NAKED MINI® LSI SERIES
COMPUTER HANDBOOK



91-20400-00A2
OCTOBER 1974

NAKED MINI® LSI SERIES
COMPUTER HANDBOOK

Patent Pending

N

ComputerAutomation
Naked Mini.Division

18651 Von Karman, Irvine, Calif. 92664
Tel. 714-833-8830 TWX 910-595-1767

COPYRIGHT 1973, COMPUTER AUTOMATION, INC.




Printed in Sweden
Studentlitteratur
Lund 1976



COMPUTER AUTOMATION, INC. 'I e -

NAKED MINI LSI-1

Lt VR LB NAKED MINI LSI-2/20

ey

.x,

ALPHA LSI




Paragraph

e

e i e
L I A T - N S A
QW 3T GUD e B D W N e

el e el el e e i S Sy Sy

MO G WG gL g LWL
[ AR S S N N i

e

-]

GBS W B

S D

—

TABLE OF CONTENTS

Section 1. GENERAL INFORMATION

INTRODUCTION
The ALPHA LSI Famxly
Upward Compatibility
General Features

THE NAKED MINI LSI CONCEPT
THE ALPHA LSI .

CHARACTERISTICS

Processor and Memory .

Instruction Set.

Registers &

Memory Addressmg 3 "
Memory Reference Addressmg B
Stack Addressmg

1/0 Structure .

Control Modes .
Input Output Modes
Vectored Interrupts

Processor Options .

Plug-In Options .

Peripheral Equipment

DATA HANDLING CHARACTERISTICS .

Data Word Format
Bit Identification .
Bit Values. >
Signed Numbers .
Positive Numbers
Negative Numbers .

Data Byte Format e
Byte Mode Processing .
Register Load .
Arithmetic Operations
Data Packing

Memory Address Formats
Word Addressing
Byte Addressing.
Indirect Addressing .

iii

COMPUTER AUTOMATION. INC.

P b b e e o s b pd s

Page

|
[ =B - =T~ I~ i = T 3 B3 B S SR S Y

r
S

—
)
[
o

. 1-10
. 1-10

1-11
1-11

. 1-11
.1-11
. 1-12
. 1-12
. 1-13
. 1-13
. 1-13
. 1-14
. 1-14
. 1-15
. 1-15

Paragraph

[¥]

»~

(5
NN

BN NN NN DN NN

BB BN NN NN

W W W W W
o e e

W WL W W W W W
R R R N

B B B OB BN BN BN
Dh D WD

w =3

-

NN NN N
L

COMPUTER AUTOMATION, INC.

TABLE OF CONTENTS (Cont'd)

Page
Section 2. INTEGRATION
INTRODUCTION. . . . . . . oo it e i e e et et e 2-1
ALPHA LSIINTEGRATION . . . . ... ... ......... 2-1
Mounting (Figure 2-1) . . . ... ... ... ...... 2-1
Cooling (Figure 2-2) . . . . . .. . .. ... v ... 2-1
Joining Two Half PCBoards . . . . . ... ....... 2-4
Option Board Installation . . . . . ... ......... 2-5
Module Installation, Processor ChassisOnly . . . . .. 2-5
Expansion (Figure 2-3). . . ... .. .......... 2-7
’ Module Installation, Processor and Expansion
ChasSish o el e 2 & 8 5 5 s @ HE Tl o wrser o 1 0 2-9
AC Power Application . . . . .. ............. 2-9
110 to 220/240 Power Line Conversion . . . . . .. ... 2-10
NAKED MINI LSI INTEGRATION . . . . . .. ... ... ... 2-11
MOUTHNGE @ 616/ 2 3 edt @ 5 6143 5 09 & B G ) o 0 o o 2-11
LSI-1 Mounting Considerations (Figure 2-4). ... 2-11
LSIS2IMonnting & - = 2 s @t 9@ 8@ : @ @ w o 2-13
COOLINE: 1 ] V96 Blss 1 18 6F 1wt o) st i (on e o nents A g 2-13
LSI-LCooling;., : v . 3% 20 - 836l P9 as 5 6 2-13
LSI-2Cooling . . . . . . v v v v vt e e e 2-13
InterconNection «« e 5 © s o v wer il & @ B WG G DG BE B 2-13
NAKED MINI LSI-1 Interconnections. . . . . ... . 2-13
NAKED MINI LSI-2 Interconnections. . . . . ... . 2-14
Section 3. CONSOLES
PROGRAMMING CONSOLE . . . ., . ... .......... 3-1
Switches and Indicators, . . .. . ... ......... 3-1
MachineModes. . . . . .. . . ... .. vu.. 3-7
StopMode. . . . . . v v vt i e e e 3-7
StepMode. ... ... ... ... .0 u..'u.i.. 3-7
RunEnableMode . . . . .. .. ... ........ 3-7
RUNIMOAE 5 3 5« s+ 3 o e @5 @6 Tad £ @DF T 3-8

iv




A

COMPUTER AUTOMATION, INC. =
TABLE OF CONTENTS (Cont'd)
Paragraph Page
3.1.3 Console Operation. . . . . .. ... ... .. '0vue.u.. 3-8
3.1.3.1 Console Preparation . . . . . ... ... ....... 3-8
3.1.3.2 Console Data Entry Procedure. - - . . . . . . . ... 3-9
3.1.3.3 Console Display Procedure . . . . . . . .. ..... 3-9
3.1.3.4 Program Execution. . . . . . ... ... .. ..... 3-10
3.1.4 Unattended Operation . . ... ... ........... 3-11
3.2 OPERATORCONSOLE . . . . .. ... ... 2 3-11
3.251 Introduction . . . . . . . .. ... ... 3-11
3212 Switches and Indicators . . . . . . . . . . 3-12
3.2.3 Strapping Requirements . . . . . . . 3-13
Section 4. INSTRUCTIONS AND DIRECTIVES
4.1 INTRODUCTION . . . . . ... .. ... iin . 4-1
4.1.1 Instruction and Directive Classes . . . .. ... .. ... 4-1
4.1.2 Symbolic Notation. . . . ... ... ............ 4-2
4.1.3 Assembler Source Statement Fields . . . . ... ... .. 4-2
4.1.3.1 LabelEield . ... : g b E 08 2w o mea « a5 e@ s 2 4-2
4.1.3.2 OpCode. . ... .... ..t veuwunmnunmnuno. 4-3
4.1.3.3 Operand Field . . ... ... ............. 4-3
4.1.3.4 Comments Field. . . . .. .. ............. 4-4
4.1.4 Arithmetic Operations and Overflow. . . . . o bW 4K E 4-4
4.1.5 Relocatability . . . . .. ... ... ............ 4-5
4.2 MEMORY REFERENCE INSTRUCTIONS . . . . .. .. ..... 4-6
4.2.1 Word Mode Operations and Instruction Format . . . . . . 4-6
4.2.1.1 Word Mode Direct Addressing. . . . . ... ... .. 4-6
4.2.1.2 Word Mode Indirect Addressing. . . ... ... ... 4-7
4.2.1.3 Word Mode Direct Indexed Addressing. . . . . . . . 4-7
4.2.1.4 Word Mode Indirect Postindexed Addressing. . . . . 4-7
4.2.1.5 Word Mode Summary. . . . . ... ... ....... 4-9
4.2.2 Byte Mode Operations and Instruction Format . . . . . . 4-9
4.2.2.1 Byte Mode Direct Addressing . . . . .. .. ... .. 4-10
4.2.2.2 Byte Mode Indirect Addressing . . . .. ... .. .. 4-10
4.2.2.3 Byte Mode Direct Indexed Addressing . . . . .. .. 4-10
4.2.2.4 Byte Mode Indirect Postindexed Addressing. . . . . 4-10
4.2.2.5 Byte Mode Summary . . . . . .. ... ........ 4-12
4.2.3 Arithmetic Memory Reference Instructions . . . . ., . . . 4-12
4.2.4 Logical Memory Reference Instructions. . . . . .. ... 4-12
4.2.5 Data Transfer Memory Reference Instructions . . . . . . 4-13
4.2.6

Program Transfer Memory Reference Instructions. . . .
v

4-13

Paragraph

-
w

-
(2]

F
oy

e
w
[

>
o

N R T N XS
o b b b B B e B B B
L= I T R e T

b B b

O O O NS
-3 -3 -3 -3 -3 -3
O U WD

b BB b B
o 00 00 00 0 T

DD W =

[ - - - -
LK O

[0 S

TABLE OF CONTENTS (Cont'd)

Page
DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS . . . . 4-15
FOTmaty, . cug 5 (1 g 66 5 wrrw « o1em & @@ o Glp & B 3 Gl % i 4-15
Instructions. ., . . . ... ... ... ..., . ..... 4-16
STACK, DOUBLE WORD INSTRUCTIONS (LSI-2only). . . . . 4-18
Addressing Modes (Figure 4-13). . . . . . .. ... ... 4-19
Direct AccesstoStack . . . ... ... ........ 4-19
Indexed AccesstoStack . . . . ... ... ...... 4-19
Auto-Postincrement Access to Stack (POP). . . . . . 4-19
Auto-Predecrement Access to Stack (PUSH) . . . . . 4-19
Arithmetic Stack Instructions . . . . ... ... ... .. 4-21
Logical Stack Instructions . . . . .. .. ......... 4-21
Data Transfer Stack Instructions. . . . .. ... ... .. 4-21
Program Transfer Stack Instructions . . . . .. ... .. 4-22
Stack Control Instruction. . . . ... ... ... ... .. 4-22
IMMEDIATE INSTRUCTIONS. . . . .. . ... .o v v 4-22
PorMat g @ : 5 3 6166 & o1 & oniel o wbeE B oy GO D E® §E 4-22
Instructions . . . . . . .. ... L0 e 4-23
CONDITIONAL JUMP INSTRUCTIONS . . . . . .. ... .. .. 4-24
EOTIAY . v « woi v % s 6 s @366 S 0% 04 LE%EE o e 4-24
Mierocoding . . . . .. ... . ... SE t W rTIR LN B 4-24
Arithmetic Conditional Jump Instructions . . . . ... .. 4-25
Control Conditional Jump Instructions. . . . . ... ... 4-26
SHIFTINSTRUCTHIONS! & 4 % 0 10 @ 0vas & ) ¢ B 5 @ 86 3 ) 3 .. 4-26
Operand Restrictions and Instruction Format . . . . . . . 4-26
Arithmetic Shift Instructions . . . . . ... ... ..... 4-27
Logical Shift Instructions . . . . ... .. ... ...... 4-217
Rotate Shift Instructions. . . . ... ... ......... 4-28
Double Register (Long) Logical Shift Instructions . . . . 4-29
Double Register (Long) Rotate Shift Instructions . . . . . 4-30
REGISTER CHANGE INSTRUCTIONS. . . . . . . ... ... .. 4-31
FOTMAE fae swafl 2 B SFEE 5 @5 810 5 witaie tof o @i o ©1 o 4-31
A Register Change Instructions. . . . .. ... .. .. .. 4-31
X Register Change Instructions. . . . .. ... .. .... 4-32
OV Register Change Instructions . . . . . . ... ... .. 4-32
Multi-Register Change Instructions. . . . . ... ... .. 4-33
Extended Multi-Register Change Instructions (LSI-2
ONIYNS A B @ o 7 s B T G e B 15 Q1 & WG BREE 2 6. 4-34
Console Register Instructions. . . . . ... .. ... ... 4-35

vi

COMPUTER AUTOMATION, INC. —




o A N
W W W W W
b W N

B b b B W b BB B D B D
N W WD BN B e e

N TS
—

«

[

-
]

L2 S IS
e
-

COMPUTER AUTOMATION, INC. -

- TABLE OF CONTENTS (Cont'd)

Page

CONTROL INSTRUCTIONS. . . . . ... ... .. ....... 4-36
EORINGY o1 ¢ e 6 16 fo 80 51 1a) o0 1 dol 6 4l o o ol ke o K o termel s o 4-36
Processor Control Instructions. . . . . . . ... ... .. 4-36
Mode Control Instructions. . . . . ... ... ... .... 4-37
Status Control Instructions. . . . .. ... .. .. 8 iew 4730
Interrupt Control Instructions . . . . ... ... ..... 4-38
INPUT/OUTPUT INSTRUCTIONS . . . .. .. .. ... .. .. 4-39
Control Input/OQutput Instructions . . . . . . ... .. ... 4-39
Sense Instructions . . . . . ... ... 00000 4-40

Select Instructions . . . . . ... .. ... ... ... 4-40

Word Input/Output Instructions . . . . . ... ...... 4-40
Unconditional Word Input/Output Instructions. . . . 4-41
Conditional Word Input/Output Instructions . . . . . 4-41

Byte Input Instructions. . . . .. ... ... 0000 4-42
Unconditional Byte Input Instructions . . . . . .. . 4-42
Conditional Byte Input Instruections . . . . . ... .. 4-43

Block Input/Output Instructions . . . . . ... ... ... 4-43
Automatic Input/Output Instructions . . . . . . .. .. .. 4-45
ASSEMBLER CONTROL DIRECTIVES . . . . .. ... ..... 4-48
Conditional Assembly Controls. . . . .. .. ... c.. . 4-48
Program Location Controls . . . . .. ... ........ 4-49
Machine Directive (MACH) . . . . . ... .. .... ... 4-49
DATA AND SYMBOL DEFINITION DIRECTIVES . . . . ... .. 4-50
FOPMALS:. « s o e o ik 0 ) o BB B d 0B oo B GE% 4-50
DIrectives) o ¢ mta 2 @% ¢ B S G0k 5 ® 3 @5 e b e & wae e 4-51
PROGRAM LINKAGE DIRECTIVES . . . .. ... ... ..... 4-52
EOPMANSE .2 6, @ 5 615 ¢ t9 3 G &5 (5 & GG 5 Glan & 6 o 6lee o o 4-52
DIrectiViesic « o o i o wiel s 1 v @i o mSEE i OE S S 4-52
SUBROUTINE DEFINITION DIRECTIVES. . . . . ... ... .. 4-53

LISTING FORMAT AND ASSEMBLER INPUT CONTROLS . . . . 4-54

USER DEFINED OPERATION CODE DIRECTIVE . . . ... ... 4-55

Section 5. INPUT/OUTPUT AND INTERRUPT OPERATIONS

INTRODUCTION. . . . . v vttt e et ettt e n e e e e 5-1
Discussion of Input/Output Operations. . . . ... .. .. 5-1
COTUTON s o crei 20 5B 2 B 3at o R G 6w o s @ 5-1

' vii

o on v On
e e
[ TR TR
W= W

ooy An
BN NN NN
Db W =

-

W W W W
~N

>

w
-

o

DB DD
»~

G W W W Www wWwiww
OO 2D DO MU B W

COMPUTER AUTOMATION, INC. EE

TABLE OF CONTENTS (Cont'd)

Page
SEeNBE [ & 6 2 (e B D '3 55 B A6 N S S e o 5-2
Data Transmission. . . . . .. ... ......... 5-2
Interrupt Operations. . . . . .. ... ... ....... 5-4
Non-Input/Output . . . .. ... .. .. ......... 5-5
INPUt/OUEPUE o o oo o o D a5 T g @ B A B 91 s 5-5
End-of-Block Interrupts. . . . . .. .. ... ...... 5-5
NON-INTERRUPT INPUT/OUTPUT EXAMPLES. . . ... ... 5-6
Control Instructions . . . . . .. ... ... ....... 5-8
Unconditional Instructions. . . . . . ... ........ 5-9
Conditional Instructions . . . . . .. ... ........ 5-9
Block I/O Instructions . . . . . ... ... ........ 5-9
Automatic I/0 Instructions. . . . ... ... ... .. .. 5-10
INTERRUPT STRUCTURE AND EXAMPLES. . . . ... .... 5-10
General Interrupt Handling . . . . ... ......... 5-10
Examples of Initialization and Enabling Sequences. . . . 5-11
Examples of Interrupt Instructions . . . . ... .. ... 5-12
INTERRUPT LATENCY. . . .. .. .. Fwm s b e 8 OE D g 5-14
Interrupt Service. . . . . . ... ... 0oL 5-14
Priority Resolution. . . . . ... .. ... ... ..... 5-15
Section 6. PROCESSOR OPTIONS
INTRODUCTION. . . o« « w v nw o w s o b dafe a0 o8 6-1
REAR EDGE CONNECTORS (Figures 6-2and 6-3) . . . . . . 6-1
TELETYPE/CRT/MODEM CONTROLLER. . .. ... .. ... 6-2
Baud Rate Selection . . . . .. ... ........... 6-2
Word Length Selection . . . . .............. 6-6
Parity Selection . . . . . . .. ... ... . 0000 6-6
StopBitSelection. . . ... ... ... ... 6-7
Alternate Interrupt Locations. . . . . .. ... ... .. 6-7
Data Interface Selection. . . . . . .. ... ....... 6-7
Current Loop Interface (Figure6-3) . .. ... .. 6-7
EIA RS232C/CCITT Interface (Figure 6-4) . . . . . 6-8
TTL/DTL Compatible Interface (Figure 6-5). . .. 6-10
Special TeletypeControls . . . ... .. ........ 6-11
Half-DuplexUsage . . . . .. .. ... ... ...... 6-11
Half-Duplex Controller Instructions, . . . . .. .. .. 6-12

viii




Paragraph

[=;]
w

[=2]
@©

(=2 =r =R R = P = )
B b R R B

W W W

DO OO DD

DD

doO MO >

LoD T gLt
W00 =1 DN &b W BN e

SISO
Qo W DD

@©

-3 =3 =3 -3 -1
(SR XA RN

.10

TABLE OF CONTENTS (Cont'd)

Full-Duplex Usage
Full-Duplex Controller Instructlons

REAL TIME CLOCK
Clock Source Selection.
Discussion of Usage .
Summary +
RTC Interrupt Locatlons 8
RTC Instructions. .

AUTOLOAD

Description ?

Device and Mode Selectxon 3

Autoload Sequence .

Termination of Autoload .
TTY and High-Speed Paper Tape Reader 7
Magnetic Tape, Cassette and Disk

Error Detection g

Accessing Autoload ROM

Remote Autoload Initiation

Automatic Autoload

Autoload Operation Summary

BASIC VARIABLES PACKAGE 8
Independent Processor Interrupt Operatlons
Interrupt Offset i
Secondary Console Sense Reglster .
Secondary Console Switch Functions .

1I/0 Timing Extension

POWER FAIL/RESTART
General .
Power Fail
Restart 5 s
Interrupt Control Optlon 3
Programming Examples . .

AUTOMATIC START-UP
Restart

ix

COMPUTER AUTOMATION, INC.

0

. 6-22
. 6-22
. 6-22
. 6-24

T
N B
-

I

QQQGO’O.'SO'SO’OO!OSO’
[ -2 T T - - C R U )
e e B I O

Paragrapﬁ

-

-3

-~
n

o]

R R e R
L Lo W W

DN NN N

oo G 0D Q0 G0 00 OO @O
FETIE

00 00 00 00 OO 00 00 OO

@ oo o0 00

[ 5]

W wWWwwwwww
- WU B W

- - -
=

-]

DO

TABLE OF CONTENTS (Cont'd)

Section 7. MEMORY INTERLEAVING AND BANKING
INTRODUCTION

Memory Interleaving .

Memory Banking

INTERCONNECTIONS .
Memory Interleaving .
Memory Banking

USAGE AND INSTALLATION
Memory Interleaving (Figure 7- 2)
Memory Banking (Figure 7-3)
Operation . e
Memory Installatxon
Cabling .

Section 8. MAXI-BUS CHARACTERISTICS

INTRODUCTION

MAXI-BUS COMPONENTS (Figure 8-2)
Address Bus (A) RS
Data Bus (D)

Control Bus (C)
I/0 Commands
Utility Signals
Interrupt Signals
DMA Signals

I/0 TRANSFER TIMING
1/0 Bus Considerations
Sense Instruction Timing
Select Instruction Timing
Input Timing
Output Timing .
Automatic Input and Output Tlmmg
I/O Instruction List

INTERRUPT CHARACTERISTICS
Interrupt Lines
Power Fail Interrupt
Console (TRAP) Interrupt

COMPUTER AUTOMATION, INC.

oooooooooloooaooo

Page

P
b

[ )
S D e BN NN

oooeoooooloooooco
k= O @ 00 00 W =)

[

(=]




Paragraph

GO 00 OO0 0O 00 QO OO QO 00 00 0O G W W
LI A N N R
DU W R N NN DD DD e

G 00 OGO 00 SO OO 00 00 W W o 00
AR N2 B RS RS S S S S S 3 ]
BN BN N DD b e e e e

o
-2

0 o © ™
PP JRK Y

o~

O aa W

[

G W

> W N

L

TABLE OF CONTENTS (Cont'd)

Interrupt Line 1.

Interrupt Line 2 .

Interrupt Request .
Processor Generated Interrupts

Power Fail/Restart Interrupt (Optlonal)

Autoload (Optional) .

Console Interrupt and Trap (Standard)

Real Time Clock (Optional)

Teletype/CRT/Modem Controller
Offsetting Processor Generated Interrupts
Peripheral Generated Interrupts :
Interrupt Transfer Timing (Figure 8-5)
Interrupt Operation Control x
Interrupt Request Line Trade Offs .

DMA OPERATIONS .

General Characteristics
Processor Provisions
Memory Operations
1/0 Operations
Limitations

DMA Timing .

Maxi-Bus Acqmsmon Txmmg (Flgure 8- 6) 4

Memory Transfer Timing (Figure 8-7) . .
DMA Read Access Timing (Figure 8-8)

DMA Write Access Timing (Flgure 8-9)

I/0 Transfer Timing
ELECTRICAL CHARACTERISTICS .
MOTHERBOARD ORGANIZATION

Interrupt Priority . .

Memory Bank Control, DMA Prlorlty
Processor Power Supply Signals .
EXPANSION AND CONSOLE INTERCONNECT
NAKED MINI LSI MAXI-BUS REQUIREMENTS

TWO-MODULE OPTIONS

xi

ooclnco
b

@™
)

'ooalncooo
bt e b e e e ek pd ek b et

@ a® 0w W o

o
1

) kg
B DO B DD DD b bt b b b s s

cooloooao

ooooaluonaooo

COMPUTER AUTOMATION. INC.

ac

)
o

®

QT U1 WwWwwW WL BN NN

1 i [ )

(=21

-

W WO WWwew oo o o

TABLE OF CONTENTS (Cont'd)

COMPUTER AUTOMATION, INC.

Paragraph Page
Section 8. DEVICE INTERFACE CONTROLLER, DESIGN TECHNIQUES
9.1 INTRODUCTION . . . . . . . . ... e 9-1
9.2 I/0 CONTROL IMPLEMENTATION . . . . 9-1
9.2.1 Device Address Decoder (Figure 9-1) . 9-1
9.2.2 Function Decoder (Flgure 9-2) . 9-2
9.2.2.1 Example A S @B 7 e T o « 92
9.2.2.2 Example B . . . . . . . .. . 9-2
9.2.2.3 Example C g . 9-5

9.2.3 Select, Input or Output Instructlon Decodmg‘

(Figure 9-3) . . s 1955
9.2.3.1 Example A . . . . . . .. . 10=5
9.2.3.2 Example Bl . v a @ 96 53 65 5 = & ® a - 9-5
9.2.4 Initialization Implementatlon (Figure 9-4) . 9-5
9.2.5 Positive Sensing . . . . . . . . s . 9-6
9.2.5.1 Positive Sensing . . . . . . 9-6
9.2.5.2 Negative Sensing . 99
9.3 DATA TRANSFER CONTROL IMPLEMENTATION (Flgure

956)] & R e Bk e o B o w0 o 1079
9.3.1 Example A . . . . . ... ... . 9-9
9.3.2 EXamplelB) & o tmro b o @ 0 @ w b . 9-10
9.3.3° ExeampleCl m =t o ansge o b . 9-10
9.3.4 Example D . . .. . ... ....... « 18
9.4 PERIPHERAL DIVICE INTERRUPT IMPLEMENTATION . . 9-10
9.4.1 Interrupt Address Rationale . . . . . . 9-10
9.4.2 Single Interrupt Implementation Using IUR - (Flgure

D g e er BE Dt 3@ 6 9-12
9.4.3 End-of-Block lnterrupt lmplementatmn Usmg IUR

(Figure 9-8) . . . . . ... .. 9-15
9.4.4 Reentrant Interrupt Implementation (Flgure 9 9) 9-15
9.4.5 Single Interrupt Implementation Using IL1- or IL2-

(Figure 9-10) . . . . . . .. . .. . 9-16
9.4.6 End-of-Block Interrupt Implementation Using IL1 and

IL2 (Figure 9-11) . . . . . . . .. & 3 o @ w3 o 3-18
9.5 DIRECT MEMORY ACCESS IMPLEMENTATION . 9-18
9.5.1 Initialization . . . . . . . .. ... .. 9-18
9.5.2 Execution (Figures 9—13 through 9-15) . 9-21
9.5.2.1 Maxi-Bus Acquisition 9 @ 9-21
9.5.2.2 Priority Auction . . . . . . . . . - = 9-21
9.5.2.3 Data Transfer . . . . . . . .., ... 9-22

xii




Paragraph

O W W WY WD
L I IS R Sy RS )
AR B B B W

o> oW

10.

10.

10.
10.
10.
10.
10.

10.
10.

10

10.
10.

.10

.11

W W W W W
T

P Y

B N

v v OO
P

COMPUTER AUTOMATION, INC. |

COMPUTER AUTOMATION, INC.

TABLE OF CONTENTS (Cont'd)

Termination . .
Basic DMA Controller Archltecture 5
Control Section
Word/Byte Counter
Address Counter
Data Channel

PRIORITY AND MEMORY BANKING PROPAGATION
1/0 BUS LOADING RULES

POWER AND GROUND SYSTEM CONCEPTS
FILTERING TECHNIQUES .

STANDARD INTERFACE CONNECTOR .

NORMAL INTERFACE PINS .

Section 10. CONSOLE INTERFACE REQUIREMENTS
INTRODUCTION
CONSOLE - PROCESSOR INTERFACE (Figure 10-1) .

CONSOLE TRANSFER TIMING
Establishment of Stop Mode (Flgure 10 2)
Register Entry and Display (Figure 10-3)
Step Mode Operation (Figure 10-4)
Establishment of Run Mode (Figure 10-5)

CONSOLE WORD FORMATS (Figure 10-6)
Computer Status Word . A oo
Console Sense Word .

Console Data Word
Console Control Word

MINIMUM CONSOLE REQUIREMENTS
Stopping the Processor
Resetting the System
Starting the System
Visual Indicators

xiii

TABLE OF CONTENTS (Cont'd)

Paragraph

10.6 OPTIONAL CONSOLE FEATURES

10.6.1 Data Entry and Display

10.6.2 Register and Memory Display and Modxﬁcanon
10.6.3 Sense Register Entry and Display .
10.6.4 Sense Switch Feature 3

10.6.5 Console Interrupt Feature

10.6.6 Autoload Initiation Controls

10.6.7 Step Mode Feature

10.7 USER CONSOLE INTERCONNECTION (Figure 10-7)
10.8 OPTION CARD CONSOLE ACCOMMODATIONS

Section 11. POWER SUPPLY INTERFACE REQUIREMENTS

11.1 INTRODUCTION

11.2 DC POWER REQUIREMENTS 5

11.2.1 Estimating DC Current Requu‘ements 5

11.2.2 Overvoltage and Reverse Voltage Protection

11.2.3 Ripple and Noise Requirements

11.2.4 Turnon/Turnoff Overshoot .

11.2.5 Regulation Requirements .

11.2.6 DC Power Storage .

11.3 POWER MONITOR FACILITIES (Figures 11-2 and 11-3)

11.3.1 +5H (Hangpower) Regulator .k AW N RN

11.3.2 Power Fail Detector .

11.4 AC LINE SYNCHRONIZED TIMING SOURCE (OPTIONAL)

11.5 INTERCONNECTION REQUIREMENTS (Figures 11-4 and
11-5) 9 o a3 .

11.5.1 Motherboard Interface Requ1rements

11.5.2 NAKED MINI LSI Power Connections

A
-

Page

. 10-9

. 10-9

. 10-10
. 10-10
. 10-10
. 10-10
. 10-10
. 10-11

. 10-11

. 10-11

. 11-1
. 11-1
. 11-1
. 11-4
. 11-4
. 11-4
. 11-4

Section 12. INTERFACE CONTROLLER MECHANICAL CONSIDERATIONS

12.1 INTRODUCTION

12.2 CHASSIS CONSTRAINTS

xiv

.12-1

. 12-1




Paragraph Page
12.3 PRINTED CIRCUIT BOARD CONSIDERATIONS (Fxgures

T2-1¢hen 12=B) : & 2 v i e g 9 4 ¢ o L. . 12-2
12.4 WIRE-WRAP BREADBOARD PC BOARD (Figure 12-4) . . . 12-2
12.5 FILLER BOARD PC BOARD (Figure 12-5) . . . . . . . . 12-2

COMPUTER AUTOMATION. INC.

TABLE OF CONTENTS (Cont'd)

Appendix A. HEXADECIMAL TABLES

Appendix B. RECOMMENDED DEVICE AND INTERRUPT ADDRESSES

Appendix C. INSTRUCTION Set BY CLASS

Appendix D. INSTRUCTION SET IN ALPHABETICAL ORDER

Appendix E. INSTRUCTION SET IN NUMERICAL ORDER

Appendix F. ALPHA LSI EXECUTION TIMES

GENERAL . « ¢« o v m o i wnd o b 5655 %5 5 6 o ciEsl
MEMORY PARAMETERS . . . . . . ... ... .....F-1
LSI-1 EXECUTION TIME ALGORITHMS . . . . . . . . . . F-2
LSI-2 EXECUTION TIME ALGORITHMS . . ... . . . . . F-8
ALPHA LSI FAMILY INSTRUCTION EXECUTION TIMES . . . F-17
MAXIMUM I/O TRANSFER RATES . . . . .. .. ... .F-17

Appendix G. SOFTWARE SUMMARY
INTRODUCTION . . . . . .. . . ... ... ......G1

BOOTSMBRAR 5 3 9 2 = 5 % @ = % 6 6 o 40 @ & o o o o o o G2

XV

TABLE OF CONTENTS (Cont'd)

Paragraph

SOFTWARE OPERATION SUMMARY
"Autoload
Binary Loader (BLD) 3 B3 9
Binary Dump/Verify (BLD/VER) 5
Object Loader (LAMBDA)
BETA-4 Assembler
BETA-8 Assembler : SNCRT
IMEGA Conversational Assembler .
Source Tape Preparation Program
Debug (DBG)
Concordance (CONC)

oD 00 =3O W e

Co000000000
[ —}

W W W w W W W w W

LIST OF ILLUSTRATIONS

1= Data Word Bit Identification

1-2 Byte Storage, Two Bytes Per Word

1-3 Data in Memory, One Byte Per Word . .
1-4 Data in Memory, Two Bytes Per Word .
1-5 Basic Word Address Format ’
1-6 Byte Address Format y » . o
1-7 Indirect Address Pointer Format 5

2-1 ALPHA LSI Outline and Mounting Diagram .

2-2 ALPHA LSI Ventilation Systems P

2-3 Motherboard Priority String . 3 % v

2-4 Expansion Chassis Cabling Scheme 3 9 B
2-5 NAKED MINI LSI-1 Outline and Mounting Dmgram

3-1 Console Switches and Indicators .

1

Instruction and Directive Classes

Source Statement Format . .

Arithmetic Overflow . 3
Word Mode Memory Reference Instructlon Format 5
Word Mode Addressing Summary . N

Byte Mode Memory Reference Instrucnon Format
Byte Mode Addressing Summary .

Double-Word Memory Reference Format

Divide

1

bu&dkn&t&l‘-hhhb
W0 =IO WA =

OOOQQO?OOOOO

0S-Command Summary (DOS, MTOS and COS) o

-Jlsh

hb»&r»&hh

-
t

COMPUTER AUTOMATION, INC. ————

o

]
L]

[

19 L
0O =3 BB W W NN

Page

o =1
. 1-12
. 1-13
.. 1-14

. 1-14

1 1
P e s DD DD N RO e

D N =




COMPUTER AUTOMATION, INC. = S — COMPUTER AUTOMATION. INC. l

TABLE OF CONTENTS (Cont'd) TABLE OF CONTENTS (Cont'd)
LIST OF ILLUSTRATIONS (Cont'd) LIST OF ILLUSTRATIONS (Cont'd)
Figure Page Figure Page
4-10 Multiply and Add . . . . . . . . . . .. . .. .. .. .417 5-5 In-line Auto I/O Data Transmission .. 5-4
4-11 NRM Shift Path . . . . . . . . . . . . . . . . . ....417 5-6 Initialization and Unconditional Output to Lme Prmter .. 5-6
4-12 Stack Instruction Format . . . . . e e e e e e e o .. 8-18 5-7 Unconditional Character Read from Teletype Paper Tape
4-13 Stack Organization and Management P ] Reader . . .. 56
4-14 Immediate Instruction Format . . . . . . . . . . . . . . 4-23 5-8 Initialization and Condmonal Control of Lme Prmter 5-6
4-15 JOC Jump on Condition Format . . . . . . . . . . . . . 4-24 5-9 Conditional Input from Teletype Keyboard with Auto Echo. 5-7
4-16 JOC Expression 1 Definitions . . . . . . . . . . . . . . 425 5-10 Uninterruptable Block Output to Line Printer o o O
4-17 Conditional Jump Format . . . . . . . . . . . . . . . . 4-25 5-11 Automatic Byte Input from Card Reader . 5-8
4-18 Single Register Shift Format . . . e e e e e . ... 4-26 5-12 Line Printer Interrupt Initialization Sequence . . 5-11
4-19 Double Register (Long) Shift Format e e e e e ... 428 5-13 Real Time Clock Interrupt Initialization Sequence . . 5-12
4-20 Arithmetic Left Shift . . . . . . . . . . . . . ... ... 427 5-14 Line Printer Interrupt Instructions . S . 5-12
4-21 Arithmetic Right Shift . . . . . . . . . . .. . . ... .4-27 5-15 Real Time Clock Interrupt Instructions . . 5-13
4-22 Logical Left Shift . . . . . . . . . . . . . . ... .. . 4-28
4-23 Logical Right Shift . . . . . . . . . . ... ... ... 428 6-1 Processor Option Board S . 6-3
4-24 Rotate, Left Shifte., ..o o« v @w v s s o me s e aD sy s o nd-29 6-2 Option Board Connector J1 Pin Assxgnments . 6-4
4-25 Rotate Right Shift . . . . . . . . .. . ... ... .. .4°29 6-3 Option Board Connector J2 Pin Assignments . 6-5
4-26 Iong EeftShift. . . « v c s s awE 2 ®@ o & & 8 o o o 4780 6-4 Current Loop Interface ; . 6-8
4-27 Long Right Shift . . . . . . . . .. . . ... ... ..430 6-5 IEIA RS232C/CCITT Interface . 6-9
4-28 Long Rotate Left Shift . . . . . . . . . . . .. ... .. 430 6-6 TTL/DTL Interface . 6-10
4-29 Long Rotate Right Shift . . . . . . . . . .. .. ... .4-30 6-7 Half-Duplex Program- Controlled Data Output . 6-11
4-30 Register Change Format . . . . . . . . . . ... ... .43l 6-8 Program-Controlled TTY Reader Input . . 6-12
4-31 Control Format . . . . T S 1 6-9 Full-Duplex Auto-Input Under Interrupt . 6-18
4-32 Computer Status Word Format .. F Y S X 4 6-10 RTC Interrupt Programming Example . . 6-23
4-33 Single Word Input/Output Instruction Format S 1 6-11 Power Fail/Restart Software Routines . 6-32
4-34 Block Input/Output Instruction Format g 4-44
4-35 Automatic Input/Output Instruction Format 4-45 7-1 Memory Control Connector . . . . . . . . . . . . . . . .72
4-36 In-line Auto I/O Instruction Sequence 5 4-46 7-9 Interleaved Memory Installati -
ry Installation . . . . . . . . . . .. .74
4-37 Interrupt Location Auto I/0 Instruction Sequence . 4-47 7-3 Memory Banking Example . -6
4-38 Begin Conditional Assembly Directives Format 4-48 A
4-39 End Conditional Assembly Directive Format 4-48
4-40 Location Control Directive Format 4-49 8-1 Maxi-Bus Configuration . 8-1
4-41 MACH Directive Format e 4-49 8-2 Maxi-Bus Components . 8-3
4-42 Data and Symbol Definition Dlrectlve Format 4-51 8-3 1/0 Transfer Timing . 8-7
4-43 Program Linkage Directive Formats 4-52 8-4 ALPHA LSI Interrupt Orgamzatmn . 8-14
4-44 Subroutine Definition Directive Formats 4-53 8-5 Interrupt Transfer Timing . . 8-16
4-45 Title Directive Format . 4-54 8-6 Maxi-Bus Acquisition Timing . 8-20
8-7 Memory Addressing Comparisons . 8-21
5-1 Sense Routines . . 5-2 8-8 Read Access Timing . . 8-22
5-2 UnEonditional Nats Trensmissian . . 5-2 8-9 Write Access Timing : . 8-23
5-3 Conditional Data Transmission . . 5-3 8-10 Maxi-Bus Expansion Connector Pm assxgnments g .. 8-26
5-4 Block Data Transmission . 5-3 8-11 ALPHA LSI Motherboard Slot Organization (Rear View) . 8-29
xvii Xviii




[ T e A e e e e e e e
et ek et ek ek et b (D Q0 =1 D WY B W DD

O P WD WWWPWWWLW©WO O

COMPUTER AUTOMATION, INC. —

TABLE OF CONTENTS (Cont'd)

LIST OF ILLUSTRATIONS (Cont'd)

o

©
15

o

Device Address Decoding Techniques "
Function Decoder Configurations (Typical) .
Initialization Circuit .

Select, Input, or Output Instructlon Decode Conflguratlons
Positive and Negative Sense, Circuit Configurations

I

1

1953

. 9-4

9-6

9-7

. 9-8

Data Transfer Control . . . » =11
Single Interrupt Implementatxon Usmg IUR— . 9-14
Reentrant Interrupt Implementation . . 9-16
Simple IL1-/IL2- Interrupt Structure . . 9-16
End-of-Block Interrupt Implementation . 9-17
DMA Operational Phases . , 9-19
End-of-Block Interrupt Implementatlon Usmg ILl and IL2- 9-19
Maxi-Bus Acquisition and Priority Auction Controls . 9-23
State Counter and Decoder . 9-24
DMA Transfer Timing s . . 9-25
Basic DMA Controller Archxtecture . . 9-27
Processor/Console Interface e e e e e e e e 10-2
Establishment of Stop Mode . . . . . . . . . . . . . . . 10-3
Register Entry/Display Sequence g mE a e @ oA e e m 058
Step Mode Sequence . . . . e e e o s L0RY)
Console Word Formats . . . . .. . 10-6
Motherboard/Console Connector (J 1) Pm Assxgnments .. 10-12
ALPHA LSI Power Supply . . . . . . . . . . .. .. .. 11-3
Power Monitor Block Diagram . . . . . . . . . . ... . 11-5
Power Monitor Timing Requirements . . . . . . . . . . . 11-6
User Power Supply Transition Adapter. . . . . . . . . . 11-7
Motherboard Power Adapter Pin Assignments . . . . . . . 11-8
Full Board Design Guide . . . . . . ... ... ... .12-3
Half Board Design Guide . . . . . . . .. . . ... .. 124
Standard PC Board Hardware . . . . . . . . .. .. . . 12-5
Wire-Wrap Breadboard PC Board . . . . . . . . .. . . 12-6
Filler Board PCBoard . . . . . . . . . . . .. .. .. 12-8

Class 1 - Single-Word Memory Reference Instruction
Format . . 2 « w G
Class 2 - Double Word Memory Reference Instructlon

Format . . 9 @ g . C-1
Class 3 - Stack Instructlon Format (LSI 2 only) . C-1

xix

[ | ] J ) ] ] i
b b b4 €D Q0 =1 D N B W
N - O

moEmHEmEmDEm

COMPUTER AUTOMATION, INC. —_—

TABLE OF CONTENTS (Cont'd)

LIST OF ILLUSTRATIONS (Cont'd)

Page
Class 4 - Byte Immediate Instruction Format C-2
Class 5 - Conditional Jump Instruction Format . . C-2
Class 6 - Register Shift Instruction Format . . . . C-2
Class 7 - Register Change and Control Instruction Format C-2
Class 8 - Input/Output Instruction Format ‘ " Cc-2
Class 9 - JOC Jump-On-Condition Instruction Format Cc-3

Single-Word Memory Reference Instruction Machine Code
Format . . . E-1
Double-Word Memory Reference Instructlon Machme Code
Format . A
Byte Immediate Instrucnon Machme Code Format « = i
Conditional Jump Instruction Machine Code Format .
Single-Register Shift Instruction Machine Code Format
Double-Register Shift Instruction Machine Code Format .
Register Change Instruction Machine Code Format
Control Instruction Machine Code Format .
Input/Output Instruction Machine Code Format J
Automatic Input/Output Instruction Machine Code Format
Block Input/Output Instruction Machine Code Format
Stack Instruction Machine Code Format .

tr

mmmmmmmmmmm
L N R K N

1

LIST OF TABLES

Page
Console Switches/Indicators Y * AT FEEY -5
Switch/Indicators - Operator Console P A ¥
Device Selection . g RS g 2 EE E 3-13
MACH Flag Word Values . . . . . . . . . ... .....450
Baud Rate Selection . . 6-6
Word Length Selections . 6-6
Clock Source Selection . 6-22
I/0 Stretch Selection . 6-30
1/0 Instruction List . . ce ... 810
Maxi-Bus Load, Drive and Terminatmn Summary ... . B-27

XX




COMPUTER AUTOMATION, INC. aé

TABLE OF CONTENTS (Cont'd)

LIST OF TABLES (Cont'd)

Table Page
9-1 Power and Ground Pin Assignments . . . . . . . . . . . 9-31
9-2 Normal Interface Pins . . . . . . . .. ... .. ....932
10-1 Console Special Signal Load/Drive Summary . . . . . . . 10-13
=] Standard Module Load Currents . . . . . . . . . . . . . 11-2
A-1 Hexadecimal-Decimal Conversions . . . . . . . . . . . . A-2

A-2 8-BIT ASCII Teletype Codes . A-3

B-1 Recommended Device Addresses TEETE T EEEE - |
B-2 Recommended Interrupt Address map . . . . . . . . . . B-3
B-3 Device Address - Command Summary B-4

F-1 LSI Family Memory Parameters Bl e s e 15 Pl & B
F-2 LSI-1 Execution Time Algorithms . . . . . . .. . . . . F-2
F-3 LSI-2 Execution Time Algorithms . . . . . . . . . . . . F-9
F-4 LSI-1 Memory Reference Instruction Address Calculation

Bimes q 3 6 € 5 s D e wmmmmm s 35 366 0@ 4 o BT
F-5 LSI-2 Memory Reference Instruction Address Calculation

RMES ¢ 3 2 g @ ww v @ «F FE FEE G D D e sme @ o BAE
F-6 Stack Instruction Address Calculation Times . . . . . . . F-19
F-7 ALPHA LSI Family Instruction Execution Times . . . . . . F-20
F-8 ALPHA LSI Family Maximum Data Transfer Rates . . . . . FP-27
G-1 Assembler Directives . . . . . . . .. ... ... ...G"1

xxi




COMPUTER AUTOMATION, INC. I

Section 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

The ALPHA LSI and NAKED MINI®LSI (hereafter referred to as ALPHA LSI when
discussed together) are general purpose, stored program digital computers. They
are extensions of the successful and proven 16-bit computer family from Computer
Automation, Inc.

1.1.1 The ALPHA LSI Family

The ALPHA LSI is not just one computer that can be packaged with or without a
chassis, power supply and console. Instead, it is an integrated family of compatible
components -- two central processors; three kinds of memories in fourteen sizes
and three speeds; peripheral controllers; computer options, general purpose
interfaces; etc. -- which can be combined in a multitude of configurations to match
a wide range of needs.

Several central processors are available and are referred to as the NAKED MINI LSI
type 1 (LSI-1) and the NAKED MINI LSI type 2 (LSI-2). The LSI-1 and LSI-2 Process-
ors feature the same basic architecture, instruction set and 1/0 capabilities. They
differ in terms of performance wherein the LSI-2 is faster than the LSI-1 and also
features additional instructions. Both processors are plug-to-plug compatible and,
except for timing differences, programs will execute properly in either Processor
without change (except when the additional instructions applicable to LSI-2 only are
used).

Several memories are available: Core 980, Core 1200, Core 1600, and semiconductor -
$C1200. The numbers define the full cycle time of the memory in nanoseconds and eac
memory type can be interleaved. ’

The user can mix memories of varying speeds, sizes, and technologies with either
processor to obtain the best price/performance margin possible.

1.1.2 Upward Compatibility

The ALPHA LSI is upward software and 1/0 compatible with earlier 16-bit computers
from Computer Automation. Upward software compatibility means that virtually all
programs written for the earlier 16-bit computers will run without change on the

1-1

COMPUTER AUTOMATION, INC. l

ALPHA LSI. However, due to the expanded and improved instruction set of the
ALPHA LSI, programs written for these computers may not run on the earlier
computers.

1.1.3 General Features

The ALPHA LSI computer family features a 16-bit word format and 168 basic instruc-
tions (188 in the LSI-2). The instruction set is divided into seven major classes
(eight with LSI-2) which provide memory-to-register and register-to-register data
movement as well as conditional jump, single and double-register shift, register
change, machine control and Input/Output instructions. The computer utilizes eight
addressing modes (12 in the LSI-2) for effective and efficient management of memory
resources.

The ALPHA LSI computer has fully buffered 1/0 structure coupled with five levels of
interrupts and five I/0 modes which permit high speed, low speed, synchronous and
asynchronous data transfers to take place.

The ALPHA LSI may readily accommodate additional memory modules and 1/0 by
adding expansion chassis to the basic system. An optional Memory Banking feature
permits the user to extend the upper limit of Memory from 32K words to 256K words.

1.2 THE NAKED MINI LSI CONCEPT

The NAKED MINI LSI-1 computer consists of the Processor and first memory module
on one printed circuit (PC) board. The NAKED MINI LSI-1 is a complete stand alone
computer without a chassis, motherboard, power supply or operators console.

The NAKED MINI LSI-1 computer is designed to be used as a system component along
with other system components. It depends on the system power supply for a power
source, the system control panel for operational control signals, and the system
enclosure for structural and environmental support,

The NAKED MINI LSI-2 computer consists of the Processor (full PC board) and one
or more memory modules, a motherboard and a chassis. Like the LSI-1, the
NAKED MINI LSI-2 Processor depends on the system power supply for power and a
system control panel for operational control signals.

1.3 THE ALPHA LSI

Take a NAKED MINI LSI-1 or -2 computer and add a power supply module, a mother-
board, a chassis and an operator's console and you get the ALPHA LSI computer.
The Motherboard interconnects the NAKED MINI LSI computer with additional 1/0

and memory modules, the power supply, and the operator's console.

1-2¢




COMPUTER AUTOMATION. INC. —

1.4 CHARACTERISTICS

The characteristics of the ALPHA LSI are explained in subsequent sections of this
manual. The following is an overview of the characteristics of this computer.

1.4.1 Processor and Memory

Some of the significant characteristics of the Processor and Memory are:

Parallel processing of full 16-bit words and 8-bit bytes.

Seven 16-bit hardware registers, one 8-bit Status register.

Memory word size of 16 bits, with each word addressable as a full 16-bit
word or as two separate 8-bit bytes.

Memory capacity is 1,024 words minimum, expandable to 32,768 words per
bank maximum. (Up to 262,144 words with optional Memory Banking.)

Computer cycle time is 1.6 microseconds for LSI-1; 150 nanoseconds for
LSI-2.

Direct Memory Access (standard) provides data transfer rates up to 1,020,000
words per second in a single memory bank or 1,666,667 words per second
with interleaved memory banks.

Binary 2's complement arithmetic processing.
Automatic memory scan (standard).

Hardware Multiply and Divide (standard).

1.4.2 Instruction Set

These computers have a very powerful instruction set consisting of 168 basic instruc-
tions divided into seven classes (188 instructions and 8 classes with the LSI-2
Processor). The instruction classes are:

1. Memory Reference.

Access Memory in either full Word or Byte mode and perform logical
and arithmetic operations involving data in Memory and data in hard-
ware registers. The hardware Multiply, Divide and Normalize
instructions are included in this class.

2. Stack (LSI-2 only)

Similar to the Memory Reference class of instructions except they
operate on words maintained in "stacks" in Memory. The number,
size, and location of stacks in use at any time are unlimited,

as are the number of stacks in use by any code module, and the
number of code modules using any given stack.

1-3

COMPUTER AUTOMATION. INC. j

3. Byte Immediate.

Similar to the Memory Reference class in that logical and arithmetic operations
are performed involving data in hardware registers. The memory data, however,
is contained within the instruction word so that it is immediately available for
processing without requiring an operand cycle to fetch it from Memory .

4. Conditional Jump.

Test conditions within the Processor and perform conditional branches depending
on the results of the tests performed. Jump may be as much as + 64 locations
from the location of the conditional jump instruction.

5. Shift.
Include singleregister logical, arithmetic, and rotate shifts; double register
logical and rotate shifts.

6. Register Change.
Provide logical manipulation of data within hardware registers.

7. Control.
Enable and disable interrupts; suppress status, control word, or byte mode
data processing; and perform other general control functions.

8. Input/Output.

Provide communications between the computer and external devices They include
conventional 1/0 instructions plus Block Transfer and Automatic Input/Output
instructions. I/0 may be to/from register or directly to/from Memory.

1.4.3 Registers

Following are descriptions of hardware registers of interest to the operator and
programmer. Except for the I and P registers, all others are under program control.

1. A Register. A 16-bit register used for arithmetic, logical and input/output
operations.

2. X Register. A 16-bit register that holds the index value for memory address
modification. It is also used for input/output and certain arithmetic and logic
operations.

3. OV (Overflow). A one-bit register set by arithmetic logic when an overflow
occurs. It is also used for extended shift operation. It can be tested and
modified by software.

4. BM (Byte mode). A one-bit register that specifies either word or byte mode.
It is set and cleared by software.

5. EIN (Enable Interrupts). A one-bit register that, when set, enables interrupts
of processor operation. It is set and cleared by software.

6. 1 Register. A 16-bit register that holds the instruction currently being pro-
cessed by the computer.

1-4




COMPUTER AUTOMATION. INC. —_—

7. P Register. A 16-bit register that holds the program location counter. It
addresses each instruction and increments as each instruction is executed.
For skip or jump instructions (modifying normal program sequence), P is
loaded with the next instruction to be executed.

1.4.4 Memory Addressing

1.4.4.1 Memory Reference Addressing

An important feature of these machines is the ability to access full 16-bit words and 8-
bit bytes (half words) in Memory. Memory may be as small as 1K x 16-bit words, and
as large as 32K x 16-bit words. Since Memory may contain 32K words, and since each
word contains two bytes, provisions are made for addressing up to 64K bytes.

Instructions which access Memory may operate in either Word or Byte mode. Memory
Reference instructions are sixteen bits in length (one-word instructions), with the

eight least-significant bits, plus three control bits, dedicated to memory addressing.
The eight least-significant bits address 256 words or bytes. The ALPHA LSI computer
uses the three control bits to specify several addressing modes. These addressing
modes are discussed briefly below and are explained in detail in section 3. The address-
ing modes used are Scratchpad, Relative Forward, Relative Backward, Indexed, and
Indirect.

1. Scratchpad

Scratchpad addressing accesses the first 256 words in Memory in Word mode,

or the first 256 bytes in Byte mode. The first 256 words in Memory are referred

to as "Scratchpad" memory, because these are common words which can be
addressed words which can be addressed directly by instructions located anywhere
in Memory .

2. Relative.

In Word mode, relative addressing can address an area of Memory extending
from the instruction address forward 256 words (+256) or backward 255 words
(-255). In Byte mode, the range is forward 512 bytes. Bytes cannot be directly
addressed relative backward.

3. Indexed.
The Index (X) register can be added to the address field of Memory Reference
instructions to form an effective memory word or byte address.

4. Indirect.

Indirect addressing uses scratchpad or relative addressing to
access a word in Memory which contains the address of a memory
operand. The word that contains a memory address rather than
an operand is called an address pointer. In Word mode, multi-

1-5

COMPUTER AUTOMATION. INC. I —

level indirect addressing is possible; i.e., one address pointer
may contain the address of another address pointer rather than
the address of an operand. In Byte mode, only one level of in-
direct addressing is possible.

Indirect addressing may also be used in conjunction with indexing.
When indexed indirect addressing is specified, the indirect opera-
tion is performed first and then the contents of the X register are
added to the contents of the address pointer. This process is called
Post Indexing.

1.4.4.2 Stack Addressing

All stack accesses are controlled by a stack pointer. Stacks may be accessed in the
conventional "PUSH" and "POP" fashion utilizing automatic hardware predecrement
and postincrement respectively, of the stack pointer. Stack contents can also be
accessed directly or with indexing through the stack pointer without altering the stack
pointer value.

1.4.5 1/0 Structure

The ALPHA LSI series computers are highly flexible system components designed

for easy application to control, communications, and monitoring tasks. These com-
puters are extremely easy to program using assembly language. Organization of the
Processor enables the computer to obtain high memory efficiency, avoiding the prob-
lem of "core burning", so prevalent in many computers. Memory utilization is fur-
ther enhanced by the powerful and flexible I/0 instruction set. The I/0 structure is
simple and efficient, sharply reducing the amount of 1/0 logic required by units in-
terfacing with the Processor.

1.4.5.1 Control Modes
Two type of I/0 instructions, Select and Sense, provide control information to and
from an interface. The Select instructions establish operating modes, control inter-

rupts or initialize the interface. The Sense instructions permit the Processor to
obtain the operational status of an interface.

1.4.5.2 Input Output Modes

The ALPHA LSI computer features five distinct 1/0 modes which, when combined with
an extensive set of I/0 instructions, provides a very powerful and easy to use 1/0

.1-6




COMPUTER AUTOMATION, INC. '_'li

structure. These modes are:

Trans

b WD D

Programmed I/0 via Registers

Programmed 1/0 via Memory

Automatic I/0 under Interrupts

Block 1/0

. DMA

fers can be made to or from the A or X registers or directly to or from Memory,

whichever is more convenient. Both word and byte data can be handled directly,
with byte data being packed automatically, if desired, without the need for time and
space-consuming programmed routines.

L

Programmed Input/Output via Registers

For greater convenience in handling data that must be examined
immediately upon input, or is the result of computations that must be
output immediately , programmed 1/0 transfers the data directly to
and from the operating registers of the Processor. Furthermore,
programmed I/0 instructions can be combined with Sense and Skip
instructions to allow testing of controller or peripheral status prior
to making a transfer.

Programmed [nput/Output via Memory

This mode capitalizes on the power of the Automanc I/0 instructions
to transfer data to or from Memory without disturbing the working
registers of the Processor. Any size block of data may be transferred
into or out of Memory .

Automatic Input/Output under Interrupt Control

This mode permits an interface to transfer data to or from Memory at
its own data rate with minimal disturbance of the main program.
When all data has been transferred, the interface develops an End-
of-Block interrupt. This, in turn, causes an interrupt subroutine to
be entered which performs the necessary housekeeping associated
with End-of-Block operations.

Block Input/Output

For high speed transfer rates, Block I/0 transfers data blocks of any
length. Data is exchanged directly between Memory and the peripheral
interface with the index register providing the word count. During
execution of Block I/0 instructions, the computer is totally dedicated to
the Block I/0 transfer and cannot respond to interrupts until the entire
block has been transferred.

5. Direct Memory Access (DMA)

For very high speed transfer rates, DMA transfers data directly to and

from Memory. Since this data transfer does not require the Processor,

the Processor can be performing other operations while interleaving with
DMA on a cycle stealing basis. Multiple DMA controllers may use the

DMA feature simultaneously (interleaved cycles) up to the full memory
transfer rate. When more than one memory module is installed, the modules
may be two way interleaved to provide data transfer at twice the individual
memory data rates.

1.4.5.3 Vectored Interrupts.

The LSI series computers feature vectored hardware priority interrupts, wherein each
peripheral controller supplies its own unique interrupt address to any location in
Memory. There are five standard interrupt levels (two internal and three external).
The third external level, with control lines, can accommodate a virtually unlimited
number of vectored interrupts.

1.4.6 Processor Options

Four general options are offered with the ALPHA LSI computer. They are: Power
Fail/Restart; the Teletype/CRT Interface; Real Time Clock, and Autoload.

The Power Fail/Restart option mounts directly on the NAKED MINI LSI computer PC
board. The other three options mount on an option board which plugs into a special
connector (in piggyback fashion) on the NAKED MINI LSI computer PC board. None of
these options interface directly with the motherboard.

1. Teletype/CRT Modem Interface.

Interfaces a modified ASR-33 Teletype, CRT terminal, or modem to the
computer. This is a fully-buffered interface that includes remote
Teletype motor on/off control. In addition to the standard TTY baud rate
(110 baud) , nine user selectable baud rates, ranging from 75 to 9600
bauds, are provided for driving a CRT terminal. Either Half or Full-
duplex operation is selectable on command.

2. Power Fail/Restart.
This option includes the hardware necessary to detect low input power
conditions and bring the computer to an orderly halt until normal input

power is restored. When normal power is restored, this option will
generate an orderly restart. The Power Fail/Restart option allows

1-8




13437

COMPUTER AUTOMATION. INC. l

completely unattended operation of the computer at locations where power
conditions are unreliable.

Real Time Clock.

The Real Time Clock option features a crystal controlled internal clock
which may be wired to produce clock rates of 100 microseconds, 1

. millisecond, 10 milliseconds, or twice the input AC line frequency,

(8.33 or 10 milliseconds -60 Hz and 50 Hz, respectively). The 10 milli-
second (crystal derived) rate is standard. An external clock source
may also be used. The Real Time Clock provides time-of-day
information to the computer and may be used to time periodic events
that must be controlled by the computer.

Multi-Device Autoload

The Multi-Device Autoload option consists of a Read-Only Memory
(ROM) programmed with a complete binary loader which is capable
of loading binary programs from any one of several input devices.
The Autoload hardware reads from the ROM when the Console AUTO
switch is activated.

Plug-In Options

Locations are provided within the ALPHA L5 computer chassis for the installation of
processor options, peripheral interfaces, and memory modules. The options are
mounted on printed circuit boards which plug into the locations within the computer
chassis. Some of the available plug-in processor options are:

1.

2.

Digital I/0 interfaces: up to 64 bits.
Relay 1/0 interfaces: up to 32 isolated relays.
Modem interfaces: asynchronous and synchronous.

Memory Banking controller: extends upper limit of Memory
to 262,144 words.

Read Only Memory (ROM).

Priority Interrupt module.

COMPUTER AUTOMATION, INC. —-1

1.4.8 Peripheral Equipment
The following is a partial list of the various types of peripheral equipment for which
interfaces to the ALPHA LSI have been developed. This list does not imply that these
are the only devices for which interfaces can be developed. The interface structure of
these computers is such that virtually any peripheral device can be interfaced to the
computer.

1. ASR-33 Teletypewriter

2. High speed Paper Tape Readers and Punches

3. Line Printers

4. Card Readers

5. Open reel and cassette Magnetic Tape Units

6. Magnetic Disks

7. CRT terminals

8. - Communications interfaces
1.5 DATA HANDLING CHARACTERISTICS

1.5.1 Date Word Format

Processor registers and memory locations are capable of storing data words consisting
of 16 binary digits or "bits". A word may be handled as a single 16-bit field or as two
8-bit bytes. The following paragraphs describe the word format of the computer.
Byte format is described later in this section.

1.5.1.1 Bit Identification

A data word may contain a single number, or it may contain a string of individual binary
bits, with each bit having a unique meaning. For purposes of explanation and identifica-
tion, each bit within a word is uniquely identified. The identification is accomplished
by numbering each bit within a word from right to left. The bit on the extreme right




of the word is bit 0, and the bit on the extreme left is bit 15. Figure 1-1 illustrates the
format of a 16-bit data word with the bit number shown above the bit position.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

s 214 213 212 211 210 29 28 27 26 25 24 23 22 1 20

Figure 1-1. Data Word Bit Identification

1.5.1.2 Bit Values

The ALPHA LSI is a binary computer; therefore numeric information stored in the
computer and processed by the computer must be in binary format. Figure 1-1 illustrates
the binary value of a one- bit (1) in each bit position of the 16-bit data word. These
values are expressed as powers of two. For example, a 1 in bit 3 has the value of 2°

or 8. The single exception to this rule is bit 15 which is the sign bit.

1.5.1.3 Signed Numbers

The ALPHA LSI is capable of performing arithmetic operations with signed numbers.
Binary two's complement notation is used to represent and process numeric information.
Bit 15 of a data word indicates the algebraic sign of the number contained within that
word.

1.5.1.4 Positive Numbers

A positive number is identified by a 0 in bit 15, and the binary equivalent of the magni-
tude of the positive number is stored in bits 0 to 14. The largest positive signed number
which can be stored in a 16-bit word is +32,767

1.5.1.5 Negative Numbers

A negative number is identified by a 1 in bit 15 of the data word. A negative number -
is represented by the binary two's complement of the equivalent positive number. A
negative number must follow the mathematical rule where:

0- (+4n) = -n
For example:
0~ (+5) = -5

COMPUTER AUTOMATION, INC. "I

Negative numbers must also be constructed such that:
¢+n) + (-n) =0

The binary two's complement of some numeric value may ve constructed by subtracting
the binary representation of the absolute magnitude of that value from 0.

Note that the formation of a binary two's complement negative number from the equivalent
positive number automatically sets the sign bit to a one. The largest negative number
that can be stored in a 16-bit word is -32,768,,.

1.5.2 Data Byte Format

A 16-bit data word is capable of storing two 8-bit bytes. Since most data transfers
between mini computers and peripheral devices are in the form of bytes rather than
words, the ALPHA LSI computer provides the capability of addressing individual bytes
as well as full data words. Figure 1-2 illustrates the storage of two bytes within one
computer word.

Bit positions within bytes are identified much the same as in 16-bit words. Figure
1-2 also illustrates the numbering of data bits within a byte. The bits are numbered 0
through 7, where bit 0 is the least-significant bit (LSB), and bit 7 is the most-signi-
ficant bit (MSB) of the byte.

16-BIT WORD
AL
r N
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[ BYTEO l BYTE 1
7 6 5 4 3 2 1.0 7 6 5 4 3 2 1 0
% 2" i F

. & Y
8-BIT BYTE 8-8IT BYTE
Figure 1-2. Byte Storage, Two Bytes Per Word

1.5.2.1 Byte Mode Processing

There are two control instructions in the computer which control Word mode processing
and Byte mode processing. One of the instructions causes the computer to enter Byte
mode processing, and the other causes the computer to enter Word mode processing.

In Word mode, all Memory Reference instructions access full words in Memory. In
Byte mode, all Memory Reference instructions (except IMS, MPY,DVD, NRM, JMP, and
JST) access one byte within a word. The method of addressing individual bytes is
discussed in a subsequent part of this section. The present discussion is concerned
with computer operations while in Byte mode as contrasted with computer operations
in Word mode.




COMPUTER AUTOMATION, INC. "|

Byte mode affects the address and operand cycles of the computer only. All other com-
puter functions operate the same as in Word mode. In Byte mode, the computer operand
cycle reads a single byte from Memory instead of a full word. The following paragraphs
illustrate Byte mode operations for Memory Reference instructions.

1.5.2.2 Register Load

In Word mode, the full word is loaded into the selected register. In Byte mode, the
selected byte is loaded into the lower eight bits of the selected register and the upper
eight bits are set to zero. Note that the location of the byte within the memory word
does not determine the location the byte will occupy in the register being loaded.

1.5.2.3 Arithmetic Operations

For arithmetic purposes, bytes are handled as positive numbers only. The reason is
that a byte occupies the lower eight bits of a register, or a data bus, and the upper
eight bits contain zeros.

1.5.2.4 Data Packing

One of the most useful features of Byte mode processing is in the packing and unpacking
of data in Memory. Since most of the peripheral devices used with mini computers are
byte oriented, high-speed data transfers between the computer and the peripheral
device generally require data to be packed one byte per word. Such an arrangement

is illustrated in figure 1-3. In this illustration, the upper eight bits of each data word
to be transmitted to a peripheral device contain zeros. A full 16-bit word is transmitted
to the device, but the device discards the upper eight bits and accepts only the lower
eight bits. Data received from a byte oriented peripheral device during high-speed
data transfers is packed in Memory one byte per word in the same format described pre-
viously (figure 1-3). If a software subroutine were required to pack the data two bytes
per word, in the format illustrated in figure 1-4, it would waste memory space and time
in performing the formatting required for high-speed data transfers.

15 14 13 12 1 10 9 8 7 6 S5 4 3 2 1 0

COMPUTER AUTOMATION, INC. -——-T

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WORD 0 BYTE O BYTE 1
WORD 1 BYTE 2 BYTE 3
WORD 2 8YTE 4 BYTES

WORD 0 o 0 0 0 0 o0 0 O BYTE 0
WORD 1 o 0 0 0 0 O 0 O BYTE 1
WORD2 |0 0 0 O 0 0 0 0 BYTE 2
WORD3 |0 0 0 0 0 0 0 O BYTE 3
WORD4 [0 0 0 ©0 0 0 0 0 BYTE 4
WORD 5 0 0 0 0 0 0 0 O BYTE §
Figure 1-3. Data in Memory, One Byte Per Word

1-13

Figure 1-4. Data in Memory, Two Bytes Per Word

The capability of the ALPHA LSI computer to address individual bytes in Memory allows
high-speed data transfers using the memory format shown in figure 1-4 for both trans-
mission and reception of data. Bytes may be addressed sequentially and transmitted

or received sequentially, just as words are transmitted or received sequentially in
conventional unpacked data transfers. This arrangement saves memory space since
none of the memory word is wasted, and it saves time since no software routines are
required to pack and unpack data for internal processing.

