graph G = [V,E, λ], where λ : V → Σ is
the labelling of the vertex set and edges exist between (different) vertices with
dependent labellings, i.e. for every u, v ∈ V we have (λ(u), λ(v)) ∈ D if and
only if u = v or (u, v) ∈ E ∪ E−1. Given the trace t = [a1 · · · an], we define
the associated dependence graph by taking n vertices V = {1, . . . , n} labelled as
λ(i) = ai, with edges (i, j) ∈ E for 1 ≤ i < j ≤ n whenever (ai, aj) ∈ D.
In this paper we consider finite and infinite dependence graphs with countable
vertex sets, such that λ−1(a) is well-ordered for every a ∈ Σ. The set of de-
pendence graphs satisfying these properties is denoted by G(Σ, D). It forms
a monoid with the multiplication [V1, E1, λ1][V2, E2, λ2] = [V1

˙⋃V2, E, λ1
˙⋃λ2],

where E = E1
˙⋃E2

˙⋃{(v1, v2) ∈ V1 × V2 | (λ1(v1), λ2(v2)) ∈ D}. The identity is
the empty graph 1 = [∅, ∅, ∅]. The requirement that any subset of vertices with
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the same labelling is well-ordered allows us to represent vertices as pairs (a, i),
with a ∈ Σ and i ≥ 0 a countable ordinal, where (a, i) represents the (i + 1)-th
node labelled by the letter a. This is called the standard representation.
We use here the usual notion of infinite traces, where every vertex in the de-
pendence graph has a finite past. This corresponds to the ideal completion
of M(Σ, D) under the prefix ordering, which has been already considered by
Mazurkiewicz [14]. Infinite traces with this property are called real traces and
the set of real traces is denoted R(Σ, D). Equivalently, real traces correspond
to finite and infinite dependence graphs having a representation by words; i.e.
with ϕ : Σ∞ → G(Σ, D) being the extension of the canonical mapping to the
set of finite and infinite words Σ∞ = Σ∗ ∪ Σω, we have R(Σ, D) = ϕ(Σ∞).
Note that R(Σ, D) is not a submonoid of G(Σ, D) (e.g. for (a, b) ∈ D we have
aω, b ∈ R(Σ, D), but aωb /∈ R(Σ, D)).
The notion of recognizability provides an interesting language class in various
contexts of finite and infinite objects: words, traces, trees, graphs. For real
traces a language L is recognizable if ϕ−1(L) ⊆ Σ∞ is recognizable in the usual
sense for languages over Σ∞. The class of recognizable real trace languages is
denoted by Rec(R(Σ, D)).
A natural finite state device for trace languages is the asynchronous model in-
troduced by Zielonka [21]. By asynchronous automata we mean two types of
automata of equal expressive power, both of which have distributed control and
memory. The difference consists mainly in the kind of restriction imposed on
the concurrent access to common data. Asynchronous automata belong to the
Exclusive-Read-Exclusive-Write type, while asynchronous cellular automata cor-
respond to the Concurrent-Read-Owner-Write access restriction.
An asynchronous cellular automaton A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F ) has for each
a ∈ Σ a set of local statesQa and a local transition relation δa ⊆ (

∏

b∈D(a) Qb)×Qa.
The set of global states is

∏

a∈Σ Qa, and q0 ∈
∏

a∈Σ Qa resp. F ⊆
∏

a∈Σ Qa denotes
the initial state, resp. the set of final states of A. The global transition relation
δ ⊆

∏

a∈Σ Qa × Σ×
∏

a∈Σ Qa is defined for q = (qa)a∈Σ, q
′ = (q′a)a∈Σ by

q′ ∈ δ(q, a) :⇐⇒ q′a ∈ δa((qb)b∈D(a)) and
q′c = qc, for c 6= a .

Thus, an a-transition changes only the local a-state and the change depends only
on the local states of letters b with (b, a) ∈ D. Note that for any q, q′ ∈

∏

a∈Σ Qa,
u, v ∈ Σ∗ with u ≡I v and q′ ∈ δ(q, u) also q′ ∈ δ(q, v) holds. Hence, we may define
the trace language accepted by A by L(A) = {t ∈ M(Σ, D) | δ(q0, t) ∩ F 6= ∅}.
The asynchronous automaton model, as originally considered by Zielonka [21],
associates to each letter a ∈ Σ a set dom(a) ⊆ {1, . . . ,m} of processors repre-
senting the read- and write-domain, such that (a, b) ∈ I ⇔ dom(a)∩dom(b) = ∅.
An asynchronous automaton A is a tuple ((Qi)

m
i=1, (δa)a∈Σ, q0, F ), with a local

transition relation δa ⊆
∏

i∈dom(a)Qi ×
∏

i∈dom(a)Qi for each letter a ∈ Σ. The
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set of global states is
∏m

i=1 Qi, and q0 ∈
∏m

i=1 Qi, resp. F ⊆
∏m

i=1 Qi denotes the
initial state, resp. the set of final states of A. A global transition step q′ ∈ δ(q, a),
q = (qi)1≤i≤m, q

′ = (q′i)1≤i≤m, is defined by

q′ ∈ δ(q, a) :⇐⇒ (q′i)i∈dom(a) ∈ δa((qi)i∈dom(a)) and
q′j = qj, for j /∈ dom(a) .

The language accepted by A is L(A) = {t ∈ M(Σ, D) | δ(q0, t) ∩ F 6= ∅}. An
automaton is called complete, if all transition relations are totally defined.
By standard methods, asynchronous and asynchronous cellular automata are
shown to be equivalent. Starting e.g. with an asynchronous cellular automaton
with local states sets Qa, a ∈ Σ, an equivalent asynchronous automaton is ob-
tained by embedding A through Qi :=

∏

i∈dom(a) Qa. Note that the number of
(reachable) global states does not change. Conversely, given an asynchronous
automaton with local states Qi, 1 ≤ i ≤ m, a simple time-stamping for each
set Ai = {a ∈ Σ | i ∈ dom(a)} can be used for determining the last occurrence
of letters from Ai (note Ai × Ai ⊆ D): the sum modulo |Ai| of the time-stamps
associated to a ∈ Ai yields the last occurrence from Ai (see also [19]). Let the size
of an asynchronous (cellular) automaton denote the total number of local states.
Then an asynchronous automaton of size n with m processors is transformed into
an equivalent cellular one of size O(|Σ|n)m; the converse transformation yields
an asynchronous automaton with m processors and size O(m · n|Σ|).
Zielonka’s theorem [21] characterizes the class of recognizable languages of finite
traces by deterministic asynchronous automata, providing a suitable recognition
device for traces. Asynchronous automata showed to be an appropriate finite
state model for languages of real traces, too. A distributed (i.e., local) analogue
of the usual Büchi (resp. Muller) acceptance condition has been proposed in
[10]. The idea is to augment e.g. an asynchronous cellular automaton by a table
T ⊆

∏

a∈Σ P(Qa), i.e. we are given a tuple A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F, T ).
Consider an infinite transition path π = (q0, a0, q

1, a1, . . . ) in A, with qn ∈
∏

a∈Σ Qa, an ∈ Σ and qn+1 ∈ δ(qn, an) for n ≥ 0. For each a ∈ Σ we are in-
terested in the set of local a-states which occur infinitely often in π, i.e. in the
set infa(π) = {qa ∈ Qa | (q

n)a = qa for infinitely many n}.
The path π is accepted by A with the Büchi acceptance condition if for some
T = (Ta)a∈Σ ∈ T we have infa(π) ⊇ Ta for every a ∈ Σ. (Viewing A as a
Muller automaton, π is accepted if for some T = (Ta)a∈Σ ∈ T , infa(π) = Ta for
every a ∈ Σ). An infinite trace t ∈ R(Σ, D) is accepted if there exists a path π
as above labelled by some representing word of t, i.e. t = ϕ(a0a1 . . . ), which is
accepted. (The local acceptance condition ensures that this notion of acceptance
is well-defined, i.e. it does not depend on the representing word, [10]).
Finite traces are accepted in the usual way, by reaching a final state from F .
Similar definitions apply to the asynchronous model, where the acceptance de-
pends on the sets infi(π) = {qi ∈ Qi | (q

n)i = qi for infinitely many n}.
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We denote by RA(t) the set of runs of an asynchronous cellular automaton A on
t ∈ R(Σ, D), starting with the initial state q0 of A. We view a run r ∈ RA(t) as
a labelling r : V (t) → ∪a∈ΣQa of the dependence graph of t, [V (t), E(t), λ(t)], by
local states, such that r is consistent with the alphabetical labelling λ(t) and with
the transition relations (δa)a∈Σ. Concretely, consider (a, na) ∈ V (t) and let for b ∈
D(a): qb = r(b, nb), where ((b, nb), (a, na)) ∈ E(t) with nb maximal, respectively
qb = (q0)b, if no such (b, nb) exists. Then we have r(a, na) ∈ δa((qb)b∈D(a)). For
u ∈ M(Σ, D), r ∈ RA(u), let δ(r, u) denote the global state reached in the run r
on u.