1.5.3 Memory Address Formats

Maximum memory capacity (exclusive of Memory Banking control) in the ALPHA LSI
computer is 32,768 words which means a byte capacity of 65,536 bytes. A fifteen bit
address is required to address 65,536 bytes. The following paragraphs discuss the
formats of the addresses that must be presented to Memory for addressing both words
and bytes. This discussion is concerned only with address formats. Section 3 of
this manual discusses the memory address modes which form these addresses.

1.5.3.1 Word Addressing
Figure 1-5 illustrates the format of an address presented to Memory to address a full

word. This is the format that is used to address instructions or full data words. The
address is contained in bits 0 - 14, and bit 15 contains a zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 [}

IOI WORD ADDRESS: 15 BITS

Figure 1-5. Basic Word Address Format




COMPUTER AUTOMATION. INC.

1.5.3.2 Byte Addressing

Figure 1-6 illustrates the format used to address a byte within a data word. Bits 1-15
contain the address of the memory word, and bit 0 specifies which byte within the word
is to be addressed.

Bit 0 = 0 specifies Byte 0 (Most Significant Byte) .
Bit 0 = 1 specifies Byte 1 (Least Significant Byte) .

If the computer is set for Byte mode, all operand addresses presented to Memory are
assumed to be byte addresses. The computer assumes that the address is in the format
shown in figure 1-6. If the computer is set for Word mode processing, all addresses
presented to Memory are assumed to be word addresses in the format shown in figure
1-5. These assumptions apply to operand cycles only. They do not apply to instruc-
tion cycles or indirect addressing cycles.

1 14 13 12 1t 10 9 8 7 6 5 4 3 2 t 0

WORD ADDRESS: 15 BITS

BYTE INDICATOR: 0=BYTEO
{LEFT BYTE)
1=BYTE1
{RIGHT BYTE)

Figure 1-6. Byte Address Format

1.5.3.3 Indirect Addressing

The ALPHA LSI computer is capable of performing single level indirect addressing

for addressing bytes, and multi-level indirect addressing for addressing words. Indi- °
rect addressing uses direct addressing to read a word in Memory, called an address
pointer, which contains the address of another word. In Byte mode, the address

pointer contains the address of the byte to be addressed. The format of the address in
the address pointer is the same as that shown in figure 1-6.

In Word mode, the format of the address in the address pointer is that shown in figure
1-7. Bits 0 - 14 contain the address of another word in Memory. Bit 15 is a multi-
level indicator. If bit 15 contains a 1, the address in bits 0 - 14 is the address of
another indirect address pointer. The number of levels of indirect addressing which
may be used is limited only by memory size.

B 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0

[ \I WORD ADDRESS: 15 BITS ,

N\

MULTILEVEL INDIRECT INDICATOR: 0 = OPERAND
ADDRESS

1=POINTER

ADDRESS

Figure 1-7. Indirect Address Pointer Format




COMPUTER AUTOMATION, INC.

Section 2

INTEGRATION

2.1 INTRODUCTION

This section provides detailed information pertaining to the mounting, cooling, and
interconnection of either the ALPHA LSI or NAKED MINI LSI-1 and -2 computers.

2.2 ALPHA LSI INTEGRATION
The following paragraphs discuss mounting, cooling, installation of PC boards, and ac

power application for the ALPHA LSI computer.

2.2.1 Mounting (Figure 2-1)

The ALPHA LSI computer is designed to be mounted in a standard 19-inch rack
or cabinet. Figure 2-1 provides outline and mounting dimensions to facilitate instal-
lation of the computer.

2.2.2 Cooling (Figure 2-2)

The ALPHA LSI Computer is designed to operate over a temperature range of 0° C to
50° C. When the computer is installed in an enclosure, the installation requirements
depend on the ventilating system employed such that the thermal requirements of the
computer are maintained.

There are three installation criteria which provide the minimum cooling conditions
allowable for the ALPHA LSI computer.

1. Closed Ventilation System
2. Side Ventilation System
3. Top/Bottom Ventilation System
In the closed ventilating system, it is assumed the ambient temperature will be main-

tained by the thermal interface. The minimum size enclosure must provide adequate
air flow paths for the computer's internal fans.

8
.
z
:
3

SIINAOW Of1 - AWOWIW

S

KlddNS HIMOL

{2 3dAL HO T 3dAL)
FINCOW YILNAWOD
187 ININ 03wN

(61°pb)

el

/i ZRYN%5

=
L=
=

A

WOLIINNOD
Y3dANE NOILdO
QvOIOLNY ¥ 2072 INL TvaY

3OVAYIIND 1dD-ALL SIONTONT
Quy08 NOILdO

QY02 WIMOA

00°6¢

(92°9%)

3718YD NOISNYdX3

S1d0d 113 /AWINI

wexBerq Buniunoly pue AUINNQ [ST VHATV '1-2 2andig

310SNOD

N
Qaset

318v3

IVAYAINT 1WD/ IdALINIL

HILIMS W3IMOd NIV
3ISN3 YIMOd NIVA

A18RISSY

INISNOH Nv4




*g-g @an31g

swvis g JuneINuULA I1ST VHATY

waysAg Jusp wopog/dog,

wajsAg Juap 9pIg

e —» -» i
=== =]
r TR g
1 o
! N
: [ & S
' !
: |
' |
| |
| |
| |
|
i |
¥
" -0 'k
(T TTE TN\
AN
N KN
e O fi1 7y o
N S
N T

/]

>
Bl
w
z

0
.
W17 QN

— O 4— WOL100 ® JOL dAL

N

S301S H108 dAL
3 ONIN3JO LN3IA

|
f
|
|
|
|
|
|
|
|
|
|
|/

S

2-3

COMPUTER AUTOMATION, INC.

woysAg JuUa pPasor)

e —dAL ‘NI 001 ——— ]

" with stacked equipment or an individual console enclosure.

o ——
————-=-=-- Tl
I I\
[ I\
| [
| \
\
" l | \
|
' |
! !
! | 4
| l =
[l
i |
i
=1
= 2
> > > 1%
~ ~ ~ (o]
m | om | on Nl
3k e = -_
w P b o0
Z X
gl13|8 5
Sl 3|9 | vz
o= (2] <
w =2} w =
Q| o e
3| | g3
e} 3
= 4
=) =
-] oo ] >
Sl 9l e =
(21) o
=l 1 ) té
= ! ! =
a1 3
o 1 ] -
] Al ) é
Lo ! 3
— wn
SR I~ I
ol o ! g0 =

NOILVINAVI JHNSOTONIT

COMPUTER AUTOMATION. INC. e

The side ventilating system establishes the minimum enclosure size and rectangular
surface for the minimum size opening. This provides for a safety guard if necessary.

The top/bottom ventilating system defines the minimum airtiow paths for a cabinet

Figure 2-2 defines the minimal dimension parameters for each of these ventilating
systems.

2.2.3 Joining Two Half PC Boards

Most I/0 modules occupy only half a PC board slot in the computer. When several half
board options are used, it is recommended that half boards be joined together to form
full boards. In those cases where an odd multiple of half board I/0 modules is used,

& blank Filler PC board is available from Computer Automation, Inc. to join with the
last half board. (Refer to section 12 for further details on the Filler PC board,

Part No. 10053-00).

Half board modules are joined together by means of a stiffener kit which is supplied
with each half board module (CAI part no. 95-20389-00). Each stiffener kit consists
of the following parts:

Two 14-inch stiffener bars

Twelve 4-40 x .500 inch nylon screws
One nylon board extractor with roll pin
One interface connector

o L B

When joining two half boards together, two stiffener kits are required.

The stiffener bars are installed on the component side of each printed circuit board.
One stiffener bar is located parallel to the computer interface contacts on each mod-
ule. Another stiffener bar is located at the back edge of each module parallel to the
peripheral interface contact strips. Finally, two stiffener bars (one for each module)
are located on the adjacent edges of each module (what would be the center of a full PC
board).

Stiffener bars are installed in the following manner:

1. First determine the physical placement of the module in the computer, that is,
the relative placement of the module with regard to the priority string.

2. Next, install the center stiffener bars. The nylon screw is inserted through
from the solder side of the board. Tighten the screws.

3. Install a stiffener bar on the front and rear edges of both modules. Do not
tighten the screws.

2-4




COMPUTER AUTOMATION. INC.

4. Next, find a level work surface. Stand both modules in a vertical position
with the front edge down. Ensure that the contact edge of each module is
touching the table surface and that the modules are butted together. Tighten
the nylon screws on the front edge. Now tighten the screws on the back edge.

5. Finally, examine the board extractors on one of the processor boards in the
computer. Find the similar extractor mounting holes on each module. Mount
the extractor on each side of the module and insert the roll pin.

This completes the joining operation. The PC board is now ready to install in the

computer. When all boards are installed, be sure to install the board retainer at the
rear of the computer.

2.2.4 Option Board Installation

The Option PC board (option board) mounts in piggyback fashion to the left half (as
viewed from the front) of either the LSI-1 or LSI-2 processor module. Support stand-
offs are provided with the processor modules. All loose hardware (screws, lock-
washers, washers and rear-edge connectors) is provided with the option board.

The option board has three edge connectors. Connector P1 interfaces with J1 on the
processor module. Connector J1 is the option jumper connector and connector J2

is the Teletype interface connector. Detailed information about the use of connectors
J1 and J2 is provided in section 6 of this manual.

To install the option board, proceed as follows:

1. Take the option board and insert J1 and J2 through the slots in the rear stiffener
of the processor module.

2. Position connector P1 for insertion into connector J1 on the processor module.

3. Gently push the option board into processor connector J1 aligning the four
mounting holes with the processor module standoffs.

4. Install a screw, lockwasher, and washer in each standoff and tighten.

5. Install rear edge connectors per instructions in section 6.

2.2.5 Module Installation, Processor Chassis Only

Do not remove or install any PC boards or cables while power is
applied to the computer.

2-5

COMPUTER AUTOMATION, INC. e

The ALPHA LSI motherboard slot organization is shown in figure 2-3. All modules,
except the processor module which is restricted to the top slot (slot A), can be placed
in any location within the processor chassis. In the placement of these modules,
however, consideration must be given to priority chains. These priority chains,
namely Interrupt, DMA, and Memory Banking, must be maintained. DMA and memory
modules provide for the propagation of all priorities. The 1/0 modules provide for
Interrupt priority, but may not provide for DMA and Memory Banking. If I/O modules
are placed above DMA or memory modules, the priority input and output pins relating
to DMA and Memory Banking must be jumpered. The priority input and output pins
for DMA and Memory Banking are given in the chart below,

PRIORITY IN PRIORITY OUT
MNEMONIC PIN MNEMONIC PIN

DMA DPIN- 209 DPOT- 210
Memory Banking | MBIN 237 MBOT 238
NOTE

Some 1/0 modules have the priority input and output pins brought
out to plated holes to facilitate jumpering. If these plated holes
are not provided, the jumpers should be soldered directly to the
connector pin etch.

Interrupt priority is determined by physical location of the interface module within the
chassis. The priority line begins with slot B200 and weaves through the motherboard
as shown in figure 2-3. It is routed through each I/O controller so it can inhibit the
lower priority devices when requesting service. Therefore, all 1/0 modules must be
placed in consecutive priority level slots to provide continuity in the priority chain.
If the priority chain is broken, down-stream interrupts may not be serviced. If they
are serviced, they will be serviced improperly.

As with Interrupt priority, DMA priority is determined by the physical location of the
DMA corntroller. The DMA priority chain runs down the 200-series side connectors
only, the highest priority being in slot B200 and the lowest in slot E200. Half board
DMA cor.trollers must be installed in 200-series connectors only.

The Memory Banking chain runs down the 200-series side connectors only. If half
board m2mory modules are used, they must be installed in 200-series connectors only.

If no specific module placement scheme is required, the general rules below may be
applied “o facilitate module installation. If these rules are followed, no particular
problems should occur.

NOTE

Install all modules with component side up.
1 2-6




‘g-g aandig

Burng £1a01dd PIEoqIoYIoN

(M31A J83Y)

oo

AddNS
HIMOd

2388 .
238 £3
)
<[5l [5] [&li]= !
= 2 [2) 1= & 8
s |8] |5 |5 s: !
|
Hojl
o
|
55 |
E°¢--§-§-§-»§~f§
|
|
= |
|
|
[
|
|
|

0013
on—wawH a (o2
on-wano—[

€]
ooLa

Cf(loll

Hn (102

ON-W3W H
on-wanfe—{
HOSSID0HJ INIW OINVN

001D
0018
(134

r

\r

€r

uieyy
Awond
1dnisaug

AL

Aoty
dnuay)

318vd
NOILDINNODHIALNI
SISSVHO NOISNVdX3

378v0
'NNODJHIUNI
310SNGD

3718vD
NOILIINNODHILNI
SISSYHD NOISNVdX3

1. Install processor module in the top slot (slot A).

2. Install memory modules next. The various sizes and types of ti\emory
modules can be intermixed in any order. (Refer to section 7 for
Memory Interleaving and Banking information.) Half board memory
modules must be installed in 200-series connectors only.

3. Install DMA controllers after memory modules.
4. Install I/O modules last.

Documentation is provided for each type of I/0 interface module. This document defines
the software and cabling requirements of the interface module. Refer to the appropriate
interface description to resolve any questions about the interface module.

All 1/0 interface modules must have the rear-edge cable connector
installed prior to operation of the Processor. If the connector is

not installed, a default device address of zero will be assigned to
the module, causing improper instruction execution. Device ad-
dress zero is reserved exclusively for Processor use. For details
concerning assignment of a unique device address to each 1/0 inter-
face module, refer to the associated interface description which is
packed with each module. .

2.2.6 Expansion (Figure 2-4)

In the event insufficient slots are provided in the processor chassis for a given
application, the Maxi-Bus may be expanded via one or more expansion chassis. The
expansion chassis is identical to the processor chassis (same motherboard, etc.) but
includes a Buffer PC board (buffer board) to regenerate Maxi-Bus signals, and also
ribbon cables of the appropriate length for interconnecting between chassis. (The
length of the cables depends upon whether the interconnection is from the processor
chassis to the first expansion chassis, or between subsequent expansion chassis.)

To facilitate the computer system expansion, Maxi-Bus expansion connectors J2 and
J3 are provided on the motherboard immediately above slot A. (Refer to figure 8-11
for the pin assignments of connectors J2 and J3.) Connectors J2 and J3 are connected
to buffer board connectors J2 and J1, respectively, in the first expansion chassis.

If further expansion is required, connectors J4 and J3 at the bottom of the buffer
board are connected to J2 and J1, respectively, of the next buffer board. The inter-
connect cables should be routed through slots located at the front, bottom and top

of each chassis.

2-8




COMPUTER AUTOMATION. INC. I

The Buffer PC board is mounted with the component side facing the expansion chassis
motherboard. Emanating from the center of the component side of each buffer board
are two ribbon cables (W1 and W2). When facing the front of the chassis, the cable
on the right, W2, interfaces with connector J2 on the expansion chassis motherboard.
The cable on the left, W1, interfaces with connector J3.

Expansion may extend to a maximum of three chassis. As expansion chassis are
installed, a speed degradation will occur. Memory modules located in expansion
chassis will exhibit an apparent slower system access and cycle time ( 200 ns for
each expansion chassis). Similarly, I/0 modules located in a second expansion
chassis or beyond may require that the processor timing circuit be altered to provide
additional phase stretching during I/0 operations (refer to paragraph 6.6.5). (A
minimum [/0 stretch period of 100 ns is recommended for each "subsequent" expan-
sion chassis beyond the "first" expansion chassis.) This timing circuit is modified
simply by changing an option-jumper connector which configures all jumper-
controlled processor options in the machine. This option-jumper connector mounts
to the rear-edge of the processor option board. Note that whenever any stretch is
inserted, all I/0 timing throughout the system is slowed down by the stretch period.

J3 J1 J2
Processor Chassis
‘/Motherboard
(53500-00)
[ — |
3 2 \-x
First Expansion
Expansion Chassis ——— Chassis Assembly
Motherboard ] ! N (12097-00)
(53500-00) g \\ s \\
¥z ezzoh
w1 w2
Expansion Chassis =————~——gof _J3 J4
Buffer PC Board SE————
(53536-00) J3 J2
_ﬂ- Subsequent
Expansion Chassis
N N\ )
o ‘\\ W52 Assemblies
—_— S (12097-01)
=2
w1 w2
13 J4

Figure 2-4. Expansion Chassis Cabling Scheme

o COMPUTER AUTCMATION, INC.

2.2.6.1 Module Installation, Processor and Expansion Chassis

In general, the processor chassis module installation rules described in paragraph
8.2.5 (referring to priority chains, placement of half board DMA and memory modules,
etc.) are also applicable to module installation in expansion chassis. In addition to
these general rules, the following rule applicable to installation of DMA controllers in
expansion chassis must be adhered to.

DMA controllers cannot communicate with memory or 1/0 modules
located in up-stream chassis. They can, however, communicate
with these modules if they are installed in any slot within the
same chassis, or within any down-stream chassis.

NOTE

Expansion chassis must be installed below the processor chassis.

If no specific module placement scheme is required, the general rules below may be
applied to facilitate module installation in the processor and expansion chassis.

1. [Install the processor module in slot A of the processor chassis.

2. Install DMA controllers immediately below the processor module.

NOTE

If the LSI-1 Processor is being used and a DMA module is in an
expansion chassis, it will not be able to communicate with the
Memory on the LSI-1 Processor board. For this reason, another
memory module with which the DMA controller can communicate
must be placed within the same chassis, or a chassis down-stream
from the DMA controller.

3. Install all memory modules next.

4. Install all 1/0O modules last.

2.2.7 AC Power Application

Computers intended for use with 110 Vac are shipped with a line cord containing a
standard 3-prong ac plug. Computers intended for use with 220/240 Vac are shipped
with a line cord, but without a plug due to the various plug configurations possible
when using 220/240 Vac. In these instances, the customer must install an appropriate
ac plug. Color coding for the wires contained in the ac line cord are as follows:

2-10




COMPUTER AUTOMATION. INC.

Black Hot line-fused
White Neutral line-unfused
Green Ground

Before plugging the ac line cord into a power source, be sure that the main power switch,
located on the back of the chassis, is in the OFF position. Plug the ac line cord into the

power source.

Connect ac line cord to properly grounded 3-prong receptacle only.

NOTE
When ac power is applied, the fans will operate when the main

power switch is in the ON position. Ensure that they are oper-
ating.

2.2.8 110to 220/240 Power Line Conversion

The ALPHA LSI computer may be powered from either 110 Vac or 220/240 Vac. To
convert from 110 to 220/240, or 220/240 to 110, follow the procedure outline below and
perform the appropriate step 4 for the conversion desired. Step 4a is for converting
from 110 to 220/240 and step 4b is for converting from 220/240 to 110,

Step 1 Turn power off and remove line cord from ac power source.
Step 2 Remove Console from front of chassis.
Step 3 Disconnect ac power connector P1 from the power supply. Power

connector P1 is connected to the power supply through an opening
in the motherboard.

Step 4a 110 Vac to 220/240 Vac

Step 4al Using a Molex removal tool, remove pin 3 from power connector P1.
(The pins are numbered on the wiring side of the connector.)
Insulate the pin with a piece of electrical tape and tie back to cable.

Step 4a2 Remove pin 6 from power connector P1 and insert in pin 3 of P1.

Step 4a3 Install a 220/240 Vac plug on the line cord.

2-11

Step 4a4 Change line fuse from 7A, 125V to 3A, 250V,

Step 485 ‘Proceed to step 5.

Step 4b 220/240 Vac to 110 Vac
Step 4bl Using a Molex removal tool, remove pin 3 from power connector
P1 and insert in pin 6 of P1. (The pins are numbered on the

wiring side of the connector.)

Step 4b2 Take the pin which is tied back to the power cable (contains a
blue and a black wire) and insert in pin 3 of P1.

Step 4b3 Install a 110 Vac plug on the line cord.

Step 4b4 Change line fuse from 3A to 7A.

Step 5 Reconnect power connector P1 to the power supply.
Step 6 Install the Console.
Step 7 Connect the line cord to the appropriate source of ac power.

Then turn power on and test the computer.

2.3 NAKED MINI LSI INTEGRATION

The following paragraphs discuss mounting, cooling and interconnection of the NAKED
MINI LSI-1 and -2 computers.

2.3.1 Mounting

There are two mounting considerations: one for LSI-1 and one for LSI-2.

2.3.1.1 LSI-1 Mounting Considerations (Figure 2-5)

The LSI-1 computer may be mounted in any plane as long as the cooling requirements
are satisfied. The computer may be hard mounted with mobile or fixed interface con-
nector or slide mounted with fixed interface connectors.

Five mounting holes are provided for hard mounting. Two holes are at the front of
the module near the corners, two are at the back of the module and one hole is located
in the center of the module. It is recommended that standoffs be used when hard
mounting the computer.




ey

«©

£1-¢

— =

]
f AIR OUT PUT *

I
’ - 1562307 om b
16.050 5 MOUNTING HOLES
1,505 k0
- 1 MEMORY CARD . /—MAIN CARD
L =
L—
\ 4
se0f
16 1
855
B N -0 y e
7200 | 5090

15. =

000 wIpTH THE COMPUTER MAY BE MOUNTED UTILIZING SLIDE IN RAILS. THE

AREA PROVIDED AT THE EDGE OF EACH SIDE OF THE MAIN CARD

IS FREE OF ETCH AND COMPONENTS TO DIMENSION INDICATED.
THE COMPUTER MAY BE HARD MOUNTED UTILIZING ‘THESE FIVE (5)
MOUNTING  HOLES.
MATES WITH CONNECTOR (SPECTRA STRIP P/N $S§00 - 034) OR EQUIVALENT.
MATES WITH CONNECTOR (VIKING P/N 3VH25/1JN-5) OR EQUIVALENT.
MATES WITH CONNECTOR (WINCHESTER P/N 8BDJ185) OR EQUIVALENT.

MATES WITH CONNECTOR (VIKING P/N 2VK43D/i-12) OR EQUIVALENT.

L\ 1L THE NAKED MINI ALPHA LSI COMPUTER SHALL BE KEPT FREE OF
o EXCESSIVE FORIGN MATERIAL (OIL,DUST, SALTS, ETC).
E‘ OBSTRUCTIONS AND AIR LEAKS SHALL BE ALLOWABLE TO THE
20

EXTENT THAT A MINIMUM OF 150 FPM OF AIR 5 EXHAUSTED
r\A AER SS THE OUTPUT SIDE OF THE COMPUTER
MAIN CARD AS IND

AIR SHALL BE SUPPLIED AT THE VOLUME OF 20 CFM MINIMUM
WITH A MAXIMUM PRESSURE OF INCHES OF WATER
THROUGH AN AIR CORRIDOR AS IND ED

AlIR FLOW SHALL BE IN THE lNDICATED DIRECTION ONLY,

THE NAKED MINI ALPHA LSI COMPUTER MAY BE MOUNTED IN
ANY PLANE PROVIDING NOTES 8,3 & 1Q ARE ADHERED TOO.

THE OPTION CARD IS ACCESSABLE BY THE REMOVAL OF FOUR 4) “q
SCREWS AND PULLING THE CARD FROM THE CONNECTOR IN
DIRECTION SHOWN.

THE MEMORY CARD 1S ACCESSABLE BY THE REMOVAL OF TWO (2) "4
SCREWS AND PULLING THE CARD FROM THE CONNECTOR IN THE
DIRECTION SHOWN

THE MEMORY AND OPTION CARD ARE ACCESSABLE FROM THE SURFACE
INDICATED.

CLEAR AREA (ETCH OR FEED THRUS) .350 DIA MINIMUM AROUND MOUNTINC
HOLES BOTH SIDES.

MAXIMUM H%IGHT OF MEMORY CARD & OPTION CARD (OPTION CARD

NOT SHOWN ).

MAXIMUM COMPONENT - HEIGHT OF MAIN CARD.

: UNLESS OTHERWISE SPECIFIED

Rrer (14}

B

0343 o [-— AR FLOW \ jm :2‘%3': 2 OLACES

16.90
MAX LENGTH

O]

1.50
MAX
l’HElGHT

=== =

L1.2s ZY5)(0)

470 MAC

ONO)

SJOO)

4
o
=
m
w

Figure 2-5. NAKED MINI LSI-1 Outline and Mounting Diagram

“INI ‘NOUVINOLNY ¥3LNdWOD

—

-
v



For slide mounting, a clear area of 0.200 inch is provided along each side of the

module to accommodate various types of PC board guides. The PC board guide should
be able to handle a PC board thickness of 0.062 inch. The LSI-1 computer module should
be supported along all four edges. The interface connectors along the front of the
module should be hard mounted to the users structure and some type of support should
be provided at the rear of the module.

2.3.1.2 LSI-2 Mounting

The LSI-2 is mounted in the same manner as the ALPHA LSI. Refer to paragraph 2.2.1
and figure 2-1.

2.3.2 Cooling

The cooling requirements for the LSI-1 and LSI-2 are discussed below.

2.3.2.1 LSI-1 Cooling

The LSI-1 computer is designed to operate over a temperature range of 0° C to 50° C.
Cooling air must flow from the processor side of the module to the memory side of the
module. Notes 8, 9, and 10 of figure 2-5 must be adhered to.

2.3.2.2 LSI-2 Cooling

The LSI-2 chassis has a fan housing with three fans. These fans provide adequate
cooling for the computer.

2.3.3 Interconnection

The interconnection requirements of the LSI-1 and LSI-2 are discussed below.

2.3.3.1 NAKED MINI LSI-1 Interconnection

The LSI-1 interconnections consist of bringing power to the module, strapping all of the
signals from P1 to P2 (with the exception listed below), and interfacing the system
control console to P1.

There are ten special signals that interface with the P1 connector that are not part of
the Maxi-Bus. Eight of these signals are dedicated console interface signals while the
other two are dedicated power supply signals. Under no circumstances should these
signals be strapped across to the P2 connector. These dedicated signals and their pin
assignments are listed below.

2-14

Signal Pin_
SSW- P1-9

IF- P1-10
TTLF- P1-11
+5H P1-12
AL- P1-33
BM- P1-34
ov- P1-37
START- P1-38
SERV- P1-83
CINT- P1-84

COMPUTER AUTOMATION, INC. a&

Dedicated to

Console
Console
Power Supply
Power Supply
Console
Console
Console
Console
Console
Console

Table 8-2 lists Maxi-Bus and power signals, along with associated pin assignments.

2.3.3.2 NAKED MINI LSI-2 Interconnections

All LSI-2 interconnections are made at the motherboard. Motherboard connector J1
provides the console interface while connector F100 provides the power interface.
Console interface information is available in section 10 while power supply interface

information is available in section 11.

To convert the LSI-2 from 110 Vac to 220/240 Vac, refer to paragraph 2.2.8.

NOTE

The NAKED MINI LSI-2 consists of a processor module,
memory module(s) , chassis, motherboard and fan housing.
In addition to dc power, the user must provide fan power

of 110 Vac at 0.6 amps to
the fan housing.

pin 1 and 2 of connector P1 of

2-15




AUIPAREATIARG 1817

Sasmiven [ o=y ]
A R R e TR D S L w

3.1 PROGRAMMING CONSOLE
The ALPHA LSI Programming Console provides the switches and indicators required to

operate, display and control the computer. This section describes the controls and
indicators on the Console, provides operating procedures, and defines machine modes.

3.1.1 Switches and Indicators

For the convenience of the user, the switches and indicators have been grouped into
the following sections:

1. Status
2. Control
3. Entry and Display

Figure 3-1 illustrates the ALPHA LSI Console. All console switches, except the Console
Enable switch, are momentary contact touch switches and all indicators are light-
emitting diodes (LED's). The switches and indicators are listed and explained in

table 3-1.

NOTE

Due to the momentary contact nature of the Console
switches, the information entered via these switches
is volatile since it is stored electrically rather than
mechanically. The information will be lost during a
power outage. All pertinent information can be
restored, however, upon power resumption through
use of the Power Fail/Restart option and appropriate
software to restore the Status word. (Refer to Power
Fail/Restart, section 6§, and Status Control instruct-
ions, section 4.)

Table

3-1.

COMRUITEOIRIITOMAATICW, /NG GK ———

Console Switches and Indicators

SWITCH OR INDICATOR

PURPOSE

System Ststus Section

ON Indicator

ENABLE Slide Switch
and Indicator

BYTE Indicator

OV Indicator

SENSE Switch and
Indicator

System Control Section

STOP Switch and
Indicator

On when power is applied, off when power is removed.
The main power switch is located on the rear of the
computer.

The console enable/disable slide switch is located in a
recess on the edge of the console. When the switch is on,
the ENABLE indicator is on. Likewise, when the switch
is off the indicator is off. When in the ENABLE state, all
switches and indicators are enabled. When in the
disabled state, the only functions that are effective are:

1. The SENSE switch and indicator.

2. The console sense register, console sense register
display, hex entry keyboard for the console sense
register, console interrupt, and interrupt indicator.

On whem the Processor is in Byte mode. Off when the
Processor is in Word mode.

On when the Processor Overflow flag is on. Off when
the Overflow flag is off.

The SENSE Switch toggles the SENSE indicator.

The SENSE indicator may be tested by program instruct-
ions. The Sense test will be true if the SENSE indicator
is on.

The STOP switch toggles the STOP indicator. The
indicator is on when the Stop mode is established. When
the indicator is off the Run Enable mode is established.

When the Stop mode is established and the Console is
enabled (ENABLE indicator on), data entry and display
operations may be performed. In addition, the Processor
will fetch and execute one program instruction each time
the RUN switch is pressed.

When in the Run Enable mode, data entry and display
operations may not be performed. The Run mode is
enabled but not entered until the RUN switch is pressed.

3-2




COMPUTER AUTOMATION, INC. n—.\l)/-

&
® © & o o
Figure 3-1. ALPHA LSI Console

ov

EMABLE  RYTE

® o o o

®

v
&
&
=
%
=
m
-
=
2
-~
*
o
L4

3-3




Table 3-1.

COMPUTER AUTOMATION, INC. l

Console Switches and Indicators (Cont'd)

SWITCH OR INDICATOR

PURPOSE

RESET Switch and
Indicator

AUTO Switch and
Indicator

INT Switch and
Indicator

RUN Switch and
Indicator

Entry/Display Section

Register Display
Indicators (0 thru 15)

The indicator is on when the RESET switch is on and
remains on only as long as the switch is pressed. The
RESET switch generates a system reset signal which
causes the Processor and all intertaces to be initialized.

The RESET switch should not normally be used to stop
the computer. If RESET is pressed while the computer
is running, the instruction currently being executed
may not complete. The STOP switch should normally
be used to halt the computer. The only time that

RESET should be used to halt the computer is in the
case where the Processor is hung up in a non-
escapable one instruction loop (e.g., multi-level
indirect address instruction with closed address chain).

The RESET switch should not be used after entering
data via the Console or any flags and indicators turned
on during data entry will be turned off.

The AUTO switch is used to initiate an Autoload sequence
if the Autoload option is installed. The AUTO switch is
enabled only during the Run Enable mode. Depressing
the Switch establishes the Run mode and initiates the
Autoload sequence. The indicator turns on when the
switch is pressed and remains on until the Autoload
sequence is completed. With no Autoload option
installed, depression of AUTO will still cause the
processor to run starting at location : 0000. However,

no loading occurs.

The INT switch is used to initiate a Console interrupt.
The switch is enabled only during the Run mode. The
indicator turns on when the switch is pressed and
remains on until the Processor honors the Console
interrupt request.

The RUN switch is used to establish the Run mode when
the STOP indicator is off. When the STOP indicator is
on, the RUN switch causes one instruction to be fetched
and executed when pressed. The WRITE/READ and
register indicators (A,X,I,P and M) are turned off
whenever RUN is pressed. The RUN indicator is
turned on when in the Run mode.

The 16 Register Display indicators display the contents
of either the Console Data register or the Console Sense

3-4

Table 3-1. Console Switches and Indicators (Cont'd)

COMPUTER AUTOMATION. INC. —————

SWITCH OR INDICATOR

PURPOSE

Register Select Switches
and Indicators (A, X, I,
P and M)

WRITE/READ Switch
and Indicator

register depending on the state of the S REG/DATA
indicator. When the S REG/DATA indicator is off, the
contents of the Console Data register are displayed.
The Consocle Data register contains either: 1) the
most recent contents of the A, X, I or P register or
Memory as requested by the Register Select switches;
2) the last processor output to the Console Data
register; or 3) the last keyboard entry to the Console
Data register.

When the S REG/DATA indicator is on, the contents of
the 4-bit Console Sense register are displayed on the
Register Display indicators. The Console Sense
register contains either the last keyboard entry to the
sense register or the last processor output via the
Status Output command. The upper 12 Register
Display indicators are turned off when displaying the
Console Sense register.

The five Register Select switches determine which one
of four processor registers or memory data is to be
involved in a read/write operation. Each switch has a
corresponding indicator which turns on when a given
switch is pressed. The indicators are interlocked such
that only one indicator is on at a time. The A, X, I and
P switches cause a transfer to occur between the target
register and the Console Data register. The M switch
causes a transfer between the addressed memory loca-
tion addressed by P Register and Console Data register
to occur and also causes the P counter to increment after
the transfer. This feature permits manual scanning or
loading of sequential memory locations by repeated
pressing of the M switch.

The WRITE/READ switch is used in conjunction with the
Register Select switches. When the WRITE/READ
indicator is on, the contents of the Console Data register
will be written into the target register or addressed
memory location when the appropriate Register Select
switch is pressed. When the WRITE/READ indicator is
off,, the contents of the selected register or addressed

3-5




A

COMPUTER AUTOMATION, INC. "|

Table 3-1. Console Switches and Indicators (Cont'd)

SWITCH OR INDICATOR PURPOSE

memory location are copied into the Console Data
register and displayed.

Hexadecimal Entry
Keyboard (0 thru F)

The Hexadecimsl Entry Keyboard consists of 16 switches
which are used to enter data into either the 16-bit

Console Data register or the 4-bit Console Sense register
as determined by the S REG/DATA switch and indicator.

When the S REG/DATA indicator is off, each depression
of a key causes a corresponding 4-bit binary hex code
to be entered into the four least-significant bits (LSB's)
of the Console Data register with the previously entered
data shifted four places to the left. The Console Data
register will be statically displayed as long as the

S REG/DATA indicator is off and the computer program
does not alter the contents of the Console Data register.

When the S REG/DATA indicator is turned on, each
depression of a hex entry key causes the corresponding
binary hex code to be entered into the four-bit Console
Sense register. The Console Sense register is statically
displayed in the four least significant Register Display
indicators so long as S REG/DATA is in the on state and
the computer program does not modify the contents of
the Console Sense register. The upper 12 Register
Display indicators are extinguished.

S REG/DATA Switch
and Indicator

The S REG/DATA switch toggles the S REG/DATA
indicator which determines whether the Console Data
register or the Console Sense register is to be connected
to the hex entry keyboard and the Register Display
indicators. If the S REG/DATA indicator is off, the hex
entry keyboard is used to enter data into the Console
Data register and the Register Display indicators are
connected to the Console Data register. If the S'REG/
DATA indicator is on, the keyboard and display are
connected to the Console Sense register.

CLEAR Switch The CLEAR switch, when pressed, clears data from the
Console Data register. The switch does not affect the
Console Sense register.

3-6

COMPUTER AUTOMATION. INC. - e

3.1.2 Machine Modes

There are four machine modes which are controlled from the Console. These modes
are:

1. Stop Mode

2. Step Mode

3. Run Enable Mode

4. Run Mode

Mode selection is made by use of the RUN and STOP switches. The RUN and STOP
indicators define the current machine mode as follows:

STOP RUN MODE

on off Stop

on on Step

off off Run Enable
off on Run

3.1.2.1 Stop Mode

The Stop mode unconditionally halts program execution and enables the Entry and
Display section of the Console. The Stop mode is manually entered from either the
Run mode or the Run Enable mode when the STOP switch is pressed. While in the Stop
mode, the Entry and Display section of the Console is enabled.

3.1.2.2 Step Mode

The Step mode is a transient condition in which a single instruction is executed. The
Stop mode is re-entered upon completion of the instruction. A single instruction is
executed each time the RUN switch is pressed while the STOP indicator is on. Interrupts
are not serviced while in Step mode.

3.1.2.3 Run Enable Mode

The Run Enable mode is an intermediate mode between the Stop and Run modes. Either
the Run or Stop mode may be entered from the Run Enable mode. Conversely, the Run
Enable mode can be entered from the Run mode by execution of a programmed halt. The
Run Enable mode can be entered from the Stop mode by turning off the STOP indicator.
While in the Run Enable mode, the Entry and Display section of the Console is disabled.

3-7




COMPUTER AUTOMATION, INC. EL&

3.1.2.4 Run Mode

The Run mode can be entered only from the Run Enable mode. When entered, the Run
mode permits the user's program to execute. The Run mode can be established manually
from the Console; semi-automaticaily by meaus of ithe Autcload opticn; or, eutomatically
by means of the Power Fail/Restart option.

The Run mode is entered manually from the Run Enable mode by pressing the Console
RUN switch. If the Autoload and Power Fail /Restart options are installed, the Run mode
is entered from the Run Enable mode when the AUTO switeh is pressed. The Power Fail/
Restart option automatically establishes the Run mode upon application of adequate power
regardless of processor or console status prior to the power failure.

3.1.3 Console Operation

The ALPHA LSI Console is used for initial start-up, program debug, and trouble-
shooting. The primary functions executed at the Console are register display and
register change, and the display and entry of memory data. The following paragraphs
discuss detailed procedures for performing these operations.

3.1.3.1 Conéole Preparation

There are several common steps that must be performed before any console operation
may be attempted. These steps prepare the Console and the computer for console
operations. The initial steps are:

1. Power On The main power switch for the computer is at the rear of the
chassis. Place the power switch in the up position (ON).
The ON indicator on the Console will light and the chassis
blowers will run.

2. Enable Enable the Console by moving the Console Enable slide switch
Console (located in the recess on the side of the Console) to the enable
position. The ENABLE indicator is on when the Console is
enabled .
3. Press The computer may come up in the Run mode because of a
STOP previously loaded program. Pressing STOP causes the

computer to leave the Run mode.
NOTE

In some cases the RUN indicator may remain on after the
STOP switch is pressed. This condition may exist when
the computer is attempting to execute certain I/0
instructions. This does not indicate a malfunction of the
computer. When this occurs, step 4 of this procedure
will correct the condition.

3-8

COMPUTER AUTOMATION, INC. —————

4. Press Pressing RESET puts the computer in Word mode and
RESET initializes the computer and peripheral interfaces. It
forces the termination of any incomplete instructions.

3.1.3.2 Console Data Entry Procedure

The Console Data Entry procedure is used to store data into selected registers or
memory locations from the ALPHA LSI Console. The general procedure is to
enter the data into the Console Data register via the hex keyboard and then transfer
the data to a target register or addressed memory location via the Register Select
switches. The detailed procedure is as follows:

1. Ready Console Prepare the Console and the computer for console
operations as described in paragraph 3.1.3.1.

2. Turn S REG/DATA Enables Console Data register entry, display and
Indicator off transfer.

3. Turn WRITE/READ Enables writing into a selected target register or
Indicator on memory location.

4. Memory Address Before writing into memory locations, the memory

P address where data is to be stored is entered into the
Console Data register and the P switch is pressed to
transfer the contents of the Console Data register to
P. This step is not required to enter data into the
A, X, I or P registers only.

5. Data ——- Target The data is entered into the Console Data register.
Register or Memory The appropriate register select switch is pressed to
transfer the contents of the Console Data register to

the target register or addressed memory location.

6. Segquential Memory The P register is automatically incremented each
Stores time M is pressed. To store data in sequential
memory locations, go back to step 5 for each succeeding
word. To store data in a new location, go back to
step 4.

3.1.3.3 Console Display Procedure
The Console Display procedure is used to display the contents of selected registers or
memory locations. The general procedure is to transfer the data from a register or

memory location to the Console Data register by use of the appropriate Register Select
switch. The detailed procedure is as follows:

3-9




COMPUTER AUTOMATION. INC.

COMPUTER AUTOMATION. INC. 'l al

1. Ready Console Prepare the Console and the computer for console

operations as described in paragraph 3.1.3.1.

2. Turn S REG/DATA Enables Console Data register, entry, display and
Indicator off transfer.

3. Turn WRITE/READ Enables writing desired address into P register.
Indicator on (Required only prior to displaying memory
locations.)

4. Memory Address The address of the memory location to be displayed is

P entered into the Console Data register and the P switch
is pressed. (Required only prior to displaying
memory locations.)

5. Turn WRITE/READ Enables reading from a selected register or memory
Indicator off location.

6. Target Register or When the appropriate Register Select switch is pressed,
Memory -—— Console the contents of the selected target register or memory
location are copied into the Console Data register and
displayed.

7. Sequential Memory The P register is incremented each time M is pressed.
Displays Therefore, to display data in sequential memory
locations, go back to step 6.

CAUTION

The following caution is applicable when stepping through
a program on the LSI-2 computer:

If the computer is halted (execution of HLT instruction)
within the range of a SIN instruction, any Console operation
will cause execution of the remaining instructions within
the SIN range before the Console is serviced.

3.1.3.4 Program Execution

Programs to be executed may be entered into Memory by a number of different means.
Short programs may be entered using the Console Data Entry procedure described in
paragraph 3.1.3.2. Longer programs may be entered using the Autoload feature or
various loader programs. Regardless of the means used to get a program into Memory,
the method used to execute that program is generally the same. The Program counter
(P register) must be set to the starting address of the program, and the computer Run
mode must be entered. The following steps are used to start program execution from
the Console: :

3-10

1. Ready Console Prepare the Console and the computer for console

operations as described in paragraph 3.1.3.1.

2. Start Address Enter the starting address of the program to be
—P executed in the P register.

NOTE

Enter any required starting information associated

with the program in the A, X or Sense register as

appropriate.
3. Press STOP This enables Run mode, but does not cause the
computer to enter Run mode.
4., Press RUN Pressing the RUN switch causes the computer to
enter the Run mode. The computer will continue to
run until it executes a Halt instruction, or until the
STOP switch is pressed.

3.1.4 Unattended Operation

If for any reason the computer is left unattended when executing a program, it is
recommended that the Console be disabled by placing the Console Enable switch to
the Disable position.

3.2 OPERATOR CONSOLE

3.2.1 Introduction

The Operator Console provides minimum facilities for the control and display of pro-
cessor operations. It can be used in systems having at least one of the following
options: Power Fail/Restart (PFR), Autoload (AL) or Automatic Start-up (ASU).

The Operator Console is connected to console interface connector J1 on the mother-
board and receives its power, +5VDC and ground, through the motherboard. The
console provides switches to reset the system, to interrupt the processor, and to

start the processor or initiate autoload, depending on the options installed. Indicators
are provided to indicate power on, system running, and overflow.




COMPUTIR AUTCMATION, INC. :&

3.2.2 Switches and Indicators

All switches are of the momentary-contact type activated in the down position. All

indicators are LED's.

Switch and indicator vperaiion is summarized in table 2.2.

Table 3.2 Switch/Indicators - Operator Console

COMPUTER AUTOMATION, INC. 'l =

3.2.3 Strapping Requirements

Since the Operator Console does not have a SENSE switch or Sense Register, jumpers
{cr switchee) muet he installed to replace these functions. The requirements vary with
two system configurations:

1. Systems Without Autoload Option. To start processor operation upon acti~
vation of the START switch as explained in table 3.2, AL- must be jumpered
to QATLD- on the option board or at processor connector J1. Alternately,
AL~ can be jumpered to PFD- on the motherboard.

2. Systems with Autoload Options. With this option, the activation of START
initiates an Autoload sequence. To perform an autoload and execute from
a loader device, the Sense Switch signal (SSW-, pin 2) and Enable Data Sense
Word (ENDSW-, pin 28) must be strapped to ground at option board con-
nector J1. Also, data sense signals DS00 - DS03 must be strapped at the
option board connector J1 for proper selection of the loader device. These
signals are on the following pins of J1 (see figure 6-2):

Switch/Indicator Function
ENABLE Activation of this switch provides a ground-true signal that
Switch enables all other switches on the Operator Console. ENABLE
must be held down while any other switch is activated and
not released until the activated switch is released.
RESET The RESET switch, when activated, forces system Reset (RST-)
Switch ground true initializing the processor and all interfaces.
START In systems having the Autoload option, this switch, when acti-
Switch vated, generates the Autoload signal (AL-, ground-true)
starting the Autoload sequence. For this operation, signals
must be strapped as described in paragraph 3.2.3.
In systems without Autoload option, AL- starts the processor oper-
ting from location : 0000 by initiating a power-up sequence provid-
ing that signals are strapped as described in paragraph 3.2.3.
INTerrupt When activated, this switch generates the Console Interrupt
Switch signal (CINT-, ground true) commanding the processor to
interrupt normal processing. Once the processor has serviced
this intcrrupt, the Console Interrupt Enable Mask (CIE) is not
reenabled for 1.5 ms, under software control.
Power ON This indicator, when "on," indicates that power (+5VDC) is
Indicator applied to the Operator Console.

RUN Indicator

This indicator, when "on," indicates that the processor is in
Run mode. This LED is energized as a result of Memory Start,
MST-, from the processor.

OVerflow
Indicator

This indicator, when "on," indicates data overflow in the pro-
cessor. It is energized by the OV flip-flop.

DS00-, pin 34

DS01-, pin 33

DS02-, pin 36

DS03-, pin 31

The device is selected by strapping the appropriate pin(s) according to

table 3.3.

Table 3.3 Device Selection
LOAD (J1 pin no.) EQUIVALENT

LOADER DEVICE MODE STRAP TO GND HEX ADDRESS
TTY/P.T Reader ABS None :0
Hi Speed P.T. ABS 34 11
Mag Tape ABS 33 12
Cassette ABS 33,34 ]
Disc ABS 36 14
TTY/P.T Reader REL 31 :8
Hi Speed P.T. REL 31,34 :9
Mag Tape REL 31,33 tA
Cassette REL 31,33,34 :B
Disc REL 31,36 2(¢)

To perform an Autoload and execute without a loader device, all data sense signals
(bits) must be grounded (:F). This causes an unconditional exit to location : 31 (see

aragraph 6.5.6).
paragrap 3-13




COMPUTER AUTOMATION. INC.

Section 4

INSTRUCTIONS AND DIRECTIVES

4.1 INTRODUCTION

This section deals with the various instructions and directives recognized by the
assembler. The Beta assembler translates programs which are written in a symbolic
language (mnemonics, etc.) into an object language (machine code - see appendices

C and D) which may be loaded into the ALPHA LSI computer. Outputs from the
assembler consist of the program object code (typically a punched paper tape) and

the program assembly listing. The Beta assembler is a two-pass assembler. A symbol
table for the program is compiled on the first pass and the program object code and
assembly listing are produced on the second pass.

4.1.1 Instruction and Directive Classes

The instruction and directive classes are listed below in figure 4-1. They are
discussed in this section.

CLASS 1 SINGLE-WORD MEMORY REFERENCE INSTRUCTIONS
CLASS 2 DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS
CLASS 3 STACK INSTRUCTIONS

CLASS 4 BYTE IMMEDIATE INSTRUCTIONS

CLASS 5 CONDITIONAL JUMP INSTRUCTIONS

CLASS 6 SHIFT INSTRUCTIONS

CLASS 7 REGISTER CHANGE AND CONTROL INSTRUCTIONS
CLASS 8 INPUT/OUTPUT INSTRUCTIONS

CLASS 9 JUMP ON CONDITION INSTRUCTIONS

CLASS 10 ASSEMBLER CONTROL DIRECTIVES

CLASS 11 DATA AND SYMBOL DEFINITION DIRECTIVES

CLASS 12 PROGRAM LINKAGE DIRECTIVES

CLASS 13 SUBROUTINE DEFINITION DIRECTIVES

CLASS 14 LISTING FORMAT AND ASSEMBLER INPUT DIRECTIVES
CLASS 15 USER DEFINED OPERATION CODE DIRECTIVES

Figure 4-1. Instruction and Directive Classes

COMPUTER AUTOMATION, INC. =

4.1.2 Symbolic Notation

The symbolic source code input to the Beta assembler consists of individual symbolic
statements. All of the statements taken together make up a program which is to be
translated.

All instructions and certain directives generate an object code. Other directives serve
only to control the assembly process.

A source statement represents either an instruction or a directive. It contains four
fields - the Label field, the Operation Code (Op Code) field, the Operand field and the
Comments field. Adjacent fields are separated by one or more spaces which allows
free~form symbolic input to the assembler. A space in the first character position of a
source statement indicates no label present. The listing output from the assembler is
formatted for ease in reading, with the Op Code, Operand and the Comments fields
beginning at fixed positions on the listing. Source statements on paper tape are
terminated with a carriage return. Line feeds and "rubouts" are ignored. All source
statements are limited to 72 characters.

The instructions and directives acceptable to the BETA assembler are described in
detail in the remainder of this section. The following conventions apply:

1. Square brackets[ ]enclose elements which are optional and may
be included or omitted as required.

2. Two or more elements separated by a vertical bar (|) indicates a
choice must be made from the enclosed elements.

3. A right square bracket followed by dots ( ] reTp)

indicates that the enclosed element may be Tepeated an arbitrary
number of times.

4.1.3 Assembler Source Statement Fields

The following paragraphs discuss the four assembler source statement fields. The
relative positions of the fields are shown below in figure 4-2.

LABEL FIELD OP CODE FIELD OPERAND FIELD | COMMENTS FIELD

Figure 4-2. Source Statement Format.

4.1.3.1 Label Field

The Label field may contain a name which can be referenced by other instruction state-
ments. It is identified by an alphabetic (A-Z) character in the. first position of the
source statement. This first character may be followed by as many as five alpha-
numeric (A-Z, 0-9) or colon (:) characters. This field is terminated by one or more
spaces.

4-2




COMPUTER AUTOMATION, INC.

At assembly time, the label is assigned the current value and relocation attribute of the
Program counter (P register). The same name may not appear in the Label field of more
than one source statement in a given program (except when used with the SET directive).

4.1.3.2 Op Code Field

The Op Code field contains a legally defined symbolic instruction or directive. In
addition, user-defined Op codes may appear in this field. The Op Code field consists
of not less than one nor more than four characters, and is terminated by one or more
spaces. The Op Code field of a source instruction statement must be present.

4.1.3.3 Operand Field

The various instructions and directives may or may not require operands. In any case,
the syntax of the Operand field depends on the type of instruction or directive with which
it is associated. The Operand field syntax description is contained in the discussions of
the instructions and directives. If the Operand field is present, it contains an expres-
sion consisting of one of the following:

The currency symbol ($), representing the current program location.
A single symbolic term.
A single numeric term.
A combination of symbolic terms, numeric terms and/or the currency
symbol joined by the arithmetic operators plus (+) or minus (-).

5. A text string.

6. A literal (=xx).
The value assigned the currency symbol by the assembler is the value of the assemble?'s
Working Location Counter at the time the currency symbol is encountered. The value is
absolute if an absolute assembly is being performed and relative if a relocatable assembly
is being performed. The currency symbol allows the programmer to reference memory
locations relative to the instruction being written rather than assigning labels to the
referenced location.

oW -

Symbolic terms (names) may be absolute or relative, depending on the assembly mode
under which they have been defined.

Numeric terms are always absolute. They consist of decimal, octal and hexadecimal
numbers. Decimal numbers can be any value in the range -32768 through +32767.

The first digit of the number must be non-zero. Octal numbers can be any octal value
in the range 0 through 0177777. The first - or leading - digit of the number must be.
zero to specify octal numbers. Hexadecimal numbers can be any hexadecimal value in
the range : 0 through : FFFF. The number must be preceded by a colon (:). Although'
octal and hexadecimal numbers may be signed, they are normally used to generate a bit
pattern or reference a particular memory location rather than to generate a signed
numeric value.

COMPUTER AUTOMATION, INC. —m———

Combinations of terms (including the currency symbol) can be achieved by using the
arithmetic operators plus (+) and minus (-). The value of the final expression will be
in the range : 0 thru : FFFF. Combinations of relative and absolute terms are governed
by additional restrictions (see paragraph 4.1.5).

Text strings consist of any sequence of characters surrounded by single quotes (').
Inclusion of a single quote within the character string is accomplished using two adjacent
single quotes. The object code generated consists of 8-bit ASCII character codes » packed
two characters per word, or one 8-bit ASCII character in the LS byte of an instruction
(e.g., the operands of Immediate instructions). When a DATA directive is used, the

text string may consist of one or two characters. When one character is specified, the
8-bit code appears in the LSB byte of the computer word, with the MS byte set to zero.

If two characters are specified, the code for the first character is put in the MS byte of
the computer word and the code for the second character is put in the LS byte of the
computer word. When the TEXT directive is used, the text string may consist of as many
as 57 characters. The characters are packed two per word, with the code for the first
character appearing in the MS byte of the computer word and the code for the second
character appearing in the LS byte of the computer word. Trailing character positions
are filled with blanks (:A0) - e.g., TEXT 'A' would generate a value of : C1A0 for the
specified computer word.

Literals are designated by preceding the expression in the operand with an equal (=)
sign Qliterals are only valid for class 1 instructions). This affects the entire expression,
not just one term in the expression. When a literal is encountered by the assembler, a
word is reserved in the scratchpad area of Memory to hold the computed value of the
expression in the Operand field. Memory addressing is then generated to access the
scratchpad location.

4.1.3.4 Comments Field

The Comments field follows the Operand field or, for those instructions which do not
require operands, the Op Code field. This field generally contains programmer's notes,
cryptic messages, helpful hints, etc. Comments appear on the assembly listing, but

do not generate object code.

4.1.4 Arithmetic Operations and Overflow

The ALPHA LSI computer performs two's complement arithmetic. All additions and
subtractions are performed on full 16-bit values. Thus, addition operations involving
byte values place the 8-bit data in the least significant 8 bits of the adder and set the
most significant 8 bits to zero (e.g., AXI : 50 would add : 0050 to the 16-bit X register) .
Subtraction operations involving byte values similarly obtain the 16-bit two's comple-
ment of the data (e.g., SXI : 50 would add : FFBO to the 16-bit X register).

4-4




COMPUTER AUTOMATION, INC.

Arithmetic overflow occurs when the result of an arithmetic operation exceeds the range
-32768 through +32767. Specifically, this involves the carry from bit 14 to bit 15 of the
adder, and the carry out of bit 15 (CO). If the carry from bit 14 to 15 is not the same

as the carry from 15 to CO (0 and 1 or 1 and 0), an arithmetic overflow has occurred and
the overflow (OV) indicator is set. The operation is described below in figure 4-3.

1. Carry In and Carry Out 2. No Carry In and No Carry Out

No Overflow No Overflow
co s co s
1\1 - 111 1111 1111 Ollecarries 0 0 101-—carries
-5 = 1 "111 1111 1111 1011 +5 = 0 000 0000 0000 0101
+ (-5) = 1 111 1111 1111 1011 + (#5)= 0 000 0000 0000 0101
-10 = 1 111 1111 1111 0110 +10= 0 000 0000 0000 1010
3. Carry In and No Carry Out 4. Carry Out and No Carry In
Overflow Overflow
co s co s
6 1_ 111 1111 1111 1ile-carries 1 \0 -—carries
+32767 = 0 NIl 1111 1111 1111 -32768 = 1 000 0000 0000 0000
+ (1) = 0 000 0000 0000 0001 + (-1)= 1 111 1111 1111 1111
32768 = 1 000 0000 0000 0000 -32769 = 0 111 1111 1111 1111

Figure 4-3. Arithmetic Overflow

4.1.5 Relocatability

Relative and absolute programming modes are controlled by the REL and ABS directives.
The default condition of the assembler is the Relative (REL) mode. The programmer should
note that the ORG directive modifies the contents, but not the relocation attribute, of the
assembler's Working Location Counter.

An absolute program (or section of coding) can only be loaded and executed in the memory
locations specified by the user at assembly time, whereas a relative (or relocatable) pro-
grams may be loaded and executed in any memory area specified by the user at load time.
Out-of-range memory references are resolved through the use of the scratchpad area in
the base page (the first 256 words of Memory). The user should refer to the LAMBDA
Object Loader documentation.

Multiple-term expressions are reduced by the assembler to a single expression which
may be relocatable or absolute, according to the following rule:

R = (Number of added relocatable terms) - (Number of subtracted relocatable terms)

If R = 1, the expression is relocatable; if R = 0, the expression is absolute; and if R is
not equal to 0 or 1, the expression is illegal.

4-5

COMPUTER AUTOMATION, INC. -

Relocatable expressions are modified by the load bias (established at program load
time) when the LAMBDA Object loader is executed:

Relocated Expression Value = Assembled Expression Value + Load Bias
In addition, the location of the entire program (or block of coding) is offset by the same
load bias:

Relocated Program Location = Assembled Program Location + Load Bias.

4.2 MEMORY REFERENCE INSTRUCTIONS

4.2.1 Word Mode Operations and Instruction Format

Word mode Memory Reference operations access full 16-bit memory operands. The
default mode of the computer is the Word mode - i.e., when no mode control
instruction has been executed, the computer is in the Word mode. SWM is the
mode control instruction which places the computer in the Word mode. In addition,
the SIN, SIA and SIX instructions force the computer into the Word mode. The SIN
instruction forces the Word mode for the number of succeeding instructions specified
by its associated operand. The SIA and SIX instructions unconditionally force the
Word mode. The format for the Word mode Memory Reference instructions

is shown in figure 4-4.

[LaBer]  opcope [+] e|+e] exprESSION ~ [cOMMENTS]
No Operator = Direct Address
* = Indirect Addressing (multi-level)

= Indexed Addressing

*@ =Indirect Post-indexed Addressing (multi-level)

Figure 4-4. Word Mode Memory Reference Instruction Format

All (16-bit) word address pointers (defined by DATA statements) consist of fifteen
bits of address in the least significant 15 bits. The most significant bit (bit 15)
specifies indirect addressing if equal to 1 or direct addressing if equal to 0.

4.2.1.1 Word Mode Direct Addressing

Word mode direct addressing allows any Memory Reference instruction to access the first
256 words of Memory (the base page/scratchpad area) as well as 512 memory locations
about the instruction itself (relative to P). Relative to P forward addressing includes

256 words forward (toward higher memory) of the instruction and relative to P backwards

4-6




COMPUTER AUTOMATION, INC. [ 'I

addressing includes the instruction itself and 255 memory locations backward from
the instruction. When direct addressing is desired, the expression in the Operand
field should not be preceded by an * or @ character. When the assembler encounters
a direct reference to an out of range memory location, it automatically generates an
address pointer in the scratchpad area and references the associated memory
location indirectly through the pointer.

4.2.1.2 Word Mode Indirect Addressing

Word mode indirect addressing allows any Memory Reference instruction to access
any memory location through an address pointer in the scratchpad area or an
address pointer in the 512 memory locations about the instruction itself (relative to P).
Relative to P forward indirect addressing allows the address pointer to reside in any
memory location up to 256 words forward (toward higher memory) of the instruction
and relative to P backwards indirect addressing allows the address pointer to be in
any memory location 255 words or less prior to the instruction. When indirect
addressing is desired, the expression in the Operand field should be preceded by

an asterisk (*). Multi-level indirect addressing is accomplished by accessing address
pointers in which the most significant bit (bit 15) is set. The memory operand is not
accessed until an address pointer with the most significant bit reset (= 0) is
encountered. Indirect address pointers can be defined by the programmer through
the use of the DATA directive by preceding the expression in the Operand field with
an asterisk (*).

4.2.1.3 Word Mode Direct Indexed Addressing

Word mode direct indexed addressing allows any Memory Reference instruction to
access memory locations by algebraically summing the signed contents of the X
register and any offset value in the range 0 through 255. The offset value is defined
by the expression in the Operand field. When direct indexed addressing is desired,
the expression in the Operand field should be preceded by an @ symbol. When the
assembler encounters an expression with a value greater than 255 in the Operand
field of a direct indexed Memory Reference instruction, it automatically generates

an address pointer in the scratchpad area and references the associated memory
location indirect postindexed, through the pointer.

4.2.1.4 Word Mode Indirect Postindexed Addressing

Word mode indirect postindexed addressing allows any Memory Reference instruction
to access memory locations by algebraically summing the contents of the X register and
the contents of an address pointer in the scratchpad area. If the most significant bit

of the address pointer is set, it contains the address of another address pointer, which
in turn may contain the address of another pointer, and so forth. When an address

& e @ 8.

COMPUTER AUTOMATION, INC. —

{X)+: FF
INDEXEQ: 256 LOCATIONS
)
1§ L_ LOCATIONS (X)~(X) + 256
PIFF e — e — — e e — =
RELATIVE T0 P, FORWARD: 256 LOCATIONS
Y=im+t+(D)
T I L S N
(P =BT RELATIVE TOP, BACKWARD: 755 LOCATIONS
M=11) Y= (P-(D)
LOCATIONS (Pi-(P) -255
PoFF e e e e e e e e
FE e — e — — —
SCRATCHPAD: 256 LOCATIONS
T Y-
A LOCATIONS 0255
Direct Adressing
MEMORY
O (SO L.
_____ OPERANG_ —

¥ = (AP} ¢ (X}

~ DS AanE s _ ey

SCRATCH PAD ADDRESSING OR RELATIVE TO P ADDRESSING IS
USED TO ADDRESS AN ADDRESS POINTER

BITS 0 -14 OF THE ADDAESS POINTER CONTAIN A MEMORY ADDRESS. IF BIT 15 OF
THE ADDRESS POINTER CONTAINS A 1-BIT, THE MEMORY ADDRESS IN 81TS 0-14 1S
THE ADDRESS OF ANOTHER ADDRESS POINTER.

IF 81T 15 OF THE ADORESS POINTER CONTAINS A 0-8IT, THE ADDRESS IN BITS 0-14
IS THE ADDRESS OF THE MEMORY OPERAND.

IF INDEXING IS SPECIFIEQ BY THE INSTRUCTION, THE ADDRESS IN BITS 0- 14 1S

ADOED TO THE CONTENYS OF THE X REGISTER TO FORM THE EFFECTIVE OPERAND
ADDRESS.

Indirect Adressing

Figure 4-5. Word Mode Adressing Summary
4-8




COMPUTER AUTOMATION, INC. -'

pointer with the most significant bit (bit 15) set to zero is found, the contents of the X
register are added to it to form the effective memory address. The memory operand
is then accessed. When indirect postindexed addressing is desired, the expression
in the Operand field should be preceded by an asterisk (*) and an @ symbol.

Because the Scan Memory (SCM) instruction always uses indirect postindexed
addressing, the assembler automatically generates the necessary machine code
and does not allow @ or * operators on the associated operand expression. The
operand expression for this instruction should reference a user-defined address
pointer in the base page.

4.2.1.5 Word Mode Summary

A summary of Word mode addressing is shown in figure 4-5.

4.2.2 Byte Mode Operations and Instruction Format

Byte mode Memory Reference operations access 8-bit byte operands. The Byte mode
is established by execution of the Set Byte Mode (SBM) instruction. Byte mode

is inhibited (the computer is forced into the Word mode) by execution of the SIN, SWM,
SIA and SIX instructions. The SIN instruction inhibits Byte mode operations for the
number of succeeding instructions specified by its associated operand. The SWM,

SIA and SIX instructions unconditionally force the computer into the Word mode.

The format for Byte mode Memory Reference instructions is shown below in figure 4-6.

[LaBEL] OP CODE [*| e|*e]exprESSION [commEenTs]
No Operator = Direct Address

* = Indirect Addressing (One Level)

@ = Indexed Addressing

*@ = Indirect Postindexed Addressing (One Level)

Figure 4-6. Byte Mode Memory Reference Instruction Format

All (16-bit) byte address pointers (BAC directive) consist of fifteen bits of word
address in the most significant 15 bits. The least significant bit (bit 0) specifies
the most significant 8 bits (MS byte) of the addressed word if equal to 0, or the least
significant 8 bits (LS byte) if equal to 1. Only one level of byte memory reference
indirect addressing, specified in the instruction itself, is possible. Byte operands
affecting the register are always right-justified, i.e., bytes cannot be loaded into, added
to or stored from the MS bytes of the A and X registers.

The IMS, MPY, DVD, NRM, JMP and JST instructions are not affected by the Byte
mode. They always use full 16-bit word operands.

COMPUTER AUTOMATION, INC. —————

4.2.2.1 Byte Mode Direct Addressing

Byte mode direct addressing allows any byte Memory Reference instruction to access
the first 256 bytes (128 words) of Memory as well as 512 byte locations forward
(toward higher memory) of the instruction itself. When direct addressing is

desired, the expression in the Operand field should not be preceded by an * or @
character. When the assembler encounters a direct reference to an out of range
byte location, it automatically generates a byte address pointer in the scratchpad
area and references the associated byte location indirectly through the pointer.