We close this section with some general notations. For t ∈ R(Σ, D), a ∈ Σ we
denote by |t|a the number of occurrences of a in t; by alph(t) = {a ∈ Σ | |t|a > 0}
the alphabet of t; finally, by alphinf(t) = {a ∈ Σ | |t|a = ∞} the alphabet
at infinity of t. For A ⊆ Σ let Inf(A) = {t ∈ R(Σ, D) | alphinf(t) = A}. For
t ∈ M(Σ, D) let max(t) = {a ∈ Σ | ∃w ∈ Σ∗ : t = ϕ(wa)} be the labellings of the
maximal elements of t. A subalphabet A ⊆ Σ is called connected if (A,D|A×A) is
a connected subgraph of (Σ, D). A trace t is connected if alph(t) is connected.
The prefix order on R(Σ, D) is defined by u ≤ t if t = uv for some v ∈ R(Σ, D).
For t = uv let u−1t = v. As usual, u ⊓ v is the greatest lower bound of u, v.
Whenever it exists, the least upper bound of u, v is denoted by u⊔ v. For m ∈ N

let [m] be the set {1, . . . ,m}. The complement of a set X is denoted X, while
P(X) denotes the powerset of X.

3 Determinization for asynchronous automata

We present in this section subset constructions for asynchronous (asynchronous
cellular, resp.) automata relying on the notion of asynchronous mapping intro-
duced by Cori/Métivier [2]. While the underlying idea of the first construction
is more intuitive, the second one achieves a better bound for the size of the sub-
set automata obtained. Asynchronous mappings reflect the functional aspect of
asynchronous automata. As defined below, a mapping µ : M(Σ, D) → S is asyn-
chronous if it can be computed stepwise in a distributed way, thus being easily
transformed into an equivalent deterministic asynchronous (cellular) automaton.
(For more details and general notions on traces and asynchronous automata see
Ch. 7,8 in [7].) Before recalling the definition, let us introduce a basic notation
for trace prefixes. For t ∈ M(Σ, D), a ∈ Σ and A ⊆ Σ let

∂a(t) = ⊓{u ≤ t | |t|a = |u|a } and ∂A(t) =
⊔

a∈A ∂a(t)

(In particular ∂∅(t) = 1 and ∂Σ(t) = ∂max(t) = t.)

Thus, ∂a(t) resp. ∂A(t) =
⊔

{u ≤ t | max(u) ⊆ A} is the minimal prefix of t
containing all a, resp. all letters a ∈ A from t. Especially we have ∂a(ta) =
∂D(a)(t)a. In the following we will use the notation ∂a,A(t) instead of ∂a(∂A(t))
(or simply ∂a,b(t), if A = {b}).
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Definition 3.1 ([2]) A mapping µ : M(Σ, D) → S is called asynchronous if for
every t ∈ M(Σ, D), a ∈ Σ and A,B ⊆ Σ the following conditions are satisfied.

• The value µ(∂D(a)(t)) and the letter a uniquely determine µ(∂a(ta)).

• The values µ(∂A(t)), µ(∂B(t)) and A,B uniquely determine µ(∂A∪B(t)).

For example, alph(·) is an asynchronous mapping. On the other hand, max(·) is
not asynchronous (let e.g. (Σ, D) = a −−b −−c and consider t1 = ac, t2 = acb,
resp. t′1 = bac, t′2 = b: max(t1 ⊔ t2) 6= max(t′1 ⊔ t′2)).
Suppose we are given an asynchronous mapping µ : M(Σ, D) → S and a subset
R ⊆ S. Then let Aµ = ((Qa)a∈Σ, δ, q0, F ) be defined by Qa = {µ(∂a(t)) | t ∈
M(Σ, D)}, a ∈ Σ, q0 = (µ(1))a∈Σ, F = {(µ(∂a(t)))a∈Σ | µ(t) ∈ R}, and for
q, q′ ∈

∏

a∈Σ Qa:

q′ = δ(q, a) ⇐⇒ qb = µ(∂b(t)), q
′
b = µ(∂b(ta)), b ∈ Σ, for some t ∈ M(Σ, D).

Since ∂a(ta) = ∂D(a)(t)a and ∂b(ta) = ∂b(t) for b 6= a, it is immediate that δ is
the transition function of an asynchronous cellular automaton. Moreover, with
δ(q0, t) = (µ(∂a(t)))a∈Σ, it is clear that L(Aµ) = µ−1(R) [3, 4].

Remark 3.2 1. Asynchronous mappings can be easily translated to asynchro-
nous automata, too. Let dom(a) ⊆ [m] denote the domain of a ∈ Σ, and
let Ai = {a ∈ Σ | i ∈ dom(a)}, i ∈ [m]. Consider the automaton A =
((Qi)i∈[m], (δa)a∈Σ, q0, F ) withQi = {µ(∂Ai

(t)) | t ∈ M(Σ, D)}, q0 = (µ(1))i∈[m],
F = {(µ(∂Ai

(t)))i∈[m] | µ(t) ∈ R}. The transition q′ = δ(q, a) is defined if
qi = µ(∂Ai

(t)) and q′i = µ(∂Ai
(ta)), i ∈ [m], holds for some t ∈ M(Σ, D). It is

left to the reader to verify that δ is the transition function of an asynchronous
automaton accepting µ−1(R).

2. Consider a non-deterministic asynchronous (asynchronous cellular, resp.) au-
tomatonA. It will suffice to obtain an asynchronous mapping µ : M(Σ, D) → S
based on A, with S finite and such that µ−1µ(L(A)) = L(A). The asyn-
chronous (cellular) subset automaton will be then directly constructed as just
described.

As previously mentioned, we will use throughout our determinization construc-
tions Zielonka’s labelling function ν : M(Σ, D) → {0, . . . , |Σ|}Σ×Σ, which is de-
fined inductively for a, b ∈ Σ, t ∈ M(Σ, D) by:

• ν(1)(a, b) = 0.

• If t 6= ∂a,b(t) then ν(t)(a, b) = ν(∂a,b(t))(a, a).

• If t = ∂a(t) and t 6= 1 then

ν(t)(a, a) = min{n > 0 | n 6= ν(t)(a, c) for every c 6= a}.

7



Note that ν(∂A(t))(c, a) = ν(t)(c, a) for every a ∈ A.
The labelling function ν is a time-stamping function, allowing to determine the
actuality of information received in a distributed way. In particular, it provides
information about ordering of prefixes of the form ∂a(t). Consider e.g. the depen-
dence alphabet (Σ = {a, b, c, d}, D) with D = (Σ×Σ)\{(a, c), (c, a), (b, d), (d, b)},
and the trace t = [adancb], n ≥ 1. Then using ν we are able to determine whether
b or c have the most recent information about a. In the following we point out
some basic properties of ν:

Fact 3.3 ([3, 4]) Let t ∈ M(Σ, D), a, b, c ∈ Σ, A,B ⊆ Σ. Then:

1. ν(t)(c, a) = ν(t)(c, b) ⇐⇒ ∂c,a(t) = ∂c,b(t) .

2. Suppose that we are given the value ν(t) or both values ν(∂A(t)), ν(∂B(t)).
Then we can determine the set Ca,b := {c ∈ Σ | ∂c,a(t) = ∂c,b(t)}, for every
a, b ∈ A ∪ B. Moreover, we can determine for every c ∈ Σ which of the
following holds:

∂c,A(t) = ∂c,B(t) , resp. ∂c,A(t) < ∂c,B(t) , resp. ∂c,B(t) < ∂c,A(t) .

3. ν is an asynchronous mapping.

3.1 A simple determinization construction

The crucial idea for the determinization constructions presented in the sequel is
to augment the time-stamping mapping ν by a mapping ρ depending on the given
non-deterministic asynchronous (asynchronous cellular, resp.) automaton A.
We start considering the cellular model and denote in the following by Q the
set of local states, Q = ˙⋃

a∈Σ Qa of an asynchronous cellular automaton A =
((Qa)a∈Σ, (δa)a∈Σ, q0, F ).
Let now ρ : M(Σ, D) → P(QΣ×Σ) be given for t ∈ M(Σ, D) as

ρ(t) = {f ∈ QΣ×Σ | ∃r ∈ RA(t) s.t. for every a, b ∈ Σ : f(b, a) = δ(r, ∂a(t))b} .