4.2.2.2 Byte Mode Indirect Addressing

Byte mode indirect addressing allows any byte Memory Reference instruction to
access any byte location through a byte address pcinter in the scratchpad area
or a byte address pointer in the memory locations about the instruction itself
(relative to P) . Relative to P forward indirect addressing allows the byte address
pointer to reside in any memory location up to 256 words forward (toward higher
memory) of the instruction and relative to P backwards indirect addressing allows
the byte address pointer to be in any memory location 255 words or less prior to the
instruction. When indirect addressing is desired, the expression in the Operand
field should be preceded by an asterisk (*). Byte address pointers to be used by
indirect byte Memory Reference instructions can be defined by the programmer by
using the BAC directive. Since a byte address pointer utilizes all 16 bits to specify
a given byte location, indirect byte addressing is limited to one level.

4.2.2.3 Byte Mode Direct Indexed Addressing

Byte mode direct indexed addressing allows any byte Memory Reference instruction
to access byte locations by summing the contents of the X register and any base value
in the range 0 through 255. The base value is defined by the expression in the
Operand field. When direct indexed addressing is desired, the expression in the
Operand field should be preceded by an @ symbol. When the assembler encounters
an expression with a value greater than 255 in the Operand field of a direct indexed
byte Memory Reference instruction, it automatically generates a byte address pointer
in the scratchpad area and references the associated byte memory location indirect
postindexed through the byte address pointer.

4.2,2.4 Byte Mode Indirect Postindexed Addressing

Byte mode indirect postindexed addressing allows any byte Memory Reference
instruction to access byte locations by summing the contents of the X register and the
contents of a byte address pointer in the scratchpad area. When indirect postindexed
byte addressing is desired, the expression in the Operand field should be preceded by
an asterisk (*) and an @ symbol, )

4-10




COMPUTER AUTOMATION, INC.

COMPUTER AUTOMATION, INC. - re——

::;Enzs: MEMORY ::::m
Because the Scan Memory Byte (SCMB) instruction always uses indirect postindexed
T et ey O G il addressing, the assembler automatically generates the necessary machine code and
? does not allow @ or * operators on the associated operand expression. When
L"‘“_f"::?i_ ”:"m‘s performing byte scans, the operand expression for this instruction should reference
BYTE LOCATIONS (X) (X} + (D) a user defined Dyie address poinier in ihe base puge.
WORD LOCATIONS (X2 {{X) + (0)}/2
M - — ——— — —— - ——— 4 on
4.2.2.5 Byte Mode Summary
NN+ P = = = e m — e = = — =~ — (Pre+256
RELATIVE TO P, FORWARD: $12 BYTES A summary of Byte mode addressing is shown in figure 4-7.

Y (WORD) = (P + 1 + (D)
BYTE LOCATIONS 2 {{P} + 1}+-2{(P) + 1 + (D}
WORD LOCATIONS (P} + 1={P} + 1 + (D}

PN - = e m m e m - ——— (LR 4.2.3 Arithmetic Memory Reference Instructions
PP e =) =5 = = e e e —m—— d:r ADD ADD TO A. Adds contents of effective memory location to contents of A
:ﬁ:ﬁg‘:’::) 6 BYTES register. OV is set if arithmetic overflow occurs.
BYTE LOCATIONS 0255
- WORD LOCATIONS 0+127 - ADDB ADD BYTE TO A. Adds contents of effective byte location to contents

of A register. OV is set if arithmetic overflow occurs.

Direct Addressing
SUB SUBTRACT FROM A. Subtracts contents of effective memory location

from contents of A register. OV is set if arithmetic overflow occurs.

o ;n—or;;u ————— SUBB SUBTRACT BYTE FROM A. Subtracts contents of effective byte location
______________ from contents of A register. OV is set if arithmetic overflow occurs.
______ 5 v_“_?"_'fn_ T 4.2.4 'Logical Memory Reference Instructions
--------------- 1 AND AND TO A. Logically AND's contents of effective memory location with
o _ tsr:uc:m:: :Mf’i S contents of A register. Result replaces contents of A register.
——————————————— © ANDB AND BYTE TO A. Logically AND's contents of effective byte location with
[ AMDRESSPOINTERBVIE . _ contents of LS byte of A register. Result replaces contents of LS byte of A
register. MS byte of A register is reset to zero.
(1)  SCAATCHPAD OR AELATIVE ADDRESSING IS USED TO ADDAESS A FULL WORO ADDRESS IOR INCLUSIVE OR TO A. Inclusively OR's contents of effective memory
POINTEN: location with contents of A register. Result replaces contents of A
(@)  1FINDEXING IS NOT REQUIRED, THE ADDRESS POINTER CONTAINS THE EFFECTIVE 16-017 register.
BYTE ADDRESS.
(®  1F INDEXING IS REQUIRED, THE BYTE ADDRESS IN THE ADDRESS POINTER IS ADDED TO THE IORB INCLUSIVE OR BYTE TO A. Inclusively OR's contents of effective byte
VALUE(INTHEDXIAEGISTE BTORORM.THE EEFECTIVEISY TEADDAESS, location with contents of LS byte of A register. Result replaces contents
) of LS byte of A register. MS byte of A register remains unchanged.
Indirect Addressing
XOR EXCLUSIVE OR TO A. Exclusively OR's contents of effective memory
location with contents of A register. Result replaces contents of A
Figure 4-7. Byte Mode Addressing Summary register.

4-11 4-12




-

-

XORB

EXCLUSIVE OR BYTE TO A. Exclusively OR's contents of effective byte
location with contents of LS byte of A register. Result replaces contents
of LS byte of A register. MS byte of A register remains unchanged.

.2.5 Data Transfer Memory Reference Instructions

LDA

LDAB

LDX

LDXB

STA

STAB

STX

STXB

EMA

EMAB

LOAD A. Loads contents of effective memory location into A register.

LOAD A BYTE. Loads contents of effective byte location into LS byte
of A register. MS byte of A register is reset to zero.

LOAD X. Loads contents of effective memory location into X register.

LOAD X BYTE. Loads contents of effective byte location into LS byte
of X register. MS byte of X register is reset to zero.

STORE A. Stores contents of A register in effective memory location.

STORE A BYTE. Stores contents of LS byte of A register in effective
byte location.

STORE X. Stores contents of X register in effective memory location.

STORE X BYTE. Stores contents of LS byte of X register in effective
byte location.

EXCHANGE MEMORY AND A. Simultaneously stores contents of A
register in effective memory location and loads contents of effective
memory location into A register.

EXCHANGE MEMORY BYTE AND A. Simultaneously stores contents
of LS byte of A register in effective byte location and loads contents
of effective byte location into LS byte of A register. MS byte of A
register is reset to zero.

.2.6 Program Transfer Memory Reference Instructions

CMS

COMPARE MEMORY TO A AND SKIP IF HIGH OR EQUAL. Compares
contents of effective memory location with contents of A register. If
A register is greater than contents of memory location, a one word
skip occurs. If A register is equal to contents of memory location,

a two word skip occurs. If A register is less than contents of memory
location, next sequential instruction is executed.

CMSB

IMS

JMP

JST

SCM

COMPARE BYTE AND SKIP IF HIGH OR EQUAL. Compares contents of
effective byte location with contents of A register. If A register is greater
than contents of byte location, a one word skip occurs. If A register is
equal to contents of byte location, a two word skip occurs. If A register is
less than contents of byte location, next sequential instruction is executed.
All 16 bits of A register are compared to contents of effective byte location,
s0 MS byte of A register should be equal to zero.

INCREMENT MEMORY AND SKIP ON ZERO RESULT. Contents of effective
memory location are incremented by one. If increment causes result to
become zero, a one word skip occurs. If not, next sequential instruction
is executed. OV is set if arithmetic overflow occurs.

NOTE

IMS is often used as an interrupt instruction in which case,
when the increment causes a zero result, an ECHO signal is
generated and sent to the interrupting device. The inter-
rupting device uses the ECHO signal to develop an EOB (End-
of-Block) interrupt. Under these conditions a skip does not
occur and OV is unaffected. (See paragraph 5.3).

JUMP UNCONDITIONAL. P register is loaded with the address of effective
memory location causing an unconditional branch to that address.

JUMP AND STORE. Contents of P register (address of JST instruction +1)
are stored in effective memory location and P register is then loaded with
address of effective memory location +1, causing an unconditional branch
to that address.

NOTE

JST is often used as an interrupt instruction. When used
as such, all interrupts under EIN/DIN control are auto-
matically disabled upon instruction execution. (See
paragraph 5.3). In this case, the P register content is
not the address of JST instruction +1.

SCAN MEMORY. Compares contents of A register with contents of memory
location in data buffer defined by address pointer in scratchpad (base
address of data buffer - 1) added to contents of X register (buffer length).
If a match is found, Scan is terminated and next sequential instruction is
executed. X register is decremented once for each word scanned. Thus,
data buffer is scanned in descending order, beginning with highest
memory location and ending with lowest (base address). When a match

is found, X register contains number of words remaining to be scanned.
Remainder of data buffer can be scanned simply by executing SCM
instruction again. If a match is not found when X register reaches zero,
a one word skip occurs and instruction terminates.

4-14

COMPUTER AUTOMATION. INC. —




COMPUTER AUTOMATION. INC.

SCMB SCAN MEMORY BYTE. Compares contents of A register with contents of
memory byte locations in data buffer defined by byte address pointer in
scratchpad (byte base address of pointer - 1) added to contents of X regis-
ter (data buffer length in bytes). If a match is found, Scan is terminated
and next sequential instruction is executed. X register is decremented once
for each byte scanned. Thus, data buffer is scanned, by byte, in descend-
ing order, beginning with highest memory byte location and ending with
lowest (base address). Remainder of data buffer can be scanned simply
by executing SCMB instruction again. If a match is not found when X regis-
ter reaches zero, a one word skip occurs and instruction terminates. All
16 bits of A register are compared to contents of effective byte location, so
MS byte of A register should be equal to zero.

NOTES

1. The SCM and SCMB instructions are interruptable. Upon
completion of interrupt processing, Scan resumes operation
at the point where the interrupt occurred.

2. The Set Byte Mode (SBM) instruction must be executed prior
to the execution of the SCMB instruction.

4.3 DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS

4.3.1 Format

The Double-Word Memory Reference instructions require two consecutive memory
locations and allow direct and indirect addressing. Indexed addressing is not
allowed and is, in fact, not useful, since these instructions manipulate both the
A and X registers. The format for Double-Word Memory Reference instructions
is shown in figure 4-8.

[LaBeL] OP-CODE [*]exprESSION 1[ExPRESSION 2] [cOMMENTS]

No Operator = Direct Address

* = Indirect Addressing (multi-level)

EXPRESSION 1: any absolute or relative expression defining the
effective memory location.

EXPRESSION 2: an optional instruction count in the range 0 thru
31 for NRM.

Figure 4-8. Double-Word Memory Reference Format

COMPUTER AUTOMATION, INC. —

4.3.2 Instructions

DVD DIVIDE. Divides contents of the A and X registers by contents of memory
location addressed by Expression 1. This address pointer (Expression 1)
may be direct or indirect and occupies second word of double-word DVD
instruction.

Prior to execution of instruction, A and X registers contain signed 30 bit
dividend (as shown in figure 4-9), and addressed memory location
contaings signed full-word divisor. Both dividend and divisor must be
positive. - -
Quotient is placed in X register (sign plus 15 bits) and fractional
remainder in A register (sign plus 15 bits). OV is set if a divide fault
occurs (Divisor < most significant half of dividend). If no divide fault
occurs, OV is returned to original state (prior to DVD instruction).
Note that least significant half of dividend is 15 bits, left justified.

15 14 13 12 13 70 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IO l OIVIDEND (MSH) ] [ DIVIDEND (LSH) [ XJ
A REGISTER X REGISTER
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O % 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IS I REMAINDER | |S I QUOTIENT l
A REGISTER X REGISTER

Figure 4-9. Divide

MPY MULTIPLY AND ADD. Multiplies contents of X register by contents of
the memory location addressed by Expression 1 and then adds contents of
A register to product. Address pointer (Expression 1) may be direct or
indirect and occupies second word of double-word MPY instruction.

Prior to execution of MPY instruction, X register contains signed
full-word multiplicand, addressed memory location contains full-
word multiplier, and A register contains "offset" to be added. (Refer
to figure 4-10.) Multiplier and offset must be positive or zero. .

significant half of result is a 15-bit left justified value consistent
with format of least significant half of dividend.

4-16




COMPUTER AUTOMATION, INC. &

In all cases OV will be reset (= 0) at completion of a full multiply. The
contents of OV prior to execution of MPY will be returned in the least
significant bit (bit 0) of the X register.

%5 14 13 1211 10 9 8 7 6 § 4 3 2 1 0 15 14 1312 1110 9 8 7 6 5 4 3 2 1 0
L)I OFFSET l ls l MULTIPLICAND l
A REGISTER X REGISTER
16 14 1312 1110 9 8 7 6 5 4 3 2 1 0 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
El RESULT (MSH) 1 I RESULT (LSH) |ov I
A REGISTER X REGISTER

NRM

15 14131211109 8 7 6 5 4 3 2 1 0

Figure 4-10. Multiply and Add

NORMALIZE A AND X. Contents of A and X registers are arithmetically

shifted left (see figure 4-11) until bit 15 of A register is not equal to bit

14 or until maximum shift count specified (Expression 2) is exhausted.
Exponent (count cell), addressed by Expression 1, is a two's complement
number which is decremented (incremented in two's complement) once for

each shift until normalization occurs. Address of exponent may be direct

or indirect and occupies second word of double-word NRM instruction. No
indication is given if arithmetic overflow occurs when exponent is decremented.

NRM instruction treats A and X registers as a combined 31-bit, plus
sign, register.

OV is reset (= 0) if normalization occurs; otherwise it is set (= 1). In
either case, exponent will be decremented once for each shift performed.

A full 31-bit normalize is performed if no instruction count (Expression
2) is specified. Otherwise, specified count will determine maximum
shifts performed. A normalize operation with a count of zero (Expression
2) provides a test for normalization without affecting contents of A and X
registers.

114131211109 8 7 6 56 4 3 2 1 0

|1 L5

| |

f

(LOST!

A REGISTER X REGISTER

Figure 4-11. NRM Shift Path
4-17

COMPUTER AUTOMATION, INC.

4.4 STACK, DOUBLE WORD INSTRUCTIONS (LSI-2 only)

Stack instructions permit the programmer to enter or retrieve a full 16-bit word from
a stack. A stack is a group of continuous memory locations whose length is variable
up to 32,768 words. A stack is organized on a last-in-first-out basis whereby the
last word entered into the stack will be the first word retrieved from the stack.

A stack can start at any address and fills from upper memory toward lower memory
(decreasing addresses). The stack instructions themselves do not provide any stack
boundary limit testing features. The user must provide boundary limit testing as
overhead associated with using Stack instructions.

All stack accesses are controlled by a stack pointer for each stack. The stack pointer
is a 15-bit address which points to the most recently accessed location in the stack.
The contents of the stack pointer are referred to as the stack element address--SEA.
The stack pointer may be located anywhere in Memory.

Stack instructions occupy two consecutive words in memory and operate in Word mode
only, independent of processor status. The first word contains the instruction while
the second word contains the address of the stack pointer. The format for Stack
instructions is shown below in figure 4-12.

With the stack pointer and the stack pointer address, indirection is not possible since
the Processor ignores bit 15. If bit 15 of the stack pointer is a 1, the stack pointer
will be treated as a negative number when indexing (see paragraph 4.4.1.2).

[LaBer]  opcobE  OPERAND [,AM] [commenTs]

AM = No Operator = Direct Access

PUSH (stack pointer decremented prior to access)
POP (stack pointer incremented after access)

Indexed (single level)

+
@

Figure 4-12. Stack Instruction Format
The Label and Comment fields are optional with this class of instruction.

The Op Code field must be present. The legal op codes for Stack instructions are
defined in paragraphs 4.4.2 through 4.4.6 inclusive.

The Operand field consists of one or two expressions. The first expression represents
a memory address and must be present. The second expression (AM) is optional

and, when included, must be separated from the first by a comma. This expression
represents the addressing mode of the Stack instruction. Figure 4-12 gives a list of
valid expression characters and their associated addressing modes, and 4.4.1 describes
them in greater detail.

4-18




COMPUTER AUTOMATION, INC.

These instructions generate two 16-bit words. The first word is the Stack instruction
Op code. The second word is the absolute address of the stack pointer.

4.4.1 Addressing Modes (Figure 4-13)

To provide flexibility in stack management, four addressing modes are provided with
Stack instructions.

4.4.1.1 Direct Access to Stack

In the Direct Access mode, the second word of the instruction (stack pointer address --
SPA) is used to fetch the stack pointer from Memory. In this mode, the stack pointer
contains the effective stack element address (SEA) and is used to access the stack
element for entry, retrieval, or testing of data.

4.4.1.2 Indexed Access to Stack

In the Indexed Access mode, the SPA in the second word of the instruction is used to
fetch the stack pointer from Memory. The contents of the signed X register are then
algebraically summed with the stack pointer to form the effective SEA. After the
summation, bit 15 is treated as a 0 for accessing the stack element. This allows
access to the nth element in the stack relative to the last stack entry when the X
register contains n. For example, if X = 0, the most recent stack entry is accessed
while if X = 1, the next most recent entry is accessed.

4.4.1.3 Auto-Postincrement Access to Stack (POP)

In the Auto-Postincrement mode, the SPA is used to obtain the stack pointer. In this
mode, the stack pointer contains the effective SEA and provides direct access to the
stack element. Upon completion of the stack access, the stack pointer is incremented
and restored to its memory location. This mode of addressing appears to remove (POP)
the most recent entry from the stack when used with a load type instruction.

4.4.1.4 Auto-Predecrement Access to Stack (PUSH)

In this mode, the stack pointer is accessed via the SPA, decremented by one, and
restored. The stack element is then accessed using the decremented contents of the
stack pointer. This mode of addressing appears to insert (PUSH) a new entry onto
the stack when used with a store type instruction.

SPA

P41

STACK INSTRUCTION

OP CODE

STACK POINTER
ADDRESS

STACK POINTER"

“Stack Pointer Always Points to Most Recent Entry in Stack.

COMPUTER AUTOMATION, INC. —————

Fuli

Full

v

Full

STACK ELEMENT - Fuil

Empty

Empty

A

Empty

Empty

Figure 4-13. Stack Organization and Management

:7FFF

SEA+n T
UPPER
MEMORY

POP

SEA +1

SEA

SEA -1

SEA12 PUSH
LOWER
MEMORY

SEA-n l

:0000




4.4.2 Arithmetic Stack Instructions

ADDS

SUBS

ADD STACK ELEMENT TO A. Adds contents of stack element to contents
of A register. OV is set if arithmetic overflow occurs.

SUBTRACT STACK ELEMENT FROM A. Subtracts contents of stack
element from contents of A register. OV is set if arithmetic overflow
occurs.

4.4.3 Logical Stack Instructions

ANDS

IORS

XORS

AND STACK ELEMENT TO A. Logically AND's contents of stack element
with contents of A register. Result replaces contents of A register.

INCLUSIVE OR STACK ELEMENT TO A. Inclusively OR's contents of
stack element with contents of A register. Result replaces contents
of A register.

EXCLUSIVE OR STACK ELEMENT TO A. Exclusively OR's contents of
stack element with contents of A register. Result replaces contents
of A register.

.4.4 Data Transfer Stack Instructions

EMAS

LDAS

LDXS

STAS

STXS

EXCHANGE STACK ELEMENT AND A. Simultaneously stores contents
of A register in stack element and loads contents of the stack element
into A register.

LOAD STACK ELEMENT INTO A. Loads contents of stack element into
A register.

LOAD STACK ELEMENT INTO X. Loads contents of stack element into
X register.

STORE A IN STACK ELEMENT. Stores contents of A register in stack
element.

STORE X IN STACK ELEMENT . Stores contents of X register in stack
element.

4-21

COMPUTER AUTOMATION, INC. 'ﬂ

4.4.5 Program Transfer Stack Instructions

CMSS COMPARE STACK ELEMENT TO A AND SKIP IF HIGH OR EQUAL. Compares
contents of stack element with contents of A register. If A register is
greater than contents of stack element, a one word skip occurs. If A
register is equal to contents of stack element, a two word skip occurs.
If A register is less than contents of stack element, next sequential
instruction is executed.

IMSS INCREMENT STACK ELEMENT AND SKIP ON ZERO RESULT. Contents of
stack element are incremented by one. If increment causes result to
become zero, a one word skip occurs. If not, the next sequential instruct-
ion is executed. OV is set if arithmetic overflow occurs.

JMPS  JUMP UNCONDITIONAL. P register is loaded with contents of stack
pointer (SEA), causing an unconditional branch to the addressed stack
element location. Next instruction is executed from location SEA.

JSTS  JUMP AND STORE TO STACK ELEMENT. Contents of P register (P + 2)
are stored in stack element and P register is then loaded with address of
stack element plus one (SEA + 1). Next instruction is accessed from
location SEA + 1.

4.4.6 Stack Control Instruction

SLAS  STACK ELEMENT ADDRESS TO A. Loads contents of stack pointer into A
register.

4.5 IMMEDIATE INSTRUCTIONS

4.5.1 Format

Immediate instructions are similar to Memory Reference instructions in that they
perform logical and arithmetic operations involving memory data and operating
registers. The memory data, however, is stored within the immediate instruction
itself rather than in a separate operand word or byte. The operands of the instructions
may be any absolute expression which is within the range 0 through :FF (i.e., any
absolute expression which fits into eight bits). The Immediate instruction format is
shown in figure 4-14.




COMPUTER AUTOMATION. INC. -l

[LABEL] OP-CODE

EXPRESSION [COMMENTS]

EXPRESSION: must be absolute and in the range : 0 thru : FF

4.5.2

AAI

AXI

SAI

SXI

CAI

CX1

LAP

LXP

LAM

LXM

Figure 4-14. Immediate Instruction Format

Instructions

ADD TO A IMMEDIATE. Operand is added to contents of A register.
OV is set if arithmetic overflow occurs.

ADD TO X IMMEDIATE. Operand is added to contents of X register.
OV is set if arithmetic overflow occurs.

SUBTRACT FROM A IMMEDIATE. Operand is negated (two's
complemented) and added as a 16-bit word to A register. OV is set
if arithmetic overflow occurs.

SUBTRACT FROM X IMMEDIATE. Operand is negated (two's
complemented) and added as a 16-bit word to X register. OV is set
if arithmetic overflow occurs.

COMPARE TO A IMMEDIATE. Operand is compared to contents of

LS byte of A register. If unequal, a one word skip occurs. If equal,
next sequential instruction is executed. Contents of A register are

not disturbed. MS byte of A register does not take part in comparison.

COMPARE TO X IMMEDIATE. Operand is compared to contents of

LS byte of X register. If unequal, a one word skip occurs. If equal,
next sequential instruction is executed. Contents of X register are

not distrubed. MS byte of X register does not take part in comparison.

LOAD A POSITIVE IMMEDIATE. Operand is loaded into LS byte of
A register. MS byte of A register is set to zero.

LOAD X POSITIVE IMMEDIATE. Operand is loaded into LS byte
of X register. MS byte of X register is set to zero.

LOAD A MINUS IMMEDIATE. The operand is negated (two's comple-
mented) and loaded as a 16-bit word into the A register.

LOAD X MINUS IMMEDIATE. The operand is negated (two's comple-
mented) and loaded as a 16-bit word into the X register.

4.6 CONDITIONAL JUMP INSTRUCTIONS

4.6.1 Format

Conditional Jump instructions test conditions within the computer and perform program
branches depending on the results of the test. A jump occurs if the specified condi-
tions are satisfied. All branches are direct and relative to the P register (location

of the Conditional Jump instruction). The range of Conditional Jump instructions is:

Forward Jumps:
Backward Jumps:

P + 1 through P + 64
P through P - 63

4.6.2 Microcoding

A general code, JOC, for Jump On Condition, is provided so the programmer can
microcode jump conditions. There are five different conditions which may be tested
individually or in combination:

Sign of A (positive or negative)

Contents of A (zero or not zero)

Contents of X (zero or not zero)

Overflow indicator (set or reset)
SENSE indicator (on or off)

G b W N

The conditions may be tested individually or in combination. Figure 4-15 shows the
format for the JOC instruction:

[LABEL] Joc EXPRESSION 1, EXPRESSION 2 [COMMENTS]

EXPRESSION 1: must be absolute and in the range : 0 thru : 3F

EXPRESSION 2: must represent a location within -63 thru +64
computer words.

Figure 4-15. JOC Jump On Condition Format

JOC commands consist of two groups, the AND group and the OR group. The AND test
group requires that all of the test conditions specified by bits 0 through 4 of Expression 1
be true for the jump to take place. The OR group requires that any one or more of the
test conditions specified be true if the jump is to take place. Expression 1 consists of 6
bits (T0 through T5) as defined by figure 4-16. Bit T5 specifies which test group

is used. Bits T0 through T4 specify inclusion of a specific test condition if equal

to 1. If equal to 0, the associated test condition is not examined.




COMPUTER AUTOMATION. INC.

IRO7-IR12 = Ty~ T JOC :XX,ADR

A
Ts Ts T3 T, T4 To

AND GROUP (T5 = 1) OR GROUP (Tg = 0)
Te = 1 X#£0 X=0
Ty =1 SENSE on SENSE off
T, =1 OV reset OV set (resets OV)
Ty = 1 A#0 A=0
Ty =1 A positive A negative

Figure 4-16. JOC Expression 1 Definitions

The following Conditional Jump instructions are special cases of the general JOC
instruction. Since they are utilized more often than the general conditional jumps,
they have been given their own mnemonics. Figure 4-17 illustrates the general
format for the Conditional Jump instructions.

[LaBEL]  OP-cODE  EXPRESSION [COMMENTS]

EXPRESSION: must represent a location within -63
thru +64 computer words.

Figure 4-17. Conditional Jump Format

4.6.3 Arithmetic Conditional Jump Instructions

JAG JUMP IF A GREATER THAN ZERO. Jump occurs if contents of A register
are greater than zero.

JAP JUMP IF A POSITIVE. Jump occurs if contents of A register are greater
than or equal to zero (A = 0).

JAZ JUMP IF A ZERO. Jump occurs if contents of A register are zero.

JAN JUMP IF A NOT ZERO. Jump occurs if contents of A register are not zero.

JAL JUMP IF A LESS THAN OR EQUAL TO ZERO. Jump occurs if contents of
A register are less than or equal to zero.

JAM JUMP IF A MINUS. Jump occurs if contents of A register are less than.
zero (A,; = 1),

4-25

COMPUTER AUTOMATION, INC. —

IXz JUMP IF X ZERO. Jump occurs if contents of X register are zero.

JXN JUMP IF X NOT ZERO. Jump occurs if contents of X register are not zero.

4.6.4 Control Conditional Jump Instructions

Jss JUMP IF SENSE INDICATOR SET. Jump occurs if SENSE indicator is on.

JSR JUMP IF SENSE INDICATOR RESET. Jump occurs if SENSE indicator
is off.

Jos JUMP IF OVERFLOW SET. Jump occurs if OV equal one. OV is reset
to zero during jump.
JOR JUMP IF OVERFLOW RESET. Jump occurs if OV equal zero.

4.7 SHIFT INSTRUCTIONS

4.7.1 Operand Restrictions and Instruction Format

Shift instructions move bit patterns in the computer registers either right or left.
Shifts may involve a single register (A or X), a single register and the overflow (OV)
indicator, or both the A and X registers and the OV indicator. The Processor provides
logical, arithmetic and rotate shifts. The operands (n) for single register and double
register instructions can be any absolute value from 1 through 8 and 16, respectively.
The single register shift instruction format is shown in figure 4-18 and the instruction
format for double register (long) shifts is shown in figure 4-19.

[LABEL] OP-CODE EXPRESSION [COMMENTS]

EXPRESSION: must be absolute and in the range 1 thru 8.

Figure 4-18. Single Register Shift Format

[LABEL] OP-CODE EXPRESSION [commenTs]

EXPRESSION: must be absolute and in the range 1 thru 16.

Figure 4-18. Double Register (Long) Shift Format




COMPUTER AUTOMATION, iNC.

4.7.2 Arithmetic Shift Instructions

The shift paths for the arithmetic shiit instructions are iliustrated below in figures 4-20
and 4-2i.

15 14 12 12 11 i ¢ 8 7 6 5 4 3 2 1 0O

E]/% DATA %

AOR X REGISTER

Figure 4-20. Arithmetic Leit Shin

15 14 512 12 10 9 8 7 6 5 4 3 2 1 0

S [ DATA - }

[ —_

AGR X REGISTER

Figure 4-21. Arithmetic Right Shift

ALA ARITHMETIC SHIFT A LEFT. Contents of A register (bits 0-14) are
shifted left n places. The sign bit (bit 15) is unchanged. Zeros are
shifted into bit 0 and bits shifted out of bit 14 are lost.

ALX ARITHMETIC SHIFT X LEFT. Contents of X register (bits 0-14) are
shifteu left n places. The sign bit (bit 15) is unchanged. Zeros are
shifted into bit 0 and bits shifted out of bit 14 are lost.

ARA ARITHMETIC SHIFT A RICHT. Contents of A register are shifted right
i places. The sign bit (Lit 15) is unchanged and is shifted into and
propagated through bit 14, Bits shifted out of bit 0 are lost.

ARX ARITHMETIC SHIFT X RIGHT. Contents of X register are shifted right
n places. The sign bit (bit 15) is unchanged #nd is shifted into and
propagated through bit 14. Bits shifted out of bit 0 are lost.

4.7.3 Logical Shift Instructions

The shift paths for the logical shift instructions are illustrated below in figures 4-22
and 4-23.

4-217

COMPUTER AUTOMATION. INC.

15 14 1312 11 10 Y € 7 6 5 4 3 2 1 0
1 DATA ] 0
LI J
ov A OR X REGISTER

Figure 4-22. Logical Left Shifl
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
oTl DATA jJ [L_Jl‘
A NR X REGISTER ov

Figure 4-23. Logical Right Shift

LLA LOGICAL SHIFT A LEFT. Contents of A register are shifted left n
places through OV. Zeros are shifted into bit 0. Bits are shifted
from bit 15 of A into OV. Bits shifted out of OV are lost. A and OV
act as a 17-bit register.

LLX LOGICAL SHIFT X LEFT. Contents of X register are shifted left n
places through OV. Zeros are shifted into bit 0. Bits are shifted
from bit 15 of X into OV. Bits shifted out of OV are lost. X and OV
act as a 17-bit register.

LRA LOGICAL SHIFT A RIGHT. Contents of A register are shifted right n
places through OV. Zeros are shifted into bit 15. Bits are shifted
from bit 0 of A into OV. Bits shifted out of OV are lost. A and OV act
as a 17-bit register.

LRX LOGICAL SHIFT X RIGHT. Contents of X register are shifted right n
places through OV. Zeros are shifted into bit 15. Bits are shifted
from bit 0 of X into OV. Bits shifted out of OV are lost. X and OV act
as a 17-bit register.

4.7.4 Rotate Shift Instructions

The shil. paths for the rotate shift instructions are illustrated below in figures 4-24
and 4-25.




COMPUTER AUTOMATION, INC.

15 14 13 12 11 0 9 8 7 6 5 4 3 2 1

!
[H 1]

ov A OR X REGISTER

Figure 4-24. Rotate Left Shift

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

l I DATA ]l [J

A OR X REGISTER ov

Figure 4-25. Rotate Right Shift

RLA ROTATE A LEFT WITH OVERFLOW. Contents of A register are shifted
left n places through OV. OV is shifted into bit 0 and bit 15 is shifted
into OV. No bits are lost when this shift is executed. A and OV act as
a 17-bit register.

RLX ROTATE X LEFT WITH OVERFLOW. Contents of X register are shifted
left n places through OV. OV is shifted into bit 0 and bit 15 is shifted
into OV. No bits are lost when this shift is executed. X and OV act as
a 17-bit register.

RRA ROTATE A RIGHT WITH OVERFLOW. Contents of A register are shifted
right n places through OV. OV is shifted into bit 15 and bit 0 is shifted
into OV. No bits are lost when this shift is executed. A and OV act as
a 17-bit register.

RRX ROTATE X RIGHT WITH OVERFLOW. Contents of X register are shifted
- right n places through OV. OV is shifted into bit 15 and bit 0 is shifted
into OV. No bits are lost when this shift is executed. X and OV act as
a 17-bit register.

4.7.5 Double Register (Long) Logical Shift Instructions

The shift paths for the Long Logical Shift instructions are shown below in figures
4-26 and 4-27.

4-29

COMPUTER AUTOMATION. INC.

1514131211109 8 7 6 5 4 3 210 114131211109 8 7 6 5 4 3 2 1 0
S | ]
DATA DATA 0
O S 1
ov A REGISTER X REGISTER

Figure 4-26. Long Left Shift

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3 2 1 0
oL DATA 1 [- DATA 1 L_L
L Il IR

A REGISTER X REGISTER ov

Figure 4-27. Long Right Shift

LLL LONG LOGICAL SHIFT LEFT. Contents of A and X registers are logically
shifted left n places through OV. Zeros are shifted into bit 0 of X register.
Bits shifted from bit 15 of X enter bit 0 of A, and from bit 15 of A they enter
OV. Bits shifted out of OV are lost. A, X and OV act as a 33-bit register.

LLR LONG LOGICAL SHIFT RIGHT. Contents of A and X registers are logically
shifted right n places through OV. Zeros are shifted into bit 15 of A register.
Bits shifted from bit 0 of A enter bit 15 of X, and from bit 0 of X they enter
OV. Bits shifted out of OV are lost. A, X and OV act as a 33-bit register.

4.7.6 Double Register (Long) Rotate Shift Instructions

Shift paths for the Long Rotate Shift instructions are shown below in figures 4-28
and 4-29:

1514131211109 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4°3 2 1 0
_l[ DATA | [ DATA J
L 1
ov A REGISTER X REGISTER

Figure 4-28. Long Rotate Left Shift

‘lt.)14|3|21|109 8 7 6 56 4 3 2 10 151413121110 9 8 2 6 5§ 4 3 2 1 0
[C L | ﬂ
A REGISTER X REGISTER ov

Figure 4-29. Long Rotate Right Shift




COMPUTER AUTOMATION, INC.

LRL

LRR

LONG ROTATE LEFT. Contents of A and X registers are shifted left n places
through OV. OV is shifted into bit 0 of X register. Bits shifted from bit 15
of X enter bit 0 of A, and from bit 15 of A they enter OV. No bits are lost
when this shift is executed. A, X and OV act as a 33-bit register.

LONG ROTATE RIGHT. Contents of A and X registers are shifted right

n places through OV. OV is shifted into bit 15 of A register. Bits shifted from
bit 0 of A enter bit 15 of X, and from bit 0 of X they enter OV. No bits are lost
when this shift is executed. A, X and OV act as a 33-bit register.

4.8 REGISTER CHANGE INSTRUCTIONS

4.8.1 Format

Register change instructions perform arithmetic and logical operations involving the
A register, the X register and/or the OV indicator. The Register Change instruction
format is shown in figure 4-30.

[LaBEL]

EXPRESSION: there is no expression in the Operand field

OP-CODE [EXPRESSION] [COMMENTS]

except for the BAO and BXO instructions
where it must be absolute and in the range
0 thru 15.

4.8.2.

ARM

ARP

CAR

DAR

IAR

NAR

ZAR

Figure 4-30. Register Change Format

A Register Change Instructions

A REGISTER TO MINUS ONE. Sets contents of A register to -1 (: FFFF).
A REGISTER TO PLUS ONE. Sets contents of A register to +1.

COMPLEMENT A REGISTER. Performs one's complement on contents of A
register.

DECREMENT A REGISTER. Subtracts one from contents of A register. OV
is set if arithmetic overflow occurs.

INCREMENT A REGISTER. Adds one to contents of A register. OV is set if
arithmetic overflow ocecurs.

NEGATE A REGISTER. Performs two's complement on contents of A register.
OV is set if arithmetic overflow occurs.

ZERO A REGISTER. Sets contents of A register to zero.
4-31

COMPUTER AUTOMATION, INC. —

4.8.3 X Register Change Instructions

ZXR

XRP

XRM

CXR

IXR

DXR

ZERO X REGISTER. Sets contents of X register to zero.
X REGISTER TO PLUS ONE. Sets contents of X register to +1.
X REGISTER TO MINUS ONE. Sets contents of X register to -1 (: FFFF).

COMPLEMENT X REGISTER. Performs one's complement on contents of X
register.

NEGATE X REGISTER. Performs two's complement on contents of X register.
OV is set if arithmetic overflow occurs.

INCREMENT X REGISTER. Adds one to contents of X register. OV is set
if arithmetic overflow occurs.

DECREMENT X REGISTER. Subtracts one from contents of X register. OV
is set if arithmetic overflow occurs.

4.8.4 OV Register Change Instructions

sov

ROV

cov

SAO

SX0

BAO

BXO

SET OVERFLOW. Sets OV indicator (=1).
RESET OVERFLOW. Resets OV indicator (=0).
COMPLEMENT OVERFLOW. Complements OV .

SIGN OF A TO OVERFLOW. Bit 15 of A register is copied into OV.
A register remains unchanged.

SIGN OF X TO OVERFLOW. Bit 15 of X register is copied into OV .
X register remains unchanged.

LSB OF A TO OVERFLOW. Bit 0 of A register is copied into OV, A
register remains unchanged.

LSB OF X TO OVERFLOW. Bit 0 of X register is copied into OV. X
register remains unchanged.

BIT OF A TO OVERFLOW. Bit n of A register is copied into OV. A
register remains unchanged. Bit n is specified in Operand field.

BIT OF X TO OVERFLOW. Bit n of X register is copied into OV. X
register remains unchanged. Bit n is specified in Operand field.

4-32




COMPUTER AUTOMATION, INC.

4.8.5 Multi-Register Change Instructions

ZAX
AXP
AXM

TAX

TXA

NRX

CAX

CXA

NAX

NXA

1AX

IXA

IPX

ZERO A AND X. Sets contents of A and X registers to zero.
A AND X REGISTERS TO PLUS ONE. Sets contents of A and X registers to +1.

A AND X REGISTERS TO MINUS ONE. Sets contents of A and X registers to
-1 (:FFFF).

TRANSFER A TO X. Transfers contents of A register to X register. A
register remains unchanged.

TRANSFER X TO A. Transfers contents of X register to A register. X register
remains unchanged.

EXCHANGE A AND X. Exchanges contents of A and X registers.

AND OF A AND X TO A. Contents of A and X registers are logically ANDed.
Result replaces contents of A register. X register remains unchanged.

AND OF A AND X TO X. Contents of A and X registers are logically ANDed.
Result replaces contents of X register. A register remains unchanged.

NOR OF A AND X TO A. Contents of A and X registers are logically NORed
Result replaces contents of A register. X register remains unchanged.

NOR OF A AND X TO X. Contents of A and X registers are logically NORed
Result replaces contents of X register. A register remains unchanged.

COMPLEMENT OF A TO X. Performs one's complement on contents of A
register and places result in X register. A register remains unchanged.

COMPLEMENT OF X TO A. Performs one's complement on contents of X
register and places result in A register. X register remains unchanged.

NEGATE A TO X. Performs two's complement on contents of A register and
places result in X register. A register remains unchanged. OV is set if
arithmetic overflow occurs.

NEGATE X TO A. Performs two's complement on contents of X register and
places result in A register. X register remains unchanged. OV is set if
arithmetic overflow occurs.

INCREMENT A TO X. Adds one to contents of A register and places result
in X register. A register remains unchanged. OV is set if arithmetic
overflow occurs.

INCREMENT X TO A. Adds one to contents of X register and places result
in A register. X register remains unchanged. OV is set if arithmetic over-
flow occurs.

INCREMENT P TO X. Adds two to current program counter (address of IPX)
and places result in X register. P is then incremented for the next instruc-
tion fetch. Example:

®)
(P+1)
®+2)

DAX

DXA

IPX Place P+2 in X

JMP ROUT Jump to routine with address of GO in X
GO EQU $
ROUT - EQU $ Subroutine starts here

JMP @ Return to GO

DECREMENT A TO X. Subtracts one from contents of A register and places
result in X register. A register remains unchanged. OV is set if arithmetic
overflow oncurs.

DECREMENT X TO A. Subtracts one from contents of X register and places
result in A register. X register remains unchanged. OV is set if arithmetic.
overflow occurs.

4.8.6 Extended Multi-Register Change Instructions (LSI-2 Only)

BCA

BCX

BSA

BSX

EIX

BIT CLEAR A. The contents of the X register are ones complemented
and then logically ANDed with the contents of the A register. The
result replaces A and the original value of X is left unchanged.

BIT CLEAR X. The contents of the X register are ones complemented
and then logically ANDed with the contents of the A register. The result
replaces X and the original value of A is left unchanged.

BIT SET A. Contents of X register are logically ORed with contents of A
register. Result is placed in A register and X register remains unchanged.

BIT SET X. Contents of A register are logically ORed with contents of X
register. Result is placed in X register and A register remains unchanged.

Execute instruction pointed to by X. Instruction contained in location
addressed by contents of X register is executed immediately following EIX
instruction. Next sequential instruction following EIX instruction is skipped.

Note the following:

1. If the executed instruction is a multi-word instruction, the second and
succeeding words of the instruction must be located at the second location
after the EIX instruction (EIX+2).

2. If the executed instruction modifies the P register, the modification is
relative to location EIX+1.
4-34




4.8.7

3. If the executed instruction is a SCM or conditional 1/0 instruction, the
location following the EIX instruction (EIX+1) should be coded with a
JMP $-1. This is required for recovery purposes in the event of an
interrupt or the lack of a true sense response.

4, EIX is not interruptable.

Console Register Instructions

IXH

ICA

ICX

IIH

IMH

IPH

ISA

IsX

OAH

OXH

INPUT CONSOLE DATA REGISTER TO A AND HALT. Contents of Console Data
register are loaded into A register. Computer then halts.

INPUT CONSOLE DATA REGISTER TO X AND HALT. Contents of Console
Data register are loaded into X register. Computer then halts.

INPUT CONSOLE DATA REGISTER TO A. Contents of Console Data register
are loaded into A register.

INPUT CONSOLE DATA REGISTER TO X. Contents of Console Data register
are loaded into X register.

INPUT CONSOLE DATA REGISTER TO I AND HALT. Contents of Console
Data register are loaded into I register. Computer then halts.

INPUT CONSOLE DATA REGISTER TO MEMORY AND HALT. Contents of
Console Data register are stored into memory location following IMH instruc-
tion. Computer halts with P register set to location following modified
memory location.

INPUT CONSOLE DATA REGISTER TO P AND HALT. Contents of Console
Data register are loaded into P register. Computer then halts. When RUN
is depressed, execution of the program will begin at address just input

to P register.

INPUT CONSOLE SENSE REGISTER TO A. Four-bit contents of Console
Sense register are loaded into least significant 4 bits of A register. Most
significant 12 bits of A register are set to zero.

INPUT CONSOLE SENSE REGISTER TO X. Four-bit contents of Console
Sense register are loaded into least significant 4 bits of X register. Most
significant 12 bits of X register are set to zero.

OUTPUT A TO CONSOLE DATA REGISTER AND HALT. Contents of A register
are loaded into Console Data register. Computer then halts.

OUTPUT X TO CONSOLE DATA REGISTER AND HALT. Contents of X register
are loaded into Console Data register. Computer then halts.

4-35

COMPUTER AUTOMATION. INC. - T

COMPUTER AUTOMATION, INC. — -

OCA OUTPUT A TO CONSOLE DATA REGISTER. Contents of A register are loaded

into Console Data register.

ocxX OUTPUT X TO CONSOLE DATA REGISTER. - Contents of X register are loaded

into Console Data register.

OLH OUTPUT LOCATION TO CONSOLE DATA REGISTER AND HALT. Location of
OLH instruction is loaded into Console Data register. Computer then halts.

OMH OUTPUT MEMORY TO CONSOLE DATA REGISTER AND HALT. Contents of
memory location following OMH instruction are loaded into Console Data
register. Computer halts with P register set to location following
output memory location (OMH instruction +2).

OPH OUTPUT P TO CONSOLE DATA REGISTER AND HALT. Contents of P register

(address of OPH instruction +1) are loaded into Console Data register.
Computer then halts.

4.9 CONTROL INSTRUCTIONS
4.9.1 Format

Control instructions are used for general status manipulation in the computer. The
general format for these instructions is shown in figure 4-31.

[LaBEL] OP-CODE [ExpRrESSION] [commenTs]
There is no expression in the Operand field, except for the

SIN and STOP instructions.

For SIN, the expression must be absolute and in the range

1 thru 6.

For STOP, the expression must be absolute and in the range

1 thru 255.

Figure 4-31. Control Format

4.9.2 Processor Control Instructions

HLT HALT. Halts the computer.

NOP NO OPERATION. Performs no active function. Normally used to reserve space

for other instructions.

STOP HALT WITH OPERAND. Halts computer with specified operand occupying
least significant 8 bits of I (instruction) register. Operand may be any
absolute expression in the range 0 through 255. As an example, STOP 5
would halt with : 0805 in I register.

4-36




COMPUTER AUTOMATION, INC. Elﬁ

WAIT  WAIT FOR INTERRUPT. Executes as JMP $. Program loops on one location
waiting for an interrupt. After interrupt is serviced, return is made to WAIT
instruction to await further interrupts.

4.9.3 Mode Control Instructions

SBM SET BYTE MODE. Conditions computer to address byte (8 bit) operands
rather than word operands when executing Memory Reference instructions
(see paragraph 4.2.2).

SWM SET WORD MODE. Conditions computer to address word (16 bit) operands

rather than byte operands when executing Memory Reference instructions
(see paragraph 4.2.1). "Reset" condition of computer is Word mode.

4.9.4 Status Control Instructions

The format of the 8-bit Computer Status word is shown in figure 4-32:

15 14 13 12 1 1 9 8 7 6 5 4 3 2 1 o

DS DS DS DS | SSN | INT | BYTE | OV

l 1=0VSET
0= 0V RESET
1 = 8YTE MODE

0 = WORD MODE
1 = INTERRUPTS ENABLED
NOTE 0= INTERRUPTS DISABLED
Bits 3 thru 7 are zeros when no console is installed 1 = SENSE INDICATOR ON
Bits B thru 15 are reserved for future expansion 0 = SENSE INDICATOR OFF

SENSE REGISTER

Figure 4-32. Computer Status Word Format

SIN STATUS INHIBIT. Inhibits interrupts and places computer in Word mode
for number of succeeding instructions specified by operand. Operand may
be any absolute expression in range 1 through 6. As an example, execution
of SIN 4 instruction will force Word mode operation for four succeeding
instructions and will inhibit interrupt acknowledgement until after comple-
tion of five succeeding instructions since interrupts are serviced at end of
instruction execution.

NOTE

The following should be noted when using the SIN instruction in the LSI-2
computer.

1. Do not place a HLT instruction within a SIN instruction range.

4-37

A

SIA

SIX

SOA

SOX

4.9.5

EIN

DIN

CIE

CID

PFE

PFD

COMPUTER AUTOMATION. INC. c—l=

2. Do not attempt to step through a SIN range when the computer is in Step
mode. If an instruction sequence which falls within a SIN range must be
examined, press the RESET pushbutton first to clear the SIN counter.
The sequence can then be stepped through. Note that the computer will
revert to the Word mode.

STATUS INPUT TO A. Computer Status word is loaded into LS byte of A
register. Resets OV and places computer in Word mode. State of interrupts
is unchanged. MS byte of A register is set to zero.

STATUS INPUT TO X. Computer Status word is loaded into MS byte of X
register. Resets OV and places computer in Word mode. State of interrupts
is unchanged. MS byte of X register is set to zero.

STATUS OUTPUT FROM A. Least significant byte of A register is loaded into
computer Status register. This instruction does not alter Interrupt Enable flag.

STATUS OUTPUT FROM X. Least significant byte of X register is loaded into
computer status register. This instruction does not alter Interrupt Enable flag.

Interrupt Control Instructions

ENABLE INTERRUPTS. Enables recognition of external interrupts by the
computer. Interrupts will not be serviced for a minimum of one instruction
time following EIN and possibly as long as three instruction times (maximum).

DISABLE INTERRUPTS. Prevents Processor from responding to any interrupts.
A special jumper option on processor option board allows Power Fail, Console
and Trap interrupt operation independent of DIN.

CONSOLE INTERRUPT ENABLE. Enables Console interrupts. Console
interrupts are generated each time INT switch is pressed when computer is in
RUN mode. Console interrupts are also under control of EIN/DIN instructions.
A special jumper option on processor option board allows Console interrupts
to be enabled independent of EIN/DIN instructions. Console interrupts are
disabled when a Console interrupt or TRAP is serviced.

CONSOLE INTERRUPT DISABLE. Disables Console interrupts.

POWER FAIL INTERRUPT ENABLE. When option placing Power Fail interrupt
outside EIN and DIN control is selected, Power Fail Interrupt Enable (PFE)
instruction allows recognition of Power Fail interrupts. If Power Fail interruptg
were disabled at issuance of PFE, PFE does not take effect until after two
succeeding instructions have been executed.

POWER FAIL INTERRUPT DISABLE. When option placing Power Fail interrupts
outside EIN and DIN control is selected, Power Fail Interrupt Disable (PFD)

instruction inhibits recognition of Power Fail interrupts.
4-38




COMPUTER AUTOMATION, INC. '_'Ié

TRP TRAP. Generates an interrupt to Console interrupt location if interrupts
are enabled or if special jumper option placing Power Fail, Console and
Trap interrupts outside EIN/DIN control is in use. In latter case, there is
no enable or disable instruction associated with Trap interrupts. Console
interrupt is disabled when TRAP is serviced. Interrupts will not be serviced
for a minimum of one instruction time following TRP.

4.10 INPUT/OUTPUT INSTRUCTIONS

Input/Output instructions are either single word or multiple word instructions. All
single word instructions use the same format (see figure 4-33). Multiple word formats
are described separately in paragraphs 4.10.4 and 4.10.5. All I/O instructions have 8
bits available for addressing a particular peripheral device and a particular register or
function within a device. These 8 bits are arbitrarily divided into a 5-bit Device
Address field to address one of 32 devices and a 3-bit Function Code field to specify one
of 8 registers or functions within a device. The device address and function code may be
expressed as either one or two self-defined (i.e., numeric expressions) or absolute
expressions. If a single expression is used, it must be in the range : 0 through : FF and
it represents both the device address and function code. If two expressions are used,
the first must be the device address in the range : 0 through : 1F and the second must be
the function code in the range: 0 through : 7.

[LABEL] OP-CODE  EXPRESSION 1[ , EXPRESSION ) [COMMENTS]

If EXPRESSION 2 is not present, EXPRESSION 1 must be absolute
and in the range : 0 through : FF.

If EXPRESSION 2 is present, EXPRESSION 1 must be absolute and
in the range : 0 through : 1F .

EXPRESSION 2 must be absolute and the range : 0 through : 7.

Figure 4-33. Single Word Input/Output Instruction Format
Both Word and Byte I/0 instructions are available. Whether a full 16-bit word or an 8-bit

byte is transferred depends upon the instruction used and is not affected by the word/
byte addressing mode flip-flop (SWM/SBM) used by Memory Reference instructions.

4.10.1 Control Input/Output Instructions

The Control I/0 instructions are divided into Sense and Select instructions. Sense
instructions are used to test the status of a function within the addressed peripheral
device. Select instructions are used to control the operation of specific functions

within the addressed peripheral device. The functions tested or controlled depend upon
the individual peripheral device. Control I/0 instructions use the Single Word I/0
instruction format shown in figure 4-33.

COMPUTER AUTOMATION, INC. l ——

4.10.1.1 Sense Instructions

SEN SENSE AND SKIP ON RESPONSE. Tests specified function in addressed
peripheral device. If a true response is obtained, next sequential instruction
is skipped. If a false response is obtained, next sequential instruction is
executed.

SSN SENSE AND SKIP ON NO RESPONSE. Tests specified function in addressed
peripheral device. If a false response is obtained, next sequential instruc-
tion is skipped. If a true repsonse is obtained, next sequential instruction
is executed.

4.10.1.2 Select Instructions

SEL SELECT FUNCTION. Transmits specified function code to addressed peri-
pheral device along with a Select Control signal. All zeros are placed on
Data bus. Any action generated is a function of peripheral device interface
design.

SEA SELECT AND PRESENT A. Transmits specified function code to addressed
peripheral device along with a Select Control signal. Contents of A register
are placed on Data bus. Any action generated is a function of peripheral
device interface design.

SEX SELECT AND PRESENT X. Transmits specified function code to addressed
peripheral device along with a Select Control signal. Contents of X register
are placed on Data bus. Any action generated is a function of peripheral
device interface design.

NOTE

When a Select type instruction is used to turn off interrupts that may be
pending, it should be preceded by a SIN 1 instruction to disable Processor
recognition of the pending interrupt. This is necessary since the Processor
examines interrupt requests prior to the Select taking effect and will there-
fore respond to the interrupt even though it is no longer pending.

4.10.2 Word Input/Output Instructions

Word I/0 instructions transmit 16 bits of data at a time. They are divided into
Unconditional and Conditional instructions. Conditional instructions are automatically
repeated until a true sense response is obtained, at which time the data transmission
oceurs and the next instruction in sequence is executed. Response to an interrupt

may occur "within" a conditional I/O instruction - i.e., during a false sense response
an interrupt can be acknowledged and the computer will return to execution of the
conditional I/0 instruction after servicing the interrupt. If a word input is requested
from an 8-bit device, the upper 8 bits will be input as zeros. If an cutput is performed
to an 8-bit device, the upper 8 bits will be ignored by the device.

4-40




COMPUTER AUTOMATION, INC.

4.10.2.1 Unconditional Word Input/Output Instructions

INA

INAM

INX

INXM

OTA

OTX

OTZ

4.10.2.2

RDA

RDAM

RDX

INPUT TO A REGISTER. Unconditionally transfers a full 16-bit data word
from addressed peripheral device to A register.

INPUT TO A REGISTER MASKED. Unconditionally transfers a full 16-bit
data word from addressed peripheral device to Processor and logically
ANDs data word with contents of A register. Result replaces contents of
A register.

INPUT TO X REGISTER. Unconditionally transfers a full 16-bit data word
from addressed peripheral device to X register.

INPUT TO X REGISTER MASKED. Unconditionally transfers a full 16-bit
data word from addressed peripheral device to Processor, and logically
ANDs data word with contents of X register. Result replaces contents

X register.

OUTPUT A REGISTER. Unconditionally transfers full 16-bit contents of
A register to addressed peripheral device.

OUTPUT X REGISTER. Unconditionally transfers full 16-bit contents of
X register to addressed peripheral device.

OUTPUT ZERO. Unconditionally transfers a 16-bit word containing all zeros
to addressed peripheral device.

Conditional Word Input/Output Instructions

READ WORD TO A REGISTER. Tests specified function in addressed peri-
pheral device. If a false response is received, instruction is repeated (and
interrupts may be acknowledged). When a true response is received, a full
16-bit data word is transferred from addressed device to A register.

READ WORD TO A REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received, '
a full 16-bit data word is transferred from addressed device to Processor

and logically ANDed with contents of A register. Result replaces contents of
A register,

READ WORD TO X REGISTER. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received, a
full 16-bit data word is transferred from addressed device to X register.

4-41

COMPUTER AUTOMATION. INC. Sy

RDXM READ WORD TO X REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
a full 16-bit data word is transferred from addressed device to Processor and
logically ANDed with contents of X register. Result replaces contents of X
register.

WRA WRITE FROM A REGISTER. Tests specified function in addressed peripheral
device. If a false response is received, instruction is repeated (and inter-
rupts may be acknowledged). When a true response is received, full 16-bit
contents of A register are transferred to addressed device.

WRX WRITE FROM X REGISTER. Tests specified function in addressed peripheral
device. If a false response is received, instruction is repeated (and inter-
rupts may be acknowledged). When a true response is received, full 16-bit
contents of X register are transferred to addressed device.

WRZ WRITE ZERO. Tests specified function in addressed peripheral device. If
a false response is received, instruction is repeated (and interrupts may be
acknowledged). When a true response is received, a 16-bit word contain-
ing all zeros is transferred to addressed device.

4.10.3 Byte Input Instructions

Byte Input instructions input 8 bits of data to the LS byte of a target register leaving the
MS byte unchanged. They are divided into Unconditional and Conditional instructions.
Conditional instructions are automatically repeated until a true sense response is
obtained, at which time the data transmission occurs and the next instruction in sequence
is executed. Response to an interrupt may occur "within" a Conditional Byte Input
instruction - i.e., during a false sense response an interrupt can be acknowledged and
the computer will return to execution of the conditional instruction after serviceing the
interrupt. Byte Input instructions use the Single Word Input/Output instruction format
as shown in figure 4-33.

4.10.3.1 Unconditional Byte Input Instructions

IBA INPUT BYTE TO A REGISTER. Unconditionally transfers an 8-bit data byte
from addressed peripheral device to LS byte of A register. MS byte of A
register remains unchanged.

IBAM INPUT BYTE TO A REGISTER MASKED. Unconditionally transfers an 8-bit
data byte from addressed peripheral device to Processor and logically ANDs
data byte with contents of LS byte of A register. Result replaces LS byte
of A register and MS byte of A register remains unchanged.

4-42




COMPUTER AUTOMATION. INC. .

IBX INPUT BYTE TO X REGISTER. Unconditionally transfers an 8-bit data byte
from addressed peripheral device to LS byte of X register. MS byte of X
register remains unchanged.

IBXM INPUT BYTE TO X REGISTER MASKED. Unconditionally transfers an 8-bit
data byte from address peripheral device to Processor and logically ANDs
data byte with contents of LS byte of X register. Result replaces LS byte
of X register and MS byte of X register remains unchanged.

4.10.3.2 Conditional Byte Input Instructions

RBA READ BYTE TO A REGISTER. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
an 8-bit data byte is transferred from addressed device to LS byte of A
register and MS byte of A register remains unchanged.

RBAM READ BYTE TO A REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
an 8-bit data byte is transferred from addressed device to Processor and
logically ANDed with contents of LS byte of A register. Result replaces
LS byte of A register and MS byte of A register remains unchanged.

RBX READ BYTE TO X REGISTER. Tests specified function in addressed periph-
eral device. If a false response is received, instruction is repeated (and
interrupts may be acknowledged). When a true response is received, an
8-bit data byte is transferred from addressed device to LS byte of X register.
MS byte of X register remains unchanged.

RBXM READ BYTE TO X REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
an 8-bit data byte is transferred from addressed device to Processor and
logically ANDed with contents of LS byte of X register. Result replaces LS
byte of X register and MS byte of X register remains unchanged.

4.10.4 Block Input/Output Instructions

The two instructions in this class provide for high-speed, full 16-bit data word transfers
between Memory and the addressed peripheral device. The Processor is totally dedicated
to these instructions until the specified block of data has been completely transferred -
i.e., no interrupts may be serviced until the instructions have been executed to comple-
tion.

4-43

COMPUTER AUTOMATION, INC. 'l

The Block Transfer instructions are double-word instructions. The second word of the
instruction contains the base address minus one of the associated memory data buffer.
The X register contains the (positive) number of words to be transferred - i.e., the
length of the data buffer. The memory location of each word transferred is obtained by
summing the base address minus one and the contents of the X register. As each data
word is transmitted, the X register is decremented by one. Thus, the data buffer is
output or input in descending order, beginning with the highest memory location and
ending with the lowest memory location (base address plus length -1). When the X
register is decremented to zero, the next instruction in sequence is executed.

The format for the Block Transfer instructions is shown in figure 4-34.

[LABEL] OP-CODE ~ EXPRESSION 1 [ EXPRESSION 2] [COMMENTS]

[LABEL] DATA EXPRESSION 3 [COMMENTS]
If EXPRESSION 2 is not present, EXPRESSION 1 must be absolute and

in the range : 0 thru : FF.

If EXPRESSION 2 is present, EXPRESSION 1 must be absolute and in

the range : 0 thru : 1F.

EXPRESSION 2 must be absolute and in the range : 0 thru : 7.
EXPRESSION 3 is an absolute or relocatable expression giving the

base address -1 of the buffer.

Figure 4-34. Block Input/Output Instruction Format

The expressions in the Operand field of these instructions must be either self-defining
(i.e., numeric expressions) or absolute expressions. If only one expression is pres-
ent, it must be in the range : 0 through : FF. The high-order 5 bits represent the
peripheral device address and the low-order 3 bits represent the function code. If two
expressions are present, the first must be in the range : 0 through : 1F and the second
must be in the range : 0 through : 7. The first expression represents a peripheral de-
vice address, and the second expression represents a function code.

The expression in the Operand field of the DATA statement must not be an indirect
address (no*). It represents the memory location less one (low-order memory loca-
tion) of the data buffer.

BIN BLOCK IN. Tests specified function in addressed peripheral device and
transfers a full 16-bit data word from addressed device to memory data
buffer each time a true sense response is received. Instruction executes until
all data words have been input. Interrupts are not acknowledged until com-
pletion of instruction.

4-44




COMPUTER AUTOMATION, INC.

BOT BLOCK OUT. Tests specified function in addressed peripheral device and
transfers a full 16-bit data word from memory data buffer to addressed de-
vice each time a true sense response is received. Instruction executes
until all data words have been output. Interrupts are not acknowledged until
completion of instruction.

4.10.5 Automatic Input/Output Instructions

The Automatic Input/Output instructions (Auto I/0) provide data transfers directly be-
tween Memory and peripheral devices without affecting the A and X registers. These
multiple word instructions effectively constitute complete I/0O subroutines, thus facili-
tating their use as interrupt instructions. They increment a (negative) data word or
byte counter, increment a data word or byte pointer and transfer a data word or byte
between Memory and a peripheral device.

Each Auto I/0 instruction occupies three words in Memory. The first word contains the
instruction itself, the second word contains the two's complement (negative) of the word
or byte count for the data buffer, and the third word contains an address pointer speci-
fying the address minus one, of the first (lower-order memory) location in the memory
data buffer. The data buffer is input or output in order of ascending memory locations
(low-order to high-order). The format for these instructions is shown in figure 4-35.

[LaBEL) OP-CODE  EXPRESSION 1 [ ExprESsION 2] [cOMMENTS]

[LaBeL] DATA EXPRESSION 3 [commeNTS ]
BAC

[LaBEL] { } EXPRESSION 4 [commenTs]
DATA

If EXPRESSION 2 is not present, EXPRESSION 1 must be absolute and

in the range : 0 thru : FF.

IF EXPRESSION 2 is present, EXPRESSION 1 must be present and in

the range : 0 thru : 1F.

EXPRESSION 2 must be absolute and in the range : 0 thru : 7.
EXPRESSION 3 is the negative word or byte count of the data buffer.
EXPRESSION 4 is an absolute or relocatable expression defining the base
address -1 of the buffer.

Figure 4-35. Automatic Input/Output Instruction Format

The expressions in the Operand fields of the first two statements must be either self-
defined (i.e., numeric expressions) or absolute expressions. If only one expression is
present in the operand field of the instruction, it must be in the range : 0 through : FF.
The high-order 5 bits represent the device address and the low order 3 bits represent
the function code. If two expressions are present, the first must be in the range : 0
through : 1F, and the second must be in the range : 0 through : 7. The first expression
represents a peripheral device address, and the second expression represents a function

code.
4-45

COMPUTER AUTOMATION, INC. [ e

The absolute expression for the second word represents the negative (two's complement)
data word or byte count for the data buffer. This word is incremented once prior to
each data word or byte transfer and must be preset each time a block of data is to be
transferred.

The expression in the Operand field of the third word of the instruction is an address
pointer specifying the byte or word address minus one, of the data buffer starting
location. This word is incremented once prior to each data word or byte transferred
and must be preset each time a block of data is to be transferred.

Operation of Auto 1/0 instructions differs depending upon usage. When used as an
in-line program instruction, the Auto I/O instruction sequence is as shown in figure
4-36. Each time the instruction is executed, the word/byte count and address pointer
are incremented, one word or byte of data is transferred, and then the incremented
word count is examined. If the word count has not yet reached zero, the next instruc-
tion executed is from location P+4. If the word count reached zero, the next instruction
executed is at location P+3 (End-of-Block exit location). Since Auto I/0 instructions

do not sense for the peripheral device to be ready prior to data transfer, a Sense (SEN)
instruction should be used prior to each execution (one word transferred) of the instruc-
tion, i.e., to transfer a block location, P+4 would normally contain a jump back to a
Sense instruction prior to location P.

P Automatic 1/0 Instruction

P+1 Word/Byte Counter (negative)

P+2 Word/Byte Address Pointer (start address -1)
P+3 End-of-Block Exit (Word Count = 0)

P+4 Next Instruction (Word Count # 0)

Figure 4-36. In-line Auto I/O Instruction Sequence

Auto 1/0 instructons may also be used under interrupt control at an interrupt location

to implement a Direct Memory channel. In this application, the Auto 1/0 instruction is
executed once each time the peripheral device indicates that it is ready for a data transfer
by interrupting to the location containing the Auto I/0 instruction. Since the Auto I/O
instructions do not alter any processor registers, no jumping to an interrupt subroutine
to save registers, status, and return location is required. The Auto I/O instruction is,
in itself, a one instruction subroutine. When executed under interrupts, the skips after
execution are suppressed. Instead, if the word count has not reached zero after a data
transfer, control is passed directly back to the main-line program at the point it was
interrupted. If the word count did reach zero, a special signal (ECHO-) is sent to the
peripheral device to indicate that it should stop requesting further data transfers. The
Auto I/0 instruction transfers control back to the main-line program whether the ECHO-
signal is true or false. Upon receipt of ECHO-, the peripheral device stops data transfer
requests, performs any stop action required (e.g., CRC checking or generation for
magnetic tape), and then generates an End-of-Block interrupt so the program can
process the data block input or prepare another block for output. Although the End-

4-46




COMPUTER AUTOMATION. INC.

of-Block interrupt can be vectored to any location by the peripheral controller, it is
standard practice for the controller to vector this interrupt to four locations beyond
the data transfer interrupt location. Figure 4-37 illustrates the typical usage of Auto
I/0 instructions under interrupts.