Thus, every element f : Σ× Σ → Q of ρ(t) is associated to a run r on t, such
that for every a, b ∈ Σ, f(b, a) represents the local b-state reached in the run r
on the prefix ∂a(t) of t.

Proposition 3.4 Given a non-deterministic asynchronous cellular automaton
A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F ). Then the associated mapping (ν, ρ) is asynchro-
nous.
Moreover, we have

L(A) = {t ∈ M(Σ, D) | ∃q = (qa)a∈Σ ∈ F, ∃f ∈ ρ(t) s.t. f(a, a) = qa, ∀a ∈ Σ}.
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For the proof, let us start with a technical lemma.

Lemma 3.5 Let A,B ⊆ Σ, t = ∂A∪B(t) and t1 = ∂A(t), t2 = ∂B(t). Let a, b ∈ Σ
such that ∂a(t1) < ∂a(t2) and ∂b,a(t) ≤ t1 ⊓ t2.
Then there exists some d ∈ Σ such that ∂b,a(t) = ∂b,d(t1). Moreover, a letter d
with this property can be computed effectively, given the values ν(t1) and ν(t2).

Proof: By assumption, we have ∂b,a(t) = ∂b,a(t2) ≤ t1 ⊓ t2. Using ν the
common prefix s := t1 ⊓ t2 can be determined, since we have max(s) ⊆ C, with
C = {c ∈ Σ | ∂c(t1) = ∂c(t2)} = {c ∈ Σ | ν(t1)(c, c) = ν(t2)(c, c)} [3]. By the
very definition of C we have ∂c(s) = ∂c(ti), for every c ∈ C, i = 1, 2. Let further
u, v ∈ M(Σ, D) be such that t1 = su, t2 = sv, hence alph(u)× alph(v) ⊆ I.
Assume first ∂b,a(t) 6= 1 and consider the set C ′ = {d ∈ Σ | ∂d,a(t2) = ∂d(s)}. We
denote s′ = s ⊓ ∂a(t2), with s = s′x, ∂a(t2) = s′y for suitable x, y ∈ M(Σ, D),
where alph(x) × alph(y) ⊆ I (see also Fig. 1). Again, we have s′ = ∂C′(s′) =
∂C′(s) = ∂C′,a(t2).
From ∂b,a(t2) ≤ ∂b(s) we obtain directly ∂b,a(t2) = ∂b(s

′). (In particular, s′ 6= 1,
thus C ′ 6= ∅.) Together with s′ = ∂C′(s) we have ∂b,a(t2) = ∂b,d(s) for a suitable
d ∈ max(s′) ⊆ C ′.
We show now ∂d(s) = ∂d(t1). Since d belongs to a path from b to a, where the
vertex labelled a lies in y, there is some e ∈ alph(y) with (d, e) ∈ D (see Fig. 1).
Due to y ≤ v, the assumption d ∈ alph(u) would contradict alph(u)×alph(v) ⊆ I.
(Note that y 6= 1, otherwise we would have ∂a(t2) ≤ s.) By the definition of C ′

we have C ′ ∩ alph(x) = ∅. From t1 = s′xu we conclude ∂d(t1) = ∂d(s
′) = ∂d(s).

Note also that ∂b,a(t2) = ∂b,C′′(s), where C ′′ := C ′ ∩D(alph(v)).
For ∂b,a(t2) 6= 1 (i.e., ν(t2)(b, a) 6= 0) we compute effectively a letter d with
∂b,a(t2) = ∂b,d(t1) as follows: using ν(t1), ν(t2) we first determine the sets C and
alph(v) [3]; using again ν(t2) we compute C ′. Finally we choose d ∈ C ′′ such that
∂b,d(t1) = ∂b,C′′(t1) and obtain

∂b,d(t1) = ∂b,C′′(t1)
C′′⊆D(alph(v))

= ∂b,C′′(s) = ∂b,a(t2) .

Finally, if ∂b,a(t2) = 1, then d = a satisfies the requirement ∂b,a(t2) = ∂b,d(t1).
✷

Remark 3.6 Consider now a clique covering of (Σ, D) = (
⋃

i∈[m] Ai,
⋃

i∈[m] Ai ×
Ai). A closer look at the proof of Lem. 3.5 yields the existence of a clique Ak such
that ∂b,a(t) = ∂b,Ak

(t1). For this, let us assume ∂b,a(t) 6= 1 and consider a clique
Ak containing both d, e, with the notations from the last proof. We observe that
∂Ak

(t1) = ∂Ak
(s′) = ∂d(s

′), since Ak ⊆ D(e) ⊆ D(alph(y)) and d ∈ Ak ∩max(s′).
For ∂b,a(t) = 1 we choose Ak with a ∈ Ak and note a /∈ alph(u). Hence, it can be
easily verified that for any i, j ∈ [m] with ∂Ai

(t1) < ∂Ai
(t2) and ∂Aj ,Ai

(t) ≤ t1⊓ t2
some k ∈ [m] effectively exists such that ∂Aj ,Ai

(t) = ∂Aj ,Ak
(t1).
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Figure 1: ∂b,d(t1) = ∂b,a(t2) = ∂b,a(t).

Proof of 3.4: By Fact 3.3 we know that ν is asynchronous.
Let t ∈ M(Σ, D), a ∈ Σ, A,B ⊆ Σ. Given ν(∂D(a)(t)), ρ(∂D(a)(t)) and a, we
define R ⊆ QΣ×Σ by letting g ∈ R if for some f ∈ ρ(∂D(a)(t)):

• g(c, b) = f(c, b), for b 6= a and c ∈ Σ;

• g(c, a) = qc ∈ Qc, where qc = f(c, c) for c 6= a, and qa ∈ δa((f(b, b))b∈D(a)).

It is straightforward to see R = ρ(∂a(ta)), since runs on ∂a(ta) represent exactly
extensions of runs on ∂D(a)(t) by an a-transition. The details are left to the
reader.
Consider now A,B ⊆ Σ and t = ∂A∪B(t), with t1 = ∂A(t), t2 = ∂B(t), s = t1 ⊓ t2.
Hence, t1 = su and t2 = sv with alph(u) × alph(v) ⊆ I. We denote C = {c ∈
Σ | ∂c(t1) = ∂c(t2)} = {c ∈ Σ | ν(t1)(c, c) = ν(t2)(c, c)}. Let ν(ti), ρ(ti) be
given and define R ⊆ QΣ×Σ by f ∈ R if for some fi ∈ ρ(ti) (i = 1, 2) satisfying
f1(c

′, c) = f2(c
′, c) for every c ∈ C, c′ ∈ Σ, we have for all a, b ∈ Σ:

f(b, a) =











f1(b, a) if ∂a(t2) ≤ ∂a(t1)
f2(b, a) if ∂b(s) < ∂b,a(t2)
f1(b, d) otherwise, with d ∈ Σ s.t. ∂b,a(t2) = ∂b,d(t1) .

By Lemma 3.5 f is well-defined in the last case, too. The definition of f is based
on the idea of combining pairs of runs on t1, t2 if they yield the same global state
on the common prefix s = t1 ⊓ t2.
More precisely, let ri ∈ RA(ti) be given such that δ(r1, ∂c(t1)) = δ(r2, ∂c(t2)), for
every c ∈ C. In particular, we also have δ(r1, s) = δ(r2, s), since s = ∂C(s). De-
noting by [Vi, Ei, λi] the dependence graph of ti it follows easily that the mapping
r : V1 ∪ V2 → Q with

r(v) =

{

r1(v) if v ∈ V1

r2(v) if v ∈ V2 \ V1

10



is a well-defined run on t. Hence, for the inclusion R ⊆ ρ(t) it suffices to show that
the mappings f ∈ QΣ×Σ defined above correspond exactly to runs r : V1∪V2 → Q
as just described. The converse inclusion ρ(t) ⊆ R is immediate.
For a, b ∈ Σ we distinguish whether ∂b,a(t) = ∂b,a(t1) or ∂b,a(t) = ∂b,a(t2) holds,
where in the second case the position of the maximal vertex of ∂b,a(t) (if any)
w.r.t. v or s is taken into account:

∂b,a(t) =











∂b,a(t1) if ∂a(t2) ≤ ∂a(t1)
∂b,a(t2) if ∂b(s) < ∂b,a(t2)
∂b,d(t1) otherwise, for d ∈ Σ s.t. ∂b,a(t2) = ∂b,d(t1) .

To conclude the proof, note that the values ν(t1), ν(t2) allow to distinguish the
three cases considered in the definition of f , due to s = ∂C(t2), together with
Lem. 3.5. ✷

Notation: We will use in the next section the abbreviation q
(a)
→ q′, for t ∈ M(Σ, D)

and states q, q′ ∈
∏

a∈Σ Qa in an asynchronous cellular automaton A. This means
that t ∈ M(Σ, D) and a run r ∈ RA(∂a(ta)) exist, such that q = δ(r, ∂a(t)) and
q′ = δ(r, ∂a(ta)). Note that the subset automaton based on Prop. 3.4 (see also
Prop. 3.9) provides this information, given the values ν(∂b(t)), ρ(∂b(t)), for all
b ∈ D(a).

Remark 3.7 The idea of the construction in Prop. 3.4 can be easily adapted to
asynchronous automata. Let A = ((Qi)

m
i=1, (δa)a∈Σ, q0, F ) be a non-deterministic

asynchronous automaton, and let Q = ˙⋃
i∈[m] Qi. Let ρ : M(Σ, D) → P(Q[m]×[m])

be defined for t ∈ M(Σ, D) by:

ρ(t) := {f ∈ Q[m]×[m] | ∃r ∈ RA(t) : δ(r, ∂Ai
(t))j = f(j, i)}.

Then the mapping µ = (ν, ρ) is asynchronous. Consider e.g. the case where µ(t1),
µ(t2) are given, with t1 = ∂A(t) = su, t2 = ∂B(t) = sv, alph(u) × alph(v) ⊆ I.
Assume that both u and v are non-empty and let C = {c ∈ Σ | ∂c(t1) = ∂c(t2)}.
We show how runs ri ∈ RA(ti), i = 1, 2, can be chosen with δ(r1, s) = δ(r2, s).
For k ∈ [m] let c ∈ max(s) be such that ∂Ak

(s) = ∂Ak,c(s). Due to u 6= 1, v 6= 1 we
have c ∈ D(alph(u))∩D(alph(v)), hence there exist i, j ∈ [m] with Ai∩alph(u) 6=
∅, Aj ∩ alph(v) 6= ∅ and c ∈ Ai ∩ Aj. Clearly, Ai ∩ alph(v) = Aj ∩ alph(u) = ∅.
This yields ∂c(s) = ∂Ai

(t2) = ∂Aj
(t1), hence ∂Ak

(s) = ∂Ak,Ai
(t2) = ∂Ak,Aj

(t1).
Moreover, C, c and i, j can be effectively determined from ν(t1), ν(t2). For the
definition of the combined run on t = t1 ⊔ t2 we require f1(k, i) = f2(k, j) for
all k and we use Rem. 3.6. The details and the definition of a subset R ⊆
{0, . . . , |Σ|}Σ×Σ × P(Q[m]×[m]) with L(A) = µ−1(R) are left to the reader.

The asynchronous mappings considered in Prop. 3.4 and Rem. 3.7 lead together
with Rem. 3.2(2) to determinization constructions for both asynchronous au-
tomata models as stated in the following theorem. Recall that the size of an asyn-
chronous (cellular) automaton corresponds to the total number of local states.
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Theorem 3.8 1. Let A be a non-deterministic asynchronous cellular automaton
of size n. Then a deterministic asynchronous cellular subset automaton Ã of

size 2O(n|Σ|2 ) effectively exists with L(A) = L(Ã).

2. Let A be a non-deterministic asynchronous automaton of size n with m proces-

sors. Then a deterministic asynchronous subset automaton Ã of size 2O(nm2
)

effectively exists with L(A) = L(Ã), having the same read-and-write-domains
as A.

3.2 An improved determinization construction

We consider in this section further mappings for both asynchronous models, which
lead to determinization constructions with improved bounds w.r.t. size. More pre-
cisely, we obtain a size blow-up of 2n

O(|Σ|)
for the asynchronous cellular model,

resp. 2n
O(m)

for the asynchronous one, where m is the number of processors. How-
ever, the correctness proof is more involved and the definition of these mappings
is less intuitive.
We denote in the following by QΣ the set of global states of an asynchronous
cellular automaton A, QΣ =

∏

a∈Σ Qa.

Proposition 3.9 Given a complete non-deterministic asynchronous cellular au-
tomaton A = ((Qa)a∈Σ, (δa)a∈Σ, q0, F ).
Let ρ : M(Σ, D) → P(QΣ ×QΣ × P(Σ)× Σ) be defined for t ∈ M(Σ, D) by:

ρ(t) := {(q, q′, A, a) | ∃r ∈ RA(t) : δ(r, ∂A(t)) = q and δ(r, ∂A∪{a}(t)) = q′}.

Then the mapping µ = (ν, ρ) is asynchronous.
Moreover, we have

L(A) = {t ∈ M(Σ, D) | ∃q ∈ F : (q, q,Σ, a) ∈ ρ(t), ∀a ∈ Σ}.

Proof: Let first t = ∂D(a)(t) and t′ = ta, for a ∈ Σ. Note that for X ⊆ Σ,
∂X(t

′) = ∂X(t) if a /∈ X, resp. ∂X(t
′) = t′ if a ∈ X. For B ⊆ Σ, b ∈ Σ, and given

µ(t) and a we define a set R as the least subset of QΣ×QΣ×P(Σ)×Σ satisfying
the following:

1. If a 6= b and a /∈ B, then let (q, q′, B, b) ∈ R if (q, q′, B, b) ∈ ρ(t).

2. If b = a /∈ B, then let (q, q′, B, b) ∈ R if some q′′ ∈ QΣ exists such that
(q′′, q′′,Σ, a) ∈ ρ(t), q′ ∈ δ(q′′, a) and q′′ ∈ δ(q, ∂B(t)

−1t). Note that the last
condition can be checked by augmenting B stepwise by letters from D(a).

3. If a ∈ B, then let (q, q, B, a) ∈ R if q ∈ δ(q′, a), for some (q′, q′,Σ, a) ∈ ρ(t).

12



By the previous remark, it is easy to see that R ⊆ ρ(t′) holds. The converse
inclusion ρ(t′) ⊆ R is immediate.
For the second property of asynchronous mappings let A,B ⊆ Σ and consider
t = ∂A∪B(t) with t1 = ∂A(t) = su, t2 = ∂B(t) = sv, where alph(u)× alph(v) ⊆ I.
We denote by C the alphabet C = {c ∈ Σ | ∂c(t1) = ∂c(t2)}, and recall that C
can be computed from the values ν(t1), ν(t2) of the labelling function ν. Recall
further that s = ∂C(s) = ∂C(ti), i = 1, 2.
Let E ⊆ Σ, a ∈ Σ and assume without loss of generality ∂a(t2) ≤ ∂a(t1). Let
y = ∂E(v) and note that we have ∂E(t) = ∂E(t1v) = ∂E∪F (t1)y, where F =
D(alph(y)).
The idea of this construction is to determine runs on ∂E(t) by applying to more
information than necessary in order to build the run (see also Fig. 2): we combine
a run r1 ∈ RA(∂E∪F (t1)) with a run r2 ∈ RA(∂C∪E(t2)) to a run r on ∂E(t)
corresponding to r1 on ∂E∪F (t1), respectively to r2 on y. For the consistency note
first that ∂f (t1) = ∂f (s) for every f ∈ F , since F ⊆ D(alph(v)) and alph(u) ×
alph(v) ⊆ I. Moreover, in order to combine consistent runs we need the state
reached by a run on ∂E(t2) = ∂E∪F (s)y on the prefix ∂E∪F (s) (actually, only the
F -components are needed). This information cannot be provided by supplying
the global state on ∂E(t2), only. Therefore, we consider the run r2 on the larger
prefix ∂C∪E(t2) = sy, and we additionally assume the existence of a third run r3
on s, such that r2 is an extension of r3 and r1 agrees with r3 in the F -components.
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y

f ∈ F
s

Figure 2: Forming runs on ∂E(t).