Data Transfer Interrupt Location I

End-of-Block Interrupt Location 1+4 | JST EOBSUB (Jump and Store to End-of-Block

AIB

AIN

AOB

AOT

Automatic 1/0 Instruction

1+1 | Word/Byte Counter (negative)

I1+2 | Word/Byte Address Pointer (start address -1)
I1+3 | Unused

subroutine)

Figure 4-37. Interrupt Location Auto I/0 Instruction Sequence

AUTOMATIC INPUT BYTE TO MEMORY. Increments byte counter and address
pointer, and unconditionally transfers an 8-bit data byte from addressed
peripheral device to updated byte location in memory data buffer, which is
addressed by address pointer. When byte count is incremented to zero,
normal one-word skip after data transfer does not take place, or when used
as an interrupt instruction, an ECHO signal is sent to addressed device.

AUTOMATIC INPUT WORD TO MEMORY . Increments word counter and address
pointer, and unconditionally transfers a full 16-bit data word from addressed
peripheral device to updated word location in memory data buffer, which is
addressed by address pointer. When word count is incremented to zero,
normal one-word skip after data transfer does not take place, or when used

as an interrupt instruction, an ECHO signal is set to addressed device.

AUTOMATIC OUTPUT BYTE FROM MEMORY. Increments byte counter and
address pointer, and unconditionally transfers an 8-bit byte from updated
byte location in memory data buffer, which is addressed by address pointer,
to addressed peripheral device. When byte count is incremented to zero,
normal one-word skip after data transfer does not take place, or when used
as an interrupt instruction, an ECHO signal is sent to addressed device.

AUTOMATIC OUTPUT WORD FROM MEMORY. Increments word counter and
address pointer, and unconditionally outputs a full 16-bit data word from
updated word location in memory data buffer, which is addressed by address
pointer, to addressed peripheral device. When word count is incremented to
zero, normal one-word skip after data transfer does not take place, or when
used as an interrupt instruction, an ECHO signal is sent to addressed device.

COMPUTER AUTOMATION, INC. —————

4.11 ASSEMBLER CONTROL DIRECTIVES

The assembler control directives provide for conditional assembly of source statements
and establish and/or alter the contents and relocatability of the P register. If a label
is present on any of these control directives, it is generally assigned the current value
and relocation attribute of the assembler's Working Location Counter. These directives
do not generate computer instruction words.

4.11.1 Conditional Assembly Controls

The IFF (If False) and IFT (If True) directives are provided to conditionally assemble
subsequent lines of source code. The format for these two instructions is shown in
figure 4-38.

[LaBEL] OP-CODE EXPRESSION [commENTS)

EXPRESSION: must be an absolute value of zero (False)
or non-zero (True)

Figure 4-38. Begin Conditional Assembly Directives Format

The absolute expression must be previously defined (but not as an external). The last
line affected must be an ENDC directive which signals the end of the conditional assem-
bly. The ENDC directive has the following format:

[LaBEL] ENDC [commenT]

There is no expression in the operand field.

Figure 4-39. End Conditional Assembly Directive Format

IFF and IFT directives must not be nested - i.e., no other IFF or IFT directive can
appear between a given IFF or IFT directive and its associated ENDC directive. If
the value of the absolute expression is zero, it is defined as false. If it is not equal
to zero, it is defined as true. If the value of the expression satisfies the condition of
the directive (false for IFF and true for IFT), the source lines between the directive
and its associated ENDC directives are assembled. If the conditions are not met, the
source lines are skipped (not assembled). The program END directive must not
appear between an IFF or IFT directive and its associated ENDC directive.




COMPUTER AUTOMATION, INC. '| COMPUTER AUTOMATION. INC. ———

4.11.2 Program Location Controls

The MACH directive allows the user to specify which 16-bit computer instruction set
The following directives control the contents and relocation attributes of the assembler's is to be considered valid during this assembly. This allows program assembly,
Working Location Counter. The format for these directives is shown in figure 4-40. and/or error detection, of programs written for either (or both) LSI-1 and -2, and
ALPHA 16 computers. Instructions declared invalid by the MACH directive will be

flagged with a "O" error, but will be assembled correctly.
[LaBEL] OP-CODE [ExprESSION] [commenTs]

The expression in the Operand field must be present, absolute (not relocatable or

external), and previously defined. The value of the expression will replace the
Figure 4-40. Location Control Directive Format current value in the MACH flag word, remaining in effect until the end of the current
assembly or until another MACH directive is encountered. The acceptable values of
the MACH directive are shown in table 4-1 below.
If an expression is present, it must be predefined or self-defined (e.g., a numeric
expression). It cannot be externally defined. Each program must start with an ABS, The label, if present, will be set to the current Location Counter value.
REL or ORG directive and end with an END directive.
Table 4-1. MACH Flag Word Values
ABS ABSOLUTE ASSEMBLY. Sets relocation attribute of the assembler's Working
Location Counter to absolute. If an expression is present, the location counter
is set to value of expression. Otherwise, contents of the location counter are MACH Value Instruction Set Allowed
unchanged. Comments may appear on an ABS directive only if an expression
is present. If a label is present, it is set to value of expression.

Common subset of ALPHA 16 and LSI only
REL RELOCATABLE ASSEMBLY. Sets relocation attribute of the assembler's Work- ALPHA 16
ing Location Counter to relative. If an expression is present, the location LSI

ALPHA 16 and LSI

Extended LSI-2

ALPHA 16 and Extended LSI-2

LSI and Extended LSI-2

ALPHA 16, LSI and Extended LSI-2

counter is set to value of expression. If no expression is present, contents
of the location counter are unchanged and Comments field must be blank. If
a label is present, it is set to value of expression.

DLW O

ORG ORIGIN. Sets the assembler's Working Location Counter to value of expres-
sion. Expression must be present and defined. If a label is present, it is

set to value of expression. Relocation attribute of the location counter is NOTES:
unchanged.
1. Default value of 2 is assumed if no MACH directive is entered.
END END OF ASSEMBLY. Signifies end of an assembly. If an expression is pre- 2. MACH directives should appear prior to program instructions.
sent, it is interpreted by object loader as execution transfer address at end 3. The common subset of ALPHA 16 and LSI instructions is always allowed.

of a successful load. Since object loader does not distinguish between END
directives in main programs and subprograms, only main programs should
include a transfer address. Comments may appear on an END directive only 4.12 DATA AND SYMBOL DEFINITION DIRECTIVES
if an expression is present. If a label is present, it is set to current value .
of the assembler's Working Location Counter.

4.12.1 Formats

4.11.3 Machine Directive (MACH) The directives discussed in this section define various types of data, including buffers,
address pointers, and character strings. Symbol Definition directives are also dis-

cussed. The various formats involved are shown below in figure 4-42.

[LaBEL] MACH EXPRESSION [commenTS]

Figure 4-41. MACH Directive Format

4-49 4-50.




COMPUTER AUTOMATION. INC. l

[LaBEL] BAC EXPRESSION 1 [, EXPRESSION 2] [commEnTs]

[LaBEL] DATA [+ ExPRESSION 1 [, [*] EXPRESSION 2] [commenTs]

[LABEL] TEXT EXPRESSION [COMMENTS]

[LABEL] RES EXPRESSION 1 [, EXPRESSION 2] [commenTs]
EQU

LABEL { or EXPRESSION [commenTS)]
SET

4.12.2 Directives

BAC

DATA

TEXT

Figure 4-42. Data and Symbol Definition Directive Format

BYTE ADDRESS CONSTANT. Places byte values or addresses of expression in
sequential memory locations. Symbolic items in expression are assumed to be
"word address" values, and numeric items are assumed to be "byte counts” or
"byte address" values. Values of symbolic items are "doubled"” to generate
byte address values. If a label is present, it assumes the value and attributes
of the assembler's Working Location Counter before the first expression is
evaluated.

DATA DEFINITION. Places values of expressions in sequential memory locations.
The Operand field contains one or more expressions separated by commas. Any
valid expression may be used. Expressions are evaluated one at a time and gen-
erated as sequential constants. If a label is present, it assumes the value and
attributes of the assembler's Working Location Counter before the first expres-
sion is evaluated. An indirect address pointer is specified by preceding expres-
sion in Operand field with an asterisk (*).

NOTE

The expression field may contain an externally
defined symbol which will be resolved at load
time.

TEXT STRING. Generates an 8-bit ASCII character string, two characters per
word, packed left to right in sequential memory locations. Trailing character
positions are filled with blanks (: A0) to complete full words. Expression must
be a character string surrounded by single quotes ('). When a quote is desired "
as a character in the string, two contiguous single quotes must appear within
the string. If a label is present, it assumes the value and attributes of the
assembler's Working Location Counter before the text string is processed.

COMPUTER AUTOMATION. INC.

RES RESERVE STORAGE. Reserves storage for number of words specified by first
expression. If second expression is present, if defines a constant which is to
be stored in each reserved memory location. . Both expressions must be either
self-defined (e.g., a numeric expression), or predefined, absolute expressions.
If the second expression is not present, object loader will not alter reserved
memory locations at load time. If a label is present, it is set to the address of
the first reserved memory word.

EQU EQUATE SYMBOL. Assigns value and relocatability of expression in Operand
field to symbol in label field. Symbol in label must not be defined elsewhere.
Expression must be either a self-defined (e.g., a numeric expression) or a
predefined expression. No machine instructions are generated.

SET SET SYMBOL. Assigns value and relocatability of expression in Operand field
to symbol in Label field. This directive is identical to the EQU directive, except
symbol being defined may be redefined by another SET directive. No machine
instructions are generated.

4.13 PROGRAM LINKAGE DIRECTIVES

4.13.1 Formats

The directives discussed in this section provide for linkages between programs which have
been assembled separately, but are to be loaded and executed together. The formats for
the three directives are shown below in figure 4-43.

NAM
[LABEL] or EXPRESSION 1 [, EXPRESSION 2] [COMMENTS]
LABEL g}gk [commenTs]

4-51

Figure 4-43. Program Linkage Directive Formats

Expressions must be symbolic names defined within the program segment for NAM or
referenced by the program segment for EXTR. REF may not have an Operand field
expression.

4.13.2 Directives
NAM EXTERNAL NAME DEFINITION. Defines external entry or reference points
within current program. Operand field of NAM directive contains one or more

symbols separated by commas. Each name (or symbol) appearing in Operand
field must be defined in body of program. When this directive is used, it

4-52




COMPUTER AUTOMATION. INC.

must precede all data generating statements. If a label is present, it is
assigned a zero value and a relative relocation attribute. No machine instruc-
tions are generated.

EXTR EXTERNAL REFERENCE-SCRATCHPAD. Declares external symbols referenced
by current program. Object loader links these declared external symbols
through scratchpad (first 256 words of memory) at load time. Each name or
symbol appearing in Operand field and also referenced by current program
is output to object loader at load time. Since they are not defined within
current program, these symbols must not be used in multi-term expressions.
References to an EXTR-defined symbol must be direct, since assembler auto-
matically generates indirect references through scratchpad. If a label is pre-
sent, it is assigned current value and relocation attribute of the assembler's
Working Location Counter. No machine instructions are generated.

REF EXTERNAL REFERENCE-POINTER. Defines current location as linkage for
reference to external symbol contained in the Label field. At load time, address
assigned to external symbol is stored in memory location of REF directive.

4.14 SUBROUTINE DEFINITION DIRECTIVES tw A

The following directives are provided primarily for documentation purposes. They are
used for calling and delimiting subroutines in assembler output listings. The formats
are described below in figure 4-44.

COMPUTER AUTOMATION. INC.

RTN SUBROUTINE RETURN. Generates an indirect Jump via symbol in Operand
field (JMP *Expression). Note that expression is direct.

4.15 LISTING FORMAT AND ASSEMBLER INPUT CONTROLS

The following controls are provided for the purpose of formatting assembler output list-
ings. With the exception of the TITL directive, these controls are simply special char-
acters in the first column or position of a source line. The format for the TITL directive
is shown below in figure 4-45.

TITL (one blank) ANY COMBINATION OF ALPHANUMERIC CHARACTERS
NOT EXCEEDING 51 CHARACTERS IN LENGTH

[LaBEL] CALL EXPRESSION [commenTs]
LABEL ENT [commenTs)
[LaBeL] RTN EXPRESSION [commenTs]

Figure 4-44. Subroutine Definition Directive Formats

No Operand field is allowed for ENT. The expression for RTN may be any expression
defining the location of a subroutine return pointer (normally the label for the subroutine
ENT).

CALL SUBROUTINE CALL. Causes assembler to generate a Jump and Store instruc-
tion to location specified by expression. It is provided primarily for documen-
tation purposes to facilitate recognition of subroutine Call instructions.

ENT SUBROUTINE ENTRY. Reserves a word to hold return address from a subrou-
tine call (JST). Assembler generates a HLT instruction for this directive. Any
source statement which causes one word to be reserved could be used in its
place.

Figure 4-45. Title Directive Format

No label field is allowed for TITL.

TITL PAGE EJECT WITH TITLE. Generates a Top-of-Form to assembler listing
device. Page number is then printed, followed (on same line) by character
string specified in Operand field. Same character string is printed with
page number at top of each page until a new TITL directive is encountered.
If these directives are to be used throughout a program, first TITL directive
should appear as first source line of program, ahead of comments, user
defined op code definitions, and origin statements.

s PAGE EJECT. Generates a Top-of-Form to assembler listing device. This
(Period) control must appear as first character of a source statement. Remainder of
input line will be ignored. If a TITL directive has been previously processed,
the title will be printed at the Top-of-Form as described under TITL. If no
TITL has been processed, a Top-of-Form is generated and a page number is
printed.

* COMMENT LINE. Allows source line comments to be exactly duplicated on

(Asterisk) assembler listing device. This control must appear as first character of
source statement. All characters following asterisk on source statement
are duplicated on output listing. Comment lines may appear anywhere in

a program.
1 PAUSE. Causes assembler to halt. Assembly is continued by pressing RUN
(Up pushbuttom. This control is most useful when paper tape input is used. Up-

Arrow) arrow must appear as first character of a source line. Remainder of input
line will be ignored.




COMPUTER AUTOMATION. INC. —

4.16 USER DEFINED OPERATION CODE DIRECTIVE

User defined operation code directives allow the user to name or define his own instruc-
tion mnemonics for the current assembly. If included in a program, user defined op
code directives must precede all source statements other than comments or TITL direc-
tives. The user is referred to the applicable Assembler Reference manual for a detailed
discussion of their usage.




COMPUTER AUTOMATION. INC.

Section 5

INPUT/OUTPUT AND INTERRUPT OPERATIONS

5.1 INTRODUCTION

5.1.1 Discussion of Input/Output Operations

Interfacing with the standard peripheral devices generally consists of operations
which can be treated as members of three major categories - Control, Sense, and

Data Transmission. The precise definitions of the various instructions, function codes
and status words depend on the design of the individual peripheral interfaces.

§.1.1.1 Control

Control instructions prepare peripheral devices for data transmission. The instructions,

Select (SEL) and Select and Present (SEA and SEX), initialize, establish operating codes,

and control the status of the addressed peripheral device. The format for Control
instruction follows:

[LABEL] NsT  DA,FC
where:

INST = mnemonic of Control instruction (SEL, SEA, SEX)
DA = assigned address of device interface (: 01 thru : 1F)
FC = any one of eight function codes (: 0 thru :7)

The SEL instruction commands the addressed peripheral device to perform some function
(initialization, etc.) according to the function code. SEL is used where no further
information, other than the function code, is required, so zeros are placed on the Data
bus.

The SEA and SEX instructions command the peripheral device to perform some function .
where additional information, other than the function code, is required. For example,
if the device interface controller contains a status or address register which must be

set during initialization, the required information is first loaded into the A or X
register. Upon execution of the appropriate Select and Present instruction (SEA/SEX),
the contents of the A or X register are placed on the Data bus. An example of the use of
a Select and Present instruction is when the Teletype controller is initialized for Full-
duplex operation (SEA/SEX 7,4 with appropriate register, A or X, = 1).

5-1

5.1.1.2 Sense

Once a peripheral device has been prepared for transmission of data with the proper
commands, it is necessary to determine whether the device is ready to accept or send
the data. This is accomplished using the Sense and Skip on Response (SEN) and
Sense and Skip on No Response (SSN) instructions. One or the other of these instruc-
tions should immediately precede an unconditional data transmission sequence such
that an appropriate Sense response is detected prior to the data transfer.

COMPUTER AUTOMATION, INC. ——

INST OPERANDS
SEN DA,FC
JMP $-1

Data Transmission

or:
SSN DA,FC

Data Transmission

Figure 5-1. Sense Routines

Refer to figure 5-1. In the first example, the Sense instruction is executed until a true
response is detected and the Jump instruction is skipped. The data transmission is
then performed. In the second example, the Sense instruction is executed only once.
If a false response is detected, the data transmission instruction is skipped.

5.1.1.3 Data Transmission
Unconditional data transmission is accomplished using the Input to Register (INA and

INX) and Output from Register (OTA, OTX and OTZ) instructions. (Refer to figure
5-2).

INST OPERANDS
SEN DA,FC
JMP $-1 )
INA DA,FC

or:
SEN DA,FC
JMP $-1
OTA DA,FC

Figure 5-2. Unconditional Data Transmission
5-2




COMPUTER AUTOMATION. INC.

When the Sense response is true, the Jump instruction is skipped and the data trans-
mission instruction is executed.

Conditional data transmission is accomplished by combining Sense operations with
data transmission using the Read to Register (RDA, RDX, RBA and RBX) and Write
from Register (WRA, WRX and WRZ) instructions. (Refer to figure 5-3.)

COMPUTER AUTOMATION, INC. I —_—

In-line automatic data transmissions are performed using the Automatic Input to Memory
(AIN and AIB) and Automatic Output from Memory (AOT and AOB) instructions. (Refer
to figure 5-5.)

INST OPERANDS
RBA DA,FC

or: .
WRX DA,FC

Figure 5-3. Conditional Data Transmission

These instructions are executed repeatedly until a true Sense response is received.
The data transmission then occurs and the next instruction in sequence is executed.
The Sense and unconditional data transfer operations can be combined in a conditional
data transfer instruction only when the function codes for the two operations are the
same. The conditional data transmission instructions are interruptable.

Block data transmissions are performed using the Block Input to Memory (BIN) and
Block Output from Memory (BOT) instructions. (Refer to figure 5-4.)

LABEL INST OPERANDS
LXP COUNT
BIN DA,FC
DATA BUF - 1

or: .

LXP COUNT
BOT DA,FC
DATA BUF - 1

BUF RES COUNT

LABEL INST OPERANDS

SENSE SEN DA ,FC
JMP $-1
AIN DA,FC
DATA Negative Data Count (Word)
DATA BUF - 1 (Word)
JMP EOB
JMP SENSE

or:

SENSE SEN DA,FC
JMP $-1
AOB DA ,FC
DATA Negative Data Count (Byte)
BAC BUF - 1 (Byte)
JMP EOB
JMP SENSE

BUF RES COUNT

Figure 5-4. Block Data Transmission

These instructions are executed repeatedly, transmitting one word of data each time a
true Sense response is received, until all data has been transmitted. The data is trans-
mitted in reverse order (in order of decreasing addresses). The next instruction in
sequence is then executed. The function code associated with these instructions is the
same as the function code used by the incorporated Sense. The block data transmission
instructions are not interruptable.

Figure 5-5. In-line Auto I/O Data Transmission

These instructions unconditionally transmit one word/byte of data each time they are
executed and are therefore preceded by an appropriate Sense command. In addition,
the Base Address pointer and the Negative Data Count are incremented, with the Data
Count eventually becoming zero and generating an exit to the End-of-Block processing
routine (EOB). Automatic 1/0 instructions may be used under interrupts, in which
case the Sense instruction is not required and the exits are replaced by a return to the
mainline program. A final interrupt to a different (End-of-Block) location is generated
by the peripheral controller when the buffer is completely transferred.

5.1.2. Interrupt Operations

Interrupts constitute a means of reacting quickly to random, external stimuli without
consuming valuable processing time in a continuous polling environment. Peripheral
devices which are to be operated under interrupt control are assigned reserved memory
locations anywhere in Memory. These interrupt addresses are generated by the indi-
vidual peripheral controllers and generally have jumper selectable locations within

the first 512 locations of Memory. Appendix B includes a table of standard interrupt
address assignments.

5-4




COMPUTER AUTOMATION. INC. l

When an interrupt is recognized, the instruction at the associated interrupt location is
executed. If the instruction does not modify the program counter, control is immediately
restored to the mainline program. Otherwise, processing continues at the location
specified by the new contents of the P register. Although any of the instructions in the
ALPHA LSI's repertoire could be used in the reserved locations as interrupt instructions,
only certain of them are generally useful - IMS, JMP, JST and the Auto I/O instructions.
With LSI-1 processors, any memory reference instruction performing relative to P backwards
addressing should not be used as an interrupt instruction (the instruction would reference
the location one lower that the location actually programmed; i.e., $9 instead of $8).

Before a given peripheral device can be operated under interrupt control, the interrupts
for that device must be enabled. This enables the device to generate an interrupt request
when the associated event occurs. In addition, Processor interrupts must be enabled.
This is accomplished using the EIN instruction and allows the Processor to respond to

the interrupt request of the peripheral device.

5.1.2.1. Non-Input/Output

The Increment Memory and Skip on Zero (IMS) instruction is used in interrupt program-
ming as a counter or timer for external events. As interrupt instructions, increment
results of zero do not generate skips. They generate, instead, a signal (ECHO) to the
peripheral interface which caused the interrupt. Usually this signal is used by the
device to generate a second interrupt to another reserved location at which a Jump and
Store (JST) instruction to a counter/timer maintenance subroutine would be located.

The JST instruction is used in interrupt programming as a means of transferring con-
trol to an interrupt subroutine in a manner such that return to the mainline program at
the interrupted location can be accomplished upon completion of the operations required
by the interrupt. JST is the only instruction which disables Processor interrupts when
it is used as an interrupt instruction. Before returning to the mainline program, the
Processor interrupts should be re-enabled.

5.1.2.2 Input/Output

The Automatic Input to Memory (AIN and AIB) and Automatic Output from Memory (AOT
and AOB) instructions were specifically designed as interrupt instructions. Used to
transfer blocks of data between Memory and the peripheral devices, these instructions
contain their own word/byte count and memory word/byte address. They do not affect
the A and X registers, the OV indicator or the P register when transferring data as
interrupt instructions. As each data word/byte is transmitted, the associated pointer
and counter are automatically incremented.

5.1.2.3 End-of-Block Interrupts

When either the IMS or Auto I/0 instructions are used as interrupt instructions, incre-
ment results of zero (any memory location for IMS and the negative word/byte count for
the Auto I/0 instructions) produce ECHO signals which are typically used by the various
peripheral devices to generate End-of-Block interrupt requests to different reserved
interrupt locations.

COMPUTER AUTOMATION. INC. -

5.2 NON-INTERRUPT INPUT/OUTPUT EXAMPLES

The examples shown in figures 5-6 through 5-10 are discussed in the paragraphs that
follow .

LABEL INST OPERANDS COMMENTS

Optional SEL 4,4 Initialize Line Printer
LDA CHAR A = Char to Print
SEN - 4,1 Sense Line Printer Ready
JMP $-1 (Not Ready)
OTA 4,1 Unconditionally Output A

Figure 5-6. Initialization and Unconditional Output to Line Printer

LABEL INST OPERANDS COMMENTS
Optional SEL 7,4 Initialize Teletype
SEN 7,3 Sense Teletype Ready (not busy)
JMP $-1 _(Not Ready)
SEL 7,2 Command Step Read
SEN 7,1 Sense Character Buffer Full
JMP $-1 (Not Full)
INA 7,0 Unconditionally Input Character to A

Figure 5-7. Unconditional Character Read from Teletype Paper Tape Reader

LABEL INST OPERANDS COMMENTS
Optional SEL 4,4 Initialize Line Printer
LXP :0C Top of Form Character
WRX 4,1 Output to Line Printer When Ready

5-5 -

Figure 5-8. Initialization and Conditional Control of Line Printer

5-6




COMPUTER AUTOMATION, INC. ——

LABEL INST

Optional SEN
IMP

SEL
RBA
RBA

SEL

OPERANDS

4 =3

COMMENTS

Sense Teletype Ready (not busy)
(Not Ready)

Enable Auto Echo

Input a Teletype Character to A When Ready
Shift to Most Significant 8 Bits

Input Another character to Least

Significant 8 Bits

Disable Auto Echo

LABEL

Optional

LOOP

BUF

INST 'OPERANDS COMMENTS

SEN 5,3 Sense Card Reader Ready

JMP $-1 (Not Ready)

SEL- 5,4 Initialize Card Reader

SEL 5,3 Command Card Reader Read Card
SEN 5,0 Sense Input Character Ready

JMP $-1 (Not Ready)

AIB 5,0 Automatic Input Character to Buffer
DATA -80 Buffer Byte Count

BAC BUF-1 Buffer Byte Address

JMP $+2 Zero Counter Results - Exit

JMP LOOP Loop on Non-Zero Counter Results
RES 40 80 Character (Byte) Data Buffer

Figure 5-9. Conditional Input from Teletype Keyboard with Auto Echo

LABEL INST

Optional SEL
BOT
DATA

BUF RES

OPERANDS

4,4

COUNT
4,1
BUF-1

COUNT

COMMENTS

Initialize Line Printer

X = Word Buffer Length
Block Output to Line Printer
Character Buffer Address Less One

Data Buffer

Figure 5-10. Uninterruptable Block Output to Line Printer

Figure 5-11. Automatic Byte Input from Card Reader

5.2.1 Ccntrol Instructions

The SEL instruction is the most widely used control instruction for peripheral devices.

It is used both for initializing the devices, as in figures 5-6, 5-7, 5-8, 5-10 and 5-11,and
for causing the peripheral devices to perform specific functions, as in figures 5-7, 5-9
and the second SEL instruction in figure 5-11. Special characters are sometimes used for
control functions (e.g., the Line Printer Top of Form character in figure 5-3).

NOTE

When a Select type instruction is used to turn off interrupts that may
be pending, it should be preceded by a SIN 1 instruction to disable
Processor recognition of the pending interrupt. This is necessary
since the Processor examines interrupt requests prior to the Select
taking effect and will therefore respond to the interrupt even though
it is no longer pending.

The SEN instruction is used to test whether the specified data source or destination in
the addressed peripheral device is ready to transmit or receive data. Sometimes both
the peripheral device and a particular buffer within the device must be ready for data
transmission, as in figures 5-7 and 5-11. In many cases, the Sense function can be
incorporated into the Conditional I/0 instructions, as in figures 5-8 and 5-9.

. 5-8




COMPUTER AUTOMATION, INC.

5.2.2 Unconditional Instructions

Unconditional Input instructions consist of both word and byte instructions. While the
Word input instructions replace all 16 bits of the register (figure 5-7), the byte input
instructions affect only the least significant 8 bits of the register. When byte-orientated
peripheral devices are used, these instructions allow the programmer to pack the input
data before storing it in Memory .

The Unconditional Output instructions are word-oriented instructions. Since byte-
oriented peripheral devices accept only the least significant 8 bits of data output from
a register, there is no need for byte Output instructions.

5.2.3. Conditional Instructions

The Conditional I/0 instructions incorporate both the Sense and data transmission
functions into one instruction. These instructions make sense, of course, only when
the function codes for the Sense and data transmission operations are the same.

The Conditional Input instructions consist of both word and byte instructions. While
the word input instructions replace all 16 bits of the register, the byte input instruc-
tions affect only the least significant 8 bits of the register. When byte-oriented
peripheral devices are used, these instructions allow the programmer to pack the
input data before storing it in Memory, as in figure 5-9.

The Conditional Output instructions are word-oriented instructions. Since byte-
oriented peripheral devices accept only the least significant 8 bits of data output from
a register, there is no need for byte-output instructions.

Interrupts may be acknowledged during the execution of a Conditional 1/0 instruction.

$.2.4 Block I/0 Instructions

The Block 1/0 instructions allow high speed data transmissions between Memory

and peripheral devices. They essentially access each data buffer memory location by
summing the contents of the X register and the data buffer pointer (buffer address - 1)
in the second word of the instruction. Each time the addressed peripheral device

generates a true Sense response, data is transmitted and the X register is decremented .’

Thus, the data is transmitted from, or to, the end of the buffer (higher memory
locations) first. The last word transmitted accesses the start (lowest memory
location) of the buffer. Interrupts may be acknowledged only after the X register has
been decremented to zero and the instruction has been completed - i.e., when all data
words have been input or output.

These instructions access word memory operands only (see figure 5-10). They do not
affect the contents of the A register.

COMPUTER AUTOMATION. INC.

5.2.5 Automatic 1/0 Instructions

Although the Auto 1/0 instructions have been designed specifically as interrupt
instructions, they may also be used in non-interrupt, in-line programming. They are
three word instructions, with the second word containing the negative (two's complement)
word or byte count and the third word containing a word or byte address pointer (buffer
address - 1). Sincé they are unconditional transfer instructions, the specified data
source or destination in the addressed peripheral device must generate true Sense
responses before data transmission occurs. Each data transmission increments both the
data counter and the address pointer. Non-zero data counter increment results generate
a one-word skip. Zero increment results cause the next instruction in sequence (the
instruction after the address pointer which is skipped by non-zero increment results)

to be executed (see figure 5-11). '

5.3 INTERRUPT STRUCTURE AND EXAMPLES

6.3.1 General Interrupt Handling

External interrupts cause the computer to execute one instruction outside of the mainline
program. If the instruction does not modify the P register, the computer continues with
the mainline program after executing the interrupt instruction. If the interrupt instruc-
tion modifies the P register (either a JST or JMP), the computer continues processing at
the location specified by the new value in the P register.

If a peripheral device is to operate under interrupt control, reserved locations in Memory
are assigned to the device. The computer then executes the instruction at the reserved
location when the peripheral device generates an interrupt to the Processor. Each device
may be assigned one or more reserved locations. For example, a device moving blocks
of data to or from the computer may generate one interrupt for each word or byte of data
moved and a second interrupt when the entire block of data has been moved. The
interrupt for each word or byte would require one location and the interrupt indicating
the end of the block of data would require another.

Before any interrupt can be recognized by the Processor, several conditions must be met:

1. Interrupts must be en#éibled, in general. If any interrupts are to be
recognized, the Enable Interrupts (EIN) instruction must be executed.

2. The specific peripheral device interrupt must be enabled. Specific inter-
rupts are enabled by setting an interrupt enable flag in the peripheral
device interface controller. Enable flags are generally set by executing a
Select (SEL) instruction with a device address and function code specifying
which interrupt is to be enabled. Using interrupt enable flags, the programmer
can selectively enable and disable interrupts.

3. The interrupt condition must exist (i.e., the device must be ready to
accept or transmit data). Many peripheral devices "remember" interrupt

5-10




COMPUTER AUTOMATION, INC. l

conditions generated prior to enabling the interrupt enable flags. Care
should be taken to reset the peripheral device interrupts before enabling
the enable flag so that false interrupts do not occur immediately after
enabling the interrupts.

4. No higher priority interrupt must be waiting. Each peripheral interface
or computer option has a definite priority assignment. Interrupts are
processed according to priority if more than one interrupt is pending.

5. The computer must be in the RUN mode. Interrupts cannot be recognized
when the computer is halted, or during DMA operations.

5.3.2 Examples of Initialization and Enabling Sequences

Initialization and interrupt enabling take place prior to the generation and use of the
interrupts. The examples below involving a Line Printer and the Real Time Clock
are typical of initialization sequences.

INST OPERANDS COMMENTS

SEN 4,1 Wait for Line Printer Buffer ready
JMP $-1 (Not Ready)

SEL 4,7 Reset Interrupt Enable flags

SEL 4,5 Enable Word Interrupt Enable flag
SEL 4,6 Enable EOB Interrupt Enable flag

EIN Enable Processor interrupts

Figure 5-12. Line Printer Interrupt Initialization Sequence

In addition to being reset by the SEL 4,7 instruction (figure 5-12), the interrupt enable
flags may also be reset by the Line Printer Initialization instruction (SEL 4,4). Note
that the Word interrupt enable flag is enabled before the End-of-Block (EOB) interrupt
enable flag. When specific actions in a peripheral device are additionally required to
generate interrupts (e.g., a card reader must read a card), the instruction (SEL)
causing the action must be executed before the interrupt can take place. The sequence -
in figure 5-12 is used in conjunction with an AOT or AOB instruction in the Word interrupt
location and a JST instruction to an EOB routine at the EOB interrupt location.

In addition to being reset by the SEL 8,3 instruction (figure 5-13), the interrupt enable
flags may also be reset by the Real Time Clock Initialization instruction. (SEL 8,4).
Note that the Sync interrupt enable flag is armed before the Time and Sync interrupt
enable flags are enabled. This sequence is used in conjunction with an IMS instruction
in the Word interrupt location and a JST instruction to a Sync maintenance routine in
the Sync interrupt location. .

COMPUTER AUTOMATION. INC. ——

INST OPERAND COMMENTS

SEL 8,3 Reset RTC Interrupt Enable flags

SEL 8,2 Arm RTC Sync Interrupt Enable flag

SEL 8,0 Enable RTC Time and Sync Interrupt Enable
flag

EIN Enable Processor Interrupts

Figure 5-13. Real Time Clock Interrupt Initialization Sequence

5.3.3 Examples of Interrupt Instructions

The contents of the interrupt locations associated with the above examples are illustrated
in figures 5-14 and 5-15.

LABEL/ INST OPERANDS COMMENTS
LOCATION
:42(Word) AOB 4,1 Automatic Output Byte Instruction
DATA -80 Negative Character Buffer Length
(Byte Counter)
BAC BUF-1 Byte Address Pointer (Start-1)
: 46 (EOB) JST SUB Jump to End-of-Block Routine,
Disable Processor Interrupts
Main Memory
SUB
ENT
RTN SUB
BUF RES 40

5-11

Figure 5-14. Line Printer Interrupt Instructions

Since the byte counter and address pointer are modified during the data transmission,

they must be preset each time a line of characters is to be printed prior to execution of

the initialization sequence discussed in paragraph 5.3.1. When all characters have

been transferred, the instruction at location : 46 is executed and control is transferred

to the EOB routine beginning at SUB. This routine might output a carriage return
5-12




COMPUTER AUTOMATION, INC.

character to cause the line to be printed, or perform any other line termination pro-
cessing required. The last character of the buffer might be a carriage return (see
Line Printer Driver documentation in Software manual).

LABEL/
LOCATION INST OPERANDS COMMENTS
118 (Time) IMS COUNT Increment RTC Counter COUNT
:1A (Sync) JST SYNC Transfer to Sync Subroutine,
Disable Processor Interrupts
Main Memory
SYNC ENT Save Main Program Return Location

SIN 1 Inhibit Status (Guarantee Word Mode)
to Save A Register

STA ASAVE Save A Register

SIA

STA STATUS Save Status

STX XSAVE Save X Register

LAM 100 Reset

STA COUNT RTC Counter COUNT
Perform Specified Maintenance Function

LDX XSAVE Restore X Register

LAP 3

AND STATUS Byte and OV Bits to A Register

LRA 1 Restore OV

JAZ $+2 Test Byte Mode

SBM Restore Byte Mode

SIN 1 Inhibit Status (Guarantee Word Mode)
to Restore A Register

LDA ASAVE Restore A Register

EIN Enable Processor Interrupts
RTN SYNC Return to Mainline Program

Figure 5-15. Real Time Clock Interrupt Instructions

Each acknowledgement of a Time interrupt causes the RTC counter COUNT to be incre-
mented. When COUNT is incremented to zero, recognition of the Sync interrupt (at
location : 1A) generates execution of the SYNC interrupt subroutine.

COMPUTER AUTOMATION, INC.

Interrupts are automatically disabled by execution of the JST instruction, but the
addressing mode and the state of the overflow indicator are unchanged. Because the
computer might be in the Byte addressing mode when the interrupt occurs, the Word
mode is forced for one instruction so the full 16-bit contents of the A register can be
saved and the instruction address will be treated as a word address. When this is
done, the computer status is input, which also sets the addressing mode to the Word
mode and resets the overflow indicator. The Status and the contents of the X register
are then saved. The Real Time Clock counter COUNT is reset to a negative value as
part of the required maintenance operations.

Restoration of the contents of the X register begins the exit sequence of the subroutine.
The computer status is then restored and Byte mode inhibited for one instruction to
ensure restoration of the full 16-bit contents of the A register. The interrupts are
then re-enabled and the subroutine is exited prior to acknowledgement of any other
interrupt (since the EIN instruction inhibits recognition of interrupts for the duration
of the RTN SYNC instruction).

The save/restore sequences discussed here should be used at the beginning and end
of any interrupt subroutine to which a JST instruction at an interrupt location refers.
The Real Time Clock counter COUNT should also be set to a negative value before the
initialization sequence discussed in paragraph 5.3.1 is executed.

5.4 INTERRUPT LATENCY

Recognition of an interrupt request from a peripheral device by the computer is not
always instantaneous. The conditions discussed below delay acknowledgement of
interrupts.

5.4.1 Interrupt Service

Interrupt acknowledgement occurs "between" the execution of instructions - i.e., just
after the completion of a given instruction. The Conditional Input/Output instructions
allow recognition of interrupts before their completion as long as false (not ready)
Sense responses are obtained from the specified dsta source or destination. After the
interrupt is serviced, processing is resumed with the Conditional Input/Output instruc-
tion. The Scan Memory (SCM) instruction similarly allows recognition of interrupts
after each specified word or byte of Memory is compared to the contents of the A register.
If interrupts were off prior to issuing an instruction, the EIN delays recognition of any
interrupt until after the execution of from one (minimum) to three (maximum) instrue-
tions. This allows return from interrupt subroutines to the mainline program before
acceptance of another interrupt. The Block Input/Output (BIN and BOT) instructions,
the Status Inhibit (SIN) instruction and all shift instructions must be completed before
recognition of an interrupt may occur. Since their use in mainline programs may
constitute non-trivial delays in the recognition of interrupts, the programmer should
use such instructions with care. In addition, when Direct Memory Access (DMA)
operations are in progress, recognition of interrupts is delayed for the duration of
data block transmission.

5-14




COMPUTER AUTOMATION, INC. I

5.4.2 Priority Resolution

Occasionally, multiple interrupt requests occur. When this happens, the interrupt
having the highest priority is acknowledged first, then the next, and so forth down

to the interrupt having the lowest priority. To avoid responding to the same interrupt
twice, one to three mainline program instructions will always be executed between
each recognition of an interrupt. The number of instructions expected depends on

the Processor type and the duration of the instructions executed. The standard
interrupt priorities are listed in figure 8-4.

5-15




COMPUTER AUTOMATION, INC. "l

Section 6
PROCESSOR OPTIONS

6.1 INTRODUCTION

This section describes how to use the various features of the Teletype/CRT/Modem con-
troller, Real Time Clock (RTC), and Autoload (AL) options, and the Basic Variables (BV)
package which are contained on the Processor Option board (Figure 6-1). These features
are selectable by means of external jumpers on connectors located on the rear edge of the
board. In addition, the Power Fail/Restart option contained in the Processor is also
described.

The most common operating modes require no external jumpers. Unjumpered mating con-
nectors are supplied with the Processor Option board.

6.2 REAR EDGE CONNECTORS (Figures 6-2 and 6-3)

The rear edge of the Processor Option board has two connectors designated J1 and J2.
Connector J1 is used to select various operating modes via external jumpers while con-
nector J2 is used to interface to a Teletype, CRT, or Modem.

J1 is designed to accept a 50-pin two-row edge connector. Identifying pin numbers silk-
screened on the board apply to the Viking type 2VH25/1JN5 connector which is numbered
1-50 with the odd numbers (1-49) in one row and even numbered pins (2-50) in the other.
In some cases, connector type 3VH25 is used. Pin designations of this connector are Al
thru A25 in one row and pins Bl thru B25 in the other. Corresponding pins of the two
types of connector are shown in figure 6-2 along with signals and related options (in
parenthesis).

J2 is designed to accommodate a 36-pin Winchester connector (8BDJ185). The pin assign-
ments, signals, and related option (in parenthesis) for connector J2 are shown in figure
6-3. :
NOTE
All reserved pins listed in figures 6-2 and 6-3
are not to be used for any purpose.

Connector J1 mounts on the board with the row having pins Al thru A25 (or 1 thru 49)
interfacing with the component side of the board. The contacts for J2 are designated A -
through V and 1 through 18. Pins A through V interface with the component side of the
option board while pins 1 through 18 interface with the solder side.

Connector J1 should be installed with connector pins Al and Bl (or 1 and 2) to the right
when viewed from the rear of the computer. Connector J2 has the signals brought out in
such a way that when interfacing with an ASR~33 teletype, the connector may be installed
right-side up or up-side down with no ill effects. When used with terminals other than

a Teletype, J2 must be installed with pins A and 1 to the right as viewed from the rear of
the computer.

COMPUTER AUTOMATION, INC. "|

6.3 TELETYPE/CRT/MODEM CONTROLLER

The Teletype/CRT /Modem (TTY/CRT) option interfaces a CRT, Modem, or modified
ASR-33 Teletype to the ALPHA LSI computer. It performs all of the data and control
signal conversion required for the computer to control the user terminal. An ASR-33
Teletype provides four Input/Output features in one package: Keyboard Input, Page-

' Printer, Paper Tape Reader and Paper Tape Punch. A CRT provides keyboard entry

and display.

The interface contains a date buffer register which performs parallel-to-serial data
conversion for transferring data from the computer to the user terminal and serial-
to-parallel conversion when transferring data from the user terminal to the computer.
In addition, the interface has provisions for interrupt generation for both Word and
End-of-Block interrupts.

The TTY/CRT Interface option has been assigned a standard device address of 7.

Output from the computer is printed on the TTY page printer or displayed on the
CRT. If the TTY punch is turned on, the output is also punched. The TTY punch
and page printer cannot be separately controlled by the computer. The TTY operator
must turn the punch on or off as desired.

Input to the computer is accomplished via the TTY/CRT keyboard or the TTY Paper
Tape Reader. They are controllable separately from the computer. The Paper Tape
Reader can read bytes one at a time or continuously. Automatic Echo is a feature
which allows any input to be echoed back to the TTY/CRT for printing or display.

The Teletype or CRT can be operated in either Half-duplex or Full-duplex mode. The
Initialize instruction (SEL 7,4) puts the controller in the Half-duplex mode. Execu-
tion of the Select and Present instructions (SEA 7,4 or SEX 7,4) with the register
contents equal to 1 puts the controller in Full-duplex mode.

The TTY/CRT controller has provisions for ten different baud rates, a variable length
word (with or without parity), and either one or two stop bits. Additionally, the user
can select a current loop data path for teletypes, a TTL compatible data path, or an EIA
RS232C/CCITT data path for various terminals. The user should consult the terminal
manufacturers literature to determine the exact interface requirements of the terminal.

6.3.1 Baud Rate Selection

The TTY/CRT controller uses a variable format counter to provide internal clock timing
for the data channel. Two counter inputs (SLCT1 and SLCT2) determine the count
pattern to be employed. Eight counter outputs are brought out to connector J1. One of
these outputs (CP006, CP013, CP026, CP052, CP104, CP208, CP416 or CP568) can be
jumpered to the TCLK terminal to provide the appropriate clock period.

6-2




£-9

R AR B
‘ ,.'.‘.’ ’ "xs:n"ﬁ
i ¥
AN gy 'pﬁumu i‘ isa&
.t

S

88011850

tﬂz“ ’

.v#*inu h“' -.i » ﬁ. uwo § tt}ixm.
. ,.mmmwmmmzﬁ.&wﬁﬁ -
Lo o is::'rr eeinotle

»
» “Iiligl%lﬂ,‘,ﬂlllllill

L
trrsioed W ovce 0

Mb
Prgvs g('. u”wzgv,

o s:.;m"-.
.

SE———

NI ‘NOUVINOLNY ¥3LNdNOD

=1

4

Figure 6-1. Processor Option Board




{RTC) TTLF =
(TTY) SLCT1 v
(AL) PFAL —
{TTY) CPOOS et
(TTY) SLCT2 =y
{RTC) CLKIN— et
(TTY) CPO26 et
(TTY) CP104 vt
{TTY) CP5S68 ~v—f
(TTY) CP208 =
{RESERVED ) et
GND et

GND e

{TTY) ORIN e
{TTY) TTYOF — e
{BV) DSO3— =m—neqd
(BV) DSO1 — amma
{BV) OPT— o
(BV) RST — et
(RTC) 1KHZ e
(BV) STR1 ey
(BV) STR3 «==f
(TTY) PS et
(TTY) WLS} ==

(TTY) P ==y

lelslel=fslslel=lofalela szl o o [ ol [ Jo o I 0>

*Pin numbering system if type 2VH25/1JN5 connector installed.

OPTION BOARD
CONNECTOR J1
(ACCEPTS VIKING
3VH25/1JN5)

1* 2*
3 4

5 6

7 8

9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50

COMPUTER AUTOMATION, INC.

SSW-— (BV)
OFST- (BV)
MAI— (BV)
TCLK-(TTY)
REMOTE AL— (AL)
INH— (RTC)
CPO13 (TTY)
CPO52 (TTY)
CP416 (TTY)
RMDIS— {AL}
MEC (RTC)
GND

GND

ENDSW- {BV)
{RESERVED)
SMDAT— (TTY)
DS00- {BV)
0S02- (BV)
CINT- (BV)
10KHZ (RTC)
STR2 (BV)
STR4 (BV)
DTDAT (TTY)
WLS2 (TTY)

SBS (TTY}

Figure 6-2. Option Board Connector J1 Pin Assignments

6-4

{RESERVED)
GND

GND

{TTY) ORIN
(AL) AL-
(BV) CINT—
( TDAT
RCV
GND
MOT -
MOT+

(RESERVED)
(TTY) {

EIAR-
CTs

SMDAT—

IRDRA

OPTION BOARD
CONNECTOR J2
(ACCEPTS WINCHESTER
88DJ18S)

IRDRA
DTDAT

EIAT—

RTS

f (TTY)
(RESERVED)

MOT+
MOT-
GND
RCV

TDAT

-
CINT— (8V)

AL-(AL)
ORIN (TTY)
GND

GND
(RESERVED)

Figure 6-3. Option Board Connector J2 Pin Assignments




A

COMPUTER AUTOMATION, INC. [ -

The SLCT1 and SLCT?2 signals are static control signals that are either grounded or
left open. Ground is available on pins 23 thru 26 of connnector J1. The grounding
configurations for selecting the various baud rates are shown in table 6-1.

Table 6-1. Baud Rate Selection

BAUD RATE SLCT1 (pin 3) SLCT2 (pin 9) JUMPER
75 GND OPEN Pin 8 to 17
110 (standard) OPEN OPEN none
134.5 OPEN GND none
150 GND OPEN Pin 8 to 18
300 GND OPEN Pin 8to 19
600 GND OPEN Pin 8 to 15
1200 GND OPEN Pin 8 to 16
2400 GND OPEN Pin 8 to 13
4800 GND OPEN Pin 8 to 14
9600 GND OPEN Pin8to 7

6.3.2 Word Length Selection

The user may select either 5-, 6-, 7- or 8-bit character lengths for the controller to
process. Character length selection is controlled by WLS1 and WLS2 (pins J1-47 and
J1-48 respectively) . These signals are static control signals that are either grounded
or left open. Ground is available on pins 23 through 26. The grounding configurations
for word length selections are shown in table 6-2.

Table 6-2. Word Length Selections

WORD LENGTH WLS1 (pin 47) WLS2 (pin 48)

5-bits GND GND
6-bits OPEN GND
7-bits GND OPEN
8-bits (standard) OPEN OPEN

6.3.3 Parity Selection

The user can choose to have parity error processing with parity error sensed by the

SEN 7,6 instruction. Two signals control parity in the controller. Parity Inhibit

(PI, J1-49) controls parity. When PI is open, parity is disabled. When PI is grounded,
the parity generation and check functions are enabled and a parity bit is inserted into

the transmitted word. When parity is enabled, the Parity Select signal (PS, J1-45)
determines whether even or odd parity is generated by the transmit function and checked
by the receive function. When PS is open, even parity is selected. When PS is grounded ||
odd parity is selected.

6-6

COMPUTER AUTOMATION. INC. ——

6.3.4 Stop Bit Selection

All terminal equipment requires either one or two stop bits. The Stop Bit Select sig-
nal (SBS, J1-50) provides this selection capability. When SBS is grounded, one stop
bit is inserted in the transmitted word. When SBS is open, two stop bits are inserted
in the transmitted word. Note that the selection of two stop bits when programming a
5-bit word generates 1.5 stop bits.

6.3.5 Alternate Interrupt Locations

When using the TTY/CRT controller in the Half-duplex mode, the standard TTY/
CRT interrupt locations of : 0002 and : 0006 may be changed to : 0022 and : 0026,
respectively by jumpering TTYOF- (J1-29) to MEC (J1-22). Note that this feature
is automatically overridden when operating in the Full-duplex mode.

6.3.6 Data Interface Selection

The use: has a choice of three types of data interface that can be used with a terminal
device. These interface types are current loop, RS232C/CCITT and TTL/DTL com-
patible.

6.3.6.1 Current Loop Interface (Figure 6-3)

The Current Loop interface utilizes a 3-wire ground common interface which is char-
acterized by the presence or absence of a 20 milliamp dc signalling current. The
current loop interface converts logic signals to current signals and vice-versa as
follows:

Mark = 20 mA current flow
Space = no current flow

The controller current loop transmit signal is TDAT, while the controller receive
signal is RCV-. TDAT is available on connector J2 at pins H and 12. RCV- enters
the controller at J2 pins J and 11. A logic ground reference between the controller
and the terminal device is required and is available on J2 pins K and 10.

The controller current loop receive and transmit circuits have a 1500 ohm, 1 watt
resistor in series with their respective lines. These resistors are used to set the
current level on each line to 20 mA dc. The current loop receive line also has a

built-in rolloff filter which limits baud rates to 150 baud maximum for use with teletypes.
For faster current-loop devices, the filter capacitor may bé removed.

6-7




COMPUTER AUTOMATION, INC. COMPUTER AUTOMATION. INC. ——

TETETVPE The RTS and CTS lines from both the controller and terminal devices are defined for
{MODIFIED) operation with a modem. When operating without a modem (direct interface as shown
in figure 6-5a), the RTS and CTS lines must be crossed.

INTERFACE
CABLE

TTY/CRT/MODEM
CONTROLLER

J =

RECEIVE —C!_”sm" X T ROV s g SEND With the RTS and CTS control lines crossed, Half-duplex switching from Receive mode
DATA l VAV to Transmit mode and vice-versa is controlled by the controller RTS line. When the

+ :a:g;m controller RTS line is true, the terminal device transmits to the controller. When the

controller RTS line is false, the controller transmits to the terminal device. During
— 6 Full-duplex operation, the RTS line of both the controller and the terminal device
must be true for simultaneous transmission.

When operating with a Half-duplex modem, carrier keying by means of the RTS sig-
nal is not used to switch from Transmit to Receive modes. Instead, End-of-Message
(EOM) character detection within the support software is used. When operating with

2 & Full-duplex modem, no special disciplines are required.
GND - gs:ggt 3 .
L 4 The RTS signal is generated by the controller Motor On/Off flip-flop. The Motor

On/Off flip-flop has delay circuitry which disables the controller Sense multiplexer for
600 ms after receipt of a Motor On command. When using the Motor On/Off flip-flop

with an EIA device, the delay circuitry must be disabled. The delay circuits are
disabled by grounding the ORIN- input, J1 pin 27 or J2 pins D and 15. Note that RTS and
Motor On are in opposite sense. That is, a Motor On instruction turns RTS off.

+45

TRAANSMIT
DATA RECEIVE ATS /TS

FUNCTION
AAA~— 1 TOAT , Jrecene crs >< c1s
L\ L‘ TIY/CRT/

\./ MODEM TERMINAL

CONTROLLER EIAT RECEIVE

Figure 6-4. Current Loop Interface EIAR ) TRANSMIT

6.3.6.2 EIA RS232C/CCITT Interface (Figure 6-4)
a. Interface Without Modem
The EIA RS232C/CCITT EIA interface uses signal levels which vary between plus and
minus seven volts. The interface provides two control signals in addition to receive/
transmit data signals. The interface signal levels are as follows:

RTS RTS

Data: Mark = -7 Vde CE3 -
Space = +7 Vde wm;I::J/ * MODEM “ MODEM TERMINAL
Control: True = +7 Vde CONTROLLER {0SAL) (REMOTE) | pecewve

EIAT
False = -7 Vdc

EIAR TRANSMIT

The controller EIA receive signal is designated EIAR- and is available on J2 pin S.

The EIA transmit signal is designated EIAT- and is available on J2 pin 3. The two EIA
control signals are Request to Send (RTS) and Clear to Send (CTS). RTS is available b. Interface With Modem
at J2 pin 4 while CTS enters the interface at J2 pin T.

Figure 6-5. EIA RS232C/CCITT Interface

6-8" ) 6-9




COMPUTER AUTOMATION. INC.

6.3.6.3 TTL/DTL Compatible Interface (Figure 6-5)

The TTL/DTL Compatible (TTL) interface uses signal levels which vary from 0 to +5
volts dc. The interface signal levels are as follows:

Mark = 0.0 to +0.45 Vde
Space = 2.4 to +5.0 Vde

The TTL receive signal is SMDAT- which is available at J1 pin 32 and J2 pin U. SMDAT-
should be driven by an open-collector driver in the terminal device. The controller
represents only one load to the driver. The controller provides a 1K ohm pull—\fp
resistor to +5 Vde. The TTL transmit signal is DTDAT and is available on J1 pin 46

and J2 pin 2. DTDAT is driven by the controller with an open-collector dr'iver which
is capable of 50 milliamps dc drive current. The terminal device must provide a pull-up
resistor to the terminal VCC supply which must not exceed 100 volts dc.

+5v
RECEIVE
iE CHANNEL
ENABLE
> RENB-
1 DUPEN-—

CURRENT
LOOP RECEIVE

MSTOP—
'_G: BEVi ni

OR

7416/7437
DRIVER

I
|
|
|
I
2 |
] SMDAT— R I SEND DATA
€
ey —(j;\_\_s !
EIAR- I
| v
A I L
£ | = 236/7404
| " RECEIVER
DTDAT ] RECEIVE DATA
|
TRANSMIT e ‘
DATA l

Figure 6-6. TTL/DTL Interface

COMPUTER AUTOMATION. INC. —

6.3.7 Special Teletype Controls

The Teletype/CRT controller contains provisions which permit user generated soft-
ware to control Paper Tape Reader and drive motor turnon and turnoff in specially
modified ASR-33 Teletype units.

The reader control signal is designated IRDRA and is available at J2 pins V and 1.
The motor control signals are referred to as MOT+ and MOT- and are available at J2
pins M and 8, and L and 9, respectively.

6.3.8 Half-Duplex Usage

Half-duplex controller operations involve either input from, or output to, the terminal
device, but not simultaneously. Use of the Auto Echo feature causes input from the
device to be automatically "echoed" back for printing or display, thus eliminating

the necessity for echoing characters back under software control.

The following figures are examples of typical Half-duplex teletype 1/0 sequences:

LABEL INST OPERANDS COMMENTS
SBM Set Byte Addressing Mode
SEL 7,4 Initialize TTY Interface
LOOP LDAB *DATA Load Byte/Character into LS Byte
of A Register
IMS DATA Increment Byte Address Pointer
WRA 7,1 Output Byte when TTY is Ready
MS COUNT Increment Negative Number of
Characters to be Transferred
JMP LOOP Continue Data Output if Non-zero
Increment Results
SEN 7,1 Wait for last character to be printed
JMP $-1
SWM Restore Word Addressing Mode
Exit

Figure 6-7. Half-Duplex Program-Controlled Data Output




COMPUTER AUTOMATION, INC. '|

LABEL INST OPERANDS COMMENTS
SBM Set Byte Addressing Mode
SEL 7,0 Enable Auto Echo to Print Data
Being Input
SEL 7,3 Start the Paper Tape Reader in a
Continuous Read Mode
LOOP RBA 7,1 Input Byte when TTY is Ready
STAB *DATA Store Character in Data Buffer in
Memory
IMS DATA Increment Byte Address Pointer
IMS COUNT Increment Negative Number of
Characters to be Transferred
JMP LOOP Continue Data Input if Non-zero
Increment Results
SEL 7.4 Initialize the TTY Interface to Stop
the Paper Tape Reader and Disable
the Auto Echo
SWM Restore Word Addressing Mode

Figure 6-8. Program-Controlled TTY Reader Input

The standard Word interrupt location for Half-duplex operation is : 0002. The controller
interrupts to this location when the Word Transfer mask is set, interrupts are enabled,
and the terminal device is ready for either input or output. A jumper option allows this
interrupt location to be relocated to location : 0022. The standard End-of-Block interrupt
location for Half-duplex operation of the terminal device is location : 0006. The
controller interrupts to.this location when the Block Transfer mask is set, interrupts

are enabled,and an ECHO signal (from completion of an Auto I/0 interrupt sequence) is
received from the Processor. A jumper option allows this interrupt location to be
relocated to location : 0026. An additional jumper option allows Processor mounted option
interrupts to be offset by : 0100 locations. The standard Half-duplex controller interrupts
can thus be relocated to locations : 0102 and : 0106 or : 0122 and : 0126.

6.3.9 Half-Duplex Controller Instructions

SEL 7,0 ENABLE AUTO ECHO. Places controller in Read mode and causes
all inputs to be echoed back to source terminal for printing or
display. Initialize instruction (SEL 7,4) turns Auto Echo off.

SEL 7,1 SELECT KEYBOARD. Places controller in Read mode.

6-12

SEL

SEL

SEL

SEL

SEL

SEL

SEN

SEN

SEN

SEN

SEN

7,2

7.3

7,4

7,5

7,6

7,7

0,4

7,1

7,2

7,3

7,4

COMPUTER AUTOMATION, INC. I

STEP READ. Places controller in Read mode and causes character
under Paper Tape Reader read station to be read. Paper tape is then
advanced one character position. Reader switch must be in START
position. )

CONTINUOUS READ. Places controller in Read mode and causes
TTY Paper Tape Reader to read continuously until reader is stopped
or tape runs out. Reader switch must be in START position.

INITIALIZE CONTROLLER. Places controller in Half-duplex and
Write modes, and resets all control flags. Static marking condition
will be present.

ENABLE WORD TRANSFER INTERRUPTS. Sets appropriate interrupt
mask to enable generation of a Word interrupt each time Buffer Ready
condition occurs

ENABLE END-OF-BLOCK INTERRUPT. Sets appropriate
interrupt mask to enable generation of an EOB interrupt
upon reception of ECHO signal from Processor. Instruction
must be executed after SEL 7,5 or immediate EOB interrupt
will occur.

DISABLE INTERRUPTS. Disable both Word and EOB interrupts
by resetting both interrupt enable masks.

SENSE TTY CONTROLLER INSTALLED. Tests for presence of TTY
controller on Option board. If controller is installed, next sequential
instruction is skipped. If controller is not installed, next sequential
instruction is executed. (Used by diagnostic programs.)

SENSE BUFFER READY. Tests for Buffer Ready condition. If buffer
is ready, next sequential instruction is skipped. If buffer is not
ready , next sequential instruction is executed.

SENSE WORD TRANSFER INTERRUPTS ENABLED. Tests if Word
interrupts are enabled. If they are, next sequential instruction is
skipped. If they are not, next sequential instruction is executed.

SENSE CONTROLLER NOT BUSY. Tests busy state of controller.
If controller is not busy processing a character, next sequential
instruction is skipped. If controller is busy, next sequential
instruction is executed.

SENSE CLEAR TO SEND. Tests CTS line from a CRT or modem. If
signal is true, next sequential instruction is skipped. If signal is
false, next sequential instruction is executed. (This feature is
available only with EIA RS232C/CCITT interface option.)

6-13.




SEN

SEN

SEN

OTZ

0oTZ

oTZ

OTZ

OTA
OoTX

WRA
WRX

7,5

7,6

7.7

7,6

7,6

7,7

7,7

- -2

COMPUTER AUTOMATION. INC. I

SENSE TTY MOTOR ON, Tests if TTY motor is on. If it is on,
next sequential instruction is skipped. If it is off, next sequential
instruction is executed.

SENSE PARITY ERROR. Tests for occurrence of parity error during
most recent input operation. If a parity error occurred, next
sequential instruction is skipped. If a parity error did not occur,
next sequential instruction is executed. (Requires prior strapping
of parity option at rear-edge connector.)

SENSE FULL DUPLEX MODE ENABLED. Tests if controller is in
Full-duplex mode. If it is, next sequential instruction is skipped.
If it is not, next sequential instruction is executed.

TURN MOTOR ON. Turns TTY motor on and places controller in
Write mode. Turning motor on introduces a 600 ms delay for all
controller Sense responses and interrupts to allow motor to come up
to speed. (This feature is only available if TTY has been modified
for remote motor on/off control.)

NOTE

Motor is unconditionally turned on whenever a
Power-up or System reset occurs.

CLEAR REQUEST TO SEND. When used with a CRT or modem, this
instruction turns off RTS signal and places controller in Write mode.
(This feature is available only with EIA RS232C/CCITT interface
option.)

TURN MOTOR OFF. Turns TTY motor off and places controller in
Write mode.

REQUEST TO SEND. When used with a CRT or modem, this instruction|
turns on RTS signal and places controller in Write mode. (This
feature is available only with EIA RS232C/CCITT interface option.)

OUTPUT A OR X REGISTER TO CONTROLLER. Unconditionally
transfers contents of LS byte of specified register to controller and
causes character to be transmitted to terminal device.

WRITE FROM A OR X REGISTER TO CONTROLLER, Tests for Output
buffer empty condition. If buffer is empty, contents of LS byte of
specified register are transferred to controller and subsequently
transmitted to terminal device. If buffer is not empty, instruction is
continuously repeated until it becomes empty.

6-14

AOT

AOB

BOT

INA
INX

IBA
IBX

RDA
RDX

RBA
RBX

AIN

7,0

7,0

7.1

-2 -3 - -
oo

- -3
-

- -3
b

7,0

COMPUTER AUTOMATION, INC. —

OUTPUT WORD FROM MEMORY TO CONTROLLER, AUTOMATICALLY .
Contents of LS byte of memory location addressed by updated AOT
address pointer are unconditionally transferred to controller and
subsequently transmitted to terminal device. (Refer to Auto1/0
instructions in section 4.)

OQUTPUT BYTE FROM MEMORY TO CONTROLLER, AUTOMATICALLY.
Contents of memory byte location addressed by updated AOB address
pointer are unconditionally transferred to controller and subsequently
transmitted to terminal device. (Refer to Auto I/0O instructions in
section 4.)

OUTPUT BLOCK FROM MEMORY TO CONTROLLER. Places controller
in Write mode and tests for Output buffer empty condition. When
buffer is empty, contents of LS byte of effective memory location are
transferred to controller, and subsequently transmitted to terminal
device. Word count is decremented by one. Instruction is repeated
continuously until word count is decremented to zero. (Refer to
Block I/0 instructions in section 4.)

INPUT WORD FROM CONTROLLER TO A OR X REGISTER.
Unconditionally transfers contents of Input buffer to LS byte of
specified register. MS byte of gpeciﬁed register is set to zero.

INPUT BYTE FROM.CONTROLLER TO A OR X REGISTER.
Unconditionally transfers contents of Input buffer to LS byte of
specified register. MS byte of register is unaffected.

READ WORD FROM CONTROLLER TO A OR X REGISTER. Tests for
Input buffer full condition. If buffer is full, contents are transferred
to LS byte of specified register. MS byte of specified register is set
to zero. If buffer is not full, instruction is continuously repeated
until it becomes full.

READ BYTE FROM CONTROLLER TO A OR X REGISTER. Tests for
Input buffer full condition. If buffer is full, contents are transferred
to LS byte of specified register. MS byte of specified register is
unaffected. If buffer is not full, instruction is continuously repeated
until it becomes full.

INPUT WORD FROM CONTROLLER TO MEMORY, AUTOMATICALLY .
Unconditionally transfers contents of Input buffer to LS byte of memory
location addressed by updated AIN address pointer. MS byte of
memory location is set to zero. (Refer to Auto I/O instructions in
section 4.)




AIB 7,0 INPUT BYTE FROM CONTROLLER TO MEMORY, AUTOMATICALLY .
Unconditionally transfers contents of Input buffer to memory byte
location addressed by updated AIB address pointer. (Refer to Auto
I/0 instructions in section 4.)

BIN 7,1 INPUT BLOCK FROM CONTROLLER TO MEMORY. Tests for Input
buffer full condition. When buffer is full, contents are transferred
to LS byte of effective memory location. MS byte of memory location
is set to zero and word count is decremented by one. Instruction is
repeated continuously until word count is decremented to zero. Refer
to Block 1/0 instructions in section 4.)

6.3.10 Full-Duplex Usage

Full-duplex controller operations allow simultaneous input and output. The interface
contains two data buffers in this mode — one for input and one for output. Use of the
Auto Echo feature causes input from the device to be automatically "echoed" back for
printing or display, thus eliminating the necessity for echoing characters back under
software control. When this feature is used, normal output data and echoed data can
be intermixed but care should be taken to assure that the resulting sequence of output
characters makes sense.

Full-duplex operation also allows use of a special "loop-back" diagnostic feature. This
mode is entered by executing the Select and Present instructions SEA 7,4 or SEX 7,4
with the appropriate register (A or X) contents equal to 3. This feature connects the
Output buffer to the Input buffer, allowing immediate comparison of transmitted data and
received data. Figure 6-9 is an example of full-duplex data-input under interrupts.

In the example, a 20-character "question" is transferred to the TTY. A one-
cha*a:ter "answer", entered at the keyboard is also printed but not before printing
of thie question is complete.

If printing of the question is not completed when the answer is entered, the -1 byte
count is incremented to zero and the processor issues an ECHO-. Upon receiving
ECHO-, the controller generates an EOB interrupt to location :26. Location :26
contains a JST to the EOB routine (ENDA). The program then waits for completion
of ihe output byte transfer and the EOB interrupt. When it occurs, the A register
is cleared and the EOB routine for byte input initializes the output interrupt
sequence for output. The answer is then printed completing the example.

Standard Offset
Location Location Priority
Output Word Transfer Interrupt : 0002 : 0102 4
Output EOB Interrupt : 0006 : 0106 2
Input Word Transfer Interrupt : 0022 : 0122 3
Input EOB Interrupt : 0026 : 0126 1
. 6-16

COMPUTER AUTOMATION, INC. e

COMPUTER AUTOMATION. INC.

The jumper option for offsetting interrupt locations to : 0022 and : 0026 (or : 0122 and
: 0126) in the Half-duplex has no effect on the interrupt locations for Full-duplex
operation. Note that the EOB interrupts have priority over the word interrupts.

6.3.11 Full-Duplex Controller Instructions

SEL 7,0 ENABLE AUTO ECHO. Causes all inputs to be echoed back to
source terminal for printing or display. Initialize instructions
(SEL/SEA/SEX 17,4) turns Auto Echo off.

SEL Tl SELECT KEYBOARD. Turns off Paper Tape Reader if on, without
affecting any other operation.

SEL 7,2 STEP READ. Causes character under Paper Tape Reader read
station to be read. Paper tape is then advanced one character
position. Reader switch must be in START position.

SEL 7,3 CONTINUOUS READ. Causes TTY Paper Tape Reader to read
continuously until reader is stopped or tape runs out. Reader
switch must be in START position.

SEL 7,4 INITIALIZE CONTROLLER TO HALF-DUPLEX. Places controller in
Half-duplex and Write modes, and resets all control flags. Static
marking condition will be present.

SEA 7,4 INITIALIZE CONTROLLER TO FULL-DUPLEX. Either instruction
SEX 7,4 (with appropriate register =1) will place controller in Full-duplex
(AorX=101 mode and reset all control flags.

SEA 7,4 INITIALIZE CONTROLLER TO FULL-DUPLEX DIAGNOSTIC. Either
SEX 7,4 instruction (with appropriate register = 3) will place controller in
(AorX=23) Full-duplex mode and reset all control flags. In addition, the

Output buffer is connected to the Input buffer. Any character which
is output will be received by the Input buffer.

SEL 7,5 ENABLE OUTPUT WORD TRANSFER INTERRUPT. Sets appropriate
interrupt mask to enable generation of an Output Word interrupt
each time Output buffer empty condition occurs.

SEA 7.5 ENABLE INPUT WORD TRANSFER INTERRUPTS. Sets appropriate
SEX 7,5 interrupt mask to enable generation of Input Word interrupt each
(AorX=1) time Input buffer full condition occurs.

SEL 7,6 ENABLE OUTPUT END-OF-BLOCK INTERRUPT. Sets appropriate

interrupt mask to enable generation of Output EOB interrupt upon
reception of ECHO signal from Processor, generated as a result of

. 6-17




COMPUTER AUTOMATION, INC. I —

'LABEL/
LOCATION INST. OPERANDS COMMENTS
12 AOB 7.1 Automatic byte output
DATA -20 Negative byte count
BAC OBUF-1 Address of output buffer-1
:6 ZAR End-of-block termination
122 AIB 7,0 Automatic byte input
DATA =11, Negative byte count
DATA IBUF-1 Address of input buffer-1
126 JST ENDA End-of-block termination
Main Memory 3
START LAP 1 Set A to +1
GO SEA 7.4 Set full duplex
SEL 7,5 Enable word output mask
SEL 7,6 Enable EOB output mask
SEA 7,5 Enable word input mask
SEA 7,6 Enable EOB input mask
EIN Enable interrupts
WAIT Wait for interrupts
ENDA ENT Entry for input done
EIN Enable interrupt
JAN $ Wait for line ocutput interrupts
DIN Disable interrupts
LAM 1 Setup automatic output or input character
STA :3
LDA IBUFA
STA : 4
LDA DONE
STA 6
ZAR
JMP GO Go do it
FINISH ENT Done!
SEL 7,7 Turn off all masks
LAM 20 Re-setup output and input instructions
STA :3
LDA OBUFA For next time
STA :4
LDA ZAR
STA :6
LDA IBUFA
STA 124
LAM 1
STA :23
IBUFA BAC IBUF-1
OBUFA BAC OBUF-1
ZAR ZAR
DONE JST FINISH
IBUF DATA $-$
OBUF 'SOURCE INPUT IS - "
DATA :8A8D CR and LF

Figure 6-9. Full-Duplex Auto-Input Under Interrupt
6-18




SEN

SEN

SEN

SEN

SEN

SEN

7,0

7,1

7,2

7,3

7,4

7,5

COMPUTER AUTOMATION, INC.

Output Word interrupt. Instruction must be executed after
SEL 17,5 or immediate Output EOB interrupt will occur.

ENABLE INPUT END-OF-BLOCK INTERRUPT. Either instruction
(with appropriate register = 1) will set appropriate mask to enable
generation of Input EOB interrupt upon reception of ECHO signal
from Processor, generated as a result of Input Word interrupt.
Instruction must be executed after SEA/ SEX 7,5 or an immediate
Input EOB interrupt will occur.

DISABLE OUTPUT WORD TRANSFER AND END-OF-BLOCK
INTERRUPTS. Disables both Qutput Word and EOB interrupts by
resetting corresponding interrupt enable masks.

DISABLE INPUT WORD TRANSFER AND END-OF-BLOCK
INTERRUPTS . Either instruction (with appropriate register = 1)
will disable both Input Word and EOB interrupts by resetting
corresponding interrupt enable masks.

SENSE TTY CONTROLLER INSTALLED. Tests for presence of TTY
controller on Option board. If controller is installed, next
sequential instruction is skipped. If controller is not installed,
next sequential instruction is executed. (Used by diagnostic

programs.) The buffer is full, next sequential instruction is skipped.

SENSE INPUT BUFFER FULL. Tests for Input buffer full condition.
If buffer is not full, next sequential instruction is executed.

SENSE OUTPUT BUFFER EMPTY. Tests for Output buffer empty
condition. If buffer is empty, next sequential instruction is skipped.
If buffer is not empty, next sequential instruction is executed.

SENSE OUTPUT WORD TRANSFER INTERRUPTS ENABLED. Tests
if Output Word interrupts are enabled. If they are, next sequential
instruction is skipped. If they are not, next sequential instruction
is executed.

SENSE CONTROLLER NOT BUSY. Tests busy state of controller.
If controller is not busy processing a character, next sequential
instruction is skipped. If controller is busy, next sequential
instruction is executed.

SENSE CLEAR TO SEND. Tests CTS line from a CRT or modem.
If signal is true, next sequential instruction is skipped. If signal
is false, next sequential instruction is executed. (This feature is
available only with EIA RS§232C/CCITT interface option.)

SENSE TTY MOTOR ON. Tests if TTY motor is on. If it is on, next
sequential instruction is skipped. If it is off, next sequential
instruction is executed.

6-19

SEN

SEN

OTZ

0Tz

0oTZ

OTA
oTX

WRA
WRX

AOT

7,6

7,7

7,6

7,6

7,7

7,7

- -3
oo

-3~
-

7,0

COMPUTER AUTOMATION. INC.

SENSE PARITY ERROR. Tests for occurrence of parity error during.
most recent input operation. If a parity error occurred, next
sequential instruction is skipped. If a parity error did not occur,
next sequential instruction is executed. (Requires prior strapping
of parity option at rear-edge connector.)

SENSE FULL DUPLEX MODE ENABLED. Tests if controller is in
Full-duplex mode. If it is, next sequential instruction is skipped.
If it is not, next sequential instruction is executed.

TURN MOTOR ON. Turns TTY motor on. Turning motor on
introduces a 600 ms delay for all controller Sense responses and
interrupts to allow motor to come up to speed. (This feature is only
available if TTY has been modified for remote motor on/off control.)

NOTE

Motor is unconditionally turned on whenever a Power-up
or System reset occurs.

CLEAR REQUEST TO SEND. When used with a CRT or modem, this
instruction turns off RTS signal. (This feature is available only
with EIA RS232C/CCITT interface option.)

TURN MOTOR OFF. Turns TTY motor off.

REQUEST TO SEND. When used with a CRT or modem, this
instruction turns on RTS signal. (This feature is available only
with EIA RS232C/CCITT interface option.)

OUTPUT A OR X REGISTER TO CONTROLLER. Unconditionally
transfers contents of LS byte of specified register to controller
Output buffer and causes character to be transmitted to terminal
device.

WRITE FROM A OR X REGISTER TO CONTROLLER. Tests for Output
buffer empty condition. If buffer is empty, contents of LS byte of
specified register are transferred to controller Output buffer and
subsequently transmitted to terminal device. If buffer is not empty,
instruction is continuously repeated until it becomes empty .

OUTPUT WORD FROM MEMORY TO CONTROLLER, AUTOMATICALLY .
Contents of LS byte of memory location addressed by updated AOT
address pointer are unconditionally transferred to controller Output
buffer and subsequently transmitted to terminal device. (Refer to
Auto 1/0 instructions in section 4.)

6-20




AOB

BOT

INA
INX

IBA
IBX

RDA
RDX

RBA
RBX

AIN

AIB

BIN

7,0

- -3 ~ -

o o

-~

-3 -3
oo

7,0

7,0

7,0

OUTPUT BYTE FROM MEMORY TO CONTROLLER, AUTOMATICALLY.
Contents of memory byte location addressed by updated AOB address
pointer are unconditionally transferred to controller Output buffer
and subsequently transmitted to terminal device. (Refer to Auto

I/0 instructions in section 4.)

OUTPUT BLOCK FROM MEMORY TO CONTROLLER. Tests for Output
buffer empty condition. When buffer is empty, contents of LS byte
of effective memory location are transferred to controller OQutput
buffer and subsequently transmitted to terminal device. Word count
is decremented by one. Instruction is repeated continuously until
word count is decremented to zero. (Refer to Block I/0 instructions
in section 4,)

INPUT WORD FROM CONTROLLER TO A OR X REGISTER.
Unconditionally transfers contents of controller Input buffer to LS
byte of specified register. MS byte of specified register is set to zero.

INPUT BYTE FROM CONTROLLER TO A OR X REGISTER.
Unconditionally transfers contents of controller Input buffer to LS
byte of specified register. MS byte of register is unaffected.

READ WORD FROM CONTROLLER TO A OR X REGISTER. Tests for
Input buffer full condition. If buffer is full, contents are transferred
to LS byte of specified register. MS byte of specified register is set
to zero. If buffer is not full, instruction is continuously repeated
until it becomes full.

READ BYTE FROM CONTROLLER TO A OR X REGISTER. Tests for
Input buffer full condition. If buffer is full, contents are transferred
to LS byte of specified register. MS byte of specified register is
unaffected. If buffer is not full, instruction is continuously repeated
until it becomes full.

INPUT WORD FROM CONTROLLER TO MEMORY, AUTOMATICALLY.
Unconditionally transfers contents of controller Input buffer to LS
byte of memory location addressed by updated AIN address pointer.
MS byte of memory location is set to zero. (Refer to Auto1/0
instruction in section 4.)

INPUT BYTE FROM CONTROLLER TO MEMORY, AUTOMATICALLY. -
Unconditionally transfers contents of controller Input buffer to
memory byte location addressed by updated AIB address pointer.
(Refer to Auto I/0 instructions in section 4.)

INPUT BLOCK FROM CONTROLLER TO MEMORY. Tests for Input
buffer full condition. When buffer is full, contents are transferred
to LS byte of effective memory location. MS byte of memory location
is set to zero and word count is decremented by one. Instruction is
repeated continuously until word count is decremented to zero.
(Refer to Block 1/0 instructions in section 4.)

6-21

COMPUTER AUTOMATION, INC. - —————

COMPUTER AUTOMATION, INC. ——y

6.4 REAL TIME CLOCK

The Real Time Clock (RTC) option provides a means to determine elapsed time and/or
creating a time-of-day clock, with software. The RTC keeps time by responding to
electrical pulses of a known frequency, such as the output of a crystal oscillator or the
input frequency of an ac power source. The standard configuration uses a 20 MHz
crystal oscillator as the basic timing source. The 20 MHz clock is applied to a counter
chain to produce 10 kHz, 1 kHz and 100 Hz clock sources (timing increments of 100 us,
1 ms and 10 ms, respectively). In addition, a 120 Hz clock source is available (100 Hz
when the computer is used with 50 Hz power source). The desired clock source is
selected by a jumper wire. An external timing source may be applied to the RTC option
if some source other than the crystal oscillator or twice the ac line frequency is desired.
This allows the use of almost any timing period.

6.4.1 Clock Source Selection

With no jumper installed, the RTC option operates from a built in 100 Hz timing source.
The user can select four other timing sources (10 kHz, 1kHz, twice the ac line
frequency (TTLF) or a TTL compatible external timing source).

The RTC option represents only one TTL load to the external timing source. The
external timing source must be a TTL compatible logic signal with rise and fall times
of less than 50 ns. With regard to duty cycle, the only requirement is that the signal
be ground true, with a minimum of 100 ns.

When the user desires to select an alternate timing source (other than the standard

100 Hz source), the 100 Hz clock source must be inhibited by grounding the INH-
input. Clock source selection can be accomplished at connector J1 using table 6-3.

Table 6-3. Clock Source Selection

CLOCK INH- JUMPER

SOURCE (pin 12) CONNECTIONS

100 Hz (standard) | OPEN none

1,000 Hz GND Pin 39 to pin 11

10,000 Hz GND Pin 40 to pin 11

TTLF GND Pin 1 to pin 11

EXTERNAL* GND User Timing source to pin 11

» e

*External timing source must be TTL/DTL compatible.

6.4.2 Discussion of Usage

If RTC interrupts are enabled, the RTC generates a Time interrupt to the Processor
each time a clock pulse is detected from the clock source. This interrupt is usually

6-22




COMPUTER AUTOMATION. INC. @

serviced by an IMS instruction at the interrupt location. Increment results of zero
cause the generation of an ECHO signal to the RTC, which in turn generates a Sync
interrupt to the Processor. The Sync interrupt is normally serviced by a JST

ir;struction to an interrupt subroutine. The RTC has been assigned a device address
of 8.

In the programming example shown in figure 6-10, an external device must be sampled
once a second, using a 10 ms clock source.

LABEL/
LOCATION INST OPERANDS COMMENTS
(Time)
: 0018 or IMS COUNT Increment Timing Counter
: 0118
(Sync)
: 001A or JST SYNC Jump and Store to Interrupt
:011A Subroutine, Disable Interrupts.
Initialization .
INIT LAM 100 Set Timing Count to -100.
STA COUNT
SEL 8,4 Initialize RTC and Clear
Unserviced Interrupt Requests.
SEL 8,2 Arm Sync-Allow Sync Interrupts
when ECHO is Received. -
SEL 8,0 Enable RTC-Allow Generation
q of Time and Sync Interrupts (Since

Sync is Armed).
Interrupt Subroutine

SYNC ENT Reserved Location for Storage

. of P Register

Save Contents of Registers, Status,

. etc. (see paragraph 5.3)

LAM 100 Reset Timing Counter to -100.

STA COUNT

EIN Enable Interrupts.

RTN SYNC Return to Mainline Program.
COUNT .DATA 0

Figure 6-10. RTC Interrupt Programming Example

6-23

COMPUTER AUTOMATION. INC. l ——

The timing counter COUNT becomes zero after being incremented 100 times, i.e.,
after 100 Time interrupts, each 10 ms apart. The RTC responds to the resulting ECHO
signal by generating a Sync interrupt which is serviced by the interrupt subroutine
SYNC. The timing counter COUNT is reset to -100 and the external device is sampled.

6.4.3 Summary

6.4.3.1 RTC Interrupt Locations

Time Interrupt location: :0018 (offset = :0118)
Sync Interrupt location: : 001A (offset = : 011A)

6.4.3.2 RTC Instructions

SEL 8,0 ENABLE RTC. Allows Time and Sync interrupts to be generated
(if Sync is armed).

SEL 8,2 ARM SYNC. Allows generation of Sync interrupts if RTC is enabled
and ECHO received.

SEL 8,3 CLEAR RTC INTERRUPTS. Resets both Time and Sync interrupt
requests. Does not disable or disarm interrupts, but instead
removes interrupt request history from RTC.

SEL - 8,4 INITIALIZE RTC. Disarms, disables, and clears interrupt requests.

SEL 8,7 DISARM SYNC. Prevents Sync interrupts from being generated
without disabling Time interrupts.

SEN 0,2 SENSE RTC INSTALLED. Tests if RTC option is installed on Option
board. If it is, next sequential instruction is skipped. If it is not,
next sequential instruction is executed. -

6.5 AUTOLOAD

6.5.1 Description

The Autoload option consists of a 256-word read-only memory (ROM) preprogrammed
with a binary loader and the necessary logic to execute the loader. The autoload
program is a complete binary program loader for TTY and high-speed paper tape
(not just a bootstrap) and includes appropriate input format and data error checking.

6-24 °




COMPUTER AUTOMATION, INC. |@ —

For bulk storage devices, Autoload provides a first record bootstrap. Autoload requires
the presence of the power fail/restart (PF/R) or automatic startup (ASU) processor
option.

Autoload uses main memory locations :30 through :3B for scratchpad. A program
occupying these addresses cannot be properly loaded using autoload.

The autoload sequence is initiated by depressing the console AUTO switch or, in
configurations not using a console, by momentarily grounding a pin on the option
board (see 6.5.7) . Upon execution, a binary program is automatically loaded
into computer main memory from any one of the following input devices:

Teletype paper tape reader
High-speed paper tape reader
Nine-track magnetic tape unit
Cassette tape

Moving head disk

OV b O B

If more than one magnetic tape, cassette or disk drive device is used in the system,
autoload will load from the device designated as device zero.

When selecting autoload from the console, the computer must be in the Run Enable mode
(STOP indicator off) to enable the AUTO switch. AUTO is interlocked with the RUN
switch so that Run mode is selected as autoload is initiated. A remote autoload command
(grounding a pin on the option board) can be initiated at any time.

The presence of the autoload option can be sensed using the sense instruction with
device address zero and function code zero. This instruction is used primarily
by diagnostic and executive programs. The sense instruction takes the following
form:

SEN 0,0 SENSE AUTOLOAD INSTALLED. Tests if autoload option is installed.
If so, next sequential instruction is skipped. If autoload is not in-
stalled, the next sequential instruction is executed.

6.5.2 Device and Mode Selection

The input device and load mode (absolute or relocatable) is selected at the console
sense register. In computer configurations not having a console, the sense register
and certain console switch functions can be duplicated by the use of jumpers on the
option board (secondary console); see paragraphs 6.6.3 and 6.6.4. A hex code entered
into the sense register selects the following device and load mode:

COMPUTER AUTOMATION, INC. '1 —_—

TTY HSPT MAG TAPE  CASSETTE DISK
Load Absolute :0 $1; 2 33 :4

Load Relocatable :8 :9 TA :B :C

If relocation is desired, the user enters the start address in the X register. If "load
and execute" is desired, the SENSE switch is set (ON); for "load only", the SENSE
switch must be reset (OFF).

6.5.3 Autoload Sequence

When autoload is initiated, the processor is placed in word mode, interrupts are disabled, |
and the power up sequence of the PF/R or ASU option generates a reset and starts the
computer running at location : 0000. Autoload ROM address space is : 0000 through

: 00FF. Autoload logic causes all instruction cycles to fetch instructions from ROM (main
memory disabled) and all data cycles to access memory. The first instruction is fetched
from ROM location : 0000. As the loader is executed, the program being read from the
input device is treated as data and stored in memory.

6.5.4 Termination of Autoload

The action performed at the end of a successful load is dependent on the type of input
device used and the position of the SENSE switch.

6.5.4.1 TTY and High-Speed Paper Tape Reader

Control is transferred to the start address of the loaded program if (1) the SENSE
switch is set, and (2) a valid start address was on the tape. If the SENSE switch is
reset or if no valid start address was on the tape, autoload halts with : 0800 in the I
register with the X register containing the next location available for loading. The
start address in the A register will be negative (: FFFF) if a valid start address was
not present.

6.5.4.2 Magnetic Tape, Cassette and Disk

Control is transferred to the start address of the loaded program if the SENSE switch
was set. If the SENSE switch was reset, autoload halts with : 0800 in the I register.

6-26




COMPUTER AUTOMATION. INC.

6.5.5 Error Detection

The standard autoload program detects checksum and format errors on paper tape
devices. If an invalid checksum or format error is detected, the program halts with
: 0801 in the I register. The program may be restarted with the depression of AUTO.
If an error occurs while attempting to load from paper tape, it is possible to backup
the tape one record and press AUTO to continue. However, it is recommended that
loads exhibiting errors be completely repeated.

If an error occurs while attempting to load from magnetic tape, cassette or disk,
autoload will halt with : 0801 in the I register, and may be retried by pressing AUTO.

6.5.6 Accessing Autoload ROM

The autoload ROM normally contains 256 words, but can be expanded to 512 words
for special autoload sequences or for use as a high-speed read-only memory. To
use it as a normal read-only memory or to read out the contents of ROM, the SEL
0,1 instruction is used. When enabled under program control, the ROM occupies
addresses : 7800 through : 7FFF, modulo 512 (: 7800 through : T9FF, : TA00, : 7BFF,
etc.). Any memory access in this range is automatically disabled when autoload
ROM is enabled.

An 1/0 instruction, SEL 0,0 is used to disable the autoload ROM. When disabling
ROM, one additional access to ROM is required before the ROM is actually disabled.
This allows a program resident in ROM to turn itself off and then jump to main memory.

A diagnostic feature allows verification of the autoload sequence. This is accomplished
by setting the sense register to : F (all bits on), programming a halt at location 31,
then initiating autoload. If autoload is sequencing properly, the program will exit

to location :31 and halt.

6.5.7 Remote Autoload Initiation

A momentary grounding (i.e., a switch closure to ground) of pin 10 on connector

J1 on the option card, or pins E or 14 on connector J2, causes the system to reset

and an autoload program to be initiated. The signal must be ground-true for a minimum
of 100 ns. This feature should be used only in conjunction with the secondary console
sense register (paragraph 6.6.3).

COMPUTER AUTOMATION. INC. e

6.5.8 Automatic Autoload (Upon restoration of power)

An autoload sequence can be automatically initiated upon restoration of power by
jumpering J1 pins 20 (RMDIS~) to J1 pin 5 (PFAL-). This feature is-particularly

useful when using volatile memories without battery backup power in unattended
operation. With this feature, memory is automaticelly reloaded with an operational
program from a peripheral storage device after power is restored. This feature should
be used only in conjunction with the secondary console sense register (paragraph 6.6.3).

6.5.9 Autoload Operation Summary (Console Operation)

Following is a summary of the procedures required to load programs into memory
using autoload. For details of console operation, see section 3.

a) Enable console.

b) Press STOP to halt the computer (STOP indicator on).

¢) Press RESET

d) If relocation desired, enter start address into X register.

e) Enter proper hex code for device and load mode into
sense register.

f) 1f load and execute desired, set SENSE switch (on); if load
and halt desired, reset SENSE switch (off).

g) Ready the load device.

h) Press STOP to enable RUN mode (STOP indicator off) .

i) Press AUTO.

6.6 BASIC VARIABLES PACKAGE
The Basic Variables package permits the user to operate high priority (Processor)

interrupts independent of EIN/DIN control, offset interrupts, extend 1/0 transfer
timing, and perform certain console functions in the absence of a Console.

6.6.1 Independent Processor Interrupt Operation

In normal operation, the Power Fail, Console and Trap interrupts (referred to as,
Processor generated interrupts) will not be recognized by the Processor if ‘interx‘(ipts
are not enabled (DIN instruction has disabled recognition of ALL interrupts). The EIN
instruction must be executed before any interrupts can be processed.

By grounding the OPT- signal (J1 pin 35), the Processor generated interrupts can
obtain immediate recognition by the Processor when they are enabled.

With J1-35 grounded, the PFE and PFD instructions control the Power Fail/Restart
interrupt while the CIE and CID instructions control Console interrupts. There are
no control instructions for a Trap interrupt other than the TRP instruction itself.




COMPUTER AUTOMATION, INC.

6.6.2 Interrupt Offset

All interrupts (except Power-up) generated within the Processor and the Processor
Option board may be relocated (offset) from the scratchpad area of Memory by : 100
locations to allow for more efficient utilization of the scratchpad area.

Two types of offset are available on connector J1. The high priority Processor inter-
rupts (Power Fail, Console, and Trap) and the high priority user generated interrupts
(IL1 and IL2) can be offset by grounding the OFST - signal (J1 pin 4). Likewise, the
low priority Teletype/CRT controller and Real Time Clock option interrupts can be
offset by grounding the MAI - signal (J1 pin 6).

6.6.3 Secondary Console Sense Register

The Basic Variables package contains four jumpers which permit the user to simulate
the Console Sense register and develop a Console Sense word in the absence of a
Console. The jumper inputs are DS00- (J1 pin 34), DS01- (J1 pin 33), DS02- (J1
pin 36) and DS03 (J1 pin 31). DS00- is the least significant bit of the simulated
register, while DS03- is the most significant bit. Grounding a particular jumper
input introduces a logic 1 into the corresponding bit position of the Console Sense
word. A logic 0 is introduced when a given input is left open.

The entire simulated register is enabled by grounding the ENDSW- signal which is
available at J1 pin 28. Note that all control logic required to respond to the ISA

(: 5801) and ISX (: 5A01) instructions is also provided with this feature. This feature
cannot be used when a Console is installed.

6.6.4 Secondary Console Switch Functions

Secondary console SENSE, RESET and INT switch signals which duplicate the functions
of the Console are available to the user. The SSW- signal (J1 pin 2) duplicates the
SENSE switch, RST- (J1 pin 37) duplicates the RESET switch and CINT- (J1 pin 38
and J2 pins F and 13) duplicates the INT switch., These switch functions are generated
by taking the input pin to ground (momentarily). RST must be ground-true a
minimum of 5 us. SSW- must remain at ground when the SENSE switch is active.
These signals are collector-ORed with the corresponding console signals.

6.6.5 I/0 Timing Extension

The Basic Variables package features an I/0 stretch capability which permits the user
to slow down the I/O transfer timing when driving the Maxi-Bus through multiple
expansion chassis or over long distances. Four strap connections (STR1, STR2,
STR3 and STR4) permit the user to specify 16 different increments of stretch. The
LSI-1 uses stretch increments of 200 ns while the LSI-2 has stretch increments of

100 ns. Based on these increments, the LSI-1 stretch can range from 0 to 3000 ns
while the LSI-2 stretch can range from 0 to 1500 ns.

6-29

COMPUTER AUTOMATION, INC. I —_—

Note that whenever any stretch is inserted, all 1/0 timing throughout the system is
slowed down. This can have an adverse effect on speed critical 1/0 devices and in
general reduces processor throughput. The stretch strapping scheme for both the
LSI-1 and LSI-2 is shown in table 6-4. Ground is available on pins 23 through 26

of connector J1.

Table 6-4. 1/0 Stretch Selection

STRETCH ADDITION (Nsec) STRAP CONFIGURATION
STR4 STR3 STR2 STR1
LSI-1 LSI-2 (J1-44) | (J1-43) (J1-42) | (J1-41)
0 0 OPEN OPEN OPEN OPEN
200 100 OPEN OPEN OPEN GND
400 200 OPEN OPEN GND OPEN
600 300 OPEN OPEN GND GND
800 400 OPEN GND OPEN OPEN
1000 500 OPEN GND OPEN GND
1200 600 OPEN | GND GND OPEN
1400 700 OPEN GND GND GND
1600 800 GND OPEN OPEN OPEN
1800 900 GND OPEN OPEN GND
2000 1000 GND OPEN GND OPEN
2200 1100 GND OPEN GND GND
2400 1200 GND GND OPEN OPEN
2600 1300 GND GND OPEN GND
2800 1400 : GND GND GND OPEN
3000 1500 GND GND GND GND

6.7 POWER FAIL/RESTART

6.7.1 General

Power Fail/Restart (PFR) is an optional feature of the ALPHA LSI computer. It allows the
computer to operate from unreliable ac power sources without the requirement of

human monitors. A low power condition or a temporary power outage is detected in

time for the operating program to prepare for the power loss. When power returns to
normal, the computer is automatically restarted without loss of data or operating
position. Thus, unattended operation is possible.




COMPUTER AUTOMATION, INC. |ﬂ

6.7.2 Power Fail

When a power failure is detected, a Power Fail interrupt is generated to the Processor.
If the Power Fail interrupt is enabled, the Processor is interrupted to a reserved
location in Memory (location : 001C or : 011C if offset) . The Processor executes the
instruction (usually a JST to a software power down routine) at that location. The
Processor has 0.9 ms to complete the power down routine, once it is started, before

the PFR option halts the computer and protects Memory from transient power conditions.

6.7.3 Restart

When PFR detects power restoration to an acceptable level, a power up sequence is
started. PFR re-enables Memory, sets the P register to : 0000, and generates a Run
signal to the computer. The computer then executes the instruction (normally a JMP
to a software power up routine) at location : 0000. The computer always undergoes
this sequence when power is applied. The software power up routine must be com-
pleted within 0.9 milliseconds to allow enough time to process a Power Fail interrupt
if one should occur immediately after power up.

CAUTION

When the Power Fail/Restart option is installed,
the computer will start running at location : 0000
when power is applied whether the computer was
running or not (i.e., independent of Console
getting) prior to removal of power. To avoid
false starts, it is customary for the power down
subroutine to save a flag indicating that the com-
puter was in fact running before power failed.

6.7.4 Interrupt Control Option

A hardware wiring option may place the Power Fail interrupt outside EIN/DIN control.
Under this option, it is necessary to execute the PFE or PFD instructions to enable or
disable the Power Fail interrupt. Without the option, the EIN or DIN instructions must .
be executed and PFE and PFD have no effect.

6.7.5 Programming Examples

Figure 6-11 shows examples of simple Power Fail/Restart software routines.

In these examples, the contents of the A and X registers, the computer status and the
mainline program location at the time of the Power Fail interrupt are saved during
the power down sequence and restored during the power up sequence. Note that,

6-31

COMPUTER AUTOMATION, INC. El:

the Power Fail interrupt is outside EIN/DIN control in this example. If t};e Power Fail
interrupt were inside EIN/DIN control, the power up routine would not have to include a
PFE instruction and the power down routine would not have to include a PFD instruction.

LABEL/

LOCATION INST OPERANDS COMMENTS

: 0000 JMP upP Power Up Interrupt Location. Contains
Unconditional Jump to Power Up

. Subroutine.
Interrupt Location

: 001C or JsT DQWN Power Down Interrupt Location.

:011C Contains a Jump and Store to Power
Down Subroutine. Using JST Auto-
matically Saves Contents of P Register
and Disables Interrupts.

DOWN ENT Reserved Location for Storage of P
Register when JST Instruction at Power
Down Interrupt Location is Executed.

PFD Disable Further Power Fail interrupts.
SIN 1 Inhibit Byte Mode if Set.
STA ASAVE Save A Register,
SIA Read Computer Status Word to A
Register, Set Word Mode, and Reset
OV Indicator.
STA STATUS Save Computer Status Word.
-
ICA Input Console Data Register to A
Register
STA CSAVE Save Contents of Console Data Register.
STX XSAVE Save X Register.
MS PSTP Save a Flag Indicating Computer Was
Stopped by a Power Failure.
WAIT Wait for Power Down to Complete.
SMP %

up ZAR JMP Instruction at Power Up Interrupt

Location Enters Here.

Figure 6-11. Power Fail/lgeg;art Software Routines




COMPUTER AUTOMATION, INC. —_—

LABEL INST OPERANDS COMMENTS

EMA PSTP Check Flag to See if Computer Was
Stopped By a Power Failure. Reset
Flag.

JAN $+2

HLT No - Do Not Restart.

LDX XSAVE Restore X Register.

LDA CSAVE Restore Contents of Console Data

OCA Register.

LDA STATUS Load Computer Status into A Register

then set Computer Status (Sense
Switch, Data Switches, OV Indicator
and Address Mode).

SIN 5 Inhibit Byte Mode if Set.

SOA

LDA ASAVE Restore A Register.

PFE Enable Power Fail.

EIN Enable Interrupts.

JMP *DOWN Restart Main Program by Executing

an Indirect Jump to Location Specified,
by Saved Contents of P Register.

ASAVE DATA 0 A Register Save Location.

CSAVE DATA 0 Console Register Save Location.
XSAVE DATA O X Register Save Location.

STATUS DATA 0 Computer Status Word Save Location.
PSTP DATA 0 Flag Indicating Processor Was

By a Power Failure,

Figure 6-11. Power Fail/Restart Software Routines (Continued)

6-33

COMPUTER AUTOMATION, INC. I

6.8 AUTOMATIC START-UP (ASU)

Automatic Start-up is an optional feature that, like PFR, automatically ‘starts the pro-
cessor after a power failure. It is for use in applications where it is not required to
save the processor conditions as they were prior to power failure. Operation is simi-
lar to that of PFR except that a power fail interrupt is not generated.

6.8.1 Restart

When ASU detects power restoration to an acceptable level, a power up sequence is
started. ASU re-enables Memory, sets the P register to : 0000, and generates a Run
signal to the computer. The computer then executes the instruction (normally a JMP
to a software power-up routine) at location : 0000. The computer always undergoes
this sequence when power is applied. The software power-up routine must be com-
pleted within 0.9 milliseconds to allow enough time to process a power fail interrupt
if one should occur immediately after power up.

When the ASU option is installed, the computer

will start running at location : 0000 when power

is applied whether the computer was running or
not (i.e., independent of Console setting) prior
to removal of power.




A
-

COMPUTER AUTOMATION, INC.

Section 7

MEMORY INTERLEAVING AND BANKING

7.1 INTRODUCTION

All LSI Series computers include provisions for Memory Interleaving and Memory Banking.

7.1.1 Memory Interleaving

Memory Interleaving allows memory modules to be paired so that even and odd addresses
are assigned in different memory modules. Since a relatively high percentage of memory
accesses are normally sequential, this feature allows alternate memory accesses to ad-
dress different memory modules. The result of alternate module accesses is that the
asynchronous Maxi~Bus can support a much higher data rate than would be possible
without alternate accesses. DMA transfer rates for both LSI-1 and LSI-2, and execution
times for LSI-2, can be improved substantially by use of interleaving. Execution

time for LSI-1 is limited by computer speed rather than memory access time. Therefore,
execution time in LSI-1 is not affected by interleaving.

7.1.2 Memory Banking

Memory Banking allows an optional Memory Bank controller to switch memory modules
off and on so that up to 256K (K=1024) words of Memory can be used. Each memory
module is individually controllable. A maximum of 32K words can be enabled at any
given time. Switching between memory modules occurs in a single instruction time.

7.2 INTERCONNECTIONS

Each memory module includes a 16-pin integrated circuit socket(memory control connector)
near the rear edge of the board for jumpering interleaving controls and for connection to
an optional Memory Bank controller. Jumpering and cabling is done by using a standard
16-pin socket header. Pin-outs for the memory control connector are given in figure 7-1.
Four signals are used to control interleaving and banking. Memory modules operate in

their normal mode when no connection is made to any of the four control signals.

7.2.1 Memory Interleaving

When pin 5 (INTER-) is jumpered to pin 12 (GND), the memory module is set up to inter-
leave and store even addresses only. When pin 6 (ODD-) is jumpered to pin 11 (GND)
along with the pin 12 jumper, the memory module is set up to interleave and store.odd

=1

COMPUTER AUTOMATION, INC. | —_—

addresses only. Memory modules are always interleaved in pairs--one jumpered for
even (pin 5 to pin 12) and one for odd (pin 5 to pin 12 and pin 6 to pin 11).

7.2.2 Memory Banking

Two enable signals aHow the Memory Bank controller to switch memory modules on and

off. The Memory Bank controller uses either high (+5 Volts) true enabling or low (0 Volts)
true enabling, depending upon the particular system configuration. For low true enabling,
the Memory Bank controller bank enable signal is connected to pin 7 (EN LO) on the memory
control connector, and pin 8 (EN HI) is strapped to pin 9 (GND). For high true enabling
the Memory Bank controller bank enable signal is connected to pin 8 (EN HI). Pins 9 and
10 may be used as a ground return when cabling to the Memory Bank controller.

o — 16 r— .

e B 15 frem »

* emend 3 14 Preman o

e 4 13—
INTER— e——eed 5 12 = GRD
ODD— ==dq 6 |- 11 f=== GRD
EN LO— e 7 10 === GRD
ENHI— eued g 9 jp—= GRD

*Reserved — No Connection Allowed

Figure 7-1. Memory Control Connector

7-2




COMPUTER AUTOMATION. INC.

7.3 USAGE AND INSTALLATION

The following paragraphs describe the usage and installation rules for Memory Inter-
leaving and Memory Banking.

7.3.1 Memory Interleaving (Figure 7-2)

Memory modules are always interleaved in pairs of equal capacity or equal groups.

When interleaving two equal sized modules, e.g., two 8K memory modules, one is strap-
ped for even interleaving and one is strapped for odd interleaving. The two modules

that are to be interleaved together must be installed in "adjacent" card slots with the

odd strapped module closest to the Processor. Memories are considered "adjacent" as
long as there is no intervening memory module and as long as the MBIN/MBOT, DPIN/
DPOT and PRIN/PROT chains are properly chained through any intervening Input/Output
or DMA controllers. (The last slot of the main chassis or expansion chassis is considered
"adjacent" to the first slot in the next expansion chassis.)

if more than two equal sized memory modules are to be interleaved, they are treated in
pairs with each pair strapped for one module interleaved odd and one module interleaved
even. Each pair of modules is then installed with the odd strapped module first in each
pair. If there is not an even number of equal sized memory modules to strap in pairs,
the left over module(s) may be installed in any position as long as paired groups are

not split. See figure 7-2 for examples of memory module installation.

Memory modules of unequal sizes may be interleaved together only when two or more
memory modules are grouped together as the even half of a pair, and their total capacity
is exactly equal to the capacity of the single module used as the odd half of the pair. For
example, one 8K, one 4K and two 2K modules may be interleaved together if the 4K and
two 2K modules are all strapped for even interleaving and paired as a group with the 8K
module (see figure 7-2).

7.3.2 Memory Banking (Figure 7-3)

Memory Banking operation, memory installation rules, and cabling rules are discussed in
the following paragraphs.

7.3.2.1 Operation

The operation of Memory Banking can best be understood by considering memory modules
to be organized in a two dimensional matrix as shown in figure 7-3. Normally memory
modules occupy unique address spans within the computer's total addressing range of
32K words. Memory Banking allows multiple memory modules to occupy the same ad-
dress span at different times. A maximum of 32 memory modules may be attached to a
Processor. Modules are organized as a matrix of Primary modules and Alternate mod-
ules. A maximum of 32K words of Memory may be assigned as Primary modules. The

Two 8K Modules

- Processor

8K ODD

8K EVEN

Four 4K Moduies

Processor

4K ODD

4K EVEN

4K ODD

4K EVEN

Three 8K Modules

Processor

8K ODD

8K EVEN

8K NORMAL

One 8K, one 4K, two 2K Modules

Processor

8K ODD

4K EVEN

2K EVEN

2K EVEN

OR

COMPUTER AUTOMATION, INC.

%

Processor

8K NORMAL

8K ODD

8K EVEN

Figure 7-2. Interleaved Memory Installation




COMPUTER AUTOMATION, INC. - COMPUTER AUTOMATION. INC. e

remaining memory modules are Alternate modules. At power up time, and following a

system RESET or Memory Bank controller initialization, the Primary Modules are all en-
abled and the Alternate modules are all disabled. The enabled modules can always be °
operated as though they were the only modules installed.

ADDRESS

4K 4K
In the example of figure 7-3, there are four Primary modules, two 4K's and two 8K's. ano 0od

Following initialization, the computer therefore operates as a normal 24K computer using L A1 POO
these modules. The two 4K modules are interleaved in this example and designated as
Primary modules 00 odd and 00 even (P00 ODD and P00 EVEN). The two 8K modules are 4K 4K
not interleaved in the example and are designated Primary modules 10 and 20 (P10 and EVEN EVEN ‘J
20 8

P20). There are seven Alternate modules in this example. Each Alternate module can be
assigned as the Alternate module for only one Primary module. For example, modules
All, Al12 or Al3 are the first, second and third alternates for Primary module 10. Under
software control, the Memory Bank controller can disable P10 and enable Al1, Al12 or
Al3. Thus, a total of 32K words of Memory is available between addresses 8K and 16K,
but only 8K of the 32K is available at any given time.

A02 A01

In addition to providing for memory expansion beyond 32K, Memory Banking provides

a rapid context switching capability. For example, if module P20 contains an operating
program which uses four sets of data (i.e., four users) at different times, modules P10,
All, Al2 and Al3 could each contain one set of data. Now the operating program can
switch between data sets (users) in a single instruction. Detailed programming infor-
mation is provided with the Memory Banking controller. ®

A13 A12 All P10 16K

A22
7.3.2.2 Memory Installation SE— - —

When planning an installation using Memory Banking, a plan drawing similar to figure e
7-3 should be prepared and each physical module assigned to a Primary module or Al-

ternate module position according to the following rules: = A2l

Iz

24K

1. There may be, at most, 32K words of Primary modules.

2. Primary module capacities and corresponding Alternate module
capacities must be identical (e.g., P10, Al1l, A12 and A13) or hae— e - I
Primary modules may be grouped, the sum of which has the same
capacity as the corresponding Alternate module (e.g., P00 ODD plus
P00 EVEN matches A02).

3. There may not be an Alternate module for which there is no A —

corresponding Primary module. v
ALTERNATE MODULES

PRIMARY
MODULES

4. A Primary module cannot be paired with an Alternate module of
a different capacity, or with a group of smaller capacity modules,
even if the smaller alternates sum to the same capacity as the
Primary module. An exception is allowed for single alternates
smaller than the primary, but only for the last primary (e.g., A22).

Figure 7-3. Memory Banking Example
7-5 7-6




COMPUTER AUTOMATION. INC. —_—

5. When interleaved modules are banked, they must be banked in pairs
(e.g., P00 consists of two interleaved 4K modules). Modules to be
banked may be interleaved and an interleaved pair may be banked
with a single module whose size is equal to the interleaved pair
(e.g., A0l and P00 are composed of two interleaved 4K modules
while A02 is a single 8K module).

6. After module positions are assigned, they must be installed in
the following order beginning at the Processor:

a. All alternates to Primary module 00 (the order of the
alternates is immaterial).

b. Primary Module 00.

c¢. Remaining alternates and primaries with each set of al-
ternates preceding their primary.

7. Any interleaved modules must obey the rules for interleaving
given in paragraph 7.3.1.
7.3.2.3 Cabling
After modules are installed, they are cabled to the Memory Bank controller by connect-
ing either the EN HI or EN LO memory control connector pin of each memory module to a
control output of the Memory Bank controller. The following rules apply to cabling:
1. All Primary modules use EN LO.

2. All Alternate modules use EN HI.

3. Each interleaved module pair must have the appropriate EN lines
connected together to a single Memory Bank controller output.

Cabling in this fashion guarantees that the Primary modules are selected at power up
and initialization time since the Memory Bank controller resets with all outputs low.

-7




COMPUTER AUTOMATION, INC.

Section 8

MAXI-BUS CHARACTERISTICS

8.1 INTRODUCTION

This section describes the signals and electrical characteristics of the NAKED MINI LSI
Computer Maxi-Bus. Additionally, the distribution of the Maxi-Bus and the ALPHA LSI
computer motherboard are discussed.

The Maxi-~Bus consists of 58 lines (plus power and ground) that are used to convey
address, data, and control information to or from the Processor, Memory, DMA controllers,
and 1/0 controllers (see figure 8-1).

i Expension
Processor Maxi-Bus Expans
Other 1/O:
Memory High Speed Programmed 1/0
1K to 266K words Direct Memory Block 1/0
- Access (DMA) Direct Memory
Channel {DMC}

Figure 8-1. Maxi-Bus Configuration

The Maxi-Bus provides a common transfer path for all system modules. Maxi-Bus
transfers involving Memory are asynchronous wherein the amount of time that signals
from a source device spend on the Maxi-Bus depends upon the access and cycle time of
the addressed memory module and not upon a fixed clock interval. All Maxi-Bus
operations between the Processor and I/O controllers are synchronous and therefore
do not require timing generation within 1/0 controllers.

All address and data signals, as well as memory control signals from a source device,
must be driven by 32 mA tri-state drivers. Certain control signals that can be driven
simultaneously by more than one device must use 32 mA open-collector drivers. Standard
TTL receivers can be used by all devices. Only one receiver per line per module is
permitted and the maximum receiver loading must not exceed 1.8 mA per module.

Address and data lines are shared by Memory and 1/0 devices. During communication
intervals involving Memory, all bus drivers on these lines must be tri-state. During
communication intervals involving standard 1/0 devices, bus drivers may be either tri-
state or open collector.

COMPUTER AUTOMATION. INC. EE

8.2 MAXI-BUS COMPONENTS (Figure 8-2)

The ALPHA LSI computer Maxi-Bus consists of three major components: the Address
bus (A), the Data bus (D), and the Control bus (C).

8.2.1 Address Bug (A)

The Address bus consists of 16 lines (AB00- through AB15-)that are time shared by
the Processor and DMA controllers.

The Processor and DMA controllers use the 15 bits of the A bus to address memory

locations. The 16th A bus bit (MSB) is used to specify word or byte memory operation.

During 1/0 operations, the Processor uses the low order 8-bits of the A bus to convey
device address and function code information to I/0 devices. The high order 8-bits
contain random information and are not normally used. The format of the low order
8-bits during I/0 operations is as follows:

AB07- Device Address bit 4

AB06~ Device Address bit 3

AB05- Device Address bit 2 } P Field
AB04- Device Address bit 1

AB03- Device Address bit 0

AB02- Function Code bit 2

ABO01- Function Code bit 1 F Field .
AB00- Function Code bit 0

NOTE

The eight lines devoted to the device address and function code are
arbitrarily divided into groups of five and three, respectively. They can be
divided differently to increase or decrease the number of device addresses
and function codes. For example, six lines can be devoted to the device
address and only two to the function code. This would increase the number
of device addresses to 64 and reduce the number of function codes to 4.

Throughout the remainder of this design guide, all examples which involve 1/0
addresses assume the arbitrary five and three division.

8.2.2 Data Bus (D

The D bus consists of 16 bidirectional lines (DB00~ through DB15-) that are time
shared by the Processor, Memory, and 1/0 Interface controllers.

The Processor uses the D bus to read data from or write data into Memory. Likewise,
the Processor uses the D bus to transfer data to or from an I/O controller.

A DMA controller uses the D bus to read data from or write data into Memory.
8-2




COMPUTER AUTOMATION, INC. = - COMPUTER AUTOMATION, INC. —_—

1/0 controllers use the D bus to convey an interrupt address to the Processor during

interrupt processing.

8.2.3 Control Bus (C)

< A BUS (16 LINES) > The C bus consists of 27 unidirectional control lines which define the specific action
that an interface device is to perform. Nineteen lines are outputs from the Processor
to Memory and 1/0 controllers while eight lines are inputs from either Memory or 1/0
controllers to the Processor. The 27 C bus lines are subdivided into four broad
categories: 1/0 command, utility signals, interrupt signals, and DMA signals. Except
D BUS (16 LINES) > as noted below, all Processor generated or received signals may also be generated or
received by DMA controllers during DMA operations.

7

r o »
= »
ouT- 4 8.2.3.1 1/0 Commands
>
PLSE—
RST— There are three signals in this category: EXEC-, IN- and OUT-. These signals define
CLK— = the type of I/0 operation in process.
TYPI— =
MDIS— f EXEC- Execute. Processor generated signal that indicates the current instruction
PROCESSOR SER— = MEMORY- is a Select or Select and Present instruction. EXEC- is used typically to
MOTHER- t¢———=———— 1/0 set or reset controls in the addressed 1/0 controller.
BOARD < IUR- MODULES L
ek » IN- Input. Processor generated signal that indicates the current instruction
ERIN is an Input instruction and that the addressed 1/0 controller should place
& PROT— input data on the D bus.
K C BUS 1uA- » 27 LINES
IAR- » | OUT- Output. Processor generated signal that indicates the current instruction is
ECHO— an Output instruction and that the Processor has placed output data on the
< IL1- D bus for the addressed 1/0 controller to accept.
& IL2—
DPIN— >
: pPOT— - 8.2.3.2 Utility Signals
P STOP—
- CK— There are five signals in this category: PLSE-, RST-, CLK-, TYP1-, and SER-.
PED_
LB > PLSE- Pulse. Processor generated signal which is used as a strobe pulse to load

T registers during an output transfer, set or reset controls during a Select
_Eg—__’ - instruction, reset data transfer controls during an input transfer, and to
> reset Interrupt Stimulus Store controls upon recognition of an interrupt.

L
. ——MACK—_____ -

RST-  System Reset. Processor or Console generated signal which is used to reset
all controls in ALL interfaces to a known starting configuraton. RST- is

generated by the Processor in response to a power failure condition, an
. Autoload initiation sequence, or when the Console RESET switch is
Figure 8-2. Maxi-Bus Components depressed. Note - not driven by DMA controllers.

8-3 8-4




COMPUTER AUTOMATION. INC. Elé

CLK- Clock. Processor generated, 1 megahertz, free-running square wave signal
that may be used as a timing reference by 1/0 controllers. It is not synch-
ronized to Processor operations. Note that only the Processor generates
this signal. DMA controllers may not generate this signal.

TYP1- Type 1 Processor Installed. This signal is ground-true when the LSI-1
Processor is installed and open when the LSI-2 Processor is installed. This
signal permits DMA controllers to determine which Processor is installed
and perform hog mode transfers if necessary. The TYP1- signal is strung
through the "200" side of the motherboard only (see paragraph 6-4).

SER-  Sense Response. Signal generated by addressed I/O controller which, when
true, indicates a true response to an interrogation by the Processor of some
function associated with the controller or device it controls. Interrogation
is made when a Sense or Conditional I/0 instruction is issued.

MDIS- Memory Disable. Processor generated signal which is active during power
up and power down sequences to assure no spurious memory cycles will
occur during power transitions.

8.2.3.3 Interrupt Signals

There are nine signals associated with interrupt generation and processing. These
signals are: IUR-, IOCL-, PRIN-, PROT-, IUA-, IAR~, ECHO-, IL1-, and IL2.

IUR- Interrupt Request. Multiplexed interrupt request line which multiple 1/0
controllers use to request interrupt service. Interrupts requested via this
line are recognized on a priority basis. If two or more interfaces request
interrupt service at the same time, recognition is given to the highest
priority interface via the priority string (PRIN- and PROT-).

IOCL- 1/0 Clock. Processor generated signal which is used by 1/0 controllers to
synchronize IUR interrupt requests into the Processor. IOCL has a minimum
duration of 150 ns; however, the duration varies with internal Processor
operation. When an interrupt is recognized by the Processor, IOCL is
inhibited to prevent the generation of additional IUR interrupt requests.
IOCL remains inhibited until the Processor completes execution of the
interrupt instruction. DMA controllers may not generate this signal.

PRIN-  Priority In and Priority Out. PRIN- and PROT- form an interrupt priority

and chain which is strung serially through all 1/0 controllers and memory mod-

PROT- ules. PRIN- is the name given to the priority chain where it enters an interface.}
If low, it allows the interface to generate interrupts. Each interface generates
a PROT- signal to indicate that neither it nor other upstream devices are
generating an interrupt. The PROT- signal from each I/0 controller is the
PRIN- signal for the next downstream controller.

8-5

I0A-

IAR-

ECHO-

IL1-
and
IL2-

COMPUTER AUTOMATION, INC.

Interrupt Acknbwledge . Processor generated signal which goes true upon
recognition of any interrupt and remains true during execution of the interrupt
instruction. DMA controllers may not generate this signal.

Interrupt Address Request. Processor generated signal which is used to
request an interrupt address from an I/0 controller in response to an interrupt
request. ' DMA controllers may not generate this signal.

Echo. Signal generated by the Processor when an Auto I/0 instruction has
transferred all data, or by an IMS instruction when the count overflows.
ECHO- is typically used by the 1/0 controller to request an interrupt. This
interrupt vectors to a user-determined location in Memory which normally
contains a JST instruction to a subroutine. The subroutine performs the
necessary housekeeping associated with an End-of-Block or elapsed count
operation. DMA controllers may not generate this signal.

Interrupt Lines 1 and 2. I/0 controller generated high priority interrupt
request lines which interrupt to locations : 0002 and : 0006, respectively.
They are higher priority than the IUR line. IL1 has priority over IL2. IL1
and IL2 do not require interrupt vectoring by the interface as does IUR.

8.2.3.4 DMA Signals

Nine signals are associated with DMA control and processing. These signals are: DPIN-,
DPOT-, STOP-, SACK-, PFD-, SLB-, MST-, RD- and MACK-.

DPIN-
and .
DPOT-

STOP-

SACK-

PFD-

DMA Priority In and DMA Priority Out. DPIN and DPOT form a DMA priority
chain which is strung serially through all DMA controllers and memory
modules. DPIN- is the name given to the priority chain where it enters a
DMA controller. If low, it allows the controller to access Memory. Each
controller generates a DPOT- signal to indicate that neither it nor other
upstream controllers are communicating with Memory. The DPOT- signal
from each controller is the DPIN- signal for the next downstream controller.
The DPIN- and DPOT- signals are strung through the "200" side of the
motherboard only (see paragraph 8.7).

Stop Processor. DMA controller generated signal which stops the Processor
upon completion of its current machine cycle to permit the DMA controller to
gain control of the I/0 bus. STOP- may be generated at any time and may
remain active for any length of time.

Stop Acknowledge. Processor generated signal which informs DMA controllers
that the Processor has relinquished control of the I/0 bus to the DMA
controllers. SACK- will remain true until STOP- is removed.

Power Failure Detected. Power supply generated signal which, when active,
forces any DMA operations to terminate in order to permit the Processor to
shut down the system in an orderly manner.

8-6




COMPUTER AUTOMATION, INC.

SLB-  Select Least Significant Byte. Processor or DMA controller generated signal
which is used for Byte Mode memory accesses. When SLB- is low, the least
significant byte (bits 0 through 7) of the addressed memory word is accessed.
When SLB- is high, the most significant byte (bits 8 through 15) of the
addressed memory word is accessed. SLB- is used to disable Memory during
Autoload operations by forcing it low while AB15~ is high (Word mode).

MST- Memory Start. Processor or DMA controller generated signal which is used to
initiate a memory cycle.

RD- Read Mode. Processor or DMA controller generated signal which, when low,
indicates the current memory cycle is a Read/Restore cycle. When high, RD-
indicates that the current memory cycle is a Clear/Write cycle. °

MACK- Memory Acknowledge. Memory generated signal that is used to inform the
Processor or DMA controller that data is available on the Data bus during a
Read operation, or that data has been accepted during a Write operation.

8.3 1/0 TRANSFER TIMING

I/0 transfer timing is the period during an I/0 instruction when data is transferred
between the Processor and an 1/0 controller. (Refer to figure 8-3.)
NOTE

Unless otherwise noted, all timing intervals indicated in timing diagrams are
given in nanoseconds. All timing intervals discussed in text are nominal.

™% HO STRETCH
INSERTED HERE

T : Y

o] : -+ 2o
IN~, EXEC-, QUT— ] f——
: - >0
0BXX- (OUT) mm :
Q——l—I 300 MAX —————8] b-J:,(ﬂ .
S/ 11 T T I T :
' - >0 le- 100 MiN -y
A ZMW lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
o 275 MAX ————] - >0

HINTERFACE GENERATED

Figure 8-3, I/0 Transfer Timing

8-7

COMPUTER AUTOMATION, INC. I

8.3.1 I/O Bus Considerations

The A bus is active for non-1/0 as well as I/0 instructions. To guard against res-
ponding to a non-1/0 instruction, the I/0 control signals (EXEC-, IN-, or OUT-)
should be used when interpreting the A bus. The SER- signal is the only exception
and may be driven independent of EXEC-, IN-, or OUT-.

Data should never be placedbon the D bus by an 1/0 controller except in the presence of
IN- or IAR-.

8.3.2 Sense Instruction Timing

No Maxi-Bus control signals are generated by the Processor during a Sense instruction.
The addressed 1/0 controller uses the function code information to determine which one
of eight possible functions are to be tested. The sense information is sent to the
Processor via the SER- line. If the Processor is looking for a Sense response, the SER-
signal is gated into the Processor. Otherwise it is ignored. The user has 275 ns to
stabilize the Sense response after receipt of the Device Address signals.

8.3.3 Select Instruction Timing

During Select or Select and Present instructions, the EXEC- signal is generated a
minimum of 75 ns after the A bus stabilizes. The D bus is selected for output as a
result of EXEC- and becomes stable a maximum of 150 ns after the leading edge of
EXEC-. If a command register is used, the information on the D bus can be presented
to the register by EXEC- and clocked in with PLSE-. The D bus contains all zeros
during the SEL instruction and is equal to the contents of the Processor A or X regis-
ter during the SEA or SEX instructions, respectively.

The PLSE- signal is developed a minimum of 350 ns after EXEC-. PLSE- is generally
used to clock all control flip-flops in the 1/0 controller. Either the leading or
trailing edge of PLSE- may be used to set or reset control flip-flops.

8.3.4 Input Timing

All input sequences, regardless of the Input instruction type, appear basically the same
to an I/O controller. For all Input instructions, the IN- signal is generated a minimum
of 75 ns after the A bus stabilizes. The D bus is selected for input as a result of IN-.
The IN- signal is used by the controller to gate data onto the D bus. Data must be
present and stable on the D bus no later than 300 ns after IN- goes low.

The PLSE- signal is developed a minimum of 350 ns after IN- goes low. PLSE- is typically
used to reset the buffer ready control in the 1/0 controller. Either the leading or trailing
edge of PLSE- may be used to reset the buffer ready control. Note, however, that data on
the D bus must remain stable until the leading edge of PLSE- and must be removed no
later than 75 ns after the trailing edge of IN-.

8-8




If the Input instruction issued is conditional, the Sense response (SER-) must be stable

no later than 275 ns after the A bus stabilizes to guarantee detection of SER- by the
Processor. If SER- is high from the 275 ns point to the leading edge of PLSE-, the entire
input sequence is repeated for a Conditional Input or Block Input, without issuing PLSE,
until the SER-line goes low. If SER- is low at the 275 ns point, the operation is terminated
after the present cycle and PLSE- is generated to indicate the Processor has accepted the
data. If SER- changes state between the 275 ns point and the leading edge of PLSE-, the
Processor may or may not detect SER-.

All Sense responses are ignored by the Processor when executing Unconditional Input
instructions.

8.3.5 Output Timing

All Output instruction sequences, regardless of the Output instruction type, appear
basically the same to an I/O controller. During an Output instruction, the OUT- signal
is generated a minimum of 75 ns after the A bus stabilizes. The D bus is selected for
output as a result of OUT-. Once selected, the D bus stabilizes in a maximum of 150
nanoseconds after leading edge of OUT-.

The PLSE- signal is generated a minimum of 350 ns after OUT- goes low. PLSE- serves
two functions. The first is to clock output data into a receiving register of the 1/0
controller. The second function is to reset the Output buffer empty control in the I/0
controller.

If the Output instruction is conditional, the Sense response must be stable no later than
275 ns after the A bus stabilizes to guarantee detection of SER- by the Processor. If
SER- is high from the 275 ns point to the leading edge of PLSE-, the entire output
sequence is repeated, without issuing PLSE, until the SER- line goes low. If SER- is
low at the 275 ns point, the operation is terminated after the present cycle and PLSE-
is generated to indicate the availability of data to the controller. If SER- changes state
between the 275 ns point and the leading edge of PLSE-, the Processor may or may not
detect SER-.

Any Sense responses that are generated during an Unconditional Output instruction are
ignored by the Processor.

8.3.6 Automatic Input and Output Timing

The Automatic Input and Output instructions have essentially the same transfer timing

as all other 1/0 instructions. The only difference is that when used as interrupt
instructions, Auto I/0 instructions develop an ECHO- signal to the controller when the
last word of byte of data has been transferred. The ECHO- signal occurs a minimum of
350 ns after IN- or OUT- during the last transfer. ECHO- is typically used by the
interface to develop an End-of-Block interrupt. These instructions are unconditional and
do not require a Sense response.

COMPUTER AUTOMATION, INC. ——

COMPUTER AUTOMATION, INC. —

8.3.7 1/0 Instruction List

For the convenience of the user, table 8-1 provides a list of the Processor 1/0 instructions.
The instructions are grouped into four major categories (Sense, Select, Input and Output) .
The Input and Output categories are further divided into Unconditional, Automatic, Con-
ditional and Block sub-categories. The Conditional and Block sub-categories require a
Sense response while the Unconditional and Automatic sub-categories do not.

Table 8-1. 1/0 Instruction List

FUNCTION MNEMONIC MACHINE CODE (HEX)
Sense SEN 49XX
SSN 48XX
Select SEL 40XX
SEA 44XX
SEX 46XX
Unconditional Input INA 58XX
INX 5AXX
IBA 78XX
IBX 7AXX
INAM 5CXX
INXM 5EXX
IBAM 7CXX
IBXM TEXX
Automatic Input AIN 50XX
AlIB 54XX
Conditional Input RDA 59XX
RDX SBXX
RBA 79XX
RBX TBXX
RDAM 5DXX
RDXM S5FXX
RBAM 7DXX
RDXM TFXX
Block Input BIN 71XX
Unconditional Output OTA 6CXX
oTX 6EXX
0oTZ 68XX
Automatic Output AOT 60XX
AOB 64XX
Conditional Output WRA 6DXX
WRX 6FXX
WRZ 69XX
Block Output BOT 75XX

XX = device address and function code




COMPUTER AUTOMATION, INC. 'l

8.4 INTERRUPT CHARACTERISTICS

Minicomputers perform in a wide variety of applications where they communicate
with many different types of devices. These devices operate at widely varying
speeds and generate events that occur randomly rather than at evenly spaced time
intervals. If the events do occur at evenly spaced time intervals, these intervals
may be relatively far apart. For these reasons, a versatile and efficient computer
needs a priority interrupt system.

If a computer does not have a priority interrupt system, the computer must poll
all of the external devices which may require service. The polling must be at
frequent enough intervals so that events are serviced within a reasonable time
after they occur. Polling consumes considerable time, and may not allow much
processing time between the handling of external events.

A priority interrupt system relieves the computer of the polling responsibility .
The computer may continue processing data between external events, and may
take time out from main program processing to handle external events as they
oceur.

The ALPHA LSI computers feature five levels of interrupts. Each interrupt level

uses an interrupt request line to obtain attention from the Processor. Upon obtain-
ing this attention, the source of the interrupt vectors the Processor to an interrupt
location in Memory. The interrupt location contains an interrupt instruction which
defines the specific action that the Processor is to take in processing the interrupt.

The five interrupt request lines are designated Power Fail Interrupt (PFI), Console/
TRAP Interrupt (CINT), Interrupt Line 1 (IL1), Interrupt Line 2 (IL2), and Inter-
:S;pt Request (IUR). A priority level exists between each of these lines wherein

1 has the highest priority, CINT is second, IL1 is third, IL2 is fourth and IUR is
lowest in priority. PFI, CINT, IL1 and IL2 are self-vectoring lines (the user does
not have to supply the interrupt address). The IUR line is shared by multiple devices
and features a priority chain to resolve priority when two or more devices issue an
IUR interrupt request at the same time. Each of the multiple interrupt sources that
share the IUR line cause the Processor to be vectored to distinct locations that can
be anywhere in Memory.

8.4.1 Interrupt Lines -

The characteristics of each of the five interrupt request lines are discussed in the
following paragraphs.

= COMPUTER AUTOMATION, INC. —_—

8.4.1.1 Power Fail Interrupt

The PFI line services the power down interrupt only. PFI is the highést priority inter-

rupt line in the interrupt system and is not accessible to the user via the Processor
Maxi-Bus.

8.4.1.2 Console (TRAP) Interrupt

The CINT line services the Console and Trap interrupts only. CINT is the second high-
est priority interrupt line and is not accessible to the user via the Processor Maxi-Bus.

8.4.1.3 Interrupt Line 1

IL1 vectors all interrupts to memory location : 0002. IL1 does not provide external
priority resolution when servicing multiple devices. IL1 is the third highest priority
interrupt line and is accessible to the user via the Processor Maxi-Bus.