Formally, consider a run r3 ∈ RA(s) and let q1 = δ(r1, ∂E∪F (t1)), q2 = δ(r2, ∂C∪E(t2)),
and q3 = δ(r3, s). Suppose that q2 ∈ δ(q3, y) and (q1)f = (q3)f , for every f ∈ F .
We claim that the following mapping r : V (∂E(t)) →

⋃

a∈Σ Qa, which labels the
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vertex set V (∂E(t)) of ∂E(t) by local states, is a well-defined run on ∂E(t):

r(w) :=

{

r1(w) if w ∈ V (∂E∪F (t1))
r2(w) if w ∈ V (y),

with V (∂E∪F (t1)) resp. V (y) denoting the vertex set of ∂E∪F (t1) resp. y.
To see the claim, note that given a run r′ on ∂C∪E(t2) = sy and a run r′′ on
s with δ(r′, s)f = δ(r′′, s)f for all f ∈ F , we can combine r′, r′′ to a third run
r′′′ on ∂C∪E(t2), corresponding to r′′ on s, resp. to r′ on y. This property is
mainly due to F = D(alph(y)), together with the definition of read-domains of
an asynchronous cellular automaton. Recall also ∂f,E∪F (t1) = ∂f (t1) = ∂f (s), for
f ∈ F .
The global state q = δ(r, ∂E(t)) associated to the run r defined above satisfies:

qe =

{

(q2)e if ∂e,C(t2) < ∂e,E(t2)
(q1)e otherwise.

Recall the assumption ∂a(t2) ≤ ∂a(t1) and let r4 denote a run on ∂E∪F∪{a}(t1)
satisfying δ(r4, ∂E∪F (t1)) = q1 = δ(r1, ∂E∪F (t1)). Denote by q4 the state q4 =
δ(r4, ∂E∪F∪{a}(t1)). Similar to the run r, the mapping r′ : V (∂E∪{a}(t)) →

⋃

a∈Σ Qa

defined by

r′(w) :=

{

r4(w) if w ∈ V (∂E∪F∪{a}(t1))
r2(w) if w ∈ V (y)

is a well-defined run on ∂E∪{a}(t). Note that the run r′ yields the state q on the
prefix ∂E(t). For q

′ = δ(r′, ∂E∪F∪{a}(t)) we have analogously to q:

q′e =

{

(q2)e if ∂e,C(t2) < ∂e,E(t2)
(q4)e otherwise.

Therefore, for ∂a(t2) ≤ ∂a(t1) we let (q, q′, E, a) ∈ R if the following conditions
are satisfied for some states qi ∈

∏

a∈Σ Qa, 1 ≤ i ≤ 4:

1. (q1)f = (q3)f , for every f ∈ F = D(alph(∂E(v))).

2. Let E = {e1, . . . , ek}, k ≥ 0, and Ci = C ∪ {e1, . . . , ei}, 0 ≤ i ≤ k (with
C = C0). Then we require the existence of a sequence q3 = p0, p1, . . . , pk =
q2 of global states satisfying (pi, pi+1, Ci, ei+1) ∈ ρ(t2), for all 0 ≤ i < k.

3. (q1, q4, E ∪ F, a) ∈ ρ(t1).

4. • qe = q′e = (q2)e, if ∂e,C(t2) < ∂e,E(t2).

• qe = (q1)e resp. q
′
e = (q4)e, if ∂e,E(t2) ≤ ∂e,C(t2).

By the remarks above we see R ⊆ ρ(t), whereas the converse inclusion is again
immediate, using the fact that the transition relations of A are totally defined.
Note also that the sets C,F and the conditions concerning the prefixes ∂a(t2),
∂a(t1), ∂e,E(t2), ∂e,C(t2) can be checked using the values ν(t1), ν(t2). ✷
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Remark 3.10 The idea of the improved construction for asynchronous cellular
automata based on Prop. 3.9 can be adapted also to asynchronous automata.
Let A = ((Qi)

m
i=1, (δa)a∈Σ, q0, F ) denote an asynchronous automaton with read-

and-write domains dom(a) ⊆ [m], a ∈ Σ, and denote by Q[m] the set of global
states

∏

i∈[m] Qi. We denote in the following by Ai, i ∈ [m], the dependence
clique {a ∈ Σ | i ∈ dom(a)}, and let ∂i(t), resp. ∂E(t) (i ∈ [m], E ⊆ [m])
denote the prefix ∂Ai

(t), resp. ∂AE
(t), where AE = ∪i∈EAi. Consider the mapping

ρ : M(Σ, D) → P(Q[m] ×Q[m] × P([m])× [m]) given by

ρ(t) := {(q, q′, E, i) | ∃r ∈ RA(t) : δ(r, ∂E(t)) = q and δ(r, ∂E∪{i}(t)) = q′}.

Since the first property of asynchronous mappings can be easily verified for the
above mapping, let us consider the second one. Suppose t = ∂A∪B(t), with
A,B ⊆ Σ, and let t1 = ∂A(t) = su, t2 = ∂B(t) = sv, where alph(u)×alph(v) ⊆ I.
For E ⊆ [m], i ∈ [m] assume u 6= 1 and ∂i(t2) ≤ ∂i(t1). We denote as in
the proof of Prop. 3.9 y = ∂E(v), and let F =

⋃

b∈alph(y) dom(b). Note that
D(alph(y)) =

⋃

i∈F Ai, hence ∂E(t) = ∂E(t1v) = ∂E∪F (t1)y. Moreover, we have
again ∂i(t1) = ∂i(s), for every i ∈ F .
It remains to define the set C accordingly. Let C ′ = {c ∈ Σ | ∂c(t1) = ∂c(t2)} ⊇
max(s) and define C = {j ∈ [m] | Aj ∩ C ′ 6= ∅, Aj ∩ alph(u) 6= ∅}. Since u 6= 1,
we have for every c ∈ max(s): c ∈ D(alph(u)), hence max(s) ⊆

⋃

i∈C Ai.
Moreover, ∂C(t2) = ∂C(s) = s, and for every i ∈ F : ∂i,C(t2) = ∂i(s) = ∂i(t1) =
∂i,E∪F (t1).
It is not difficult to show that µ = (ν, ρ) is asynchronous and that L(A) =
µ−1µ(L(A)). The details of the proof are left to the reader.

Prop. 3.9 and the above remark yield the improved constructions for asynchronous
(asynchronous cellular, resp.) subset automata:

Theorem 3.11 1. Let A be a non-deterministic asynchronous cellular automa-
ton of size n. Then a deterministic asynchronous cellular subset automaton Ã
of size 2n

O(|Σ|)
effectively exists with L(A) = L(Ã).

2. Let A be a non-deterministic asynchronous automaton of size n with m proces-
sors. Then a deterministic asynchronous automaton Ã of size 2n

O(m)
effectively

exists with L(A) = L(Ã), having the same read-and-write-domains as A.

We conclude this section with remarks concerning related subset constructions.
As previously mentioned, Klarlund, Mukund and Sohoni presented independently
a solution to the determinization problem for asynchronous automata [12]. Their

construction yields a blow-up in size of 2n
O(m3)

, where n denotes the size of the
input automaton (as the maximal size of local states sets) and m is the number
of processors. This paper also contains a nice example for the lower bound of
2n

m/m.
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A less direct subset construction can be achieved by using an alternative deter-
minization procedure given in [3]. Here, we view e.g. a non-deterministic asyn-
chronous cellular automaton A as a sequential automaton with transition relation
δ ⊆ Q × Σ∗ × Q, where |Q| ≤ n|Σ| denotes the set of global states. After de-
terminizing A (and possibly minimizing it) we obtain a deterministic automaton

with at most 2n
|Σ|

states, having the I-diamond property (i.e., for every states
q, q′ and letters (a, b) ∈ I: q′ = q ·ab ⇔ q′ = q ·ba). This sequential automaton can
be used as input for the alternative construction of deterministic asynchronous
automata mentioned above (see [3]). One obtains an equivalent asynchronous

cellular automaton with at most 2O(n)|Σ|
local states. For practical use, this off-

line approach may be less efficient than the direct constructions of Thm. 3.8 and
[12], since simulating the subset automaton is done by table lookup instead of up-
dating local information. Moreover, direct subset constructions are more flexible
w.r.t. modifications of the input automaton or to partial determinization. Note
also that direct constructions take only reachable local states into account.

4 Complementing Büchi asynchronous cellular automata

The complementation procedure for asynchronous cellular Büchi automata pre-
sented in this section applies the progress measure technique proposed by Klar-
lund [11], and uses the subset automaton construction given in Sect. 3. Progress
measures have been devised in a more general setting for verifying sequential
programs, and provide optimal complementation procedures for e.g. Büchi and
Streett ω-automata.
Our starting point is a slightly different Büchi acceptance condition, which re-
stricts the accepted inputs to some set Inf(A), A ⊆ Σ, and specifies for each
letter at most one local state to be repeated infinitely often. Formally, we con-
sider a tuple A = ((Qa)a∈Σ, (δa)a∈Σ, q0, T ) with T ⊆ Q × P(Σ) × P(Σ), where
Q =

∏

a∈Σ Qa. A table element is a triple (p,A, {a1, . . . , ak}) satisfying the fol-

lowing condition: we require ai ∈ Ai for every 1 ≤ i ≤ k, with A = ˙⋃k

i=1 Ai

being the decomposition of A in connected components (i.e. every Ai induces a
connected subgraph of (Σ, D) and Ai × Aj ⊆ I for i 6= j).
Throughout this section we use the standard representation for dependence graphs,
introduced in Sect. 2.
A run r ∈ RA(t) on t is accepted by the table element (p,A, {a1, . . . , ak}) if

• A = alphinf(t) and

• For every a ∈ Ā∪{a1, . . . , ak} we have pa ∈ infa(r), where infa(r) := {qa ∈
Qa | ∀n < |t|a ∃n ≤ m < |t|a : r(a,m) = qa}.

Hence, this local acceptance condition specifies halting states for letters a /∈
alphinf(t) and recurrent states for the designated letters ai. Note that an asyn-
chronous cellular Büchi automaton with acceptance table T ⊆

∏

a∈Σ P(Qa) as
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defined in Sect. 2 can be easily transformed into an equivalent one with ac-
ceptance table as above: for t with alphinf(t) = A the letters ai ∈ Ai can be
used for checking that all local states from

⋃

a∈Ai
Ta occur infinitely often, where

T = (Ta)a∈Σ ∈ T . The converse transformation is straightforward, since we only
have to check additionally that the input trace belongs to some (recognizable)
set Inf(A), A ⊆ Σ.
For t ∈ R(Σ, D), a ∈ Σ, 0 ≤ n < |t|a, let t[a, n] = ⊓{u ≤ t | |u|a = n+ 1} be the
least prefix of t containing the first n+1 occurrences of a (note max(t[a, n]) = {a},
if |t|a > 0). Furthermore, let us define Ua(t) ⊆ Q× N by

Ua(t) = {(q, n) | 0 ≤ n < |t|a, q ∈ δ(q0, t[a, n])}.

Ua(t) is the vertex set of a directed graph containing the information about
the global states reached by prefixes t[a, n], n ≥ 0. The edges are given by

(q, n)
a,t
→ (q′, n+1) for q ∈ Ua(t) and q′ ∈ δ(q, t[a, n]−1t[a, n+1]), when n+1 < |t|a.

Throughout this section we use the notion of transition graph with the meaning

of a subgraph of (Ua(t),
a,t
→). Moreover we use the abbreviation Ui(t) for Uai(t),

1 ≤ i ≤ k.
The basic idea for Klarlund’s progress measure method is to express a global
property of an infinite (transition) graph by the existence of a suitable map-
ping, which associates with each vertex a finite amount of information. This
information quantifies progress towards satisfying the required condition. For
complementing e.g. Büchi automata, the condition expresses that certain states
are visited finitely often, i.e. they are not recurrent. In our distributed setting, we
have to assume the existence of several progress measures, one for each connected
component of alphinf(t) (i.e., for each designated letter).
The next proposition gives the basis for the complementation procedure. Recall
Q =

∏

a∈Σ Qa and let N := |Q|. Let Fi := {q = (qa)a∈Σ ∈ Q | qai = pai}, where
p ∈ Q will be the first component in the unique element of the table of the given
automaton.

Proposition 4.1 Let A = ˙⋃k

i=1 Ai be the decomposition in connected components
of A ⊆ Σ, ai ∈ Ai, for all i, and p ∈ Q. Let A = ((Qa)a∈Σ, (δa)a∈Σ, q0, {T}) be
an asynchronous cellular Büchi automaton, with T = (p,A, {a1, . . . , ak}).
Then t ∈ Inf(A) \ L(A) holds if and only if there exists a family of transition
graphs (Vi(t), Ei(t)), together with associated mappings Φi : Ui(t) → {0, . . . , 2N+
1}, 1 ≤ i ≤ k, such that the following conditions hold for each i:

1. (Vi(t), Ei(t)) is the subgraph of the transition graph (Ui(t),
ai,t→) induced by

Vi(t) = Ui(t) \ Φ
−1
i (2N + 1).

2. Φi : Ui(t) → {0, 1, . . . , 2N + 1} satisfies for every (q, n), (q′, n + 1) ∈ Ui(t)

with (q, n)
ai,t→ (q′, n+ 1):
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• Φi(q, n) ≥ Φi(q
′, n+ 1)

• Φi(q, n) = Φi(q
′, n + 1) =⇒ q′ /∈ Fi or Φi(q, n) ∈ {0, 2, . . . , 2N} ∪

{2N + 1}.

3. Let ((qn, n))n≥n0 ⊆ Vi(t) be an infinite sequence with (qn, n)
ai,t→ (qn+1, n+1),

n ≥ n0. Then
lim
n→∞

Φi(qn, n) ∈ {1, 3, . . . , 2N − 1} .

4. There exists a finite prefix t0 ≤ t, t0 ∈ M(Σ, D), with |t0|a = |t|a for every
a ∈ Ā, such that every run r ∈ RA(t0) satisfies

• either δ(r, t0)a 6= pa for some a ∈ Ā,

• or (qi, ni) ∈ Vi(t) for some 1 ≤ i ≤ k, where qi = δ(r, ∂ai(t0)) and
ni = |t0|ai − 1.

Remark 4.2 Following Klarlund’s construction for Büchi ω-automata [11], each
mapping Φi is a quasi-progress measure for the subgraph (Vi(t), Ei(t)). Note

that since Φi is decreasing w.r.t the transition relation
ai,t→, every transition graph

(Vi(t), Ei(t)) is downward closed, i.e. for (q, n) ∈ Vi(t) and (q′, n+1) with (q, n)
ai,t→

(q′, n+ 1) we have (q′, n+ 1) ∈ Vi(t), too.

Condition 4 corresponds to a safety requirement. It guarantees that computations
which reach the final halting state for each letter a /∈ A and which are not
captured by some quasi-progress measure Φi can not be synchronized to a run
on t. The existence of Φi ensures that the local state pai is not recurrent (for
a subset of runs on t). This means that we eliminate every possibility for runs
r ∈ RA(t) on t to be accepting.

Proof of 4.1: Let t ∈ Inf(A). Assume that a family of transition graphs
(Vi(t), Ei(t)) exists, together with associated mappings Φi, 1 ≤ i ≤ k, satisfying
the conditions of the proposition. Let r ∈ RA(t) be a run on t. It suffices to
consider the case where for some connected component 1 ≤ i ≤ k and some n ∈ N

we have (δ(r, t[ai, n]), n) ∈ Vi(t) (hence, also (δ(r, t[ai,m]),m) ∈ Vi(t) holds, for
everym ≥ n). Due to Φi being decreasing (Cond. (2)) and taking values in a finite
set, we may assume with qm := δ(r, t[ai,m]) that we have Φi(qm,m) = Φi(qn, n)
for everym ≥ n. With Cond. (3) we obtain Φi(qn, n) /∈ {0, 2, . . . , 2N}∪{2N+1},
hence by Cond. (2), qm /∈ Fi for all m ≥ n. Therefore, the run r ∈ RA(t) is
rejecting. Hence, t /∈ L(A).

For the converse direction, let t ∈ Inf(A) \ L(A) and let 1 ≤ i ≤ k be fixed.
We follow [11] and define the mappings Φi in two steps. First, progress measures
Φ̃i with values in the set of countable ordinals ω1 are defined by transfinite in-
duction. In the present setting, we simultaneously define the computation graphs
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(Vi(t), Ei(t)). For a set V ⊆ Ui(t) we denote in the following by NV (q, n) the set
of proper successors of (q, n) ∈ Ui(t) from Ui(t) \ V , i.e.,

NV (q, n) := {(q′,m) | m > n, ∃q = qn, qn+1, . . . , qm = q′, (q′,m) ∈ Ui(t) \ V

with (qk, k)
ai,t→ (qk+1, k + 1), for every n ≤ k < m} .