8.4.1.4 Interrupt Line 2

IL2 vectors all interrupts to memory location : 0006. IL2 is the fourth highest priority
interrupt line and is accessible to the user via the Processor Maxi-Bus. Like IL1, IL2
does not provide external priority resolution to service multiple devices.

8.4.1.5 Interrupt Request

The IUR line vectors interrupts to the Processor from a virtually unlimited number of
devices. The IUR line has a priority string associated with it. The priority string
ensures that a device with a higher priority will be serviced before a lower priority
device when two or more IUR requests occur at the same time. When the interrupting
device has priority, it must furnish an interrupt address to the Processor upon request.
In general, IUR interrupt addresses are user defined. There'is a recommended list of
addresses, however (refer to appendix B).

8.4.2 Processor Generated Interrupts

The ALPHA LSI computer generates two standard and six optional interrupts. In addi-
tion, two optional pseudo interrupts are generated. Each of these interrupts are dis-
cussed briefly in the following paragraphs in order of priority.




COMPUTER AUTOMATION. INC.

8.4.2.1 Power Fail/Restart Interrupt (Optional)

The Power Fail/Restart (PF/R) option generates a power down interrupt to location

: 001C whenever a low power condition exists. The power down interrupt has the
highest priority of any interrupt serviced by the Processor. When power is restored
to an acceptable level, the PF/R logic causes the P register to be set to location : 0000
and the RUN mode is established to restart the system. Although location : 0000 is the
power up location, it is not a true interrupt location, but rather a pseudo interrupt
location since no interrupt processing is required to get to location : 0000.

8.4.2.2 Autoload (Optional)

The Autoload option utilizes the PF/R logic to develop a pseudo interrupt to location
: 0000 of a special Autoload read-only-memory as a starting point for the Autoload
sequence.

8.4.2.3 Console Interrupt and Trap (Standard)

A Console interrupt can be developed when the Processor is in the RUN mode and the
INT switch on the Console is depressed. A Trap interrupt is developed when the
TRP instruction is executed. Both the Console and Trap interrupts share the second
highest interrupt priority and they both interrupt to location : 001E.

8.4.2.4 Real Time Clock (Optional)

The Real Time Clock (RTC) option generates a clock and sync interrupt. The Clock
and Sync interrupts share the first highest priority on the IUR line. The Clock
interrupt is vectored to location : 0018 while the Sync interrupt is vectored to loca-
tion : 001A.

8.4.2.5 Teletype/CRT/Modem Controller (Optional)

The processor mounted TTY/CRT/Modem controller generates both Word and End-
of-Block (EOB) interrupts via the IUR line. The Word interrupt is vectored to location

: 0002 while the EOB interrupt is vectored to location : 0006. These interrupt vectors
are the same interrupt vectors that are used by the IL1 and IL2 lines. Since IL1 and

IL2 do not provide priority resolution and are of a higher priority than these interrupts,
the TTY Word and EOB interrupts should be displaced to alternate locations when IL1
and IL2 are used. A jumper option permits the Word and EOB interrupts to be displaced
to locations : 0022 and : 0026, respectively. When used in the Full Duplex mode, the
TTY controller generates four interrupts (locatons : 0002, : 0006, : 0022, and : 0026).
The TTY interrupts share the second highest priority on the IUR line.

8.4.3 Offsetting Pr or Generated Interrupts

Figure 8-4 lists, in the order of their absolute priority, the standard interrupt locations
for all Processor generated interrupts. These interrupt locations are all located in the
8-13

ABSOLUTE PRIORITY

1

10
11
12
.13
IUR CHAIN

14
15
16
17
18

19

3 ®

POWER FAIL (PFI)
TRAP INTERRUPT (CINT)
CONSOLE INTERRUPT (CINT)
INTERRUPT LINE 1 (IL1)
INTERRUPT LINE 2 (IL2)

RTC SYNC INTERRUPT (IUR)
CLOCK INTERRUPT (IUR)

TTY END-OF-BLOCK (IUR)

TTY WORD (IUR)

SLOT B200

SLOT B100

SLOT C100

SLOT C200

SLOT D200

SLOT D106

SLOT E100

SLOT E200

EXPANSION CHASSIS SLOT A100
EXPANSION CHASSIS SLOT A200

EXPANSION CHASSIS SLOT B206

COMPUTER AUTOMATION, INC. ————

INTERRUPT ADDRESS

:001C (:011C)
: 001E (: 011E)
:001E (: 011E)
: 0002 (:0102)
: 0006 (:0106)
:001A (: 011A)
: 0018 (:0118)

: 0006 (:0106);
OPTIONAL : 0026 (:0126)
: 0002 (:0102),
OPTIONAL : 0022 (: 0122)

Slots B through E accommodate
plug-in modules (either memory
or [/0). All 1/0O modules may
use the IUR line and must pro-
vide an interrupt address.
Modules with multiple interrupt
capabilities must have internal
priority resolution and multiple
addresses. The continuity of the
priority chain must not be broken.
If broken, interrupts below the
break may not be recognized or
may be recognized erroneously.

Figure 8-4. ALPHA LSI Interrupt Organization

8-14




COMPUTER AUTOMATION. INC.

scratchpad area of Memory. A jumper option permits the user to offset these locations
by : 100 locations to place them outside the scratchpad area. This allows for more
efficient utilization of the scratch area. IUR interrupts generated by non-processor
mounted options may be individually offset to place them outside the scratch area.

NOTE
The power up restart and autoload start up location (location : 0000)

is not affected by the offset jumper option.

8.4.4 Peripheral Generated Interrupts

Peripheral interface controllers may request interrupt service via the IL1-, IL2- or IUR-
request lines. The techniques used to develop these interrupt requests are discussed in
detail in section 9 of this manual.

8.4.5 Interrupt Transfer Timing (Figure 8-5)

For the purpose of priority resolution, all interrupts must be synchronized prior to being
generated. Synchronization can occur only during a mainline program instruction. This
is to ensure that when executing the interrupt instruction, no other interrupt can inter-
vene. When synchronization is obtained, the PROT- signal from the interrupting device
goes high (false) to disable all down-stream IUR interrupts. When interupts of higher
priority than IUR are serviced, the Processor makes the PROT- signal high to disable

all IUR interrupts.

If interrupts are enabled, the Processor recognizes an interrupt request when the
current mainline program instruction has finished execution. When recognition of
an interrupt is given, the Interrupt Acknowledge signal (IUA) is issued by the
Processor and IOCL is turned off to inhibit any change in interrupt request status
until the current interrupt operation is complete.

Approximately 2 us after IUA- goes low, the Processor generates the Interrupt Address
Request signal (IAR-) and selects the D bus for input. IAR- is used by the interrupting
controller to generate the interrupt address. The IAR- signal is low for approximately
750 ns. During this interval, the user generated interrupt address must be available
within 300 ns of IAR- and remain stable until the leading edge of PLSE-. PLSE- is used
in the more complex interrupt structures to reset the Interrupt Stimulus Store control.

IUA- will remain low until the interrupt instruction completes execution. The duration
(IUA low) is a function of the number of machine cycles that are required to execute
the interrupt instruction. When IUA- goes high, IOCL is re-enabled permitting subse-
quent interrupts to be generated. '

8-15

—o{ le— >0 <100
s g S g K 1
150 150
MIN MIN
WR-, L) -, JL2—- I /
- L_ >0 .
WA~
PROT- {FORPFI(, CI,iLY ORIL2 U‘NLV)
[+
IAR~
a—2300 MAX >0 oo, = [ 7BMAK
DBXX—
350 MIN ——ao—;gg :IANx"
PLSE-
- je-100mm
100 MIN
[* 250 uax ¥
ECHO- (FOR AUTO [/O OR IM3 WHEN COUNT GOES TO IERO)

A = {OCL- IS FOR INTERRUPT SYNCHRONIZATION ONLY: PERIOD IS NOT CONSTANT
8 = LATENCY — DEPENDS ON CURRENT INSTRUCTION SEQUENCE

C = PRIORITY RIPPLE TIME — 2 us MIN

D = INTERRUPT INSTRUCTION DURATION — VARIES WITH INSTRUCTION USED

Figure 8-5. Interrupt Transfer Timing

8.4.6 Interrupt Operation Control

Two levels of control are associated with IL1, IL2, and IUR interrupt processing--
primary and secondary.

The primary control level is provided by the Enable Interrupt flip-flop (EIN) in the
Prbcessqr . The EIN flip-flop is accessible to the programmer and can be enabled or
disabled on command. When enabled, EIN allows recognition of any interrupt. Like-
wise, when EIN is disabled, interrupts will not be recognized.

The secondary control level is provided by an interrupt enable flip-flop in each

1/0 controller. The interrupt enable flip-flop enables or disables the interrupt structure
of the I/0 controller. Like the EIN flip-flop discussed above, the interrupt enable flip-
flop in each controller can be enabled or disabled by means of a Select instruction
addressed to the specific 1/0 controller with the appropriate function code.

This dual system of interrupt control can be very useful to a programmer. With this
system, the programmer can control interrupts in general with the EIN flip-flop,
yet enable or disable interrupts from selected devices as conditions dictate.

Interrupts developed via the PF and CINT lines are somewhat different in that they
can be generated outside EIN control. In normal operation (that is, when operating
under EIN control), the Power Fail, Console and Trap interrupts require that EIN
be enabled. Most interrupt subroutines disable interrupts during execution of the
subroutines causing high priority interrupts such as Power Fail to wait until EIN is
re-enabled. A special jumper on the option board permits all interrupts generated
on the PF and CINT lines to be recognized regardless of the state of EIN.

8-16




COMPUTER AUTOMATION. INC.

When the jumper option is employed, two new instructions (PFE and PFD) are used to
control the Power Fail circuits. The PFE instruction must have been issued before a
Power Fail interrupt can be generated. Likewise, the PFD instruction disables the
generation of a Power Fail interrupt.

The Console interrupt is controlled by the CIE and CID instructions in the same way as
in normal operation. The Trap interrupt is generated in the same manner as in
normal operation. The only difference between normal operation and the jumper option
is that EIN does not have to be set to generate the Console and Trap interrupts.

Another useful programming feature is the SIN instruction. The SIN instruction per—
mits the programmer to suppress recognition of all interrupts (and Byte mode opera-
tion) for up to six instructions.

Once an interrupt structure is enabled, an interrupt can be generated in five basic
steps:

Step 1 Stimulus Generation-The user generates the interrupt stimulus
in response to some event or condition.

Step 2 Interrupt Request Generation--The interrupt structure of the I/0 controller,
if enabled, stores the interrupt stimulus and generates ar: interrupt request.

Step 3 Interrupt Recognition--The Processor upon receipt of the interrupt request
waits for the current instruction to complete execution, and if system
interrupts are enabled (EIN set), issues an interrupt address request.

Step 4 Interrupt I/O Address Generation--The interrupt structure of the 1/O con-
troller responds to the interrupt address request by placing the interrupt
address on the D bus lines (except for IL1 ané IL2 interrupt).

Step 5 Interrupt Instruction Execution--The Processor fetches and exscutes the

instruction from the interrupt location.

8.4.7 Interrupt Request Line Trade Offs

The user h=- a choice of three interrupt request lines, IL1, IL2 and TUR. The trade offs
associated with each of these lines are discussed below.

The IL1 and IL2 interrupt structures are the simplest structures to implement in terms
of hardware since they do not require interrupt address logic, Processor synchroniza-
tion logic, or down-stream priority disable logic. All of these functions are provided
in the Processor. The IL1 and IL2 lines are intended for single device applications
where high speed devices require the highest available priority to minimize interrupt
latency .

8-17

COMPUTER AUTOMATION. INC. |

The IUR line is for multipie devices where each device competes for service via the
priority chain. The priority of an I/0O controller can be changed by simply removing
the controller from the computer chassis and relocating it in a higher or lower
priority card slot. An IUR generating controller has greater flexibility in terms of
address vectoring. If an address vector must be changed, the address may be offset
from its base location ot another location by means of address select lines.

8.5 DMA OPERATIONS
The ALPHA LSI computer has a direct memory access (DMA) port which permits

specially built controllers (referred to as DMA controllers) to transfer data via the
Maxi-Bus at very high speed to or from Memory or other controllers.

8.5.1 General Characteristics

8.5.1.1 Processor Provunons

The ALPHA LSI Processor is designed to surrender the Maxi-Bus to a DMA controller
whenever a Stop command (STOP-) is received. Upon receipt of the STOP- signal,

the Processor completes the current microcycle, stops, and sends a Stop Acknowledge
(SACK-) signal to the requesting DMA controller (s) . ‘A DMA controller may hold STOP-
active for as long as necessary to complete requested data transfers, But once the
STOP- line is relessed, the Maxi-bus cannot be reacquired by the controller until
SACK- goes high (see 8.5.2.1). )

8.5.1.2 Memory Operations

DMA cortrollers mey communicate directly with Memory. The DMA controller must
emulats the Processcr by generating a memory address and appropriate control signals.
Memory cperations msy be either Read (data accessed from Memory) or Write (data
writien into Memory} . Data cannot be read, modified and rewritten in one cycle. When
communicsting with a single memory module, data transfer rates of up to 625,000 words
per second can be achieved with the standard 1.6 us Memories. When more than one
memory module is used in the computer, DMA transfer rates of up to twice the basic speed
of the memory modules can be achieved by making alternate memory accesses in different
modules. Memory interleaving straps allow even and odd addresses to be in separate
memory modules so that sequential addressing automatically alternates between modules.

In addition to word transfer capsbilities, byte transfers may be performed by a DMA
controller. All byte packing and unpacking is done sutomatically by the memory modules
with all byte data transferred on the lower eight D bus lines (the upper eight D bus lines

are ignored during byte transfers).

All memory modules contsin data and address registers to permit asynchronous operation.
During a Write operation, the source device furnishes an address and data along with a
memory start signal. As soon as the address and data is stored in its registers, the

8-18




COMPUTER AUTOMATION, INC. "l

memory issues an acknowledge signal and releases the bus even though it has not actually
finished the Write operation. During a Read operation, the memory accesses the
addressed location, places the data on the D bus, and then issues the memory acknow-
ledge signal. When the source device recognizes the memory acknowledge signal, it
removes the start signal releasing the Maxi-Bus. Any memory restore operation or
overhead interval does not tie up the Maxi-Bus and therefore frees the Processor or

DMA controller to perform another operation.

"8.5.1.3 1/0 Operations

A DMA controller may emulate the I/0 instructions of the Processor. The DMA controller
may issue Input, Output, Sense, Select, and Select and Present instructions. It may
perform conditional and unconditional 1/0. All I/0 instructions and control lines of the
Maxi-Bus that are used by the Processor for I/0 operations are available to a DMA con-
troller when the Processor is stopped.

8.5.1.4 Limitations

A DMA controller is not permitted to use the interrupt processing capabilities of the
Processor. Interrupts are reserved for use by the Processor only. 1/0 controllers
that are under control of a DMA controller must have their interrupt facilities disabled.

When multiple DMA controllers are employed in a system, they must compete for control
of the Maxi-Bus on a priority basis. DMA Priority lines are strung serially through
the 200 series connectors of the ALPHA LSI motherboard. Therefore, DMA controllers
must be either full boards or half boards that are installed in the 200 series connectors
of the ALPHA LSI motherboard.

When using the standard expansion chassis buffer board, a DMA controller must be in
either the same chassis or in a chassis that is closer to the Processor than a memory
module or 1/0 controller that it must communicate with. This is because the expansion
buffer board treats unidirectional lines (such as the A bus lines) as originating from
the Processor end of a chain of expansion chassis. Therefore, unidirectional signals
which normally originate from the Processor cannot be transmitted to an up-stream
memory module or I/0 controller.

8.5.2 DMA Timing

The following paragraphs define DMA transfer timing. All timing intervals shown in
timing diagrams are in nanoseconds and all timing intervals discussed in the text are
nominal. Times determined by memory access and cycle intervals are shown for the
standard 1.8 us memory modules and may be different for other memory modules.

8-18

COMPUTER AUTOMATION. INC. l

8.5.2.1 Maxi-Bus Acquisition Timing (Figure 8-6)

Two signals are involved with Maxi-Bus acquisition: . STOP- and SACK-. When a
DMA controller is ready to make a transfer, it drives the STOP- line low (ground-
true). The Processor, upon seeing STOP- low, immediately begins preparing to va-
cate the Maxi-Bus. After performing the required internal housekeeping associated
with stopping, the Processor drives the SACK- signal low (ground-true). The time
interval from the leading edge of STOP- to the leading edge of SACK- can be as much
as 4800 ns for the LSI-1 Processor.

Once SACK- goes low, the DMA controller is free to commence the transfer operation.
Typically, DMA controllers operate on a request basis wherein they make one transfer
for each request received from an associated peripheral. If the DMA controller receives
another request prior to completion of the current transfer (Burst mode), it will keep
STOP- active. Otherwise it releases the STOP- line when the current operation is
completed, as signaled by the trailing edge of the Memory Acknowledge (MACK-) signal.

After releasing the STOP- line, the DMA controller may not attempt to reacquire the Maxi-
Bus before SACK- goes high. The LSI-1 Processor can take up to 2400 ns to raise SACK-
and restart programmed operation. Once SACK- goes high, the DMA controller is forced
to wait out the DMA acquisition period before acquiring the Maxi-Bus again. Therefore,
the worst case latency period is 5600 ns for LSI-1 Processor. The LSI-2 Processor

DMA latency is a function of the type of memory module used. The LSI-2 Processor

DMA latency times are as follows: .

Core 980 = 1405 ns
Core 1200 = 1825 ns
Core 1600 = 2575 ns
SC 1200 = 3025 ns

Latency time may be longer if a higher priority DMA controller is also requesting the
Maxi-Bus.

PROCESSOR INITIAL I DMA | PROCESSOR I
OPERATION ACQUISITION OPERATION RE-SYNC

s T\ 5 :o—f-—‘ M\

D o
saexs o —

DMA
RE-ACQUISITION I OPERATION

Figure 8-6. Maxi-Bus Acquisition Timing

8-20




COMPUTER AUTOMATION, 9C.

8.5.2.2 Memory Transfer Timing (Figure 8-7)

Memory modules of various speeds, sizes and technologies may be intermixed in a
system. The standard 4K core memory has a cycle time of 1600 ns which provides a
maximum data transfer rate of 625,000 words/bytes per second.

A memory cycle is divided into an access interval and an overhead interval. The access
interval is the period when data is transferred to or from Memory. The overhead inter—
val is used for internal memory operations. For core memories, the overhead interval

is used to restore the contents of the word just read, or to write the word just transferred
For non-destructive readout memories, the overhead interval consists primarily of logic
recovery time. For dynamic MOS memories, the overhead also includes cycles stolen by
Memory to refresh dynamic storage. During the overhead interval, the Maxi-Bus is
available for other operations.

For DMA applications requiring data transfer rates in excess of 625,000 words/bytes per
second, memory interleaving can be employed. When alternate memory cycles address
different memory modules, each memory's overhead interval can be used to access another
memory module, yielding transfer rates up to twice that possible with a single memory
module. Each memory module features static control lines at the rear of the module

which permit the memory module to operate in the interleaved mode. Each memory module
can be configured to respond to either even or odd memory addresses. This feature allows
sequentially addressed memory locations to automatically alternate between memory
modules.

MEMORY CYCLE N+1 l

MEMORY CYCLE N I

L ACCESS l overweao | ACCESS J OVERHEAD J _

A. NORMAL (ADDRESSING RANDOM)

I MEMORY CYCLE N | MEMORY CYCLE W42 |

mema | access ]  overuean | ACCESS ] ovemew |
| MEMORY CYCLE N+1 | wemcavcvaems

o [ = T == T = ]

8. INTERLEAVED

Figure 8-7. Memory Addressing Comparisons

8-21

COMPUTER AUTOMATION, INC. e

8.5.2.2.1 DMA Read Access Timing (Figure 8-8). A DMA read access sequence is
started by the DMA controller placing the desired memory address on the A bus.

A minimum of 75 ns is required for A bus settling and address recognition for all
memory modules before the DMA controller drives the Memory Start (MST-) signal

low. The Read (RD-) signal must be driven low no later than 25 ns after MST- goes low.

The addressed memory module begins execution of a memory cycle when MST- goes
low, and after it has finished any previous operation. When the addressed location has
been accessed (approximately 450 ns for standard 1600 ns memories), the contents of
the addressed memory location are placed on the D bus and the MACK- signal is issued.
The information on the D bus will remain stable until MST- is removed.

Upon receipt of MACK-, the DMA controller is free to disengage the A bus. After
allowing for settling time on the D bus, the DMA controller strobes the contents of the
D bus into a receiving register and removes MST- and RD-. The memory module
removes MACK- on the trailing edge of MST- and disengages the D bus on the trailing
edge of MST- or RD-, whichever goes away first. The DMA controller must disengage
the A bus prior to, or coincident with, removal of MST-. The DMA controller may not
initiate another memory cycle until MACK- has been removed.

ABXX— & SLB— m
——| g— 75 MiN 20 - I'—

— 25 MAX |

RD-

— <76>0
o I

20 —

— 20

MACK-
' MEMORY
’d-—ACCESS -
TIME

* INTERVAL DETERMINED BY CONTROLLER TO
ACCEPT MEMORY DATA

Figure 8-8. Read Access Timing

8-22




COMPUTER AUTOMATION, INC.

8.5.2.2.2 DMA Write Access Timing (Figure 8-9). A write access sequence is similar
to a read access sequence except that the RD- signal is held high and the write data is
presented to the addressed memory at the same time MST- is generated.

A write access is started by placing the memory address on the A bus. After a minimum
of 75 ns the MST- signal is driven low. The RD- signal is held high and the write data
is gated onto the D bus no later than 25 ns after MST- goes low. The memory module
indicates acceptance of the write data by driving the MACK- signal low.

The DMA controller must disengage the A bus and the D bus and remove MST- when

MACK- goes low. MACK- is removed on the trailing edge of MST- at the memory module.

rooc-asie- TN W
‘—'I [— 75 le:— F- iy
MST— ‘

RD—

a0
S 11—/

20
MACK-
1

MEMORY

ACCESS ~gniagp— « —-1
TIME

controller may remove MST— as soon as
MACK - is recognized

Figure 8-9. Write Access Timing

8.5.2.3 1/0 Transfer Timing

A DMA controller may transfer data to or from another controller by emulating the Pro-
cessor's operations on the 1/0 control signals. A single exception to standard 1/0 trans-
fer sequencing involves generation of MACK- during 1/0 transfers under DMA control
that do not involve the use of Memory. In this case, the DMA controller must generfate

8-23

COMPUTER AUTOMATION, INC. PR

MACK- for a minimum of 100 ns prior to completion of the I/O transfer. This allows other
DMA controllers in the system to synchronize any pending Maxi-Bus requests and pro-
perly auction DMA priority (see paragraph 9.5.2.2).

8.6 ELECTRICAL CHARACTERISTICS

The Maxi-Bus is best. classified as a hybrid tri-state open-collector (wire-OR) bus,
unterminated.

Most processor drivers are tri-state power elements, capable of sinking 32 mA at 0.4
Vde maximum and sourcing 2.0 mA at 2.4 Vdc minimum. In a few isolated cases, open-
collector TTL drivers (32 mA sink at 0.4 Vdc) are used.

Processor receivers present one standard TTL load to the line (-1.6 mA at 0.8 Vdc,
40 pA at 2.4 Vdc). Depending on the nature of the particular signal, pullup resistors
to +5 Vdc are used.

Open-collector drivers in 1/0 and memory modules are permitted on those bus lines
for which pullup resistors are provided. Minimum required drive capability is 32
mA at 0.4 Vdc max. Tri-state drivers electrically equivalent to the processor bus
drivers are also allowed, as long as the logic design of the system guarantees that
no two tri-state drivers connected to the same bus line are simultaneously enabled.
Receivers on I/0 and memory modules may be any standard 74 series TTL device.
Only one such receiver per module is permitted. Maximum loading shall not exceed
1.6 mA per module.

Logic Levels (Negative-true)

logic "1": +0.4 Vdc max.
logic "0": +2.4 Vdc min.

Table 8-2 summarizes the Maxi-Bus driver, receiver and pullup circuits.

8.7 MOTHERBOARD ORGANIZATION

Any slot (other than the slot dedicated to the NAKED MINI LSI Processor) can accept
either an I/0 or memory module.

Figure 8-11 provides an illustration of the system motherboard. The motherboard
provides for six slots used as follows:

Slot LPurpose

A NAKED MINI LSI Processor
B Universal Memory or 1/0)
[o] Universal (Memory or 1/0)
D Universal (Memory or [/0)
E Universal Memory or 1/0)
F Power Supply

8-24




In any given slot, either a full board (15" x 16.5") or two half boards (each 7.5" x 16.5")
may be installed. One slot contains two connectors. The connector on the right (rear-
facing) is referred to as the 100 series connector and contains pins numbered 100 through
186; similarly, the connector on the left if referred to as the 200-series connector and
contains pins numbered 200 through 286.

With the exception of the priority chains, memory bank control, and two special pro-
cessor power supply signals, all signals are wired in a U fashion through all half board
connectors. All exceptions are described below (shown in figure 2-3).

8.7.1 Interrupt Priority

The daisy chained interrupt priority string (PRIN-, PROT-) is wired in S fashion begin-
ning at the 100-series connector of slot A, across to the 200-series connector, then in
reverse direction across the two B slot connectors, etc., until all slots are connected.
Both ends of the chain are connected to the expansion connectors. Both PRIN- and PROT-
on processor connector A100 are used to carry special signals to the Console; the actual
origin of the priority chain is slot A200.

8.7.2 Memory Bank Control, DMA Priority

The Memory Bank control (MBIN, MBOT), DMA priority (DPIN-, DPOT-) and TYP1- lines
daisy chain down the 200-series connectors only. Therefore, memory modules and DMA
controllers must be either full boards or half boards installed on the 200 series side only.

8.7.3 Processor Power Supply Signals

Two lines from the power supply, TTLF (Twice the Line Frequency) and +5 H (Hang
Power) are wired directly between the power supply slot and processor slot A100.

8.8 EXPANSION AND CONSOLE INTERCONNECT

To facilitate expansion of the computer system beyond the first chassis and to provide

for interconnect to the ALPHA LSI Console, connectors are supplied on the motherboard -
immediately above slot' A. Two connectors, J2 and J3, are provided for Maxi-Bus expan-
sion, and one connector, J1, is provided to interconnect the Console, Figure 8-10 shows
the pin assignments for connectors J2 and J3, and figure 10-7 in section 10 shows the

pin assignments for J1,

COMPUTER AUTOMATION, INC. ——

COMPUTER AUTOMATION. INC. '|

2 3
opin-[ 1 2] DBOa- +6H 1 [ 2] Prin-
proT-| 3] 2] oBo6- SPARE 1 | 3] 4| SPARE3
meiN [5) 6] DBOS- msT- |5 6] seare2
+5V E 8] peto- Ao-  [7] 8] AB1S-
oeos- | o] 10] per2- mack- |9 0| AB1a-
peo7- 11 12 ste-  |11] 12| As13-
psoe- [13] 4] Aso2- mois—  [13] 4] sparEs
D811 [15] [16] ABos- pFD— 18] 6| asi12-
DB13- |17 18 asoo—  [17] 18| AB1I-
19 [20] ABOs- aBos-  [19)] 20} AB10-
21 22 avo 1] " ‘L_g GND
EXEC-{23 E | 23}e—e{2a] anp
GND  [25] 26| SER— S o A 26] sack-
7} 28 | stor-  [27] 28] pBo1-
GNo  [29)] E ABO4— osoo-  [29] 30| oB15-
TR £ 32 oBo3- [31] [32] os14-
wa- [33] [34] peo2-  [33] 34
wa- [35] 36 +5V 35 36 |
ecHo-J37 38| 1L2- 37 3]
ABOO [39] 40] 1aR- 39] 40|
ABO1- {41 ] 42 41 42
GND  fa3] [44] ABO3- 3] aa] -
| I 46| ABO7- +5V 4] 461 our-
i [47] 48] PROT- rsT-  [a7] 48] 10cL-
ono Jag [so] meot PLSE- |49 50| cix-

Figure 8-10. Maxi-Bus Expansion Connector, Pin assignments

8.9 NAKED MINI LSI MAXI-BUS REQUIREMENTS

In applications where the NAKED MINI LSI computer is used without the system mother-
board and is instead connected to 1/0 and/or memory modules via user-supplied cabling,
printed circuit board, ete., the line length of each signal must be limited to 18 inches.

The user designed Maxi-Bus interface cabling must be designed to minimize crosstalk, 5
reflections, etc., so as to preserve signal integrity. Recommendations ss to line termina-
tion are available upon request. In general, consultation with Computer Automation is
recommended to ensure system performance.

8-10 TWO-MODULE OPTIONS

Any option requiring more than one PC board may not use the motherboard for inter-
connection. Unique interconnections may be made via a jumper cable installed on the
rear-edge of the two boards.




COMPUTER AUTOMATION, INC.

NOTE 2
NOTE 2
NOTE 4
NOTE 3

NOTE 3

NOTE 3
NOTE 3

NOTE 2
NOTE 2

Table 8-2. Maxi-Bus Load, Drive and Termination Summary

T

=

DEVICE TYPE(S) (REFER TO NOTE 1)

SIGNAL PIN CPU MEMORY 1/0 CONT DMA CONT | CONSOLE BUFFER OPT.BD
GND 1

GND 2

+12v 3

+12v 4

+12v. 5

+12v 6

-12v 7

-12v 8

DPIN- 9 5

DPOT- 10 J] J] 4 .

EBSEL- 11

12

+5v 13

+5v 14

MST- 15 1,6 5 ; 1 5 5 5
AL- 16

MACK- 17 5,6 1 5 1 2
RD- 18 2,6 5 2 5
“TYP1- 19 OPNorGRD 2

SLB- 20 2,6 5 1 5 2
PFD- 21 5,6 5 *

MDIS- 22 3 5 5

AB08- 23 1 5 1 5

AB09- 24 1 5 1 5

AB10- 25 1 5 1 5

AB11- 26 1 5 1 5 5
GND 27

GND- 28

AB12- 29 1 5 1 5 5
AB13- 30 1 5 1 5 5
AB14- 31 1 5 1 5 5
AB15- 32 1 5 1 5

DB16- 33 5,6

DB17- 34

STOP- 35 5,6 2 2

SACK- 36 3 5 5

MBIN 37 5

MBOT | 38 4 4 "] 3 3

DB00- 39 1,5,6 1,5 2,5 1,5 2,5 1,5 1,2,5
DBO1- 40 1,5,6 1,5 2,5 1,5 2,5 1,5 1,2,5
DBO2- 41 1,5,6 1,5 2,5 1,5 2,5 1,5 1,2,5
DB03- 42 1,5,6 1,5 2,5 1,5 2,5 1,5 1,2,5
+5v 43

NOTES: 1. DEVICE TYPES ARE AS FOLLOWS-
1) TRI-STATE DRIVER, 32ma (8835 or EQUIV.)
2) 32 MA OPEN-COLLECTOR DRIVER (7438 or EQUIV.)
3) 32MA TTL DRIVER (7437 OR EQUIV.)
4) 16 MA TTL DRIVER (7400 OR EQUIV.)
5) TTL RECEIVER (7404 OR EQUIV.)
6) PULL-UP RESISTOR (1 KOHM)
J) JUMPER
*) STRAIGHT THRU SIGNAL (NO DEVICES IN SIGNAL PATH)

8-27




COMPUTER AUTOMATION, INC.

Table 8-2. Maxi-Bus Load, Drive and Termination Summary (Cont'd)

DEVICE TYPE(S) (REFER TO NOTE 1)
SIGNAL PIN CPU MEMORY 1/0 CONT DMA CONT | CONSOLE BUFFER OPT. BD
+5V 44
DB04- 45 1.5,6 1,5 2,5 1,5 2,5 1.5 1,5
DBO5- 46 1,5,6 1,5 2,5 1,5 255 1,5 1,5
DB06- 47 1,5,6 1,5 255 1,5 2,5 135 15
DB07- 48 1,5,6 1,5 2,5 1,5 2,5 1,5 1,5
DB08- 49 1,55 1,5 255 1,5 2,5 1,5 1
DB09 50 1,5,6 1,5 2,5 1,5 2025 1,5 1
DB10- 51 1,5,6 1,5 2,5 1,5 25 1,5 1
DB11- 52 1,5,6 1,5 2,5 145 2,5 1,5 1
DB12- 53 1,5,6 1.5 2,5 1,5 2,5 1,5 1
DB13- 54 1,5,6 1,5 2,5 1,5 2,5 1,5 1
DB14- 55 1,5,6 1,5 2,5 1,5 2,5 1,5 1
DB15- 56 1,5,6 1,5 2,5 1,5 2,5 1.5 1
EXEC- 57 1,6 5 5 5 5 5
IN- 58 1,6 5 5 5 5 5
GND 59
GND 60
10CL- 61 1,6 5 5 5 5 5
oUT- 62 1,6 5 5 5 5 5
CLK- 63 5 5 5 5
SER- 64 5,6 2 2 2 2
IUR- 65 5,6 2 2 2 2
IL1- 66 5,6 2 2 2
1AR- 67 1,6 5 5 5 5 5
1L2- 68 5,6 2 2 2
RST- 69 2,5,6 5 5 2,5 2 5
IUA- 70 1,6 5 5 5
PLSE- 71 1,6 5 5 5 5 5
ECHO- 72 1,6 5 5 5 5
+5V 73
+5V 74
AB03- 75 1,6 5 5 1.5 5 5 5
ABO04- 76 1,6 5 5 1,5 5 5 5
ABO05- 77 1,6 5 5 1,5 5 5 5
ABO06- 78 1,6 5 5 1,5 5 5 5
ABOT7- 79 1,6 5 5 1,5 5 5 5
AB00- 80 1,6 5 5 1,5 5 5 5
ABO1- 81 1,6 5 5 1,5 5 5 5
ABO2- 82 1,6 5 5 1,5 5 5 5
PRIN- 83 7] 5 5 5
PROT- 84 4 4 4 * 4
GND 85
GND 86

2. DPIN-, DPOT-, MBIN-, MBOT-, AND TYP1- ARE STRUNG THROUGH THE 200 SERIES CONNECTORS ONLY.
THESE PIN POSITIONS ARE UNASSIGNED ON THE 100 SERIES CONNECTORS AND ARE RESERVED FOR
FUTURE EXPANSION.

3. THESE PINS CARRY SPECIAL SIGNALS ON SLOT A100 AND ARE RESERVED FOR FUTURE EXPANSION ON
THE REMAINING 100 AND 200 SERIES CONNECTORS.

4. EBSEL-, PIN 211, IS USED FOR TEST ONLY.

8-28




62-8

J2 I

J3
{EXPANSION BUFFER INTERFACE) (CONSOLE INTERFACE)

(EXPANSION BUFFER INTERFACE)

H ilﬂlll LT QO AL d JUNTIIg

g vmvr*wmw %

. 4 A et -
i 1 A, A 0 A i A R A A 1 B 01 4
o m . o i T S S S

DZOO——»; :::.......... = . - ¥ yoa ot = = s o o o o o -

~ L - L ™ r J Lk ek o 3 ”ﬂwn!"!ﬂH'!nN’t‘vV‘NN""”ﬂ—wnﬂ””N”NR””I‘”HHDW”"."”
E200 e . y £ A AN 400 0 A AR A4 4 AR AN A Ak AN A AN AR M by AR AN A A qu“a«qn-qom».u

' a

g———

a-— 100

F100
(POWER SUPPLY INTERFACE)

Figure 8-11. ALPHA LSI Motherboard Slot Organization (Rear View)

A100

8100

D100

E100

“ONI ‘NOUVWOLNY ¥3LNdWNOD

>



COMPUTER AUTOMATION, INC.

Section 9

DEVICE INTERFACE CONTROLLER,
DESIGN TECHNIQUES

9.1 INTRODUCTION
This section describes how to design a device interface (I/0) controller that will be com~
patible with the 1/0 structure of the ALPHA LSI computer. The logic circuits described

here are from Computer Automation, Inc. standard interface products that are success-
fully performing at user installations throughout the world.

9.2 1/0 CONTROL IMPLEMENTATION
The following paragraphs describe I/0 controller design requirements for compatibility

with the 1/0 structure of the Processor.

9.2.1 Device Address Decoder (Figure 9-1)

The Device Address decoder is a comparator circuit which compares the five-bit
Device Address field of an I/0 instruction with the user assigned device address.

The example A address decoder uses an exclusive OR (EX OR) gate and an inverter
for each of the five device address bits to be decoded. The outputs of the inverters
are tied together to form a wired-AND address decoder output signal, DAXX.

Address decoding is controllied by the five Peripheral Select signals (PS0- through
PS4~). These signals are brought in from the device interface connector to
corresponding EX OR gates. If a true (low) address bit is to be decoded, the corre-
sponding address select signal must be externally wired to ground (ground = true).
Likewise, if a false address bit is to be decoded, the address select signal must be
left open permitting the pull-up resistor to provide the false (high) address select
signal.

When the device address bit agrees with the address select signal, the output of the
EX OR gate is low. All five device address bits must agree with the user defined
address selection. If agreement is obtained, the decoder output signal DAXX goes
high enabling recognition of /O instructions.

Example B shows an address decoder which decodes Device Address 6. This type
of decoder is used only in dedicated applications and does not provide the flexibility
that the example A decoder offers. Refer to appendix B for standard device address
assignments.

COMPUTER AUTOMATION, INC. =

Device Address : 00 should not be used. This address

is reserved for Processor mounted options, the Console
and certain control instructions. Using it will cause
improper operation of the Processor. Furthermore,

a device interface connector containing properly installed
device address jumpers must be applied to the rear-

edge connector at all times. If it is not, a default address
of : 00 will be assigned to the module, causing the same
problem referred to above.

9.2.2 Function Decoder (Figure 9-2)

The Function decoder uses an MSI chip, or a network comprised of SSI chips,to
decode the contents of the Function field of the Address bus. The result is a function
code (1 of 8 maximum) which performs some function in the selected I/0 controller.

The choice of chips depends upon the user's application. Figure 9-2 shows three
examples, A, B and C, of how to implement the Function decoder. When decoding
three or less functions, example C may be the most efficient. However, if chip
count is a factor, example A or B is probably more efficient. In any case, where
more than three functions are to be decoded, example A or B is probably the most
efficient.

9.2.2.1 Example A

Example A uses a TTL 7442 MSI chip which is a 4 to 10 Decoder. Inputs A, Band C
are the 2', 22, and 2° inputs respectively. Input D is the 2% input. When high,
input D enables decoded output 8 or 9. However, only the first eight outputs of
the decoder (0 through 7) are normally used, since eight is the maximum capacity
of the three Function field lines in its normal configuration. D input is the enable
input for the first eight decoded outputs, and utilizes the DAXX- signal for this
purpose. When the device address is decoded, the DAXX- signal goes low, thus
enabling the Function decoder.

Input lines from the Function field of the A bus are first unloaded by inverter gates and
then applied to the decoder. As an example, if all Function field lines were false (high,
implying Function Code 0), lows would be applied to inputs A, B and C. The

decode of all low inputs would be zero thus causing FC0- to go low. (Decoded

outputs of a 7442 are always low.) If a high signal is required, it can be obtained

by using a simple inverter gate, such as the TTL 7404 illustrated.

9.2.2.2 Example B

Example B is the same as example A, except that the outputs are reversed (output
7 = FCO, output 6 = FC1, etc.). However, example B can only be used where the
Function field lines will not be applied to any other circuit on the same 1/0 controller.

9-2




| — T S

FCr-
o | e 4 op—é—a Fon o o—ir ojp—&—a Fcr
47010
u pecoper | P FCI- 41000 'P—FCo-
DECODER
j — 2p—FC2- - 2b— res-
£ w0 g aoi-o 1
§ 3p— Fca- 3b— Fea-
< 4p—— FCa- 4 p— eca-
ABO2— ABO2-
O Q C
g ®2) 5—— FCs- @y O—I° 5— Fc2-
8p— Fee- 6 b— FC1-
DAXX- ——Cp 7P~ FCI- oaxx —do 7 p—Fco-
sh— sb
= 7442 NOT USED 7442 NOT USED
ap— op—
T
EXAMPLE A EXAMPLE B LY
Fco—

ABOO—

(80} 7404 7404 { 1410 d Fco
ABO1- 1 -

@ 7404 7404 ﬁ‘2197-— FCi

ABO2- -

75 7404 7404 1 7410 Jo— FC2-

EXAMPLE C

Figure 9-2. Function Decoder Configurations (Typical)

g
©

76) ABD3- Q)

PSY— (A4,

{78) ABOA~

[
é > | .
§

} 7404 DAXX—

DAXX

1488 7408

79} ABO7-

Eusmple 8. Dedicated Application

Exsmple A.  Non-Dedicated Application

Figure 8-1. Device Address Decoding Techniques




COMPUTER AUTOMATION, INC.

This complies with the rule that each controller represents no more than one load to
each 1/0 line. '

9.2.2.3 Example C

Example C can decode only three function codes. TTL 7410 3-input NAND gates are
the decoders. The three Function field signals are applied to the appropriate NAND
gates to produce FCO- through FC2-. If the decoded device address is to enable
the function codes, TTL 7420 NAND gates can be used, with the DAXX signal
applied to the fourth input of each gate.

9.2.3 Select, Input or Qutput Instruction Decoding (Figure 9-4)

Similar to the Function decoder, the Select, Input or Output (I/0) instructions can be
decoded by an MSI chip or a network of SSI chips. Figure 9-4 shows two methods,
example A and B, of implementing this circuit. When the various instructions are
fully decoded using the Function field signals of the A bus, the Function decoder is not
generally needed.

9.2.3.1 Example A

Example A shows a TTL 7442 4 to 10 Decoder used as a Select, Input or Output instruction
decoder. The decoder also decodes the contents of the A bus Function field, but only for
the specific type of I/0 instruction with which it is being used. Assume the decoder is
used as a Select instruction decoder. The contents of the Function field are applied to the
A, B and C inputs to produce the appropriate function code--any one of up to eight associ-
ated with the Select instruction. The decoder is enabled by NANDing DAXX (device
address decoded), EXEC and PLSE. The Select instruction and associaied functions are
decoded by the one circuit. Refer to paragraph 6.4 for Select instruction timing.

9.2.3.2 Example B

Example B shows a decode network of SSI chips. This circuit can offer greater
efficiency than the 7442 chip, depending upon the application. For example, if

three types of I/0 instructions (Select, Input and Output) are used by a controller, and
less than three functions are associated with each type instruction, it is probably

more efficient to use decoders of this type, each utilizing the outputs of a single
Function decoder.

9.2.4 Initialization Implementation (Figure 9-3)

Initialization circuitry establishes a known static state within an I/0O controller. Initializa-
tion is started by executing a Select instruction with a function code dedicated to initial-

9-5

isation (nominally Function Code 4) or when the RST- signal goes low (upon depression
of the RESET switch on the Console, or during a power fail/restart situation). Figure
9-3 shows a circuit configuration for implementing initialization. When the device
address and function code of the Select instruction are decoded, the DAXX and FC4
signals go high to prime the 3-input NAND gate. EXEC goes high during the Select
instruction, enabling the gate to produce the INZX- and INZX signals. These signals are
distributed throughout the controller to reset or set flip-flops, data registers, counters,
etc., to establish the known static state.

FC4 —o
EXEC — INZX
DAXX —
INZX -
RST ——

Figure 9-3, Initialization Circuit

9.2.5 Sense 'nstruction Implementation (Figure 9-5)

The Sense instruction circuit can be implemented using an MSI chip or a network
comprised of SSI chips. As in the Function and I/0 instruction decoders, application
determines the most efficient method. An MSI chip can accommodate up to eight
sense conditions, and provide its own function decoding. (Function code deter-
mines sense condition to be interrogated.)

The SSI network can be implemented more efficiently where three or less sense
conditions are to be interrogated. However, the circuit requires inputs from a
Function decoder. Both positive and negative, internal and external signals can
be sensed. An example of each is described below and illustrated in figure 9-5.

9.2.5.1 Positive Sensing

Example A shows positive sensing using a TTL 74151A MSI chip. The 74151A is an 8 to

1 Multiplexer that provides internal function code decoding and an enable input (EN).

1t also provides both true and complement outputs. The top four inputs (0 through 3)
are shown accepting External Sense (ES0 through ES3) signals from the external device.
Pull-up resistors should be connected to each external input line (10K typical). Internal
Sense (IS4 through IS7) signals are applied to inputs 4 through 7. When the device
address is decoded, the multiplexer is enabled by DAXX- at the EN input. The outputs
of the A bus Function field unloading gates are applied to the decode input of the multi-
plexer (ADO, 1, and 2). The appropriate sense signal, as determined by the function
code, is then applied to the two outputs.

9-6




COMPUTER AUTOMATION, INC.

ABOD.
Asot
EXTERNAL SENSE 2082
EXTERNAL SENSE 10K
Bvoc—a HYOCc——W ] ZABT A
e €50
10K «Vw——%j‘u
+5VOC.
€51 O__.l f E!)-O— o
10k 8-INPUT +8VDC. S INeUT:
+5VDC: MULTIPLEXER —‘”“—1 MULTIPLEXER
mo__—-_—~3—— ¢ out R w-O— 10K ouT}——NoT UsED
+8VDC: A% +5VDC:
ES3-
€3 & (} 1
INTERNAL SENSE INTERNAL SENSE
[ gu— P} 1S4- 0
158 155
TOSIA
158 —_— S8
187 57— ‘our SER— P
TAIBIA DAXX fo4) K
DAXX = ——CREN .I._d JEn
EXAMPLE A . EXAMPLE C
10K
+5VDC
=0 =
FCO
18- -
:@’_E 4 181- g m. . SeR-
FCt o1 (84)
. INOTE: FOR EXAMPLES8 & D,
182 ALL FUNCTION CODE
Lp DECOOES MUST BE
Lo OEVELOPED USING
DAXX AS IN FIG.9~2
EXAMPLE B EXAMPLES A & B.
EXAMPLE D
POSITIVE SENSE
NEGATIVE SENSE
Figure 9-5. Positive and Negative Sense, Circuit Configurations
EXPO-
{ ABOO—
¥ o 0—d A [ S . EXPO (SELECT COMD)
3 INPD (INPUT COMD)
47010 b expr- (OUTPUT COMD)
§ DECODER
ABOI— ) A 2p——EXP2-
81}
3PD— EXP3—
4
e P—— EXPa— oy
w2 ©O—4g j (IN)
5p—— EXPS— EXEC
pra
- SP— EXP8—
5 EXPO
pLSES 7p— Expr- unNeor t-
(] FOO————Q o o
8P — ’
EXEC 1042 NOT USED FROM G £xPy
sp— FUNCTIONS o | 4
EXEC- o~ 4 DECODER
67)
EXAMPLE A m €xP2
IN FC2- Q
N~ ) — EXAMPLE 8
(68} L
ouT
!
ouT- ]
€ O

Figure 9-4. Select, Input, or Output Instruction Decode Configurations




COMPUTER AUTOMATION, INC. —_—

Only the high output (OUT) is used in this case. The signal is inverted and applied
to the Sense Response line (SER-) by the 7438 driver. When the OUT signal is high,
the SER- line goes low. When the OUT signal is low, the SER- line stays high.

Example B shows positive sensing using SSI chips. Both external and internal
sensing is again illustrated. A separate Function decoder is required to provide
the necessary function codes. NAND gates combine the sense lines with the
associated function codes. The outputs of the NAND gates are connected in a
wire-ORed configuration to the SER- line.

9.2.5.2 Negative Sensing

Example C shows negative sensing using the 74151A MSI chip. Negative sensing is
similar to positive sensing, except that the low output (OUT-) of the chip is employed
rather than the high output, the EN input is grounded to permanently enable

the chip,and DAXX is used to gate the multiplexer output onto the SER- line. As

with positive sensing, all external sense lines should be provided with pull-up
resistors.

Example D shows negative sensing using SSI chips. The negative-true signals are
inverted and applied to 7438 2-input NAND gate drivers. Function code signals enable
the appropriate driver. The outputs of the drivers may be connected in a wire-ORed
configuration before being applied to the SER- line.

9.3 DATA TRANSFER CONTROL IMPLEMENTATION (Figure 9-6)

The efficient transfer of data between the Processor and I/0 controller is controlied by
the various buffer control circuits shown in figure 9-6. An Output Buffer Empty circuit
controls the transfer of data from the Processor to the interface (examples A and B).

An Input Buffer Full circuit controls the transfer of data from the interface to the
Processor (examples C and D).

9.3.1 Example A

Example A shows an Output Buffer Empty latch (OBE) comprised of two TTL 7400
negative input OR gates. The latch is initially set upon execution of the Initialize
instruction for the controller. The INZX signal goes high and is applied through the
NOR gate to the set side of the latch, causing it to set. The OBE signal thus goes
high and is applied to the Sense multiplexer from which it can be interrogated by
Sense or Conditional Output instructions using the appropriate function code. The
OBE signal can also cause an interrupt through implementation of interrupt logic.
When data is transferred to the controller Output buffer, the DAXX, OUT and PLSE
signals go high, enabling the NAND gate whose output is applied to the reset side

of the latch. The latch now resets, inhibiting response to further interrogations

by the Processor. When the data has been transmitted, a signal should be generated

9-9

COMPUTER AUTOMATION, INC. I e

to indicate completion of the transfer. (Data Transmitted--DXMT). DXMT is
applied to the same NOR gate as INZX, causing the latch to set again and indicate
that the buffer is ready for more data at the next Processor interrogation.

9.3.2 Example B

The circuit in example B does the same thing as example A. The only difference is
a TTL 7474 D type flip-flop is used, rather than the dual NOR gate latch. INZX-
direct sets the flip-flop. The high OBE signal is then available for interrogation.
When data is transferred to the Output buffer, the flip-flop is direct reset. When
DXMT- goes true, the flip-flop is once again set to indicate the buffer is ready to
accept more data.

9.3.3 Example C

Example C shows a latch configuration of an Input Buffer Full circuit (IBF). The
latch is reset by INZX upon initialization of the controller. After data has been
transferred to the Input buffer, a signal should be generated to indicate the com-
pletion of the transfer (Data Received--DRCV). DRCV- sets the latch, causing
IBF to go high. The IBF signal is then applied to the Sense multiplexer where it
can be interrogated by the Processor with Sense or Conditional Input instructions.
IBF can also cause an interrupt when implemented in the interrupt logic. When
the data is transferred to the Processor, the DAXX, IN and PLSE signals go high,
resetting the latch.

9.3.4 Example D

Example D shows an Input Buffer Full circuit using a TTL 7474 D type flip-flop.

The flip-flop is direct reset upon initialization. The flip-flop is set when data is
received (DRCV goes high). The flip-flop is then direct reset when the data is
transferred to the Processor (DAXX, IN and PLSE go true).

9.4 PERIPHERAL DEVICE INTERRUPT IMPLEMENTATION

The design requirements for various interrupt structures compatible with the ALPHA LSI

computers are now discussed.

9.4.1 Interrupt Address Rationale

In general, interrupts are vectored to a location within the first 256 words of Memory.
The main advantage for having interrupts vectored to this area of Memory is in the.
housekeeping associated with certain interrupt instructions. An Auto 1/0 instruction,
for instance, must have the word/byte count and address pointer redefined after it has
been moved. An IMS instruction must have the count value redefined after it has

9-10




[013U0) J3JsUBL], BIRQ ‘9-6 2andig

COMPUTER AUTOMATION, INC. - = ~—  COMPUTER AUTOMATION. INC. —

overflowed. If the interrupt instructions are in the first 256 words of Memory, direct
addressing can be used from anywhere in Memory to update the instruction parameters
in anticipation of the next interrupt pass.

"gg g z
=

x N
%3 IR

In applications where the use of the first 256 words of Memory for interrupts makes
programming difficult, all interrupts can be offset : 100 locations into the next 256
words of Memory .

The number of memory locations that are reserved for interrupts varies with each

1/0 controller. If the [/O controller is intended to move data under Auto 1/0 interrupt
control, four locations should be reserved for the Auto I/0 instruction and two locations
for the End-of-Block (EOB) interrupt. If a simple transfer of control is required, only
two locations are required for a JST instruction. If external events are being counted,
four locations must be reserved--two for the IMS instruction and two for the EOB interrupt.

Vv 3TdNVYX3

m
x
>
2
3
~
m
a

03 434N ANNI
ALdW3 ¥334NO LNdLNO

If multiple interrupts are developed by an interface, these interrupts are organized
into a family. Referring to appendix A, the Real Time Clock option has a four word
interrupt family and the 103 Data Set Controller has a 16-word family. Family size
is strictly a function of the number of interrupts an interface develops and the num-
ber of locations required by each interrupt instruction.

J1901
1dNYYILNI HO 484

290

3ISN3IS OL
ldNYHIINI 4O 38O
3ISNISOL

To preserve compatibility throughout the ALPHA computer family, I/0 controllers
are designed to interrupt to an even numbered address. If an 1/0 controller
develops multiple interrupts, the base addresses of these interrupts are partitioned
either two or four locations apart. The standard base addresses are : 0XX2, : 0XX6,
: 0XXA and : 0XXE. These standard base addresses leave locations : 0XX0 and : 0XX8
available for special interrupts, if required.

XXva

3 -
N
8 &

N
IS4
XX¥Q
1n0

The Auto I/0 instruction requires three locations while the IMS and JST instructions
require one location each. The unused reserved locations may be used for address
pointers.

otne

AJHQ

AG+
AWXa
AS+
—XINI

9.4.2 Single Interrupt Implementation Using IUR- (Figure 9-7)

This structure features an Interrupt Enable flip-flop (INTE), an Interrupt Stimulus
Store flip-flop (INTS), an Interrupt Pending flip-flop (IP1), priority determination
logic, priority out disable logic and an interrupt address generator.

b14

The INTE flip-flop is a J-K type device which is synchronously set or reset by an
addressed Select instruction. Function Code M (FCM) sets INTE while Function Code
R (FCR) resets INTE. The INTS flip-flop is & D-type positive-edge triggered cir-
cuit. When enabled, INTS sets on the positive excursion of the external stimulus
signal (EXTS).

a 3dNVYX3

(R
veve
yad|
TN ¥3244NE LNINI
LERET ¢ ]
¥ )
rive
o s 0
ALJW3 H334NE LN4LNO

290
14NHUIANI 481

HO 3ISN3SOL

21901
14NWHILNI 380

HO ISNISOL

9-11 9-12




COMPUTER AUTOMATION, INC.

An optional feature is an edge detector consisting of an Exclusive-OR gate and an
inverter. The edge detector permits the use of either a high or low stimulus signal.
The polarity of EXTS is defined by RPOL (Request Polarity). If EXTS is a low signal
when active, RPOL is grounded. Likewise, if EXTS is a high signal when active,
RPOL is left open and the pull-up resistor provides the positive-logic level signal.
When both EXTS and RPOL are of the same polarity, the output of the edge detector
will be high causing INTS to set, if enabled. Once both INTE and INTS are set, an
interrupt request is generated. The Interrupt Pending flip-flop is enabled when
INTE and INTS are both set. When enabled, IP1 sets on the negative excursion of the
processor 1/0 clock (IOCL).

Once IP1 is set, the structure must have priority before an IUR interrupt request can
be generated. If up-stream devices are not generating interrupts, PRIN- (Priority

In, pin 83) will be low. Both PRIN and IP1 are ANDed to produce the Interrupt Request
Pending (ME) signal. ME is used to develop the Interrupt Request (IUR-) signal and
disable down-stream interrupts by causing PROT- (Priority Out, pin 84) to go high.

When the Processor recognizes the interrupt request, it responds by issuing the
Interrupt Address Request (IAR) signal. If ME is still high (a higher priority interrupt
may have been generated at the same time as this one, causing PRIN- to go high,
disabling ME), IAR causes the interrupt address to be generated.

The Interrupt Address generator develops a unique vectored interrupt address. The
base address that is developed is : 0XX2. The Interrupt Address Select lines (E4-
through E256-) permit the user to displace the base address anywhere in the first 512
words of Memory. Grounding a particular address select line adds a corresponding
decimel value to all base addresses. For example, grounding E32- adds 32 decimal
locations to all interrupt addresses.

This type of address generation permits the user to redefine interrupt locations with
a minimum of effort. In the event the user is limited by the mumber of pins available,
specific data bus drivers can be used instead of the structure shown.

When ME and IAR are high (ADRR), the Data bus drivers are enabled and the interrupt
address is transferred to the Processor. The Processor directs the contents of the D
bus to the Memory Address register. After the Memory Address register is loaded, the
PLSE signal is generated. The PLSE signal, NANDed with ADRR, will cause INTS to
reset.

At the end of the last cycle of the interrupt instruction, IOCL is re-enabled. With
INTS reset and IOCL enabled, IP1 resets on the negative excursion of IOCL terminating
the IUR interrupt request.

The only feature of the interrupt structure not mentioned previously is the initialize
feature. Generally, all controllers have an initialize circuit which generates the INZX
signal. INZX sets or resets all control flip-flops to 2 known condition. In this case,
INTE and INTS are reset by INZX. INZX is typically generated iii response to an
addressed Select instruction with a function code of 4, or by the Prodessor generated
System Reset signal, RST-.

9-13

*1-6 2a0BLg

~¥ni 8uisn uonejuswardwy ydnazsyu] 213uls

O -uwviits)

Hvi

Q —Niud its)

NiYyd

O — 1001 (19}

153N03Y

JLVYNINHIL

=904

IN8YN3

NI b
LdNEYILNI

I’s_‘

OfF——AMW——AgG+
»Z

3IYOLS

(©)-osc2

P

AG+

a

Hvi

rvi

o
0

SATNNILS
L4NBYIINI

SINI

§

8

l
z = gm
N = 23
x <) Sx
1 ol ) z
3

Q

iow)—1080 O

ty-z0800

izn-c080 Q

ign-v080 O

Wwy)-9080 Q

9-14

{8y 2080 O

{6 —8080 O

HYQY —4




COMPUTER AUTOMATION. INC. '|

9.4.3 End-of-Block Interrupt Implementation Using IUR (Figure 9-10)

The interrupt structure shown in figure 9-8 develops two interrupts on the IUR- request
line.

The structure is similar to the IUR structure described in paragraph 9.4.2 except that
an Echo Interrupt flip-flop (ECHO1) is added. The interrupt request is developed as a
result of ORing IP1 and ECHO1, and two base addresses are developed (: 0XX2 for IP1
and : 0XX86 for ECHO1).

ECHOL1 is enabled by IP1 and PRIN. If the structure has priority at the instant an ECHO
signal is developed by the Processor (upon determining the last word/byte of a data block
has been transferred), ECHO1 sets when ECHO is received. ECHO1 is reset, if IP1 is
reset, if the structure has priority when IAR and PLSE are received.

Note that IP1 is set for the entire period of the interrupt instruction and that ECHO1
is set only as long as required to obtain recognition from the Processor.

9.4.4 Reentrant Interrupt Implementation (Figure 9-8)

Reentrant interrupt programming permits an interrupt of higher priority to interrupt
an interrupt subroutine. Interrupts of lower priority are not recognized. Reentrant
interrupt programming requires that the Priority Out Disable latch be implemented in
the user's interface hardware. When the latch is implemented, the generation of an
interrupt sets the latch, which in turn disables the generation of PROT- to down-
stream devices.

The reentrant interrupt feature disables all lower priority interrupts for the duration

of an entire interrupt subroutine. The reentrant interrupt circuit is shown in figure
9-8. The circuit prevents the PROT- signal from being transmitted to the next lower
priority controller until the subroutine has been completed. The PROT disable latch

is initially set when the interrupt request is acknowledged with the IAR signal from the
Processor. IAR is ANDed with ME to produce Address (ADRR) which enables the
interrupt address drivers and also sets the PROT Disable latch. PROTD- thus goes low,
disabling the 3-input NAND gate which normally produces the PROT- signal when ME-
goes false (high). Inhibiting the generation of PROT- prevents priority from being
passed on to lower priority controllers until the latch is reset.

The latch can be reset by issuing a Select instruction with a function code dedicated to
resetting the latch, or by initializing the controller. When the Select instruction is
decoded, the DEXP (combination of DAXX, EXEC and PLSE signals) signal goes high.
DEXP is NANDed with the appropriate function code (FCX) and is applied through a
negative input OR gate to the reset side of the latch. The latch is thus reset and
PROT- is passed on to lower priority devices (if PRIN- is low) '

ADRR 7404

S
PRIN wee—dq 7410 PROT-(84)
ME~ ————df

Figure 9-8. Reentrant Interrupt Implementation

9.4.5 Single Interrupt Implementation Using IL1- or IL2- (Figure 9-9)

The structure shown in figure 9-9 consists of an Interrupt Enable (INTE) flip-flop and
and interrupt request driver. The INTE flip-flop is used to enable the driver. When the
external stimulus is applied, an interrupt request is generated. This structure demands
that the external stimulus remain active until some positive action takes place to move
data or transfer control (the issuance of the IN-, OUT- or EXEC- control signals with the
proper device address).

INTERRUPT
ENABLE
P o] INTE 1L1-(66)
7438 OR
DAXX — 74107 =1 1L2468)
EXC — 7411 c
PLSE ——
FCR—4K R Q}—
INZX—
exts O
EXTS-Or——————— —_—— —_—————

Figure 9-9. Simple IL1-/IL2- Interrupt Structure
9-16

COMPUTER AUTOMATION. (NC. o - —




O -dvi il

uvi

XZNI

L 23

uopsuswarduy Jdnasdiu] ¥oorg-jo-pud 01-6 3andg

COMPUTER AUTOMATION, INC. EE COMPUTER AUTOMATION, INC.

9.4.6 End-of-Block lnterx;upt Implementation Using IL1 and IL2 (Figure 9-12)

The interrupt structure shown in figure 9-12 develops two interrupts which utilize

the IL1- and IL2- request lines. Since this interrupt structure is designed to acco-
mmodate any ECHO signal generating instruction (the four Auto I/0 instructions and the
IMS instruction), no other devices may be attached to the IL1- and IL2- request lines.
These lines are totally dedicated to this structure.

—NIud (£8}

O -1001 (19}
—OHI3 ()

XZNI

2
1 This structure is essentially the same as the IUR- structure described in paragraphs
9.4.2 and 9.4.3. The most significant difference is that the request flip-flops are
& distributed directly to the IL1- and IL2- drivers. The operation of this structure is
I_E_ essentially the same as the IUR structures, except during request termination. Once
the inferrupt request is generated, the request must be recognized by the Processor.
The Processor recognizes the highest priority interrupt first and all other requests
e in their order of priority. Since there are three higher priority interrupts above IL1
(Power Fail, Trap, and Console) and four above IL2- (the three just mentioned and
IL1), the interrupt structure must be able to detect no higher priority interrupt activity
before terminating the request. The only thing that the Power Fail, Trap, and Console
interrupts have in common is that during the interrupt address request interval, they
all cause bit 4 of the D bus to be low. If DB04- is low during IAR, the IL1 request will
not reset but will remain active since the Processor has not honored the request. When
no higher priority exists after generating the interr upt request, INTS is reset on the
leading edge of the PLSE signal and terminates the interrupt request. To avoid retrig-
gering the INTS flip-flop, the interrupt stimulus should remain in the active condition
until an addressed I/0 instruction (Select, Input or Output) causes the source of the
stimulus to reset.

378¥N3
LANHYILNI

q.

Niyd
201
OHI3

a
3604S

EOll
yuav
=it

sNINNILs
LaNYYILNI

Nivd
[

(1173

0L

rivi
OHO1

ONIONId
AdNYYIINI

LINWNILNI

9.5 DIRECT MEMORY ACCESS IMPLEMENTATION

LOHO3 ——0

DMA controllers generally have three basic phases of operation. These phases are
initialization, execution, and termination. This section provides a general overview of
each of these phases. A simple overview flow chart is shown in figure 9-11.

Niyé

9.5.1 Initialization

The initialization phase is used to transfer task parameters from an operating program to
the DMA controller. Typically, the task parameters define operating modes, data trans-
fer paths, the total number of transfers to be made, the starting memory address (if
Memory is involved) and search parameters for items such as a disk or tape unit. The
complexity of the task parameters is directly related to the complexity of the DMA
controller and the various tasks it can perform. Depending on the DMA controller design,

{ow-1080 O ..m

the task parameters can be transferred from Memory to the DMA controller's registers
either by use of normal I/0 instructions or by means of a task control block which is
read from Memory by the DMA controller.

<
<
| S Aa:lm

— IUH:
{in~20800 d @ 03
]

Zn-c080 QO
ieri—908a0 O

9-17 9-18




0Z-6 81-6

soseyq reuonesedp VWG ‘11-6 2andig

SNINS JBSULI) IPINOLY @
wnusy
uonessdO—j0—pu3 Nss| ¢
ISVHI NOILYNIWYIL

O 12-jem

ECHOY

ECHO
INTERRUPT
‘REQUEST

3137dW0OD
HIJASNVHL

lajsuei| eeQq o
uoNdNY Al0tid o
uolUsSINbOY sng—Ixe @
ISVHd NOILLNDIX3I

INTERRUPT
STIMULUS

] 74868
ME
=R
PLSE
D8041 -
INZX~
7404 ECHO
ocL
b 1AR
PLSE
.b » O—— 08041

Figure 9-12. End-of-Block Interrupt Implementation Using IL1- and IL2-

INTERAUPT

ENABLE

g .
weibouy SuitesadQ wosy

SI010WRIRg YSBL UIRIQD @
3SVYHd NOILVZITVILINI

¢ . f

ren——is
d
FCR
1K
7404

EXTS O

167) :AR-Q

POL
(72) ECHO-

181 10cL- O
171 PLSe-Or
(45) 080 Q

ECHOI-
INZX~

lyvis

= q_u NI ‘NOUVYINOLAY YILNINOD <—u NI ‘NOLYINOLNY LNINOD



COMPUTER AUTOMATION. INC. EE

Once the task parameters have been transferred, the DMA controiler may begin data
transfer execution.