The transition graph (Vi(t), Ei(t)) and the progress measure Φ̃i : Ui(t) → ω1 are
now defined inductively: let V0 = Vi(t) = ∅. Assume that for β < ω1, the
sequence (Vα)α<β of pairwise disjoint subsets of Ui(t) is already defined, with
Vi(t) = ∪α<βVα.
If either Ui(t) = Vi(t), orNVi(t)(q, n)∩(Fi×N) 6= ∅ holds for all (q, n) ∈ Ui(t)\Vi(t),
then let Vβ := Ui(t) \ Vi(t) and Vγ := ∅ for every β < γ < ω1 and we are done.
Otherwise choose (q, n) ∈ Ui(t) \ Vi(t) satisfying NVi(t)(q, n) ∩ (Fi × N) = ∅ and
define

Vβ :=

{

{(q, n)} if NVi(t)(q, n) = ∅
NVi(t)(q, n) otherwise,

updating Vi(t) := Vi(t) ∪ Vβ.
The decomposition of Ui(t) in pairwise disjoint sets naturally induces a mapping
Φ̃i : Ui(t) → ω1. Let Φ̃i(q, n) = β if (q, n) ∈ Vβ.

It is easy to see that Φ̃i is decreasing w.r.t. the transition relation
ai,t→, due to

the definition by means of successors in the transition graph. Moreover, suppose

Φ̃i(q, n) = Φ̃i(q
′, n + 1) holds for (q, n) ∈ Vi(t), with (q, n)

ai,t→ (q′, n + 1). Then
we have

q′ /∈ Fi . (1)

By construction we obtain a countable ordinal β0 with Vβ0 = Ui(t) \ Vi(t), such
that β0 = ⊔{α < ω1 | Vα 6= ∅}. Note that we have either Vβ0 = ∅, or for every

(sn, n) ∈ Vβ0 there is an infinite transition path (sn, n)
ai,t→ (sn+1, n+ 1)

ai,t→ · · · in
the subgraph induced by Vβ0 , repeating infinitely often some state from Fi, i.e.,

|{m ≥ n | (sm)ai = pai}| = ∞ . (2)

The second step of Klarlund’s construction [11] uses the bounded width N of
the given transition graph for modifying the progress measure to a quasi-progress
measure mapping with finite range. Given α < ω1, let the predicate const(α) be

true, if there is an infinite path (qn, n)
ai,t→ (qn+1, n + 1)

ai,t→ · · · in the transition
graph Ui(t), such that Φ̃i(qm,m) = α for every m ≥ n. Since these infinite paths
are disjoint one obtains a set of at most N countable ordinals 0 < α1 < · · · <
αM < ω1 (M ≤ N) satisfying const(αi), 1 ≤ i ≤ M . Let α0 = 0, αM+1 = ω1 and
define Φi : Ui(t) → {0, 1, . . . , 2N + 1} for (q, n) ∈ Vi(t) as

Φi(q, n) :=

{

2k − 1 if Φ̃i(q, n) = αk, 1 ≤ k ≤ M

2k if αk < Φ̃i(q, n) < αk+1, 0 ≤ k ≤ M .
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For (q, n) ∈ Ui(t) \ Vi(t) let Φi(q, n) = 2N + 1.
The mapping Φi satisfies the condition of real progress (Cond. (3)): assume by

contradiction that an infinite transition path (qn, n)
ai,t→ (qn+1, n+1)

ai,t→ · · · exists
in Ui(t), such that Φi(qm,m) = 2k holds for some k and every m ≥ n. With Φ̃i

being decreasing and by the definition of Φi, some αk < α < αk+1 would exist
with limm→∞ Φ̃i(qm,m) = α. Thus, const(α) follows, contradicting the definition
of {α1, . . . , αM}.
The mapping Φi is obviously decreasing, since Φ̃i already was. Moreover, suppose

we have (q, n)
ai,t→ (q′, n + 1) with Φi(q, n) = Φi(q

′, n + 1) 6= 2N + 1 and q′ ∈ Fi.
By Eq. (1) we obtain Φ̃i(q, n) > Φ̃i(q

′, n + 1). Hence, Φi(q, n) /∈ {0, 2, . . . , 2N}
leads to a contradiction.

Finally, we show that runs which are not covered by the quasi-progress measures
(Φi)1≤i≤k cannot be synchronized (Cond. 4). Let us assume by contradiction that
for every tuple (ni)1≤i≤k ∈ N

k there exist global states (qi)1≤i≤k ∈ Qk and a run
r ∈ RA(t0) on the (finite) prefix t0 =

⊔

1≤i≤k
t[ai, ni] ⊔

⊔

a∈Ā

t[a, |t|a − 1] of t with

• (qi, ni) ∈ Ui(t) \ Vi(t) for every 1 ≤ i ≤ k,

• δ(r, t[ai, ni]) = qi for every 1 ≤ i ≤ k, and

• δ(r, t0)a = pa for every a ∈ Ā.

For large enough values of ni, 1 ≤ i ≤ k, we have max(t0)∩A = {a1, . . . , ak}, due
to t ∈ Inf(A) and the way we choosed the designated letters ai. Let t = t0t1 · · · tk
with alph(ti) = Ai for every i. Due to (qi, ni) ∈ Ui(t) \ Vi(t) we obtain by Eq. (2)

an infinite path πi in the subgraph of (Ui(t),
ai,t→) induced by Ui(t)\Vi(t), such that

πi starts in (qi, ni) and visits infinitely often the set Fi×N. Since alph(t−1
0 t) = A

every path πi defines (a set of) runs on the connected suffix ti of t, starting with
the state qi . Moreover, every run ri associated to πi repeats infinitely often the
local state pai . For each i we choose a run ri on ti associated to πi as above.
With Vi, 0 ≤ i ≤ k, denoting the vertex set of ti in the dependence graph of t, we
define r′ ∈ RA(t) by r′|V0 := r and r′|Vi

:= ri, 1 ≤ i ≤ k. Obviously, we obtained
an accepting run on t, since pa ∈ infa(r

′) for every a ∈ Ā ∪ {a1, . . . , ak}. Hence,
a contradiction follows. ✷

We are now ready to define an asynchronous cellular Büchi automaton B such that
L(B) = L(A)∩ Inf(A), where A = ((Qa)a∈Σ, (δa)a∈Σ, q0, {T}) is an asynchronous
cellular Büchi automaton with a single element T = (p,A, {a1, . . . , ak}) in T .
Following [11], the automaton B guesses the values of the quasi-progress measures.
In this setting B guesses at the same time the transition graphs (Vi(t), Ei(t))
covered by Φi.
The automaton recognizing the complement language relies on the subset au-
tomaton of the given asynchronous cellular automaton ((Qa)a∈Σ, (δa)a∈Σ, q0), de-
fined in Sect. 3 for an asynchronous mapping µ = (ν, ρ) (we omit final states).
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Let Aµ = ((Q̃a)a∈Σ, (δ̃a)a∈Σ, q̃0) denote the subset automaton obtained from µ.
In the following we denote by [2N + 1]Q the set of partial mappings from Q to
{0, 1, . . . , 2N + 1} (recall Q =

∏

a∈Σ Qa). Furthermore, dom(f) denotes the do-

main of f ∈ [2N + 1]Q. We recall the notation q
(a)
→ q′ from Sect. 3, which means

that for some t ∈ M(Σ, D) a run r ∈ RA(∂a(ta)) exists, with q = δ(r, ∂a(t)) and
q′ = δ(r, ∂a(ta)).
Let B = ((Sa)a∈Σ, (∆a)a∈Σ,J , T ) be defined as follows (with J denoting the set
of initial states):

1.
Sa =

{

Q̃a if a /∈ {a1, . . . , ak}

Q̃a × [2N + 1]Q × P(Q) otherwise

Moreover, for every a ∈ {a1, . . . , ak} and (q̃a, αa, Aa) ∈ Sa let

dom(αa) = {δ(r, u) | ∃u ∈ M(Σ, D), u = ∂a(u), δ̃(q̃o, u)a = q̃a and r ∈ RA(u)}.

For the subset construction of Prop. 3.4, the above condition is equivalent to
the following one: if q̃a = (ν(u), ρ(u)), then we let (f(b, a))b∈Σ ∈ dom(αa), for
some f ∈ ρ(u). If we use instead the subset construction given in Prop. 3.9
then we simply let q ∈ dom(αa), whenever (q, q, {a}, a) ∈ ρ(u).

2. For a /∈ {a1, . . . , ak} let s′a ∈ ∆a((sb)b∈D(a)) if s
′
a = δ̃a((q̃b)b∈D(a)), where sb = q̃b

or sb = (q̃b, αb, Ab) for some αb ∈ [2N + 1]Q, Ab ⊆ Q, for all b ∈ D(a).