9.5.2 Execution (Figures 9-13 through 9-15)

The execution phase is entered upon completion of initialization. When the associated
peripheral logic is ready to transfer data, it generates a DMA transfer request. The
DMA controller executes the DMA request in three stages. These stages are Maxi-Bus
acquisition, priority auction, and data transfer. Figure 9-13 shows a typical imple-
mentation of the Maxi-Bus acquisition and priority auction logic. Figure 9-14 shows
the state counter and decoder implementation. Figure 9-15 depicts the timing for both
a Memory Write and Memory Read operation.

9.5.2.1 Maxi-Bus Acquisition

Maxi-Bus acquisition is initiated upon receipt of a data transfer request. The Maxi-Bus
acquisition logic consists of three control elements: a Request Store flip-flop (RQ), a
Request Sync flip-flop (REQF) and a STOP- driver.

The data transfer request is stored in the Request flop-flop. RQ remains set until the
data transfer stage is entered.

If no DMA operations are currently in progress (processor Stop Acknowledge signal,
SACK-, high), the Request Sync flip-flop is asynchronously set which causes STOP-
to go low requesting use of the Maxi-Bus. If a DMA operation is in progress (SACK-
low), the Request Sync flip-flop must be set synchronously with Memory Acknowledge
(MACK-~) to assure proper bus operation.

9.5.2.2 Priority Auction

Priority auction is required only if multiple DMA controllers are employed in the same
system. Priority auction permits multiple DMA controllers to compete for use of the
Maxi-Bus by means of the DMA priority string (DPIN- and DPOT-). DPIN- is the name
given to the priority chain as it enters a controller and DPOT- is the name given to the
priority chain as it leaves each controller. The DPOT- of one controller is the DPIN-
of the next lowest priority controller. A DMA controller has priority if its DPIN- line

is low. The number of DMA controllers which may be used within the system is limited

only by priority ripple time on the priority string. Nominally, 200 ns are allocated to
priority ripple. Where more than 200 ns is required for priority ripple, each DMA
controller must be designed to abstain from beginning a transfer operation until
sufficient time has elapsed for priority ripple.

Priority auction occurs at two times: after the leading edge of SACK- and, if another
request has been received, after the data transfer (after the trailing edge of MACK-).
If only one DMA controller is installed in the system, or if only one DMA controller is
allowed to be active at a time in multiple DMA configurations, then priority ripple time
need not be allocated.

9-21

COMPUTER AUTOMATION. INC.

Within the DMA controller, priority auction is controlled by a DMA Start flip-flop
(START). START is enabled by REQF (which indicates that a synchronized data trans-
fer request is pending) and is clocked by the leading edge of SACK- during initial
Maxi-Bus acquisition, or by the trailing edge of MACK- during sequential DMA operations.
When set, START inhibits downstream DMA Priority (DPOT-, high) and starts the DMA
State counter. )

When two or more DMA controller START controls are set simultaneously, the highest
priority controller inhibits priority to the down-stream controllers. The down-stream
controllers, upon seeing DPIN- high, reset their START flip-flop and DMA State counter
aborting the data transfer. An aborted transfer remains pending until all higher priority
DMA requests have been serviced.

Priority auction terminates when the auction interval (normally 200 ns) has been timed out.

9.5.2.3 Data Transfer

When the data transfer interval is entered, the DMA controller is free to initiate data
transfers to or from Memory or another 1/0 controller. All data transfer timing is
controlled by the DMA controller per paragraph 10.2.2 for memory transfers and per
section 7 for transfers to/from another 1/0 controller. For each data transfer, the
DMA controller must generally decrement a Word or Byte counter and increment an
Address counter if transferring data to/from Memory. These overhead operations
generally take place immediately after a data transfer to assure that address informa-
tion is stable during the next data transfer. When a data transfer is completed, the
DMA controller enters the Priority Auction stage if more data transfers remain or
enters the termination phase if all transfers are complete.

The RST signal should never be used to clear the DMA Data Transfer logic since RST

is an asynchronous signal and may occur in the middle of a memory cycle. To

guarantee thdt the DMA Data Transfer logic is initiated in the proper state when

power is first applied, the MDIS- signal should be used as shown in figure 9-13 and 9-14.

9.5.3 Termination

A DMA controller should provide for two types of termination: normal and abnormal .
A normal termination occurs when the Word counter decrements to zero with no
errors detected. An abnormal termination occurs if an error condition exists. Since
DMA transfer operations can be terminated for a variety of reasons, termination flags
should be used to store the reason for a termination.

When a termination condition exists (either normal or abnormal) subsequent DMA

transfer requests are inhibited, Maxi-Bus control is returned to the Processor, and
an End-of-Operation (EOP) interrupt is developed by the DMA controller. In some cases,

9-22




A

STATE COUNTER

MACK )
a3 Q1- =
. START- - \
! e 24M10 el c 74M78
= oPIN— /J
3 3 i
o] .
=
< o FoLx DRI == -8 I
g {FCLK) (z2m01s-O—q
Pl scLk
;
9 D bus Memory
Drivers * Start
a3 1K -«
WRITE soan N
£a3-—" o
Reed Data 0t et ——-OMsT-(15)
Strobe
INCA
WRITE- AOST) DNB0S?
Decrement
Word Counter
at
D — w
SCLK RD-(18)
i WRITE-
Increment
Address Counter
a2-
a3 INCA
SCLK
Figure 9-14. State Counter and Decoder
{38) SACK- 0O q Q SACK=
u REQUEST
. SACK
* {ENABLE}> — — — —t
g (17) MACK= O—C q MACK~
4 MACK ) ————
g (200) OPIN=- O—~q DPIN
+
§ PROCESSOR STOP
v [
-—4 &
e D
PRIORITY OUT
orn —
PO L - OPOT- (1104
03 et

Figure 9-13. Maxi-Bus Acquisition and Priority Auction Controls




Burur, JejsuBay, VWA ‘S1-6 2In3rg

4343 proy '@

WA s Y

isaow

YONI

“NOVW

-%OVHN

—iSW

N X

L

MO30

-XX80

aeas

~XX8Y
—dis3

—XX8Y
—d153

WS

1uvis

=XJV¥S

\ Uu

COMPUTER AUTOMATION, INC. l

it may be desirable to have the Processor periodically examine DMA controller status
rather than generate a termination interrupt.

Typically, the EOP interrupt service routine will input the termination flags and any
other pertinent status, and determine if the complete transfer was acceptable. If the
data transfer was not acceptable, the software may retry the transfer operation if it
deems it necessary..

It is the responsibility of all DMA controllers to terminate with the current bus opera-
tion and not request further bus operations in the event of a power failure (PFD- low).
This is necessary to allow the Power Fail/Restart circuitry to interrupt the Processor
so that a software power down subroutine can be executed. Normally a DMA control-
ler will set a termination flag in the event of a power failure during active operation
80 that software will be aware of an incomplete operation.

9.5.4 Basic DMA Controller Architecture

A typical DMA controller interfaces between Memory and a high speed peripheral device.
It must be able to emulate the Processor in terms of controlling Memory and making
block data transfers of any length. A typical DMA controller must be able to perform
the following operations:

1. Provide initialization sequencing by programmed 1/0 or

DMA transfer. .

Stop the Processor to seize control of the Maxi-Bus.

Initiate a memory cycle.

Define either a Read or Write operation.

Provide temporary data storage and asynchronous data

transfer to/from the associated peripheral.

Maintain the memory address for the current transfer and

increment the address for the next transfer.

Maintain a count of the number of remaining transfers.

8. Provide error detection.

9. Terminate transfer operations (surrender Maxi-Bus to
Processor) after the last transfer or upon an error indication.

10. Provide End-of-Operation interrupt or status response.

Do W N

(-3

-

A basic DMA controller features a Control section, a Word/Byte counter, an Address
register/counter and a Data channel as shown in figure 9-16.
9.5.4.1 Control Section

The Control section consists of Initialization logic, a Mode Control register, Maxi-Bus
acquisition controls, DMA Priority logic and a 3-bit State counter and decoder.

The initialization logic is used to set up the DMA controller for subsequent operation.
It generates load signals for the mode control flags, the Word counter and the Address

9-26




%
§
2

clE

SNB—IXvYiN

sSN8 v

A3INNVHO viva

(sL18 91)
¥3LINNOD
SS38AQY

21901
TOHLNOD
viNa

SHILIWVYHVL JSVL

2anjoeYDIY IB[I0IIU0D VING O1sed "91-6 2InBly

(s1189t)
¥31NNOD
qyom

sIng B sisenbay saysues)

3DIA3C

AHLINDHID
A\ ELEILEL]

COMPUTER AUTOMATION, INC. —_—

register. Two techniques can be used to implement the Initialization logic. One
technique involves the use of programmed I/0 to set flags and load registers.

An alternate technique involves the use of a sequencer and the DMA control logic to
access a task control block in Memory.

The Maxi-Bus acquisition controls issue the Processor STOP- signal in response to
a DMA request.

The DMA Priority logic permits DMA operations between multiple DMA controllers.
During each DMA cycle, the DMA priority is auctioned so that a higher priority DMA
controller can transfer data.

The 3-bit State counter is used to time all operations during a data transfer. The de-
coder network decodes specific states of the counter to generate a Memory Start MST-)

signal, increment or decrement registers and gate data and address information to
Memory .

The Mode Control register has a minimum of 1-bit storage for the Read/Write mode
flag. If the user wishes to implement the Byte mode, a Byte mode flag is required to
distinguish word transfers from byte transfers. The register may be expanded to
accommodate other user defined flags as deemed necessary.

9.5.4.2 Word/Byte Counter

The Word/Byte counter is a 16-bit parallel-loaded binary counter. During initializa-
tion, the word/byte count that corresponds to the total number of words or bytes to
be transferred is parallel loaded into the register. During execution, the Word/Byte
counter is decremented with each DMA transfer to or from Memory. The counter also
requires a word count equal-to-zero detection feature. This feature monitors the
count during each transfer such that when the word count reaches zero, subsequent
DMA requests are inhibited and termination operations are performed (typically an
End-of-Operation interrupt).

9.5.4.3 Address Counter

The Address counter is a 16-bit parallel-loaded binary counter. During initialization,
the starting address of the memory area being accessed is parallel loaded into the

low order 15 bits of the counter. The MSB of the counter is set false for Word mode

and true for Byte mode. During execution, the Address counter is incremented for

each transfer (after MACK- is received). During Byte mode operations, the Select

Least Significant Byte (SLB) flag is used as the LSB of the address count. When SLB- is
low, the least significant byte of the transferred data word is read from or written into
Memory. Likewise, when SLB- is high, the most significant byte of the transferred

data word i3 used. SLB- must be high (or not used) during Word mode operation.




COMPUTER AUTOMATION. INC. :ﬁ

9.5.4.4 Data Channel

The Data channel is a temporary storage element that serves as a staging area for DMA
data transfers to or from Memory. The complexity of the channel is determined

by two factors. The first factor is DMA latency. DMA latency is defined as the time
required, under worst case conditions, for the Processor to surrender the Maxi~Bus
to a DMA controller. This worst case time for the NAKED MINI/LSI with the standard
1600 ns Memory is 5.6 us (this is the maximum time that the Processor requires to do
internal housekeeping and generate a Stop Acknowledge (SACK-) signal. The second
factor that determines Data channel complexity is the user's maximum data transfer
rate when writing into Memory .

Using the 5.6 us DMA latency as a constant, the number of buffers that would be required
for temporary data storage in the Data channel is directly related to how many word
transfers could be attempted prior to gaining control over Memory. For instance, if

the user has a data transfer rate of 750 kilowords per second, 1.3 us would be required
for each data transfer. With a latency of 5.6 us and a transfer rate of 1.3 us, a minimum

of four words would be transferred and the transfer of a fifth word would have started
before Memory was under control. Thus, five buffers would be required for a 750
kiloword transfer rate. Furthermore, the memory capability would have to operate in

the interleaved mode. The number of buffers required for various transfer rates are
summarized in the following chart:

Data Transfers Up To Number of Buffers Required

178,571 words/bytes/sec

357,142 words/bytes/sec

535,713 words/bytes/sec

714,284 words/bytes/sec interleaved

892,855 words/bytes/sec interleaved
1,071,426 words/bytes/sec interleaved
1,249,997 words/bytes/sec interleaved

B L N RN

The user can avoid the necessity of multiple buffers by use of a Hog Mode flip-flop.
This flip-flop keeps the STOP- line active and disables down-stream priority even
though transfer requests are not occurring at a sufficient rate to sustain "Burst" mode.
In the Burst mode, every memory cycle is dedicated to DMA transfers, i.e., 16-bit
word transfer rate of 625 kHz (single memory module). The TYP1- signal on the mother
board permits the DMA controller to sense which Processor is installed and perform

Hog mode transfers if necessary. TYP1- is ground when the LSI-1 is jnstalled and is
open when the LSI-2 is installed.

9.6 PRIORITY AND MEMORY BANKING PROPAGATION

It is the users' responsibility to propagate the Interrupt priority, DMA priority, and

Memory Banking chains regardless of whether or not a moduie is associated with any of

these cheins. If a module is not associated with any of these chains, the corresponding

chain signals (namely PRIN- and PROT- for Interrupt priority, DPIN- and DPOT- for

DMA priority, and MBIN and MBOT for Memory Banking) must beé propagated through
9-29

COMPUTER AUTOMATION, INC. e———

the module for use by down-stream modules. These signals should be jumpered together
within the module. The ALPHA LSI motherboard input and output pins for Interrupt and
DMA priorities, and Memory Banking, are given in the chart below.

INPUT . OUTPUT
MNEMONIC PIN MNEMONIC PIN
Interrupt Priority PRIN- 183 & | PROT- 184 &
283 284
DMA Priority DPIN- 209 DPOT- 210
Memory Banking MBIN 237 MBOT 238

Modules associated with Interrupt or DMA priority, or Memory Banking, should use

TTL gates for unloading and driving the corresponding chain signals. It is imperative
that the propagation delays internal to the modules be minimized. A total of two micro-
seconds is allowed for signal propagation through all modules in a chain. The implemen-
tation of expansion chassis Buffer board look-ahead propagation limits the longest signal
propagation path to the maximum number of modules that can be installed in two chassis
(20 half board modules). Signal propagation delays should therefore be held to less
than 100 ns average per module.

9.7 1/0 BUS LOADING RULES

For loading rules, see maxi-bus electrical characteristics, paragraph 8.6.

9.8 POWER AND GROUND SYSTEM CONCEPTS

The power supply that is furnished with the ALPHA LSI computer produces three
voltages: +5 Vdc, +12 Vde and -12 Vde. The +5 volt supply is used to provide the
Vee - voltage for all integrated circuits in the Processor, Memory and 1/0 modules.
The +12 and -12 volt supplies are used by the Processor and memory modules and
are available to all I/0 modules if needed. Typically, the +12 and ~12 volt supplies
provide power for analog and communications type interfaces. All three regulated
voltages share a common ground system referred to as logic ground.

Power (+5, +12 and -12 Vdc) and logic ground are distributed from the system power
module through the motherboard to all plug-in modules. Within a module, +5V and
ground are distributed by means of bus bars. The power and ground pins on the
motherboard are organized such that each bus bar can pick up a separate set of pins.

A typical half board module has a density of 72 integrated circuits which are organized
in six rows of 12 chips. A typical full board module has a density of 144 IC's organized
in 12 rows of 12 chips. Bus bars are mounted in between each row of chips and on the

outside edges of a board. A half board module has seven bus bars while a full board

9-30




COMPUTER AUTOMATION, INC.

module has 13. Odd numbered bus bars are ground, even numbered bus bars are +5 Vde.

Most 14-pin chips use pin 14 for Vce (+Vdc in this case) and pin 7 for logic ground. A
typical 16-pin chip uses pin 16 for Vcc and pin 8 for logic ground. By alternating the
pin 1 orientation of each row of chips, two rows of chips can share a common +5 or
ground bus bar. The Vec pins of all chips in adjacent rows are routed to the nearest
+5 bus bar mounting pad. Likewise, all ground pins in adjacent rows are routed to the
nearest ground bus bar mounting pad.

The bus bar is designed such that when it is installed there is a .030 inch gap between
the underside of the bus bar and the printed circuit board. This is to permit etched
circuitry to pass beneath the bus bar without shorting. (Refer to figure 12-3.)

Table 9-1 lists all power and ground pin assignments that exist in the 100 and 200 series
connectors of a typical motherboard slot.

Table 9-1. Power and Ground Pin Assignments

PIN SIGNAL PIN SIGNAL
1,2 Ground 43,44 +5 Vde
3,4,5,6 +12 Vde 59,60 Ground
7,8 ~12 Vde 73,74 +5 Vde
13,14 +Vde 85,86 Ground
27,28 Ground

There are two ground systems in the ALPHA LSI computer. They are logic ground and
chassis ground. It is recommended that the user avoid tying these two ground systems
together. The chassis ground system usually has more noise than the logic ground
system can tolerate. In the event it is necessary to tie the two systems together, they
should be tied together at only one point in the users’ system. For personnel protection,
the chassis ground system is tied to earth-ground via the third wire in the ac line cord.

9.9 FILTERING TECHNIQUES

Integrated circuits introduce switching transients into the +5 Vde power supply which
must be filtered out. It is recommended that both high frequency and low frequency
filtering be employed. The low frequency filter consists of a 2.2 uF, 10%, 20 Vdc
tantalum capacitor between +5V and ground for each row of 12 chips. The high fre-
quency filter consists of a .022 uf, 25 Vdc ceramic capacitor between +5V and ground
for every four chips in a given row of chips. Thus, a typical half board module
would have 6 tantalum capacitors and 18 ceramic capacitors for transient filtering.
Where a large number of MSI devices and Fairchild 9602 one-shots are used, it is
recommended that a .022 uF ceramic capacitor be used for each device.

The -12 Vdc supply is used by the inhibit drivers in Memory. The inhibit drivers

introduce approximately .5 volts of transient noise into the -12 Vdc power supply.
If the user cannot tolerate this much noise, an inductive type filter is recommended.

9-31

COMPUTER AUTOMATION, INC. ﬁ

9.10 STANDARD INTERFACE CONNECTOR

The standard interface connector is a Viking 3VH50/1JN5 or equivalent. This con-
nector features two rows of 50 contacts designated Al through A50 and Bl through
B50. Contacts Al through A50 interface with the contact strip on the solder side

of the PC board. Contacts Bl through B50 interface with the component side of the
board. The interface connector should be installed with pins Bl and A1l to the left as
viewed from the rear of the computer.

9.11 NORMAL INTERFACE PINS

The interface pin assignments normally used by CAI for device address and
interrupt address jumpers are listed in table 9-2.

Table 9-2. Normal Interface Pins

PIN SIGNAL PIN SIGNAL
A01 PS4- BO1 +5Vde
A02 PS3- BO2 +5Vde
rAOS PS2- B03 GND
A04 PS1- B04 GND
(A05 PS0- BOS GND
lA06 E8- BO06 GND
AQ7 El6- BO?7 GND
A08 E32- BO8 GND
[A09 E64- . BO9 GND
A10 E128- B10 GND
11 E256- Bl11 GND
9-32




COMPUTER AUTOMATION, INC.

Section 10

CONSOLE INTERFACE REQUIREMENTS

10.1 INTRODUCTION

A Console, be it the standard ALPHA/LSI Programming Console or a user designed
Console, is an I/0 device with a special set of dedicated 1/0 instructions having
special mnemonics.

The Console is assigned Device Address 0 (DA0O) and shares this device address with
the Power Fail/Restart option, the Autoload option and the Console interrupt and Trap
controls of the Processor.

The Console communicates with the Processor via the Maxi-Bus and uses a special set
of control signals (not considered part of the Maxi-Bus) to stop, step, and start the
Processor.

This section provides a detailed discussion of interface signals, transfer timing, data
formats, etc. This section also discusses the minimum requirements of a Console and
how to add features to the minimum configuration Console.

10.2 CONSOLE - PROCESSOR INTERFACE (Figure 10-1)

The Console interfaces to the Processor via the Maxi-Bus, plus special control lines
not generally considered to be part of the Maxi-Bus. The special lines and the
associated functions are described below. The signals are all ground-true.

SERV- Console Service. The SERV- signal is issued by the Console
to command the Processor to service the Console. The SERV-
line may be considered an interrupt line with priority over all
interrupts, but superseded by DMA operations. The Processor
responds to SERV- by performing a Console Control word (CCW)
input (actually, an instruction fetch from the Console instead of
Memory). The CCW determines the required servicing.

IF- Instruction Fetch. The IF- signal, issued by the Processor,
envelops the instruction fetch cycle. In response to SERV-, the
Processor performs an instruction fetch cycle, which in this case
is a CCW fetch instead of the usual memory read cycle. The
Console uses IF- to differentiate the CCW input cycle from a status
word input cycle; both use Device Address and Function Code 0.
If SERV- is issued coincident with the leading edge of IF-
or later, the instruction fetch cycle will cause an instruc-
tion to be accessed from Memory and subsequently exe-

10-1

START-

CINT-

SSW-

AL-

ov-

BM-

COMPUTER AUTOMATION, INC. ——

cuted before SERV-~ will be honored. SERV- must lead IF- by at least
1.6 ps to guarantee the next IF- cycle will be a CCW input cycle.

Start Processor. Signal START- is issued by the Console to command
the Processor to resume processing. START- must be a minimum of

1.6 us wide. The Processor resumes processing on the trailing edge

of START-. Signal SERV- must precede the trailing edge of START-

by at least 1.6 us to guarantee the Processor will immediately perform

a CCW input instead of a memory read cycle when processing is resumed.

Console Interrupt. CINT- is issued by the Console to interrupt normal
processing. Signal CINT-, once issued, must be held true until signal
IAR- (Interrupt Address Request) is true.

Sense Switch. Signal SSW- issued by the Console, tracks the console
SENSE switch. No synchronization is required. If the SENSE switch
is set, signal SSW- is true.

Autoload. Signal AL- is issued by the Console to command the optional
Autoload logic to perform an autoload sequence. The autoload sequence
is initialized on the leading edge of AL- and commences on the trailing-
edge of AL-. The AL- pulse width must be 100 ns minimum.

Overflow. The OV- signal is issued by' the Processor. OV- tracks the
Overflow flip-flop internal to the Processor.

Byte Mode. The BM- signal is issued by the Processor. BM- tracks
the Byte Mode flip-flop internal to the Processor.

MAXI-BUS

SERV—
START—

CINT—
PROCESSOR T CONSOLE

OV--
BM—

Figure 10-1. Processor/Console Interface

10-2




COMPUTER AUTOMATION, INC.

10.3 CONSOLE TRANSFER TIMING

There are four basic functions (beyond normal I/0 functions) that a console can per-
form. These are: establishment of the Stop mode, register entry and display, Step
mode operation, and establishment of the Run mode. The timing requirements for
each of these functions are discussed in the following paragraphs.

10.3.1 Establishment of Stop Mode (Figure 10-2)

During the Run mode, the Processor Instruction Fetch signal (IF-) is ground-true
when the Processor is fetching an instruction from Memory and is high during the
execution of the instruction. The Console uses the trailing edge of the IF- signal to
synchronize the generation of a Console Service Request (SERV-).

The Stop mode is initiated by operator activation of the console STOP switch. With
the STOP switch active, the SERV- signal is enabled. SERV- goes true during the
execution period of the current instruction and remains true for the next instruction
fetch.

Upon seeing the SERV- signal active, the Processor fetches the next instruction from
the Console rather than from Memory. When the Processor fetches the instruction

from the Console, it addresses Device Address 0 and Function Code 0 and issues the IN-
control signal. The Console, upon seeing IF~ low, Device Address and Function Code
0 and IN- low, places a Stop CCW word on the Data bus.

The Processor vectors the Stop CCW word to its instruction register and executes
the instruction. The CCW instruction algorithms cause the Processor to halt.

INSTRUCTION N-1 | INSTRUCTION N CCW INSTRUCTION
+V
STOP
0
L STOP SWITCH ACTIVATED
+V Ccow
* IF- o EXECUTE EXECUTE FETCH
+Ve
SERV— |

DATA 8US 7/ 1c00  iprocesson stopeen)

. STANDARD 1/0
PROCESSOR GENERATED SIGNAL TRANSFER TIMING

(SEE FIG. 83)

__ Figure 10-2. Establishment of Stop Mode
10-3

COMPUTER AUTOMATION, INC. )

10.3.2 Register Entry and Display (Figure 10-3)

The register entry and display sequence can be performed only when the Processor is
stopped. The sequence is initiated by activation of a Register Select switch on the
Console. The switch activation causes both SERV- and START- (Processor Start) to
go low, simultaneously. Approximately 1600 ns later, the Processor resumes operation
on the trailing edge of START-.

Upon resumption of operation, the Processor recognizes that the SERV- signal is active
and fotchee the next instruction from the Console. The Console, upon seeing IF-,
Device Address and Function Code 0, and IN- low, places the CCW on the Data bus.
The Processor executes the CCW instruction and transfers data between the Console
and the target register or Memory (as defined by bits 0 thru 15 of the CCW). Upon

completion of the transfer, the Processor stops’.

U o —————
sTOP & (STATIC CONDITION)

= REGISTER SELECT SWITCH ACTIVATED

SERV— *:—q
Irg-woo Mm—-{ j

Y om————

START-
Vi cewW
FETCH

*IF- "9

DATA BUS {PROCESSOR STOPPED) I H1CXX W DATA I (PRocesson STOPPED)

’ ’ STANDARD 1/0
TRANSFER TIMING

* PROCESSOR GENERATED SIGNAL (SEE FIG. 8-3)

Figure 10-3. Register Entry/Display Sequence

10.3.3 Step Mode Operation (Figure 10-4)

The Step mode causes the Processor to fetch one instruction from Memory, execute the
instruction and then stop. The Step mode operation can be performed only when the
Processor is stopped and the console RUN switch is activated. Activation of the RUN
switch causes the START- signal to go low. Approximately 1600 ns later, the Processor
resumes operation on the trailing edge of START-.




COMPUTER AUTOMATION, INC.

The Processor, upon resumption of operation, fetches the next instruction from Memory
(as defined by the current value of the P register) and executes it. The Console, upon
seeing the trailing edge of IF-, generates SERV-. Upon completion of the execution of
the instruction fetched from Memory, the Processor fetches a Stop CCW from the Console,
executes the instruction, and then stops.

INSTRUCTION FETCH
& EXECUTION

+V

P
sTol o
l.-lGOO Mm-—|
+V
START-
0 L
RUNswiTCH |
ACTIVATED —
+V
IE- .

v
SERV- ’ 1

DATA BUS {PROCESSOR STOPPED) NSTRUCTION
STANDARD 1/0
TRANSFER TIMING
FIG.
* PROCESSOR GENERATED SIGNAL EROM e (SEE FIG. 83)
MEMORY CONSOLE

Figure 10-4. Step Mode Sequence

10.3.4 Establishment of Run Mode (Figure 10-5)

The Run mode is established by deactivation of the console STOP switch and activation
of the console RUN switch. Activation of the RUN switch causes the START- signal to
go low. Approximately 1600 ns later, the Processor resumes operation on the trailing
edge of START-.

10.4 CONSOLE WORD FORMATS (Figure 10-6)

The NAKED MINI LSI uses four different word formats to convey information between
the Console and the Processor. These word formats are as follows:

1. Computer Status Word
2. Console Sense Word
3. Console Data Word

4. Console Control Word

COMPUTER AUTOMATION, INC. I

PROCESSOR STOPPED |

PROCESSOR RUNNING
=
STOP
o ‘ LL
STOP SWITCH
DEACTIVATED __} ""‘m“"""l
) —————— )
START-

4]

RUN SWITCH ACTIVATED

+V
*IF- \I I
o

* Processor Generated Signat

Figure 10-5. Establishment of Run Mode

15 8 7 4 3 2 )
DS DS DS DS|ss SIA (:56800), SOA (:6C00)
ComputegSTTaWard 0 008 (0] 0 U 05 %F i onfwgcr oo SIX {:5A00), SOX (:6£00)
- J
=
RESERVED FOR EXPANSION INTERNAL PROCESSOR
STATUS BITS
15 e 3 °
’ DS DS DS DS ISA (:6802)
Console Sanse Word 00000000 0o o o o 0SOSOS| i5alse02
\ J

v
RESERVED FOR EXPANSION

ICA {:5804), OCA {:4404}

16-B1T DATA WORD ICX {:5A04), OCX (:4604}

Console Data Word

16 6 656 4 3 2 1 0
Console Control Word IO 0 0 t 1 1 0 0 0 oOoflP] i1 |X]|]A |MIWR (:3CXX)
[ —)
These bits are mutually

exciusive; only ons bit
may be set at 8 time
for proper operation.

Figure 10-6. Console Word Formats

10-6




A

COMPUTER AUTOMATION, INC. —=I=

10.4.1 Computer Status Word

The Computer Status word permits the program to store volatile Sense register data
during a power failure and to restore the Sense register data during restart operations.
This capability is required with the standard ALPHA LSI Console since the sense data
is stored in a volatile storage register. If non-volatile toggle switches are used, this
capability is not required.

The Computer Status word is transferred between the Console and the Processor when
IF- is false, using special unconditional Input or Output instructions with a device

the state of the SENSE switch (SSW) into bit 3 of the word and the contents of the Sense
register (DS0 thru DS3) into bits 4 thru 7, respectively. The internal processor status
(bits 0, 1 and 2) is generated concurrently within the Processor. Upon input, the Com-
puter Status word is loaded into either the A or X register. Note that the Console can
drive only bits 3 thru 7 during an SIA or SIX instruction.

During an SOA or SOX instruction, bit 3 of the Computer Status word contains the new
state of the SENSE switch and bits 4 through 7, respectively, contain the new state of
DSO thru DS3.

10.4.2 Console Sense Word

The Console Sense word is transferred from the Console to the Processor in response

to an unconditional Input instruction with Device Address 0 and Function Code 1. During
an input operation (ISA or ISX instructions), the contents of the console Sense register,
DS0 through DS3, are copied into data bits 0 through 3 of the Maxi-Bus, respectively.

All other bits of the word are transferred as zeroes. No Output instructions are issued
by the Processor in conjunction with the Console Sense word.

10.4.3 Console Data Word

The Console Data word is a full unsigned (absolute) 16-bit data word that is transferred
between the Processor and Console in response to an unconditional Input or Output
instruction with Device Address 0 and Function Code 4.

During routine input operations (ICA or ICX instructions), the Console Data word is
input to the Processor A or X register. Likewise, during routine output operations
(OCA or OCX instructions), the Console Data Word is transferred from the Processor
to the Console.

During a console service sequence, the Console Data word can be transferred to or
from the Processor A, X, I or P registers as well as Memory.

10.4.4 Console Control Word

The Console Control word (CCW) is an instruction word rather than a data word. The
CCW is generated by the Console during & console service sequence. The operation
code of the CCW resides in bits 15 through 6 while bits 5 through 0 are modifiers."

10-7

COMPUTER AUTOMATION. INC. S

The NAKED MINI LSI is designed to respond to eleven different CCW codes. These
codes are listed below:

CCW CODE FUNCTION

:1C00 Stop Processor

:1C02 .Read Data from Memory, Increment P and Halt
:1C03 Write Data into Memory, Increment P and Halt
:1C04 Output Data from A Register and Halt

:1C05 Input Data to A Register and Halt

:1C08 Output Data from X Register and Halt

:1C09 Input Data to X Register and Halt

:1C10 Output Data from I Register and Halt

:1C11 Input Data to I Register and Halt

:1C20 Output Data from P Register and Halt

:1c21 Input Data to P Register and Halt

Note that bits 1 through 5 are mutually exclusive, namely, only one bit may be true at
a time.

10.5 MINIMUM CONSOLE REQUIREMENTS

A minimal user designed Console should have facilities to stop, reset and start the
Processor as well as have system performance indicators.

10.5.1 Stopping the Processor

Stopping the Processor requires the issuance of a Console Service Request (SERV-)
and the furnishing of a Stop Processor CCW to the Processor upon recognition of SERV-,

The Processor will not recognize the Console Service Request until completion of the
current instruction. Upon completion of the current instruction, the Processor recog-
nizes the Console Serivce Request by initiating a CCW instruction fetch from the Console
rather than the normal instruction fetch from Memory. The CCW transfer timing is
discussed in paragraph 10.3.

The users Console should be designed to furnish the CCW word during an input
sequence with Device Address 0 and Function Code 0 ONLY when the instruction fetch
signal (IF-) is true. Once the CCW is transferred to the Processor, the internal micro-
program algorithm of the Processor brings the Processor to a stopped condition.

10.5.2 Resetting the System

Resetting the system is accomplished by forcing the System Reset signal (RST-) ground-
true for a minimum of 5 us. This can be accomplished with a switch or a TTL compatible
open-collector signal capable of driving 32 mA. It is not necessary to synchronize or
debounce this signal.




COMPUTER AUTOMATION, INC.

10.5.3 Starting the System

The system is started by issuance of the Start Processor signal (START-). START-
is a ground-true signal that must have a minimum duration of 1 .6us. START- should
be driven with a 32 mA open collector TTL driver.

10.5.4 Visual Indicators

Visual indicators should be provided for ease in determining the operational status

of the system. Indicators should be provided on the debounced STOP switch signal
and the system RESET signal. A RUN indicator can be provided by use of a 500 us
retriggerable one-shot that is triggered by the Memory Start signal MST-. As long

as the system is running, the Run one-shot will be retriggered each time Memory is
accessed and will time out 500 us after the last memory access following departure
from the Run mode. The RUN indicator should light whenever the Run one-shot is set.
The Byte Mode signal (BM-) and the Overflow signal (OV-) are available for display.
If these signals are applied to lamp drivers and indicators, an additional performance
monitor can be obtained.

10.6 OPTIONAL CONSOLE FEATURES
The minimal Console discussed in the previous paragraph can be expanded to include

several additional features which are discussed in the following paragraphs.

10.6.1 Data Entry and Display

The data entry and display feature provides the capability to enter data from the Con-
sole into the Processor registers or Memory. Likewise, data from the Processor

registers, Memory, or a program can be stored and displayed for operator observation.

The data entry and display feature requires that the Console generate the Console

Data word. Generation of the Console Data word requires a 16-bit register and 16

32 mA open-collector drivers to drive DB00- through DB15-. The entry switches can
be applied via the storage register to the drivers. The drivers should be enabled only

;xg;;) receipt of an Input instruction with Device Address 0 and Function Code 4 (ICA or

If the user desires to accept data from the Processor, the Console must have 16 Data
bus receivers and a 16-bit holding register. The holding register must be clocked
fmly when a Select and Present instruction with Device Address 0 and Function Code 4
is received (OCA or 0OCX).

Display indicators may be tied to the outputs of the storage register and should light
when a corresponding bit is true.

COMPUTER AUTOMATION, INC. 'I

10.6.2 Register and Memory Display and Modification

This feature permits the operator to transfer the Console Data word between the Con-
sole and the Processor A, X, I or P register or Memory.

This feature requires that, in addition to other bits, the Console be able to drive
DB00- through DB05- during a Console Control word transfer. Bits 1 through 5 of the
CCW must be mutually exclusive, i.e. only one bit may be true at a time.

The Console logic should be designed such that when a register select signal for bits

1 through 5 of the CCW is generated, the SERV- and START- signals are generated
simultaneously. Furthermore, the generation of any CCW word, other than the Stop
Processor CCW (:1C00), must be enabled only when the Stop mode is established. This
is to avoid possible alteration of volatile data in a user's program during Run mode.

10.6.3 Sense Register Entry and Display

The Sense register entry and display feature permits the operator to generate a

Console Sense word. The generation of a Console Sense word requires that a 4-bit
Sense register be applied to four 32 mA open-collector data bus drivers (DB00- through
DBO03-). The drivers should be enabled only upon receipt of an Input instruction
having Device Address 0 and Function Code 1.

10.6.4 SENSE Switch Feature

In addition to the four sense lines discussed above, the Processor will accept a SENSE
switch signal (SSW-) that may be tested by program instructions. The SSW- signal
must be ground-true when the SENSE switch is active.

10.6.5 Console Interrupt Feature

The Console interrupt feature permits the operator to interrupt normal processing.
Console interrupts generate signal CINT- which is sent to the Processor. The only
timing restriction on CINT~- is that it must remain active until the Processor recognizes
the CINT request (recognition is obtained when the Interrupt Address Request

(IAR-) signal goes ground-true).

10.6.6 Autoload Initiation Controls

The Autoload initiation controls permit the operator to command the Autoload option
to perform an autoload sequence. Autoload initiation should only be permitted when
the system is in the Run Enable mode (STOP and RUN switches are reset or off).
Autoload initiation will take place whenever the AL- signal is forced ground-true.
The signal must be ground-true for a minimum of 100 ns to guarantee a response from
the Autoload option.

10-10




COMPUTER AUTOMATION, INC.

The user may use the AL- signal to set a flip-flop which, in turn, may drive an auto-
load indicator. A Select instruction with a device address and function code of 0 can
be used to reset the flip-flop when loading is complete.

10.6.7 Step Mode Feature

The Step mode feature permits the operator to manually step through a program one
instruction at a time. The Step mode is an extension of the Stop mode wherein, if
the RUN switch is activated while in the Stop mode, the Processor will go into the
Run mode, execute one instruction, recognize a console service request, process the
request and then stop. Step mode timing is discussed in paragraph 10.3.

10.7 USER CONSOLE INTERCONNECTION (Figure 10-7)

A user designed Console can interface to the Processor in two different ways. If the
user has the motherboard assembly, the Console can be interfaced at connector Ji.

If the motherboard is not employed in the users system, the Console can be interfaced
directly to connector P1 of the Processor. (Intercabling must be limited to 18 inches.)

Motherboard connector J1 will accept a 50-pin 3M connector (Part number 3451-0000) .
This connector is designed to accommodate a SCOTCHFLEX ™ ribbon cable (3M part
number 3365-50). A PC board transition adapter (3M part number 3456) is also
available for the console end of the ribbon cable. Note that power and ground are
available at J1 in addition to all signals required for a Console. The pin assignments
for connector J1 are shown on figure 10-7.

In systems that do not have a motherboard, refer to paragraph 2.3.3 of this manual.

10.8 OPTION CARD CONSOLE ACCOMMODATIONS

The NAKED MINI LSI Option board provides console skeleton logic. Included in the
logic are the following capabilities:

1. Secondary Console Sense register. Grounding four jumper pins
introduces corresponding logic 1 bits in the Console Sense
register word for ISA and ISX instructions. Satisfies requirements
of paragraph 10.6.3.

2. Secondary Console SENSE switch. A ground jumper on the pin
simulates the console SENSE switch in a set state for conditional

jump instructions only. Satisfies requirements of
paragraph 10.6.4.

3. Secondary Console Interrupt switch. A momentary ground jumper
simulates a Console interrupt. This jumper option is also available
at the TTY interface connector. Satisfies requirements of
paragraph 10.6.5.

10-11

COMPUTER AUTOMATION, INC. | ——

CONSOLE CONNECTOR

{3M 3415-0000)
]
+5V 1 2 CLK —
e
3 4 1AR—
e o e
5 6 RST=
Em——
7 PLSE—
—
ABOS— ——md 9 tOCL—
—
ABO6— ——dq 11 ABO3-
—=
ABO7— emued 13 ABO4—
b
ABOO— =i 15 ouT-
F— - 4
ABO1— e 17 SERV-
i
AB02- g 19 DB14—
——
CINT — et L2_1‘ DB13—
IN———--& OBt2—-
EXEC— il 25 DB11—
—
DB15— w27 DB10-
=
OV~ cefl 29 0809—
B S |
START— vl 31 DBO8—
- 4
Al — o 23-4 DBO7—
BM— =i 35 DBO6—
=
|F— = 37 DBOS—
=
SSW— ——edl 39 DBO4—
m—
GND 41 DBO3—,
poseore
43 MST—
e
‘45 D8Ot~
e o
47 DBOO—
p—
49 DB0O2—
e o

Figure 10-7. Motherboard/Console Connector (J1) Pin Assignments

10-12




COMPUTER AUTOMATION. INC. ==

4. Secondary Autoload switch. A momentary ground jumper simulates:
the console Autoload (AL-) signal and results in the execution of the auto-
load sequence. This jumper option is also available on the TTY
interface connector. (Jumper is active at all times and will first reset
the computer if pressed while the computer is running.) Satisfies
requirement of paragraph 10.6.6.

5. Secondary Reset switch. A momentary ground jumper simulates
the console Reset (RST-) signal. Satisfies requirements of
paragraph 10.5.2.
Each of the above capabilities and their implementation are described in Section 6 of
this manual.

Table 10-1. Console Special Signal Load/Drive Summary

SIGNAL CPU CONSOLE

SSW-
IF-

AL-
BM-
ov-
START-
SERV-
CINT

OO aETH D
[ -]

NN WD
NN NN OGN

Device types are as follows:

2 = 32 mA open-collector driver (7438 or equivalent)
5 = TTL receiver (7400 or equivalent)
6 = Pullup resistor (1 Kohm)

10-13




COMPUTER AUTOMATION, INC. —_—

Section 11
POWER SUPPLY INTERFACE REQUIREMENTS

11,1 INTRODUCTION

This section discusses the requirements of a user furnished power supply. Among
the items discussed are DC power requirements, power monitor facilities, an optional
ac line synchronized timing source and interconnection requirements. Refer to
figure 11-1 for a top and bottom view of the ALPHA LSI power supply.

11.2 DC POWER REQUIREMENTS

The user designed power supply must produce four voltages: +5Vdec, +12Vde, -12Vde,
and +5H (hangpower). The +5 volt supply provides the Vece voltage for most integrated
circuits in the processor, memory and I/0 modules. The +12 and -12 volt supplies are
used by the processor and memory modules and by the MOS LSI integrated circuits.
Certain analog and communications options use +12 and ~12Vde. The +5H hangpower
supply is used exclusively by the Processor; a detailed discussion of the +5H supply
is provided in paragraph 11.3. All four dc voltages share a common ground system
referred to as logic ground.

11.2.1 Estimating DC Current Requirements

Before a user can design a power supply, the current requirements of each de supply
must be determined. The current load of most standard modules built by Computer
Automation, Inc. are listed in table 11-1. The load currents listed are worst case for
each module. The user can determine actual power requirements for his system con-
figuration by summing the load currents for each standard module (and multiples
thereof) along with the load currents of any user designed controllers.

11.2.2 Overvoltage and Reverse Voltage Protection

It is redommended that the +5Vdc power supply employ overvoltage and reverse volt-
age protection devices. The overvoltage device must prevent the +§Vdc output from
exceeding +6.5 volts in the event of a power supply failure or an accidental application
of a high voltage potential from an external source. Each supply output should have
circuitry to prevent damage to its load or the supply itself in the event that one supply
is shorted to another or to ground.

coMPUTER AUTOMATION., INc. e (3
N OO DU DN o [ [ o (3 >
uwuuwwsuwwwwwwwwww [ [ W W “ [ 71
OO DN RNNDNNNDNNDNNDNDOGOD o o o 0 o o w
s lEEeEESESNRREERRRRGS E B 2e e =18
T PP $ S Sub Rih ol SRR |
SEB|OOKOKMKKKkOcSSSSKONRS K K Ko X X |3
Vg .
5
> PUODHZON R OO WWH OB = & z oz
57 |BEESPEEFECSRRRRELE 5 5 9B 5
® S Si58se8gEgevogge® ¥ R &7 b
% 5 @ RS- - R - o N
g =3 Ognb-]cm'zng””"”":!> o =
g8 [RRpE¥FSSC_Soirowms s § vy 9 °©
ES |rrdfioiprSs2dgEEser & % 93 = &
5 |B28E308ssEo588&88247 ¢ « 28 Z 3
e 3 aagaegmPogzowat 9.9 8 = ]
sz |guispnpcecifzoofer I S 3B g o
3 (223825 REg8FS8ERER &8 § g5 =2 =
S0 *xofoS 208 BRoxS 3 S~ ! !
e [« 7] "g@n q-—-:ﬂ’m 12 o [ gb—‘ - L ag
g2 9588 §3z° °5a8 3 £ 2 53 £ =
o [~ [ 5 Q e e
82 |22g29 833 £ 5S2 8 § o 8g & B
28 |88Ez % 5 %8 8 gz § 494§ = =
- o
& s s red o & £ 3 2 L
o8 R ] < = = 3 B 0o a & lO
e R = S8 8 g 8 8¢ =& =
ie [3BES £ g2 5 & 8 EE % 7|2
22 LLn a s & z = ®°3 o ¢ 10
‘e = £l ® 9 5 § § g2 3%
L] [ 3 g' o a 8 - |2
3 — .2 I3 s [ ;
2 ® 5 & 8
c = -~ g [
=3 ) g =
] -
® 2 g g
g £ k]
° o z S
2 4
: :
5 wy ol ng m':m'
= SAE2HA3 242
-~ >3 fRE ] > 5
= 22 Z =
* §38282 gad=
=] (= e |
e EEhEE @owe
@ ok = [ 4
= m
5
R,
o
g €O 0O W e DD b b GO b b b b b b b DO b b ke DD GO M BD A3 GO GO N ON g‘
£ o o o &
o
x]
2 g
£l ']
'1 Q
o [ I — O — I — - B — ] | 1 t 1 1 t 1 O O = o I OO +
g Il ) el B | TR TR T S N (R N I o o o o o o Lo o .0 o oy
® [N - — I ) ) ] 1 | ] ] POl -3 GD ] NN D (XY}
I oo | ] ] 1 1 t [ I | oo [] o <’
S [ * [ T T S S B A i 1 =1
] 2
i)
[N B~ I — I - I~ I - I } ) ] t 1 ] t | PO Il oO0CoOoO O N I OO OCWM I2
bl o« e & a e [ S I T T T R N TR ) t o ¢ o s s . b s o o o [y -]
[ 7 B i — 2 — N R | ] 1 (] ] ] I = 1 NN - OMND | Wb N
I 1 Owmmwowt | ] 1 1 ] ] ] I & | OoOoWwm o I NN =N <V
[ * | I S N D N S A A | t a 1
Qo
2 &
] —
~ ~
A

‘T1-11 @1q8L

S)UIIINY PR I[NPON PIBPUBIS



COMPUTER AUTOMATION. INC.

Bottom View

Figure 11-1. ALPHA LSI Power Supply

11-3

[ P2




COMPUTER AUTOMATION, INC.

11.2.3 Ripple and Noise Requirements

The regulator and output filter design of each power supply must be adequate to limit
ripple, noise and voltage transients to 50 mV peak-to-peak.

11.2.4 Turnon/Turnoff Overshoot

Turnon/turnoff overshoot should not exceed two percent (2%) of the nominal voltage
output of each dc power supply.

11.2.5 Regulation Requirements

Each dc power supply should maintain a regulation envelope of +2 percent of nominal
output voltage from 0 to 100 percent of full rated load over the expected range of input
line voltage and over a temperature range of 0°C to 50°C,

These regulation requirements must be maintained at the processor module. Remote

sensing must be employed when voltage drops in the power supply wiring are of suf-
ficient magnitude to cause voltage regulation to exceed +2 percent when the load cur-
rent is varied from no load to full load.

11.2.6 DC Power Storage

The +5Vdec, +12Vdc and -12Vdc power supplies must have sufficient storage in the reg-
ulation to insure regulated output for at least 2ms after a power failure has been detected
(refer to paragraph 11.3 for details on power fail detection).

11.3 POWER MONITOR FACILITIES (Figures 11-2 and 11-3)

The Power Monitor Facilities must develop a +5H (hangpower) voltage and a ground-
true Power Failure Detected signal (PFD-) for the exclusive use of the Processor.
These provisions are required whether the Processor Power Fail/Restart option is
used or not.

11.3.1 +5H (Hangpower) Regulator

The +5H power supply must provide auxilliary +5Vdc power for use by the Processor
to assure proper startup and shutdown. The +5 H supply must be the first dc voltage
to come into regulation upon application or restoration of ac line power and the last
de voltage to drop out of regulation upon loss or removal of ac line power.

The +5H supply must provide 200 mA of dec current at +5 Vdc and regulate this voltage
to within +5 percent of nominal. Ripple and noise must be within 50 mV peak-to-peak.
The +5H supply must be in regualtion at all times that the +5 Vdc and +12 Vde supplies
are above 10 percent of their specified values.

11-4

COMPUTER AUTOMATION. INC. - —

11.3.2 Power Fail Detector

The Power Fail detector must sense when the nominal ac line voltage falls below its
minimum sustaining level. When this minimum sustaining level is sensed, the Power
Fail detector must generate a ground-true PFD- signal for use by the Processor.

The Power Fail detector must also have a timing function that turns off the +5, +12 and
-12Vde regulators a minimum of 2 ms after PFD- goes low.

When the ac line voltage rises above the minimum sustaining level, the Power Fail
detector must turn on the +5, +12 and ~12Vdec regulators after allowing for a charge
buildup in the storage capacitors of each regulator. The PFD- signal must remain in
the ground-true state for a minimum of 2 ms after the +5, +12 and -12 Vdc regulators
have reached 98 percent of their nominal values.

The PFD- signal driver must have a minimum drive capability of 20 mA dc and must be
collector-ORable. The driver may be implemented with either discrete elements or
with an integrated circuit. The logic levels for PFD- are as follows:

True = 0.0 to +0.45 Vde
False = +2.4 to +5.0 Vdc

PART OF
POWER
TRANSFORMER
+5 HANG 5 H
| REGULATOR -
———p——— {200 MA)
PROCESSOR
SEQUENCE CONTROL
POWER FAIL TO ALL REGULATORS
DETECTOR
{DETECTS
LINE VOLTAGE
AMPLITUDE) i -

Figure 11-2. Power Monitor Block Diagram

11-5




DOWN SEQUENCE

+V
PFD— I % : %
[
10%
+6 VDC,
+12VDC
: 98%
|
|

|
+5H 95

@R

COMPUTER AUTOMATION. INC.

UP SEQUENCE

eOn!

Time = 2 milliseconds min. from falling edge of PFD— untit first regulated voitage drops out
+6 H voltage level undefined when +5 vdc and £12 vdc are € 10% of nominal

Pfd- undefined when +5 H is € 95% of nominal

Time = 2 millissconds min. from 88% point to rising edge of PFD—

Figure 11-3. Power Monitor Timing Requirements

11.4 AC LINE SYNCHRONIZED TIMING SOURCE -(OPTIONAL)

The Processor Real Time Clock (RTC) option has provisions for a timing source input
which is twice the ac line frequency. The RTC option represents only one TTL load
to the timing source. The timing source output must be a TTL compatible logic signal
with rise and fall times of less than 50 ns. With regard to the duty cycle of the signal,
the only requirement is that the signal be ground-true a minimum of 100 ns. The
Processor refers to this timing signal as TTLF- (Twice the Line Frequency). The

logic levels for TTLF- are as follows:

True = 0.0 to +0.45 Vde
False = +2.4 to +5.0 Vdc

11.5 INTERCONNECTION REQUIREMENTS (Figures 11-4 and 11-5)

The user furnished power supply may be interfaced to the computer system in two
ways: at the motherboard or directly at the Processor.

COMPUTER AUTOMATION. INC. —

11.5.1 Motherboard Interface Requirements

The user may interface to the motherboard at slot F100. The motherboard distributes
power and ground to all plug-in modules via the F100 connector. The F100 connector

is a 36-pin connector with two rows of 18 pins. When viewed from the rear of the com-
puter, pin 101 is to the right on the upper row of contacts. The odd numbered contacts
(101 through 135) are in the upper row while the even numbered contacts are in the lower,
Tow .

When interfacing to slot F100, the user must provide a special PC board transition

adaptor. A detailed drawing of this adapter, showing critical dimensions, is provided
in figure 11-4. The interface pin assignments are shown in figure 11-5.

11.5.2 NAKED MINI LSI Power Connections

The user may distribute power directly to the NAKED MINI LSI computer. The Pro-
cessor has two connectors, designated P1 and P2, which must be powered. Refer to
table 8-2 for the appropriate power and ground pin assignments.

CABLE INTER-
CONNECT AREA

CABLE STRAIN
/ RELIEF AREA
—— /- ==
| / <
— J
/ 2,00 MAX
” T .2
| 4
—"“‘7,080 *
.140

— ‘.56 MIN

17 EQUAL SPACES

AT,156%,003 EQ. 2.652

TOL. NON-ACCUMALATIVE

o 50 j————— 2,933 ——
+,005

foe - 3 94— G

Figure 11-4. User Power supply Transition Adapter

11-7




COMPUTER AUTOMATION, INC.

SLOT F100
INTERFACE ADAPTER

—— s
TTLF— —4 1 2
= e
45 H ———ed 3 4
= =
PFO- — 5 6 -12v
— =
7 8
s =
9 10
——= e —y
" 12 +12v
i =
+5v 13 14
=== —
15 16
I ] ==
GND 17 18
=5 ==
18 20
| s e
+12v 21 22
—— ey
23 24
== oy
25 26
— _—
-12v 27 28
— —
23 30
—_— e
31 32
— =
33 34
) pe—ay
+5V 35 36 GND
= ==

(POWER SUPPLY MUST INTERFACE
TO ALL PINS AS SHOWN)

Figure 11-5. Motherboard Power Adapter Pin Assignments




COMPUTER AUTOMATION. INC. a&

Section 12

INTERFACE CONTROLLER
MECHANICAL CONSIDERATIONS

12.1 INTRODUCTION

This section discusses the mechanical design of a printed circuit (PC) board which can
be installed in an ALPHA LSI computer chassis.

Either full or half PC boards may be used. When half boards are used, two half boards
are joined together to form a full board.

All boards use bus bars to distribute power and ground to circuits. The bus bars
minimize the ground and power etch runs, leaving more space on the board for signal
etched circuit routing. The bus bar design permits etched circuitry to be routed be-~
neath the bus bar with no danger of shorting.

Fiberglass or metal stiffeners are used on all full boards to eliminate sag and provide
improved structural integrity.

12.2 CHASSIS CONSTRAINTS

The computer chassis is designed to accommodate a PC board which has a width of 15
inches. All PC boards are installed in the horizontal position. When installed, the
chassis provides four-way support for the PC board. The PC board guides support
both sides of the board, the motherboard connectors support the front, and a board
retainer supports the rear edge.

The thickness of the PC board is determined by the motherboard connectors. A typical
board is .062 inch thick. The motherboard connector permits variations in thickness
ranging from .054 to .071 inch.

All components, stiffeners, bus bars, etc. are mounted on one side of the board. This
side of a board is referred to as the "component side" while the other side is referred
to as the "solder side". Boards are always installed with the component side up.

The chassis PC board guides are spaced on .75 inch centers. The height of components
on the component side of a board and the lead protrusion on the solder side of a board
must be minimized to permit unimpeded airflow and easier insertion and removal of PC
boards. All components should be no higher than .47 inch maximum. Lead protrusion
should be held to .062 inch maximum.

The PC board guides are an integral part of the computer chassis which is metal. To
prevent short circuits on a board, the user should not permit any etched circuit runs
closer than .200 inch from either edge of a board.

12-1

A

COMPUTER AUTOMATION. INC. 1=

12.3 PRINTED CIRCUIT BOARD CONSIDERATIONS (Figures 12-1 thru 12-3)

Figures 12-1 and 12-2 show the critical dimensions, hole patterns for bus bars, and
stiffener and integrated circuit layout organization for a full and a half board, respectively.

The motherboard interface dimensions are extremely critical and must be adhered to
rigorously. '

The rear edge of the full board has room for two interface connectors. The 1.250 inch
dimension from each edge is the area reserved for the board extractors (Part No.
40-06100-00). The .800 inch dimension at the center is the area reserved for the board
retainer. The remaining area along the rear edge is connector area. The 6.350 inches
dimension is the maximum allowable area that the mating connector can occupy. The
overall length of a connector cannot exceed this dimension.

The rear edge of a half board has room for only one interface connector. A distance

of 1.210 inches must be reserved for a modified board extractor (Part No. 00-00296-00).
This leaves 5.080 inches of useable connector area remaining. The 5.080 dimension is
the inside contact dimension of the standard 100-pin interface connector.

Half boards must provide for a board extractor at both rear corners although only one is
installed depending upon which way the board is strapped to a second half board,

Figure 12-3 shows the standard PC board hardware. All dimensions are provided for
layout planning purposes. Connector data on the motherboard connector and various
rear edge interface connectors is also provided.

12.4 WIRE-WRAP BREADBOARD PC BOARD (Figure 12-4)

A wire-wrap breadboard PC board (half board configuration) is available from Computer
Automation, Inc. (Part number 13234-00). This board features 72 IC sockets with wire-
wrap posts, ground and power busses, and filters. The board can be useful for proto-
type development and checkout prior to making a formal PC board design.

12.5 FILLER BOARD PC BOARD (Figure 12-5)

A filler board PC board (half board configuration) is available from Computer Automation
Inc. (Part number 10053-00). This board can be joined with a half board 1/0 module to
form a full board as recommended in section 2, paragraph 2.2.3. The filler board does
not pass the priority chains. Therefore, it must be the last board in the chain.




£-21

1a PLACES
03 R TYP
) 14,000
CHAMFER
£:00 \ /03 X a5° TYP HOLE SCHEDULE
crrrrrrrrs & = T HOLE | FNISHED | memarks | arv [ svmaol USAGE
= - 75 FOR 1CS_BUS BARS AND
—.350 4 pLaces B) A |oast82 | PLATED AT oee | (OMpONENT LEADS
3 O UNDER
00! THRU  JOUNT] 028 DIA MAXIMUM
/‘@ = TOOLING HOLES PART OF STD
BOARD _CONFIGURATION.
+004 NO STIFFENER HOLES PART OF STO
- = 272 »B [190-801 | pLating | 12 'm BOARD CONFIGURATION
s A PIGGY BAC KW cowcno
NTG HOLES RO.
—— 400 V.
- _ I L— THIS TYPE OF FORMAT TO BE -——L FOR COMPLETE INFORMATION —l
- = S USED ON ALL DETAIL FAB REGARDING RECOMENDED
To '{ DRAWINGS %E SIZES, seg“i%ge !
-04
+° o -%
l L.i56 TYP
]
i 3,200
=~ eare
_ _ VIR } T
) o i
! ! l o 6.400
-~ o
R _ jI_ . { l THIS AREA TO BE FREE OF SOLDER BOTH SIDES.
. 4° = R aiow 9 SHEETS A4S SPECIFIED BELOW (su muu 7) COMPRISE A COMPLETE SET OF
rrrrr ZZrrIrr = 3@ DOCUMENTS FOR FABRICATION PCB
€ DETAIL \ =40 SHEET 2 PAD MASTER.
S r'\ €S 3 COMPONENT SIDE A/W.
5505 4 SOLDER SIDE A /W.
) . . 1 - 5 COMPONENT SIDE SILKSCREEN MASTER.
CHAMFER : 15,700 (10 t 01 TYR 6 SOLDER SIDE SOLDER MASK.
18x43° 333 " SHEET 7 GROUND PLANE (IF REQUIRED).
2 PLACES e - 16res3 [8] CONTACT FINGER PLATING AREA.
! - +89 (7] THESE DIMENSIONS ARE ESTABLISHED FROM THE ARTWORK.
-020 - 6. STAMP REVISION NQO.,COLOR BLACK,CHARACTER HEIGHT .090 MINIMUM.
.090 4 PLACES 5. SILKSCREENING TO BE WHITE, COMPONENT SIDE PER SHEET 5.
i 4, ALL PLATED THRU HOLES TO CONFORM WITH 85-20017-00, SEC. 3.55.
f. /] COMPONENT  SIDE 3 3, FINSH: B) SOLDER PLATE REMAINDER OF BOARD PER B5-20017-00, SEC. 3.6.2.-5.

o WHEN STIFFENER
IS USED

DETAIL ‘\ &

12 PLACES

(@ THESE ARE DESIGN DIMENSIONS ONLY.
9, PLATED THRU HOLES SHALL BE KEPT TO A MAXIMUM OF THREE DIFFERENT SIZES.

THE STANDARDS DEPICTED ON THIS DRAWING ARE SUBJECT
WRITTEN APPROVAL FROM PROJECT ENGINEER AND DRAFTING SUPERVISOR,

FOR REF TO THE ASSEMBLY CONFIGURATION SEE LAYOUT NO. 69-20079-00.

(® SOLDER MASK BOTH SIDES OF BOARD PER 85-20017-00, SEC. 3.8,

(DARK GREEN)

© FINGERS TO BE GOLD.OVER NICKEL PER 85-20017-0C, SEC. 3.6..3 & 3,614
2. MATERIAL! ,063 THICK COPPER-CLAD,2 SIDES, GLASS EPOXY. LAMINATE GF (FR4),

2 02 AFTER PLATING.

I, FABRICATE PER THIS DRAWING AND C.AI. SPECIFICATION 85-20017-00.

TO CHANGE UPON

FABRICATION NOTES ¢ THESE NOTES WILL APPEAR ON ALL DETAIL FAB DRAWINGS

4
®

AREA UNDER STIFFENER (DWG‘S 72-10048-00 & 72-20046-00) SHALL BE FREE OF COMPONENTS,

WHEN USING STANDARD "4 HARDWARE(32 QD.WASHER) EICH FREE AREA SHALL BE:
£00 DIA ON SALDER SIDE, 250 DIA bN SOMPONENT

WHEN USING NON- STANDARD *4 ,(250 0.0. wASHER) ETCH FREE AREA SHALL BE
.320 DIA ON SOLDER scoe,.aso O N CoHAGRENT  SiDE  ARD PROJECT ENGINEER
SHALL 5t conaTED:

ETCH SHALL BE NO CLOSER THAN ,050 TO ANY EDGE,CUTOUT,HOLE,ETC.
INTENDED TO MATE wiTH CONNECTOR 17-49075-00 OR EQUIV,

INTENDED TO MATE WITH CONNECTOR 17-1003%-01 OR EQUIV,

SHADED AREA SHALL BE FREE OF FEED THRU HOLES AND ETCH.

INFORMATION NQTES

Figure 12-1. Full Board Design Guide

NI ‘NOILYWOLNY ¥3LNINOD

- o |

W,




v-21

WOLE_SCHEDULE
HOLE| FINISHED 1 mEmarks | aty | symeoL USAGE
+004 | PLATED [acnum TOR 105, BUS BARS_AND
A |02 X REF | COMPONENT LEADS UNDER
00! THRU  KOUNT 528 DIA_ MAXiMUN
5 r 3 A( N | A STD.
| |ieg 000 NO BOARD CONFIGURATION
0 —or | PaTe 1T T Ty [SIREENER HOLES PARTOF STO.
BOARD CONFIGURATION
400 —=
Pz ) THIS TYPE T T .1
_ soo o o v o o g o comer e
] g
STRel DRAWINGS HOLE SIZES, SEE FIGURE °F",
N ¢ DRM SECTION 98-10089-04
N 81 PN 85 REF
REF © (@ s races ] CHAMFER
/ .03 x 45° TYP
B 8 T e &
p ) 1 1
) .3
PLACES
i (e)
5.090 | // <:>
6.980 £:005 ﬁ
i0 2 6.772
B ) _ ] _ P o
7,480
5.70
I 7.180
AEROSY /@ 005
i
2850 i ! y
095
£005
g g O
AE e A\ <005
£50 1040~ / | N l - l -
t 8 s N B 3 : 8 i)
7 S )i liL
a3 353
- ® 343 - I L_©_|oo ®
N i 15.700 200 TYP
oA - BOTH, SIDES
REF = 1 .
fs — 16.886 PNt
CHAMFER o~ 15,130 Rtroaoéolo
150 —e=jt=—.030-\000
2 FLACES o 500 2 PLACES
i——‘- 3

WRITTEN APPROVAL FROM PROJECT ENGINEER AND DRAF SUPERVISOR .,
FOR REF. TO THE ASSEMBLY CONFIGURATION,SEE LAYOUT NO. 69-20629-00.

AREA UNDER STIFFENER (DWG'S 72-10048-00, 72-20048~00 AND 00-00160-00) SHALL
BE FREE OF COMPONENTS. g

STAMP REVISION NO.,COLOR BLACK, CHARACTER HEIGHT 090 MINtMUM,

SILKSCREENING TO BE WHITE [ COMPONENT SIDE PER SHEET 5.
4, AL PLATED THRU HOLES TO CONFORM WITH 85-20017-00, SEC. 3.5.5.