For a = ai (1 ≤ i ≤ k), let sa = (q̃a, αa, Aa) and s′a = (q̃′a, α
′
a, A

′
a). Then

s′a ∈ ∆a((sb)b∈D(a)) if

• q̃′a = δ̃a((q̃b)b∈D(a)), for q̃b = sb, b ∈ D(a) \ {a} (note that D(a) ∩
{a1, . . . , ak} = {a});

• For every q ∈ dom(αa), q
′ ∈ dom(α′

a) such that q
(a)
→ q′ we require that

both conditions below hold:

i. αa(q) ≥ α′
a(q

′)

ii. αa(q) = α′
a(q

′) implies q′a 6= pa or αa(q) ∈ {0, 2, . . . , 2N} or αa(q) =
2N + 1.

• A′
a =















dom(α′
a) if Aa = ∅

{q′ ∈ dom(α′
a) | ∃q ∈ dom(αa) ∩ Aa with

q
(a)
→ q′ and αa(q) = α′

a(q
′) ∈ {0, 2, . . . , 2N}} otherwise

3. The table T is given by (z, A, {a1, . . . , ak}) ∈ T if and only if for some u ∈
M(Σ, D) with q̃a = (ν(∂a(u)), ρ(∂a(u))), a ∈ Σ, and mappings αa ∈ [2N + 1]Q,
a ∈ {a1, . . . , ak} both conditions below are satisfied:

1. za = (q̃a, αa, ∅), for a ∈ {a1, . . . , ak}, respectively za = q̃a for a /∈
{a1, . . . , ak}.
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2. Let M = Ā ∪ {a1, . . . , ak}. Then we require for every r ∈ RA(∂M(u)):

• either δ(r, ∂M(u))a 6= pa, for some a ∈ Ā,

• or αa(δ(r, ∂a(u))) 6= 2N + 1, for some a ∈ {a1, . . . , ak}.

The conditions above can be easily checked using our subset automata
constructions (Prop. 3.4, 3.9).

4. Let s0 ∈ J be an initial state if (s0)a = (q̃0)a, resp. (s0)a = ((q̃0)a, αa, ∅), for
some αa ∈ [2N + 1]Q.

Proposition 4.3 Let A = ((Qa)a∈Σ, (δa)a∈Σ, q0, {T}) be an asynchronous cellu-
lar Büchi automaton with a single table element T = (p,A, {a1, . . . , ak}). Let B
be defined as above.
Then L(B) = L(A) ∩ Inf(A).

Proof: Let us first assume t ∈ Inf(A) \ L(A). We apply Prop. 4.1 and ob-
tain transition graphs (Vi(t), Ei(t))1≤i≤k, together with quasi-progress measures
(Φi)1≤i≤k satisfying the properties in 4.1. The definition of an accepting B-run r
on t follows immediately:

1. For a /∈ {a1, . . . , ak}, 0 ≤ n < |t|a, let r(a, n) = δ̃(q̃0, t[a, n])a.

2. For a = ai, 1 ≤ i ≤ k and n ≥ 0 let r(a, n) = (q̃a, αa, Aa), where

• q̃a = δ̃(q̃0, t[a, n])a;

• Let q̃a = (ν(u), ρ(u)) for some u = ∂a(u). Then dom(αa) = {q ∈ Q |
∃r ∈ RA(u) : δ(r, u) = q}. For the construction given in Prop. 3.4
(resp. Prop. 3.9) this means q ∈ dom(αa) if and only if q = (f(b, a))b∈Σ
for some f ∈ ρ(u) (resp. (q, q, {a}, a) ∈ ρ(u)).

• For all q ∈ dom(αa) let αa(q) = Φi(q, n).

The local state component Aa being computed deterministically, we note that
the limit condition (Cond. (3)) in Prop. 4.1 implies for some u ∈ M(Σ, D)
and partial mappings αa, a ∈ {a1, . . . , ak}, that the local states (p̃a, αa, ∅) with
p̃a = (ν(∂a(u)), ρ(∂a(u))) are repeated infinitely often. Otherwise, by the same
argument as in [11] we would obtain using König’s Lemma an infinite path in

(Ui(t),
ai,t→) with a constant Φi-value from {0, 2, . . . , 2N}.

For a ∈ Ā assume w.l.o.g. that the state (ν(∂a(u)), ρ(∂a(u))) labels the last a-
vertex in t, i.e. (a, |t|a − 1). Finally, the synchronization condition (Cond. 4) in
4.1 ensures that there is no run r ∈ RA(∂M(u)) satisfying both δ(r, ∂M(u))a = pa,
for all a ∈ Ā, and αa(δ(r, ∂a(u))) 6= 2N + 1 for all a ∈ {a1, . . . , ak} (recall that
αai(q) = 2N + 1, for all q /∈ Vi(t)).
For the converse let t ∈ L(B) be accepted by a B-run r by (z, A, {a1, . . . , ak}) ∈
T , hence alphinf(t) = A. Once again, there is a canonical definition for (Vi(t), Ei(t))
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and Φi, 1 ≤ i ≤ k. For a = ai, n ≥ 0, let (q̃a, αa, Aa) = ∆(r, t[a, n])a. Further-
more, for q ∈ dom(αa) define (q, n) ∈ Vi(t) if and only if αa(q) 6= 2N + 1 and
let Φi(q, n) = αa(q). Since for any a ∈ {a1, . . . , ak}, za = (q̃a, αa, ∅) for some
q̃a ∈ Q̃a, αa ∈ [2N + 1]Q, we directly obtain that the real progress condition
(Cond. (3)) from Prop. 4.1 holds. Finally, let u ∈ M(Σ, D), u < t be such that
∆(r, u)a = za for a ∈ Ā ∪ {a1, . . . , ak} and max(u) ∩ A = {a1, . . . , ak}. Then
with ni = |u|ai − 1, 1 ≤ i ≤ k, we satisfy Cond. 4 in Prop. 4.1, too. ✷

For the size of the automaton recognizing the complement language note that
the size of every local state set Sa of B is dominated by the size obtained for
asynchronous cellular subset automata. Hence, by the construction based on
Prop. 3.9 we obtain the bound 2N

O(1)
, where the exponent of N is independent of

the alphabet size. The lower bound for the complementation of Büchi ω-automata
is 2N logN [15].

Theorem 4.4 Given a non-deterministic asynchronous cellular Büchi automa-
ton A = ((Qa)a∈Σ, (δa)a∈Σ, q0, T ) with table T ⊆ (

∏

a∈Σ Qa)× P(Σ)× P(Σ), and
N = |

∏

a∈Σ Qa| global states.
Then an asynchronous cellular Büchi automaton B = ((Sa)a∈Σ, (∆a)a∈Σ, s0, T

′),
with table T ′ ⊆ (

∏

a∈Σ Sa) × P(Σ) × P(Σ) effectively exists, such that L(B) =

L(A). The automaton B has 2N
O(1)

global states.

The construction of Prop. 4.3 can be adapted smoothly to asynchronous Büchi
automata, similar to our subset constructions. Based on the subset constructions
for asynchronous automata, the size blow-up obtained for the complementation
procedure is again dominated by the subset automaton. Note that we can also
start with an asynchronous Büchi automaton A (with modified acceptance condi-
tion) and use the asynchronous mapping ρ based on the asynchronous automaton
A (given in Rem. 3.10) in the definition of B. This yields an asynchronous cellular
automaton B accepting the complement language and having local states sets of
size 2n

O(m)
= 2N

O(1)
, with N denoting the number of global states. Finally, by the

standard embedding we transform B into an equivalent asynchronous automaton
B′ still having 2N

O(1)
global states.

Asynchronous (cellular) automata viewed as sequential automata satisfy the I-
diamond property, as we already mentioned in Sect. 2. This means that for every
pair of states q, q′ and independent letters (a, b) ∈ I: q′ ∈ δ(q, ab) holds if and
only if q′ ∈ δ(q, ba). This property expresses a reduced view of concurrency,
the interleaving viewpoint. We note that non-deterministic Büchi ω-automata
satisfying the I-diamond property which accept closed languages from Σ∞ char-
acterize precisely Rec(R(Σ, D)) (a language L is closed if ϕ−1(ϕ(L)) = L, with ϕ
denoting the canonical mapping). If we were only interested in Büchi automata
A with I-diamond property, then we could apply for complementing A a sim-
ple construction proposed by Pécuchet [17]. All we need is a homomorphism
h : Σ∗ → S to a finite monoid recognizing L(A) and satisfying h(ab) = h(ba), for
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all (a, b) ∈ I. Then the size of the automaton for the complement language ob-
tained in [17] is O(|S|2). Note that the syntactic morphism of a closed language
L ⊆ Σ∞ satisfies this property. Moreover, the size of the syntactic monoid of L
is bounded by 2O(N2), with N denoting the size of A.
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