500
HEN (STIERENEF, THESE ARE DESIGN DIMENSIONS ONLY.
W s PLATED THRU HOLES SHALL Bt KEPT TO A WMAXIMUM OF THREE DIFFERENT SIZES. [8] coNmcT FINGER PLATING AREA.
(5) 6 PLaces THE_STANDARDS DEPICTED ON THIS DRAWING ARE SUBJECT YO CHANGE UPON 7 THESE DIMENSIONS ARE ESTABLISHED FROM THE ARTWORK,
6
s

@ @ =

:
;
:

3, FINISHs
WHEN USING STANDARD “4 HARDWARE,(312 O.0. WASHER) ETCH FREE AREA SHALL BE: - o
i D SO AR DE, oty Duk O\ COMPONENT SIDE . (® SOLDER PLATE REMAINDER OF BOARD PER 85-20017-00,SEC. 36.2.-5.
WHEN USING NON-STANDARD #4 HAROWARE (250 0.D. WASHER) ETCH FREE AREA SHALL BE: © SOLDER MASK BOTH SIDES OF BOARD PER 85-20017-00,SEC. 3.8,
.320 DIA ON SOLDER SIDE,.250 DIA ON COMPONENT SIDE AND™ PROJECT ENGINEER (DARK GREEN)
SHALL BE CONSULTED. © FINGERS TO BE GOLO OVER NICKEL PER 85-20017-00, SEC.3.6..3
ETCH SHALL BE NO CLOSER THAN 050 TO gNY EDGE , CUTOUT,HOLE,ETC. AND 3644

INTENDED TO MATE WITH CONNECTOR 7-49075-00 OR EQUIV. 2. MATERIAL: ,063 THICK COPPER-CLAD, 2 SIDES ,GLASS EPOXY. LAMINATE

H GE(FRA),2(Z AFTER PLATING.
INTENDED TO MATE WITH CONNECTOR 17-10035-01 OR EQUIV. I. FABRR PER THIS DRAWING AND CAL. SPECIFICATION 85 (7200
SHADED AREA SHALL BE FREE OF FEED THRU HOLES,ETCH & COMPONENTS.

FABRICATION NOTES : THESE NOTES WILL APPEAR ON ALL FAB DETAIL DRAWINGS
DESIGN INFORMATION NOTES: "

X))

Figure 12-2. Half Board Design Guide




S-¢1

MOTHERBOARD CONNECTOR &
WER SUPPLY CONNECTOR
(FOYH ) BUS BAR (PIN 72-10054-XX)
156 —n] 9.08 PINS 1.8,16
6.68 PINS 1.6.12 o1~ 180
an 5.48 {PINS 1510 —02| 180
6.772 _I % PiNs148 03 190
i (2933 =l 1 12, 3 s 5 5 7 —o; i 9 10, 1 121 13 14 15 16
_______________________ 180 EE] Y Y ¥
2T T
| 7.00 /] 030 2
{3.003} 020 —
86 PIN PN 171003501 DX~
(36 PIN PN 17-10035-02)
REAR EDGE CONNECTOR VARIATIONS STIFFENER (PIN 72-10048-00)
050~ - s {
toso A I ,j
5 5080 | RS A Tt ==f =
¥ 13.20 10.35 1.50 5.70 2% 0.00
et : -y | f | I s
) p— - =
{ PIN 200 -+ 200TYP LJ &MLE I_l l_"-g
PN 17-100050P0 <7 R ey
n
0 |
ala 0 e Lo,g FULL BOARD CARD EXTRACTOR (PN40-06100-00N0)

4.609 ;
rJ" ............ qu e =
: = . NOTE: The half-board card ex- 2

PN 17-10002-28P} ~| 250 TYP tractor (PN00-00296-00) is the
same as the full-board extractor, !
o089 i except .130 inches of material g
T are removed from the tip of the 8
0 MOUNTING extractor. >
-ﬂ tjsa *
2955 K

36 PIN R m‘
PN 17-10002- I8P o :

Figure 12-3. Standard PC Board Hardware




”

= A 'ﬁmm T 7 mm

Ll )

v e

| ol ) }
o }

Figure 12-5. Filler Board PC Board

12-6

COMPUTER AUTOMATION, INC.

A

:-




COMPUTER AUTOMATION, INC. ——m COMPUTER AUTOMATION, INC. —_

Table A-1. Hexadecimal-Decimal Conversions

Appendix A
This table is designed to facilitate conversion of positive hexadecimal integers in standard
single-precision or double-precision format to decimal equivalents. The fourth and eighth
H EXADECIMAL TABLES digit positions therefore contain only values in the range : 0 through : 7.
Tables A-1 and A-2 are quick reference conversion tables that have been included DECIMAL EQUIVALENTS
for the convenience of the user. DIGIT DIGIT | DIGIT DIGIT DIGIT | DIGIT | DIGIT | DIGIT
HEXADECIMAL 8 7 6 5 4 3 2 1
1 134217728 8388608 | 524288 32768 4096 256 16 1
2 268435456 | 16777216 |1048576 65536 8192 512 32 2
3 402653184 | 25165814 (1572864 98304 12288 768 48 3
4 536870912 | 33554432 (2097152 | 131072 16384 | 1024 64 4
5 671088640 | 41943040 |2621440 | 163840 20480 | 1280 80 5
6 805306368 | 50331648 [3145728 | 196608 24576 | 1536 96 6
7 939524096 | 28720256 [3670016 | 229376 28672 | 1792 112 7
8 67108864 |4194304 | 262144 2048 128 8
9 75497472 (4718592 | 294912 2304 144 9
A 83886080 |5242880 | 327680 2560 160 10
B 92274688 |5767168 | 360448 2816 176 11
C 100663296 |6291456 | 393216 3072 192 12
D 109051904 |6815744 | 425984 3328 208 13
E 117440512 | 7340032 | 458752 3584 224 14
F 125829120 | 7864320 | 491520 3840 240 16

Hexadecimal to decimal conversion is accomplished by summing the decimal equivalents of
the hexadecimal digits. Decimal to hexadecimal conversion involves locating the next lower
decimal number and its hexadecimal equivalent and then taking the difference. Each dif-
ference is treated similarly until the entire hexadecimal number is developed.




e
£

Table A-2.

Hexadecimal

'———/"‘NF<><£<G'—]‘IIWD'UOZEFN‘-“':O’HHUOwbo

NULL
BELL

COMPUTER AUTOMATION, INC.

8-BIT ASCII Teletype Codes

Hexadecimal
Symbol Code
¥ A0
! Al
n Az
A3
A4

TP OGP

+ o~
>
©

»
le}

DN D U WO
-]
S




A
COMPUTER AUTOMATION, INC. lﬂ ——— COMPUTER AUTOMATION, INC. =-

Appendl x B Table B-1. Recommended Device Addresses
RECOMMENDED DEVICE AND DEVICE ADDRESSES (HEXADECIMAL)
INTERRUPT ADDRESSES — Ll

Refer to Table B-3 00
Table B-1 and B-2 list recommended Device and Interrupt Addresses to prevent 01
possible conflict during future expansion to other 1/O modules. Dusal TTY/CRT (TTY1/CRT1) 02
Dual TTY/CRT (TTYO/CRTO) 03
Line Printer (LP) 04
Card Reader (CR) 05

Paper Tape Punch (PTP) 06(17)
Paper Tape Reader (PTR) 06
Processor TTY* (TTY) 07
Real Time Clock* (RTC) 08
Magnetic Tape (Mag Tape) 09
0A
0B
Automatic Calling Unit Mux (ACUM) 0C
Synchronous Modem Controller (SMC) oD
Asynchronous Modem Multiplexer (AMM) OE
Disc oF
Cassette 10
Floppy Disc 11
16-Bit 1/0 (A/D System) 12
13
Plotter 14
15
32-Bit Relay In (RCIM) 16
Punch Alternate 17
16-Bit Input/Output (16-Bit 1/0) 18
64-Bit Input (64-Bit In) 19
64-Bit Output (64-Bit Out) 1A
Priority Interrupt Module (PIM) 1B
32-Bit Relay Out (RCOM) 1C
103 Data Set Controller (103 DSC) 1D
Memory Bank Controller 1B
1F

* Processor mounted options. Device Address non-hiterable.
( ) Indicates suggested alternate.




Table B-3. Device Address 0 Command Summary

i
U

<

¢-g

xaidng (Rg 'S
xotdnq jTeH ‘¥

‘wsds uaarl Auw U] JOOWA ® SN
Aww 207A9p JUO AJUQ ‘9DTAIP DUO UBY} FIOW JO0) JOWIA O/] PAVPUMIE U S BIU} WY} NVIPUL /¥ J0/PUB SXV0[Q ESIIPPY WdS ‘¢
¥2018-Jo-puz = 03 '
* peBuwRyo 3q JOUUTD $8RIPPY, 1

v-d
~
(=3
=1
w| 8
=] N
W 4
(]
7]
3 a 8 & < & © ==
8|8 8§ 888 & & g
m ©o < @ © ©w ©w w
5| = s & & 5 @ @
“ M o - o~ o - w ©
5| g ] Z Zz Z Zz Z Z
oO| @ 7] n wn @ n n ®»
~
(=3
=1
3
vl <
21 %
=
2| @
M -
sls 28 g3
m S 2 < o <
w w0 v w
W < NN v
W < < X < X
7 2R 2] (SR &
=} & — =
[~
5 L
3 2
m & F
1] s (7]
M ] 8 9
=] € 2 (<}
= =3 o =
5f° 2 P
O|lwvw Ewm By
ot R
xS QO 3 [
L o3
m S s ﬂt ol 3
R 0 2 -2
w|<E &8 2
»
(=}
m %
= o S e ~ ~ . o~ ~
m e m I 2 23 & I S
=3 =3 o DO (=3 b= P
- .m < < < o« m b4 -«
m S m e we oL v
=] = < ¥
- e <] [=] ) a ”
3 m OO
| 2 58 & & 86 © © ©
z
]
=
(N
CM o - «aN o L wn -] o~
Z
PO
w O
NI ‘NOUYWOLNY ¥ILNINOD

depy ssaappy idnaasju] papuswuwoddy ‘Z-d dqeL

%04 Jac ie
I 01 JO9 s ¥
: Nig-3i {023 i e |
L 4 rue L 1 4 vasa y 4 v L osxon
WY o WDV
incnpk v g ra m
Jns o . v
- - p— [ NG SE— Y o . - —— -
- IEl} L
e
£y
b e -, I ) I SR - e == lﬁ — -
Ny g
WS 2 S o
[PRGT NGOV « o
- - —_— p— - L o e o = =
o
. p S
- - B - - T e -
y H
M
= - por — lf i e g lﬁi =
- i
- - S [ NI _ B
IV =
. afess e o
. &
od a og: [§3 06 g 0L 498 ot: o01:
= o - — SRS R — - E &= - — -
803 . 1
WID¥ . i
= - o L e - B D o —_— = -
WY WSV
Yvta
soy
- -t - = - b = - -+ o
& u t
. 1 { E(
Wid o
= Losaw L N I —— - == o
WY
¥y
1 R —— —— - PR —_—
04
i A &
ﬁ L aws rimx L o —
Y| Wy
201t
OM Paoa
S -+ = o T — )
1224
- - U8 | TAOYL, e —
QWY | ORIV
. HOv g
{0V Wid b . Moy
03 00: ov: ITH AT E ov:| M0 00
43-03 4a-00 dga-ov d6-08 dL-09 a5-0% a8-02 a1-00




A
COMPUTER AUTOMATION, INC. I e

COMPUTER AUTOMATION, INC. ey

‘Appendix C [LaBEL]
INSTRUCTION SET BY CLASS

OP-CODE EXPRESSION [COMMENTS]

EXPRESSION inust be absolute and in the range
: 0 through : FF. This format is also used by the

STOP and SCM instructions.
This appendix contains the ALPHA LSI instruction set in class order. For each instruc-

tion, reference is made to one of the assembler syntax formats listed below.

Figure C-4. Class 4 - Byte Immediate Instruction Format

[LaBEL] AE=EOLS [+ [e] +e] exeression  [comments] [LaBeL]  op-cope EXPRESSION [comments]
No Operator = Direct Addressing
PRESSION 1
* = Indirect Addressing (multi-level) {3;(3 through :;::vt ox;zpsresent & Tocation within
@ = Indexed Addressing e
ST fost-ladgced Aildressing Figure C- 5, Class 5- Conditional Jump Instruction Format
(multi-level)
opP- E I OMMENT
Figure C-1. Class 1 - Single-Word Memory Reference Instruction Format [LABEL] = e [C S]
EXPRESSION must be absolute and in the range
1 through 8 (single register) or 1 through 16
(double register). This format is also used by
[LABEL] OP-CODE [‘] BXPRESSION 1 [- EXPRESSION 2] [COMMENTS] the SIN instruction with an upper range limit
f 6.
No Operator = Direct Addressing ke
* = Indirect Addressing (multi-level) < " : 2
. - R t ift 1
EXPRESSION 1 represents an address to be Figure C—~6. Class 6 - Register Shift Instruction Format
stored in the second word of the instruction. .
EXPRESSION 2 is an optional absolute instruc-
— N OMM
tion count in the range 0 through 31 for NRM. [LABEL] GR=Ein [EXPRESSIO ] [C BNTS]

EXPRESSION: there are no expressions in the

operand field, except for BAO and BXO instruc-

ti , wh i lue i e 0
Figure C-2. Class 2 - Double-Word Memory Reference Instruction Format t:::.xg: lesre Tirmst Gervalye ins e tang
i (A = ister Ch d trol I ion F
[L ABEL] OP-CODE OPERAND [’ AM] [C OMMENTS] Figure C-7. Class 7 - Register Change and Control Instruction Format
AM = No Operator = Direct access
OP-CODE EXPRESSION 1 | ,EXPRESSION 2| |COMMENTS

- = PUSH (stack pointer decremented) [LABEL] [ ] [ ]

D TAD (Bfawle PRIIER uERsRie) Both EXPRESSION 1 and expression 2 must be

@ = Indexed (single level) absolite

If EXPRESSION 2 is present, EXPRESSION 1 must
i g LB
Figure C-3. Class 3 - Stack Instruction Format (LSI-2 only) B REREEE0 TRETRER

If EXPRESSION 2 is not present, EXPRESSION 1
must be in the range : 0 through : FF.

Figure C- 8. Class 8 - Input/Output Instruction Format

c-1 c-2




[LaBeL]

[Joc] EXPRESSION 1[,EXPRESSION 2] [COMMENTS]

EXPRESSION 1 must be absolute and in the range

: 0 through : 3F.

EXPRESSION 2 must represent a location within

-63 through +64 words.

Figure C- 9. Class 9 - JOC Jump-On-Condition Instruction Format

Instruction
Mnemonic

INSTRUCTION SET BY CLASS

MEMORY REFERENCE (Class 1)

Arithmetic

ADD
ADDB
SUB
SUBB

Logical

AND
ANDB
IOR
IORB
XOR
XORB

Data Transfer

LDA
LDAB
LDX
LDXB
STA
STAB
STX
STXB
EMA
EMAB

Instruction
Description Skeleton in Hex Page
Add to A Register 8800 4-12
Add Byte to A 8800 4-12
Subtract from A Register 9000 4-12
Subtract Byte from A 9000 4-12
AND to A 8000 4-12
AND Byte with A 8000 4-12
Inclusive OR to A A000 4-12
Inclusive OR Byte with A A000 4-12
Exclusive OR to A A800 4-12
Exclusive OR Byte with A A800 4-13
Load A B00C 4-13
Load A with Byte B00O 4-13
Load X E000 4-13
Load X with Byte E000 4-13
Store A 9800 4-13
Store Byte from A 9800 4-13
Store X E800 4-13
Store Byte from X E800 4-13
Exchange A and Memory B80O 4-13
Exchange A and Memory Byte B800 4-13

Instruction
Mnemonic

Program Transfer

JMP
JST
IMS
scM
SCMB
CMS
CMSB

INSTRUCTION SET BY CLASS (Cont'd)

Description

Unconditional Jump

Jump and Store P Counter
Increment Memory, Skip on Zero
Scan Memory

Scan Memory Byte

Compare A with Memory, Skip
Compare A with Memory Byte, Skip

DOUBLE WORD MEMORY REFERENCE (Class 2)

DVD
MPY
NRM

Divide
Multiply and Add
Normalize A and X

STACK CLASS (Class 3) (LSI-2 only)

Arithmetic

ADDS
SUBS

Logical
ANDS
IORS
XORS

Data Transfer
EMAS
LDAS
LDXS
STAS
STXS

Program Transfer

CMSS

IMSS

Add Stack Element to A
Subtract Stack Element from A

AND Stack Element to A
Inclusive OR Stack Element to A
Exclusive OR Stack Element to A

Exchange Stack Element and A
Load Stack Element into A
Load Stack Element into X
Store A in Stack Element.
Store X in Stack Element

Compare Stack Element to A and Skip if

High or Equal

Increment Stack Element and Skip on Zero

Result
Cc-4

COMPUTER AUTOMATION, INC. —

Instruction
Skeleton in Hex Page
F000 4-14
F800 4-14
D800 4-14
CDO00 4-14
CDO00 4-15
D000 4-13
D000 4-14
1970 4-16
1960 4-16
1940 4-17
1438 4-21
1458 4-21
141y 4-21
1498 4-21
14B8 4-21
14F8 4-21
14D8 4-21
1698 4-21
1478 4-21
16B8 4-21
1658 4-22
1678 4-22




Instruction
Mnemonic

JMPS
JSTS

Stack Control

" SLAS

"INSTRUCTION SET BY CLASS (Cont'd)

BYTE IMMEDIATE (Class 4)

CONDITIONAL JUMP (Class 5 or 9)

Microcoded (Class 9)

Joc

Arithmetic (Class 5)

Control (Class 5)

Jss
JSR
Jos
JOR

instruction

Description Skeleton in Hex Page
Jump Unconditional to Stack Element 16D8 4-22
Jump and Store to Stack Element 16F8 4-22
Stack Location to A 1618 4-22
Add to A Register Immediate 0B0O 4-23
Add to X Register Immediate C200 4-23
Subtract from A Register Immediate 0D00 4-23
Subtract from X Register Immediate C300 4-23
Compare to A Immediate, Skip if Not Equal C000 4-23
Compare to X Immediate, Skip of Not Equal C100 4-23
Load A Positive Immediate C600 4-23
Load X Positive Inmediate C400 4-23
Load A Minus Immediate C1700 4-23
Load X Minus Immediate C500 4-23
Jump on Condition Specified 2000 4-24
Jump if A Greater than Zero 3180 4-25
Jump if A Positive 3080 4-25
Jump if A Zero 2100 4-25
Jump if A Not Zero 3100 4-25
Jump if A Less Than or Equal to Zero 2180 4-25
Jump if A Minus 2080 4-25
Jump if X Zero 2800 4-26
Jump if X Not Zero 3800 4-26
Jump if SENSE Indicator ON 3400 4-26
Jump if SENSE Indicator OFF 2400 4-26
Jump if OV Set 2200 4-26
Jump if OV Reset 3200 4-26

COMPUTER AUTOMATION, INC. —

INSTRUCTION SET BY CLASS (Cont'd)

Instruction Instruction
Mnemonic Description Skeleton in Hex Page

SHIFT CLASS (Class 6).

Single Register

Arithmetic
ARA Arithmetic Right A 10D0 1-27
ARX Arithmetic Right X 10A8 27
ALA Arithmetic Left A 1050 427
ALX Arithmetic Left X 1028 4-27
Logical
LRA Logical Right A 13D0 4-28
LRX Logical Right X 13A8 4-28
LLA Logical Left A 1350 4-28
LLX Logical Left X 1328 4-28
Rotate
RRA Rotate Right A with OV 11D0 4-29
RRX Rotate Right X with OV 11A8 4-29
RLA Rotate Left A with OV 1150 4-29
RLX Rotate Left X with OV 1128 4-29
Double Register
Logical
LLL Long Logical Left 1B00 4-30
LLR Long Logical Right 1B80 4-30
Rotate
LRL Long Rotate Left with OV 1800 4-31
LRR Long Rotate Right with OV 1980 4-31

REGISTER CHANGE (Class 7)

Accumulator
ZAR Zero A Register 0110 4-31
ARP Set A Register to Positive 1. 0350 4-31

C-6




COMPUTER AUTOMATION, INC. COMPUTER AUTOMATION. INC. Elﬁ-

]
INSTRUCTION SET BY CLASS (Cont'd) INBTBEEERAR SR BY(GIESS, (eonbid]
s Instruction Instruction
Instruction Instruction ; x
Mnemonic Description Skeleton in Hex Page Muemanic Behefiption SKeleton iy tex Page
ARM Set A Register to Minus 1 0010 4-31 L Ineremerit & and pht, (R amAg o
g 0 IXA Increment X and put in A 0130 4-34
CAR Complement (1's) A Register 0210 4-31 g 2
r IPX Increment P and put in X 0090 4-34
NAR Negate A Register 0310 4-31
DAX Decrement A and put in X 00Cs8 4-34
IAR Increment A Register 0150 4-31 DXA Dicrenmant X and Dutlin A 00B0 4-34
DAR Decrement A Register 00D0 4-31 putin
Index Extended Multi-Register (LSI-2 only)
ZXR Zero X Register 0108 4-32 BOA BitiBleps & Mg A
k . BCX Bit Clear X 06C8 4-34
XRP Set X Register to Positive 1 0528 4-32 .
. " BSA Bit Set A 068A 4-34
XRM Set X Register to Minus 1 0008 4-32 ;
i . BSX Bit Set X 0688 4-34
S Samplement (1'a) X Registar . el EIX Execute Instruction Pointed to By X 0218 4-34
NXR Negate X Register 0508 4-32 Fecuteinsiruction, olte y
IXR Increment X Register 0128 4-32 Console Register
DXR Decrement X Register 00AS8 4-32 nsg el egrsiel
Overlow IAH Input Console Data Register to A and Halt 1C05 4-35
ICA Input Console Data Register to A 5804 4-35
. ICX Input Console Data Register to X 5A04 4-35
Shw BetOvendlog Leue 50 IIH Input Console Data Register to I and Halt 1C11 4-35
ROy HESEC Cugnflog L2l0 g IMH Input Console Data Register to Memo 1C03 4-35
cov Complement Overflow 1600 4-32 al:l d Halt 5 Y
S0 S¥g'n Ghrtor o L340 4~ds IPH Input Console Data Register to P and Halt 1C21 4-35
SXO0 Sign of X to OV 1320 4-32
e 5 ISA Input Console Sense Register to A 5801 4-35
LAO Least Significant Bit of A to OV 13Co 4-32 7
. " K IsX Input Console Sense Register to X 5A01 4-35
LX0 Least Significant Bit of X to OV 13A0 4-32
- IXH Input Console Data Register to X and Halt 1C09 4-35
BAO Bit of A to OV 1340 4-32 2
BXO Bit of X to OV 1320 4-32 OAH Output A to Console Data Register and Halt 1C04 4-35
OCA Output A to Console Data Register 4404 4-36
Multi-R . ocx Output X to Console Data Register 4604 4-38
= Agistan OLH Output Location to Console Data Register 1C10 4-36
and Halt
ZAX Zero A and X Register 0118 4-33 . b
AXP Set A and X Registers to Positive 1 0358 4-33 OMH o:;‘;“}t{xtem"y by ConEnts Bl Begister 1evz -G
i SEOL and  HGR] <SG ME 1 Sl e OPH Output P to Console Data Register and Halt 1C20 4-36
s e flce gl OXH Output X to Console Data Register and Halt  1C08 4-35
TXA Transfer X to Z 0030 4-33 uip g
EAX Exchange A and X 0428 4-33 PiSaessor
ANA ANDof Aand X to A 0070 4-33
ANX AND of A and X to X 0068 4-33 NOP No operation 0000 4-36
NRA NOR of A and X to A 0610 4-33
HLT Hailt 0800 4-36
NRX NOR of A and X to X 0608 4-33 .
3 STOP Halt with Operand 0800 4-36
CAX Complement A (1's) and put in X 0208 4-33 WAIT Wait for Interrupts F600 4-37
CXA Complement X (1's) and put in A 0410 4-33 p
NAX Negate A and put in X 0308 4-33
NXA Negate X and put in A 0510 4-33
c-7 C-8




Instruction
Mnemonic

Mode Control

SBM
SWM

Status

SIN
SIA
SIX
SOA
SOX

Interrupts

COMPUTER AUTOMATION, INC.

INSTRUCTION SET BY CLASS (Cont'd)

Description

Set Byte Operand Mode
Set Word Operand Mode

Status Inhibit

Status Input to A
Status Input to X
Status Output from A
Status Output from X

Enable Interrupts

Disable Interrupts

Console Interrupt Enable
Console Interrupt Disable
Power Fail Interrupt Enable
Power Fail Interrupt Disable
Trap

INPUT/OUTPUT (Class 8)

Control

SEL
SEA
SEX
SEN
SSN

Select

Select and Present A

Select and Present X

Sense and Skip on Response

Sense and Skip on No Response

Unconditional Word

INA
INAM
INX
INXM
OTA
OoTX
0Tz

Input Word to A

Input Word to A Masked
Input Word to X

Input Word to X Masked
Output A

Output X

Output Zero's

Instruction
Skeleton in Hex Page
0E00 4-37
0F00 4-37
6800 4-37
5800 4-38
5A00 4-38
6C00 4-38
6E00 4-38
0A00 4-38
0Co00 4-38
4005 4-38
4006 4-38
4002 4-38
4003 4-38
4007 4-39
4000 4-40
4400 4-40
4600 4-40
4900 4-40
4800 4-40
5800 4-41
5C00 4-41
SA00 4-41
SE00 4-41
6C00 4-41
6E00 4-41
6800 4-41

Instruction
Mnemonic

INSTRUCTION SET BY CLASS (Cont'd)

Conditional Word

Unconditional Byte

IBA
IBAM
IBX
IBXM

Conditional Byte
RBA
RBAM
RBX
RBXM
Block

BIN
BOT

Automatic

Instruction

Description Skeleton in Hex Page
Read Word to A 5900 4-41
Read Word to A Masked 5D00 4-41
Read Wordto X 5B00 4-41
Read Word to X Masked 5F00 4-42
Write A 6D00 4-42
Write X 6F00 4-42
Write Zero's 6900 4-42
Input Byte to A 7800 4-42
Input Byte to A Masked 7C00 4-42
Input Byte to X 7A00 4-43
Input Byte to X Masked TE00 4-43
Read Byte to A 7900 4-43
Read Byte to A Masked 7D00 4-43
Read Byte to X 7B00 4-43
Read Byte to X Masked TF00 4-43
Input Block to Memory 7100 4-44
Output Block from Memory 7500 4-45
Automatic Input Word to Memory 5000 4-47
Automatic Output Word from Memory 6000 4-47
Automatic Input Byte to Memory 5400 4-47
Automatic Output Byte from Memory 6400 4-47

COMPUTER AUTOMATION, INC. —_—




COMPUTER AUTOMATION, INC.

Appendix D

INSTRUCTION SET IN ALPHABETICAL ORDER

This appendix contains the ALPHA LSI instruction set in alphabetical order by instruction
mnemonic. Those instructions which contain variable fields have been appended with an
asterisk (*). Those applying to LSI-2 only have been prefixed with an asterisk.

Instruction Instruction

Mnemonic Skeleton in Hex
AAI 0B00O*
ADD 8800*
ADD 8900*
ADD 8A00*
ADD 8B00*
ADD 8C00*
ADD 8D00*
ADD 8E00*
ADD 8F00*
ADDB 8800*
ADDB 8900*
ADDB 8A00*
ADDB 8B00*
ADDB 8C00*
ADDB 8D00*
ADDB SE00*
ADDB 8F00*

Description
Add to A Immediate; Direct

Add to A; Direct, Scratchpad

Add to A; Indirect, AP in Scratchpad

Add to A; Direct, Relative to P Forward

Add to A; Indirect, AP Relative to P Forward
Add to A; Direct, Indexed

Add to A; Indirect, Indexed, AP in Scratchpad
Add to A; Direct, Relative to P Backward

Add to A; Indirect, AP Relative to P Backward
Add Byte; Direct, Scratchpad

Add Byte; Indirect, AP in Scratchpad

Add Byte 0; Direct, Relative to P Forward

Add Byte; Indirect, AP Relagive to P Forward
Add Byte; Direct, Indexed

Add Byte; Indirect, Indexed, AP in Scratchpad
Add Byte 1; Direct, Relative to P Forward
Add Byte; Indirect, AP Relative to P Backward

D-1

Page
4-23

4-12

4-12

4-12
4-12
4-12

4-12

4-12
4-12
4-12

4-12

© 4-12

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction

Mnemonic Skeleton in Hex
*ADDS 1438
*ADDS 1438
*ADDS 143A

. *ADDS 143B
AIB 5400*
AIN 5000*
ALA 1050*
ALX 1028*
ANA 0070
AND 8000*
AND 8100*
AND 8200*
AND 8300*
AND 8400*
AND 8500*
AND 8600*
AND 8700*
ANDB 8000*
ANDB 8100*
ANDB 8200*
ANDB 8300*
ANDB 8400*
ANDB 8500%

Description
Add Stack Element to A; Direct
Add Stack Eleement to A; Indexed
Add Stack Element to A; Auto-Postincrement
Add Stack Element to A; Auto-Predecrement
Automatic Input Byte to Memory
Automatic Input Word to Memory
Arithmetic Shift A Left
Arithmetic Shift X Left
AND of Aand X to A
AND to A; Direct, Scratchpad
AND to A; Indirect, AP in Scratchpad
AND to A; Direct, Relative to P Forward
AND to A; Indirect, AP Relative to P Forward
AND to A; Direct, Indexed
AND to A; Indirect, Indexed, AP in Scratchpad
AND to A; Direct, Relative to P Backward
AND to A; Indirect, AP Relative to P Backward
AND Byte to A; Direct, Scratchpad
AND Byte to A; Indirect, AP in Scratchpad

AND Byte 0 to A; Direct, Relative to P Forward

COMPUTER AUTOMATION, INC. ——

4-47
4-217
4-27
4-33
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4; 12
4-12

4-12

AND Byte to A; Indirect, AP Relative to P Forward 4-12

AND Byte to A; Direct, Indexed

AND Byte to A; Indirect, Indexed, AP in

Scratchpad D-2

4-12

4-12




COMPUTER AUTOMATION, INC. i::|£§

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Mnemonic Skeleton in Hex

ANDB 8600
ANDB 8700%
*ANDS 1418
*ANDS 1419
*ANDS 141A
*ANDS 141B
ANX 0068
AOB 6400*
AOT 6000*
ARA 10D0*
ARM 0010
ARP 0350
ARX 10A8*
AX1 C200*
AXM 0018
AXP 0358
BAO 1340*
*BCA 06CA
*BCX 06C8
BIN 7100*
BOT 7500*
*BSA 068A

Description
AND Byte 1 to A; Direct, Relative to P Forward

AND Byte to A; Indirect, AP Relative to P
Backward

AND Stack Element to A; Direct

AND Stack Element to A; Indexed

AND Stack Element to A; Auto-Postincrement
AND Stack Element to A; Auto-Predecrement
AND of A and X to X

Automatic Output Byte from Memory
Automatic Output Word from Memory
Arithmetic Shift A Right

Set A to Minus 1

Set A to Plus 1

Arithmetic Shift X Right

Add to X Immediate

Set A and X to Minus 1

Set A and X to Plus 1

Bit of A to Overflow

Bit Clear A

Bit Clear X

Block Input to Memory

Block Output from Memory

Bit Set A

Page
4-12

4-12

4-21
4-21
4-21
4-21
4-33
4-47
4-47

4-27

4-31
4-27
4-23
4-33
4-33
4-32
4-34
4-34
444
4-45

4-34

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction

Mnemonic Skeleton in Hex
*BSX 0688
BXO 1320%
CAl C000*
CAR 0210
CAX 0208
CID 4006
CIE 4005
CMS D000*
CMS D100*
CMS D200*
CMS D300*
CMS D400*
CMsS D500*
CMS D600*
CMS D700*
CMSB D000*
CMSB D100*

Description
Bit Set X
Bit of X to Overflow
Compare to A Immediate, Skip if Unequal
Complement A (1's)
Complement A (1's) and Put in X
Console Interrupt Disable
Console Interrupt Enable

Compare Memory to A and Skip if High or Equal;
Direct, Scratchpad

Compare Memory to A and Skip if High or Equal;
Indirect, AP in Scratchpad

Compare Memory to A and Skip if High or Equal;
Direct, Relative to P Forward

Compare Memory to A and Skip if High or Equal;
Indirect, AP Relative to P Forward

Compare Memory to A and Skip if High or Equal;
Direct, Indexed

Compare Memory to A and Skip if High or Equal;
Indirect, Indexed, AP in Scratchpad

Compare Memory to A and Skip if High or Equal;
Direct, Relative to P Backward

Compare Memory to A and Skip if High or Equal;
Indirect, Relative to P Backward

Compare Byte and Skip if High or Eaual; Direct,
Scratchpad

Compare Byte and Skip if High or Equal; Indirect,

AP in Scratchpad

COMPUTER AUTOMATION, INC. l@ ——

4-32
4-23
4-31
4-33
4-38
4-38

413

4-13

4-13

4-13

4-13

4-13

4-13

4-13

4-14

4-14




COMPUTER AUTOMATION. INC. Ig COMPUTER AUTOMATION. INC. —

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)
Instruction Instruction Instruction Instruction
Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page
CMSB D200* Compare Byte 0 and Skip if High or Equal; 4-14 DXA 00BO Decrement X and Put in A 4-34
Direct, Relative to P Forward .
’ DXR 00A8 Decrement X 4-32
CMSB D300* Compare Byte and Skip if High or Equal; Indirect, 4-14
AP Relative to P Forward EAX 0428 Exchange A and X 4-33
CMSB D400* Compare Byte and Skip if High or Equal; Direct, 4-14 EIN 0A00 Enable Interrupts 4-38
Indexed
*EIX 0218 Execute Instruction Pointed to by X 4-34
CMSB D500* Compare Byte and Skip if High or Equal; Indirect, 4-14
Indexed, AP in Scratchpad EMA B800* Exchange Memory and A; Direct, Scratchpad 4-13
CMSB D600* Compare Byte 1 and Skip If High or Equal; Direct, 4-14 EMA B900* Exchange Memory and A; Indirect, AP in 4-13
Relative to P Forward Scratchpad
CMSB D700* Compare Byte and Skip if High or Equal; Indirect,4-14 EMA BAO0O* Exchange Memory and A; Direct, Relative to P 4-13
AP Relative to P Backward Forward
*CMSS 1658 Compare Stack Element to A and Skip if High 4-22 EMA BB00* Exchange Memory and A; Indirect, AP Relative  4-13
or Equal; Direct ' to P Forward
*CMSS 1659 Compare Stack Element to A and Skip if High 4-22 EMA BCO0O* Exchange Memory and A; Direct, Indexed 4-13
or Equal; Indexed
. EMA BD00* Exchange Memory and A; Indirect, Indexed, AP in 4-13
*CMSS 165A Compare Stack Element to A and Skip if High 4-22 Scratchpad
or Equal; Auto-Postincrement '
EMA BE0O* Exchange Memory and A; Direct, Relative to P 4-13
*CMSS 165B Compare Stack Element to A and Skip if High 4-22 Backward
or Equal; Auto-Predecrement
EMA BF00* Exchange Memory and A; Indirect, AP Relative to 4-13
cov 1600 Complement Overflow 4-32 P Backward
CXA 0410 Complement X (1's) and Put in A 4-33 EMAB B800* Exchange Memory Byte and A; Direct, Scratchpad 4-13
CX1 C100* Compare to X Immediate, Skip if Unequal 4-23- EMAB B900* Exchange Memory Byte and A; Indirect, AP in 4-13
Scratchpad
CXR 0408 Complement X (1's) 4-32
EMAB BAO0O* Exchange Memory Byte 0 and A; Direct, Relative 4-13
DAR 00D0 Decrement A 4-31 to P Forward
DAX 00Cs8 Decrement A and Put in X 4-34 EMAB BB00* Exchange Memory Byte and A; Indirect, AP 4-13
Relative to P Forward
DIN 0C00 Disable Interrupts 4-38
' EMAB BC00* Exchange Memory Byte and A; Direct, Indexed 4-13
DVD 1970* Divide 4-16

D-5 D-6




INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Mnemonic Skeleton in Hex

EMAB BD00*
EMAB BE00*
EMAB BF00*
*EMAS 14F8
*EMAS 14F9
*EMAS 14FA
*EMAS 14FB
HLT 0800
IAH 1C05
IAR 0150
IAX 0148
IBA 7800*
IBAM 7C00*
IBX TA00*
IBXM TE00*
ICA 5804
ICX 5A04
1IH 1C11
IMH 1C03

M8 D800*

Description

Exchange Memory Byte and A; Indirect, Indexed,

AP in Scratchpad

Exchange Memory Byte 1 and A; Direct, Relative

to P Forward

Exchange Memory Byte and A; Indirect, AP
Relative to P Backward

Exchange Stack Element and A; Direct
Exchange Stack Element and A; Indexed

Exchange Stack Element and A; Auto-
Postincrement

Exchange Stack Element and A; Auto-
Predecrement

Halt

Input Console Data Register to A and Halt
Increment A

Increment A and Put in X

Input Byte to A (Unconditionally)

Input Byte to A, Masked (Unconditionally)
Input Byte to X (Unconditionally)

Input Byte to X, Masked (Unconditionally)
Input Console Data Register to A

Input Console Data Register to X

Input Console Data Register to I and Halt

Input Console Data Register to Memory and Halt

Increment Memory and Skip on Zero Result;
Direct, Scratchpad
D-1

COMPUTER AUTOMATION, INC. ==

Page

4-13
4-13
4-13

4-21
4- 21

4-21
4-21

4-36
435
4-31
4-33
442
442
4-43
-4
435
4-35
4-35

4-35

" 4-14

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Mnemonic Skeleton in Hex

MS D900*
s DA00*
ms DBO00*
IMS DCO00*
s DDOO*
MS DE0O*
MS DF00*
*IMSS 1878
*IMSS 1679
*IMSS 167A
*IMSS 167B
INA 5800*
INAM 5C00*
INX 5A00*
INXM 5EQ0*
IOR A000*
IOR A100*
IOR A200*

Description .

Increment Memory and Skip on Zero Result;
Indirect, AP in Scratchpad

Increment Memory and Skip on Zero Result;
Direct, Relative to P Forward

Increment Memory and Skip on Zero result;
Indirect, AP Relative to P Forward

Increment Memory and Skip on Zero Result;
Direct, Indexed

Increment Memory and Skip on Zero Result;
Indirect, Indexed, AP in Scratchpad

Increment Memory and Skip on Zero Result;
Direct, Relative to P Backward

Increment Memory and Skip on Zero Result;
Indirect, AP Relative to P Backward

Increment Stack Element and Skip on Zera; Djrect

Increment Stack Element and Skip on Zero;
Indexed

Increment Stack Element and Skip on Zero;
Auto-Postincrement

Increment Stack Element and Skip on Zero; Auto-

Predecrement

Input Word to A (Unconditionally)

Input Word to A, Masked (Unconditionally)
Input Word to X (Unconditionally)

Input Word to X, Masked (Unconditionally)

Inclusive OR to A; Direct, Scratchpad

Inclusive OR to A; Indirect, AP in Scratchpad

Inclusive OR to A; Direct, Relative to P Forward

D-8

COMPUTER AUTOMATION, INC. Sr——

Page
4-14

4-14

4-14

4-14

4-14

4-41
4-41
4-41
4-41
4-12
4-12

4-12




COMPUTER AUTOMATION. INC.

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction

Mnemonic Skeleton in Hex
IOR A300*
IOR A400*
IOR A500*
IOR A600*
IOR AT00*
IORB A000*
IORB Al00*
IORB A200*
IORB A300*
IORB A400*
IORB A500*
IORB A600*
IORB AT00*
*IORS 1478
*IORS 1479
*IORS 147A
*IORS 147B

Description

Inclusive OR to A; Indirect, AP Relative to P
Forward

Inclusive OR to A; Direct, Indexed

Inclusive OR to A; Indirect, Indexed, AP in
Scratchpad

Inclusive OR to A; Direct, Relative to P Backward

Inclusive OR to A; Indirect, AP Relative to P
Backward

Inclusive OR Byte to A; Direct, Scratchpad

Inclusive OR Byte to A;
Scratchpad

Indirect, AP in
Inclusive OR Byte 0 to A; Direct, Relative
to P Forward

Inclusive OR Byte to A;
to P Forward

Indirect, AP Relative

Inclusive OR Byte to A; Direct, Indexed

Inclusive OR Byte to A;
AP in Scratchpad

Indirect, Indexed,
Inclusive OR Byte 0 to A; Direct, Relative to P
Forward

Inclusive OR Byte to A;
P Backward

Indirect, AP Relative to

Inclusive OR Stack Element to A; Direct
Inclusive OR Stack Element to A; Indexed

Inclusive OR Stack Element to A; Auto-
Postincrement

Inclusive OR Stack Element to A; Auto-
Predecrement

D-9

Page
4-12

4-12

4-12

4-12

4-12

4-12

4-12

4-12

4-12

4-12

4-12

4-12

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Mnemonic Skeleton in Hex

IPH 1C21
IPX 0090
ISA 5801
ISX 5A01
IXa 0130
IXH 1C09
IXR. 0128
JAG

3180*

31C0*
JAL

2180*

21C0*
JAM

2080*

20C0*
JAN

3100*

3140*
JAP

3080*

30C0*
JAZ

2100*

2140*
JMP F000*
JMP F100*

F200*

Description Page

Input Console Data Register to P and Halt 4-35
Increment P and Put in X 4-34
Input Console Data Switches to A 4-35
Input Console Data Switches to X 4-35
Increment X and Put in A 4-34
Input Console Data Register to X and Halt 4-35
Increment X 4-32
Jump if A Positive and Not Equal to Zero 4-25
( A>0)

Forward Jump

Backward Jump

Jump if A Negative or Equal to Zero ( AS0) 4-25
Forward Jump

Backward Jump

Jump if A Negative ( A<0) 4-25
Forward Jump

Backward Jump

Jump if A Not Zero (A#0) 4-25
Forward Jump

Backward Jump

Jump if A Positive or Equal to Zero (A20) 4-25
Forward Jump

Backward Jump
-Jump if A Zero (A=0) 4-25
Forward Jump

Backward Jump

Jump Unconditionally; Direct, Scratchpad 4-14
Jump Unconditionally; Indirect, AP in 4-14
Scratchpad

Jump Unconditionally; Direct Relative to P 4-14

Forward

D-10:

COMPUTER AUTOMATION. INC. E———




INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Mnemonic Skeleton in Hex

JMP F300*
JMP F400*
JMP F500*
JMP F800*
JMP F700*
*JMPS 16D8
*JMPS 16D9
*JMPS 16DA
*JMPS 16DB
Joc 2000
JOR

3200*

3240*
JOS

2200*

2240*
JSR

2400*

2440*
Jss

3400*

3440*
JST F800*

Description

Jump Unconditionally; Indirect AP Relative
to P Forward

Jump Unconditionally; Direct, Indexed

Jump Unconditionally; Indirect, Indexed, AP
in Scratchpad

Jump Unconditionally, Direct, Relative to P
Backward

Jump Unconditionally; Indirect, AP Relative
to P Backward

Jump to Stack Element Unconditional; Direct

Jump to Stack Element Unconditional; Indexed

Jump to Stack Element Unconditional; Auto-
Postincrement

Jump to Stack Element Unconditional; Auto-
Predecrement

Jump on Condition Specified

Jump if Overflow Reset (OV=0)
Forward Jump
Backward Jump

Jump if Overflow Set (OV=1)
Forward Jump
Backward Jump

Jump if Sense Switch Off (S5=0)
Forward Jump

Backward Jump

Jump if Sense Switch On (§S=1)
Forward Jump

Backward Jump

Jump and Store; Direct, Scratchpad

D-11

COMPUTER AUTOMATION, INC.

Page
4-14

4-14

4-14

4-14

4-14

4-22
4-22

4-22
4-22
4-24

4-26

4-26

4-26.

4-26

4-14

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Mnemonic Skeleton in Hex

JST F900*
JST FA00*
ST FB00*
JsT FCO00*
JST FDOO*
JST FE00O*
JST FFO00*
*JSTS 16F8
*JSTS 16F9
*JSTS 16FA
*JSTS 16FB
JXN -

3800*

3840+
JXz

2800*

2840°*
LAM C700*
LAO 13C0
LAP Céeo00*
LDA B000*
LDA B100*

Description -

Jump and Store;
Jump and Store;

Jump and Store;
Forward

Jump and Store;

Jump and Store;
Scratchpad

Jump and Store;

Jump and Store; Indirect, AP Relative to P- 4-14
Backward

Jump and Store to Stack Element; Direct 4-22
Jump and Store to'Stack Element; Indexed 4-22
Jump and Store to Stack Element; Auto- 4-22
Postincrement

Jump and Store to Stack Element; Auto- 4-22
Predecrement

Jump if X Non-Zero (X#£0) 4-26
Forward Jump

Backward Jump

Jump if X Equal to Zero (X=0) 4-26
Forward Jump

Backward Jump

Load A Minus Immediate 4-23
LSB of A to OV 4-32
Load A Positive Immediate 4-23
Load A; Direct, Scratchpad 4-13
Load A; Indirect, AP in Scratchpad 4-13

D-12

COMPUTER AUTOMATION, INC. ———

Page
Indirect, AP in Scratchpad 4-14

Direct, Relative to P Forward 4-14

Indirect, AP Relative to P 4-14
Direct, Indexed 4-14
Indirect, Indexed, AP in 4-14

Direct, Relative to P Backward 4-14




COMPUTER AUTOMATION, INC.

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Mnemonic Skeleton in Hex Description

LDA B200* Load A; Direct, Relative to P Forward

LDA B300* Load A; Indirect, AP Relative to P Forward

LDA B400* Load A; Direct, Indexed

LDA B500* Load A; Indirect, Indexed, AP in Scratchpad

LDA B600* Load A; Direct, Relative to P Backward

LDA B700* Load A; Indirect, AP Relative to P Backward

LDAB B00O* Load A Byte; Direct, Scratchpad

LDAB B100* Load A Byte; Indirect; AP in Scratchpad

LDAB B200* Load A Byte 0; Direct, Relative to P Forward

LDAB B300* Load A Byte; Indirect, AP Relative to P
Forward

LDAB B400* Load A Byte; Direct, Indexed

LDAB B500* Load A Byte; Indirect, Indexed, AP in
Scratchpad

LDAB B600* Load A Byte 1; Direct, Relative to P Forward

LDAB B700* Load A Byte; Indirect, AP Relative to P
Backward

*LDAS 14D8 Load Stack Element into A; Direct

*LDAS I;DQ Load Stack Element into A; Indexed

*LDAS 14DA Load Stack Element into A; Auto-Postincrement

*LDAS 14DB Load Stack Element into A; Auto-Predecrement

LDX E000* Load X; Direct, Scratchpad

LDX E100* Load X; Indirect, AP in Scratchpad

LDX E200* Load X; Direct, Relative to P Forward

D-13

4-13
4-13
4-13
4-13
4-13
4-13
4-13

4-13

4-13

4-13

4-13

4-13

4-21
4-21
4-21

4-21

COMPUTER AUTOMATION, INC.

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction instruction

Mnemonic Skeleton in Hex Description |
LDX _ E300* Load X, Indirect, AP Relative to P Forward
LDX !§400' Load X; Direct, Indexed
LDX E500* Load X; Indirect, Indexed, AP in Scratchpad
LDX E600* Load X; Direct, Relnﬁve to P Backward
LDX E700¢ Load X; Indirect; AP Relative to P Backward
LDXB E000* Load X Byte; Direct, Scratchpad
LDXB E100* Load X Byte; Indirect, AP in Scratchpad
LDXB E200* Load X Byte 0; Direct, Relative to P Forward
LDXB E300* Load X Byte; Indirect, AP Relative to P Forward
LDXB E400* Load X Byte; Direct, lﬁdexed
LDXB E500* Load X Byte; lndire?t, Indexed, AP in

Scratchpad
LDXB E600* Load X Byte 1; Direct, Relative to P Forward
LDXB E700* Load X Byte; Indirect, AP Relative to P
Backward

*LDXS 1698 Load Stack Element into X; Direct
*LDXS 1699 Load Stack Element into X; Indexed
*LDXS 169A Load Stack Element into X; Auto-Postincrement
*LDXS 169B ) Load Stack Element into X; Auto-Predecrement
LLA 1350+ Logical Shift A Left
LLL 1B00O* Long Logical Left Shift
LLR 1B80* Long Logical Right Shift
LIX 1328+ Logical Shift X Left
LRA 13D0* Logical Shift A Right

D-14

g

4-13

4-13

4-13

4-13

413

4-13

4-13

4-13

4-13

4-13

4-13

4-13

4-21

4-21

4-21

4-21

4-28

4-30

4-30

4-28

4-28




COMPUTER AUTOMATION, INC. l@ —— COMPUTER AUTOMATION, INC. S
INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) TR TR T R K Etit]

llvr;::!:ocrg:n Sll(t:g::t::nﬂex Deseription Zage l;::::;:::n SII:::::: t;znﬂex Description Page
RER JERE Iang Rptkie kAl 4-31 oTX 6E00* Output X Register (Unconditionally) 441
EB = TangiftctatmiRgnt 431 oTZ 6800+ Output Zero (Unconditionally) 41
HEX 1Baee Eogioall SRGRqmghs 4-28 OXH 1C08 Output X to Console Data Register 435

LXM C500* Load X Minus Immediate - 4-23 WngonditiBnallp) », ¢ |
LXO 13A0 LSB of X to OV 423 PFD 4003 Power Fail Interrupt Disable 4-38
LXP C400* Load X Positive Immediate 4-23 PFE 4002 Power Fail Interrupt Enable 4-38
- e SRR AR s RBA 7900° Read Byte to A Register 448
SAR — S — P RBAM 7D00* Read Byte to A Register, Masked 443
NAX 0308 Negate A and Put in X 4-33 REX TBoo* Read Byte to X Register 8
NOP 0000 No Operation 4-36 RBX"M TF00* Read Byte to X Register, Masked 4-43
- il G o A i B T o33 RDA 5900 Read Word to A Register 8
NRM 1940* Normalize A and X 417 RDAM 5Dog* Read Word to A‘Register, Masked +41
NRX 0608 NOR of A and X to X 433 RDX 5B00* Read 'Word to X Register 4-41
— — HegpatarK andimiasitck £ RDXM 5F00* Read Word to X Register, Masked 2
- e Rerseifaies wx RLA 1150+ Rotate A Left with OV 429
OAH 1C04 Output A to Consale Data Register and Halt 4-35 BUE e BeteteX Lot vithioy =
OCA 4404 Output A to ‘Console Data Register 4-36 A 1200 Reset Overflow 2
ocx 4604 Output X to Console Data Register 4-36, T 11po® e R =
OLH 1C10 Output Location to Console Data Register 4-36 IR Iuspe Rt XIRIGREN LRI e,
L SAI 0D00* Subtract from A Immediate 423
OMH 1C02 Output Memory to Console Data Register 4-36 SAO 1340 Sign of A to OV ~32
and Halt .
OPH 1C20 Output P to Console Data Register and Halt 43 b =R St oyt Mzt 3
OTA 6C00* Output A Register (Unconditionally) 40 M i ::m; Tetinec: udmand; AT M

D-15 D16




COMPUTER AUTOMATION. INC.

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction
Mnemonic Skeleton in Hex

SCMB CDoo0*
SEA 4400*
SEL 4000*
SEN 4900*
SEX 4600*
SIA 5800
SIN 6800
SIX .SAOO
*SLAS 1618
*SLAS 1619
*SLAS 161A
*SLAS 161B
SOA 6C00
S0X 6E00
sov 1400
SSN 4800*
STA 9800*
STA 9900*
STA 9A00*
STA 9B00*
STA 9Co0*
STA 9D00*

Description

Scan Memory Byte; Indirect, Indexed, AP
in Scratchpad

Select and Present A

Select Function

Sense and Skip on Response

Select and Present X

Status Input to A

Status Inhibit

Status Input to X

Stack Element Address to A; Direct

Stack Element Address to A; Indexed

Stack Element Address to A; Auto-Postincrement
Stack Element Address to A; Auto-Predecrement
Status Output from A

Status Output from X

Set Overflow

Sense and Skip and No Response

Store A; Direct, Scratchpad

Store A; Indirect, AP in Scratchpad

Store A; Direct, Relative to P Forward

Store A; Indirect, AP Relative to P Forward
Store A; Direct, Indexed

Store A; Indirect, Indexed, AP in Scratchpad

D-17

4-40

4-40

4-38

4-37

4-38

4-22

4-22

4-22

4-22

4-38

4-38

4-32

4-40

4-13

4-13

4-13

4-13

Instruction

Mnemonic

STA

STA

STAB

STAB

STAB

STAB

STAB

STAB

STAB

STAB

*STAS

*STAS

*STAS

*STAS

STOP

STX

STX

STX

STX

STX

STX

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction

Skeleton in Hex

SE00*

9F00*

9800*

9900*

9A00*

9B00*

9C00*

9D00*

9EQ0*

8F00*

1478

1479

147A

147B

0800*

E800*

E900*

EA00*

EBOO*

EC00*

EDOO*

Description

Store A; Direct, Relative to P Backward
Store A; Indirect, AP Relative to P Backward
Store A Byte; Direct, Scratchpad

Store A Byte; Indirect, AP in Scratchpad
Store A Byte 0; Direct, Relative to P Forward

Store A Byte; Indirect, AP Relative to P
Forward

Store A Byte; Direct, Indexed

Store A Byte; Indirect, Indexed, AP in
Scratchpad

Store A Byte 1; Direct, Relative to P Forward

Store A Byte; Indirect, AP Relative to P
Backward

Store A in Stack Element; Direct

Store A in Stack Element; Indexed

Store A in Stack Element; Auto-Postincrement
Store A in Stack Element; Auto-Predecrement
Helt with Operand

Store X; Direct, Scratchpad

_Store X; Indirect, AP in Scratchpad

Store X; Direct, Relative to P Forward
Store X; Indirect, AP Relative to P Forward
Store X; Direct, Indexed

Store X; Indirect, Indexed, AP in Scratchpad

D-18

COMPUTER AUTOMATION, INC. -—

4-13

4-13

4-13

4-13

4-13

4-13

4-13

4-13

4-13

4-13

4-13




COMPUTER AUTOMATION. INC. CONPUTER AUTOMATION, INC. TS

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)
Instruction Instruction Instruction Instruction
Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page
STX EE00* Store X; Direct, Relative to P Backward 4-13 sUB 9600* Subtract from A; Direct, Relative to P Backward 4-12
STX EF00* Store X; Indirect; AP Relative to P Backward 413 sus 9700* Subtract from A; Indirect, AP Relative to P 4-12
Backward
STXB E800* Store X Byte; Direct, Scratchpad 4-13 STBE — Subtract Byte; Direct, Scratchpad P
STXE Eo00r e e e SUBB 9100* Subtract Byte; Indirect, AP in Scratchpad 4-12
S EA00Y ASTARART 0, Ty S GIRE TR Bl PU AT ol SUBB 9200* Subtract Byte 0; Direct, Relative to P Forward 4-12
S EBOO* i:c:::ﬂ)::yte; FEaRets B0 Relsthg toch s SUBB 9300* Subtract Byte; Indirect, AP Relative to P 4-12
Forward
e BESE SeE R e . §es SUBB 9400* Subtract Byte; Direct, Indexed 4-12
R EPR :::;l:c);;{;e; e e e SUBB 9500* Subtract Byte; Indirect, Indexed, AP ir 4-12
Scratchpad
STXB EE00* Store X Byte 1; Direct, Relative to P Forward 4-13 . e R — Dhject, i o ek P
e =R g::fw):,zm; T R A PRR LI 4 SUBB 9700* Subtract Byte; Indirect, AP Relative to P. 4-12
Backward
*STXS 16B8 Store X in Stack Element; Direct 4-21 ol 105 T P e — o
*STXS 16B9 Store X in Stack Element; Indexed 4-21 — 1 Subtraét PR — -
*STXS 16BA Store X in Stack Element; Auto-Postincrement 4-21 SEUES 1454 Subtract Stack Element from A; Auto- 4-21
*STXS 16BB Store X in Stack Element; Auto-Predecrement 4-21 Postincrement
SUB 9000* Subtract from A; Direct, Scratchpad 4-12 *SUBS 145B Subtract Stack Element from A; Auto- 4-21
Predecrement
SUB 9100* Subtract from A; Indirect, AP in Scratchpad 4-12 SWM OF00 Set Word Mode 4-37.
SUB 9200+ Subtract from A; Direct, Relative to P Forward 4-12 — phe T — 428
SUB 9300* g:::x::; from A; Indirect, AP Relative to P 4-12 SX0 1524 Sign of X to OV 452
SUB 9400 Subtract from A; Direct, Indexed 412 TAX 0048 Transfer A to X 4-33
SUB 9500* Subtract from A; Indirect, Indexed, AP in 4-12 TRP 4007 Trap 4-39
ity TXA 0030 Transfer X to A 4-33
D-19' ) D-Zd




INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction - Instruction
Mnemonic Skeleton in Hex

WAIT F600
WRA 6D00*
WRX 6F00*
WRZ 6900*
XOR A800*
XOR A900*
XOR AA00*
XOR AB0O*
XOR AC00*
XOR ADOO*
XOR AE00*
XOR AF00*
XORB A800*
XORB A900*
XORB AAQ0*
XORB AB0O*
XORB ACO00*
XORB ADO00*
XORB AEQ0*

Description
Wait for Interrupts
Write from A
Write from X
Write Zeros
Exclusive OR to A; Direct, Scratchpad

Exclusive OR to A; Indirect, AP in Scratchpad

Exclusive OR to A; Direct, Relative to P Forward

Exclusive OR to A; AP Relative to P Forward,
Indirect

Exclusive OR to A; Direct, Indexed

Exclusive OR to A; Indirect, Indexed, AP in
Scratchpad

Exclusive OR to A; Direct, Relative to P
Backward

Exclusive OR to A; Indirect, AP Relative to
P Backward

Exclusive OR Byte; Direct, Scratchpad
Exclusive OR Byte; Indirect, AP in Scratchpad

Exclusive OR Byte 0; Direct, Relative to P
Forward

Exclusive OR Byte; Indirect, AP Relative to P
Forward

Exclusive OR Byte; Direct, Indexed

Exclusive OR Byte; Indirect, Indexed, AP in
Scratchpad

Exclusive OR Byte 1; Direct, Relative to P
Forward

D-21

COMPUTER AUTOMATION, INC.

Page
4-37

4-42

4-42
4-12
4-12
4-12

4-12

4-12

4-13
4-13

4-13
4-13

4-13

4-13

. 4-13

COMPUTER AUTOMATION. INC.

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd)

Instruction Instruction

Mnemonic Skeleton in Hex
XORB AF00*
*XORS 14B8
*XORS 14B9
*XORS 14BA
*XORS 14BB
XRM 0008
XRP 0528
ZAR 0110
ZAX 0118
ZXR 0108

Description

Exclusive OR Byte; Indirect, AP Relative to P
Backward

Exclusive OR Stack Element to A; Direct
Exclusive OR Stack Element to A; Indexed

Exclusive OR Stack Element to A; Auto-
Postincrement

Exclusive OR Stack Element to A; Auto-
Predecrement

Set X to Minus 1

Set X to Plus 1

Zero A Register

Zero A and X Registers

Zero X Register

D-22

A

:-

Page
4-13

4-21
4-21

4-21

4-21




A

COMPUTER AUTOMATION, INC.

Appendix E
INSTRUCTION SET IN NUMERICAL ORDER

This appendix contains the ALPHA LSI instruction set in machine code in numerical order.

For each instruction, reference is made to one of the machine code formats listed below.
Instructions with variable fields (D, K, etc.) are followed by asterisks (*). Those
instructions which apply to LSI-2 only are prefixed with an asterisk.

COMPUTER AUTOMATION, INC. cl=

151413121110987654‘3210

0000 0 Caz

D = 8-Bit Immediate Operand

D = Address Field (0 to 255)

1 = Direct/Indirect Address Bit P12 1109 82 6 84932409

M = Address Mode Code I 1 l OP CODE I M I 'T D J

Y = Effective Address
M 1 Word Mode (Word Operand) Byte Mode (Byte Operand)
00 0 Y = (D), Words : 00-: FF Y = (D), Bytes : 00-:FF
01 0 Y=(@M+P)+1 Y=(@)+ ()1, Byte 0
10 00 Y=@D)+ X) Y=O)+ X)
11 0 Y=(P)- D) Y=(®)+ (P)+1, Byte 1
00 1 AP = (D), AP = (AP) , Y = (AP) AP = (D), Y = (AP)
01 1 AP=(D)+ (P)+1, AP= (AP) ,Y + (AP) AP = (D) + (P) + 1, Y=(AP)
10 1 AP= (D), AP = (AP) , Y = (AP) + (X) AP = (D), Y = (AP) + (X)
11 1 AP= (P) - (D), AP = (AP) , Y = (AP) AP = (P) - (D), Y = (AP)

Figure E-3. Byte Immediate Instruction Machine Code Format

Figure E-1. Single-Word Memory Reference Instruction Machine Code Format

15 14 13 12 11 10 9 8 7 6 6 4 3 2 1 O

JL LT [T

1 ADDRESS

o

Op Code = 100 for NRM 0 through 15
= 101 for NRM 16 through 31
=110 for MPY
=111 for DVD

I = Indirect Addressing
1 = Indirect Address
0 = Direct Address
K = Instruction Count

Bits

12

7-11

15 14 13 12 11 10 9 8 7 6 6 4 3 2 1 O

[ofo]t]c] menocooe [a]  orew |

Field

G

Conditions

D Field

Definition
Test Group Indicator:

.G = 1 for AND Group
G = 0 for OR Group

Microcode of Test Conditions: -

Bit AND Group OR Group
7 A Positive A Negative
8 A0 A=0
9 OV Reset OV Set (Resets OV
10 Sense Indicator Sense Indicator
on off
11 X#0 X=0

Jump Direction:

R = 0 for Forward Jump
R = 1 for Backward Jump

Jump Distance (-63 to +64)

Figure E-2. Double-Word Memory Reference Instruction Machine Code Format-

E-1

Figure E-4. Conditional Jump Instruction Machine Code Format




COMPUTER AUTOMATION, INC.

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IOIOFIlIOI OP CODE I K I

K = Shift Control Count, Shift Will Move 1 + K Bit Positions.
Op Code = Shift Control Code Which Selects Source, Type of Shift,
and Location of Results

COMPUTER AUTOMATION, INC.

Figure E-5. Single-Register Shift Instruction Machine Code Format

15 14131211 109 8 7 6 5 4 3 2 1 0
I | DEVICE FUNCTION
K I QBICOOE I ADDRESS I CODE ]

Function Code = Specifies which device function or register
Device Address = The device's assigned address
Op Code = Operation Code Specifying One of the 1/0 Instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IOIO[OI'I!J OP CODE | K ]

Op Code = Shift Control Code Which Selects the Type oi Long Shift to be Executed
K = Shift Count. Shift Will Move 1 + K Bit Positions

Figure E-9. Input/Output Instruction Machine Code Format

Figure E-6. Double-Register Shift Instruction Machine Code Format

15 14.13 12 11 10 9 8 7 6 5 4 3 2 1 O
EIoro]olol OP CODE IOIOIO

Op Code = The Register Change Control Code which specifies the Source, Operation,
and Location of Results

1514131211 10 9 8 7 6 6 4 3 2 1 0
oP DEVICE FUNCTION
B °|'lcoosl°|5|°l°| ADDRESS 1 CODE
[ BYTE/WORD COUNTER, WC (2'S COMPLEMENT)
20 ] ADDRESS POINTER, AP (START LOCATION -1}

Opcode; 01 = Input, 10 = Output
B = 0: Word Transfer
B = 1: Byte Transfer

Byte/Word Counter = Number of Executions Until Skip or Echo
Byte/Word Address Pointer = Memory Location of 1/0 Transaction|

Figure E-7. Register Change Instruction Machine Code Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lol OP CODE l OP CODE, H or SC

H = Halt ID Indicator
SC = Sin Instruction Count - 1

Figure E-10. Automatic Input/Output Instruction Machine Code Format

1514131211109 8 7 6 5 4 3 2 1 0

DEVICE FUNCTION
9 ORICO0E [ ADDRESS CODE
o BASE ADDRESS -1

Figure E-8. Control Instruction Machine Code Format

Figure E-11. Block Input/Output Instruction Machine Code Format




COMPUTER AUTOMATION, INC. r— COMPUTER AUTOMATION, INC. _—

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)
16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Instruction Instruction Machine
a5 [0 I , I°l . [ o — |‘ I ; |° I = Skeleton in Hex Mnemonic Description Code Format Page
0 STACK POINTER ADDRESS {SPA) 00D0 DAR Decrement A Register 7 4-31
) 0108 ZXR Zero X Register 7 4-32
AM = Addressing Mode
0110 ZAR Zero A Register 7 4-31
00 = Direct Access to Stack
01 = Indexed Access to Stack 0118 ZAX Zero A and X Registers 7 4-33
10 = Auto-increment Access to Stack (POP)
11 = Auto-decrement Access to Stack (PUSH) 0128 IXR Increment X Register 7 4-32
0130 1XA Increment X to A 7 4-34
Figure E-12. Stack Instruction Machine Code Format
) 0148 IAX Increment A to X 7 4-41
0150 IAR Increment A Register 7 4-31
INSTRUCTION SET IN NUMERICAL ORDER 0208 CAX Complement of A to X 7 4-33
Instruction  Instruction Machine 0210 CAR Complement A Register 7 4-31
Skeleton in Hex Mnemonic Description Code Format Page )
0218 *EIX Execute Instruction Pointed to By X 7 4-34
0000 NOP No Operation 7 4-36
0308 NAX Negate A to X 7 4-33
0008 XRM X Register to Minus One 7 4-32
0310 NAR Negate A Register 7 4-31
0010 ARM A Register to Minus One 7 4-31 3 .
0350 ARP A Register to Plus One 7 4-31
0018 AXM A and X Registers to Minus One 7 4-33
0358 AXP A and X Registers to Plus One 7 4-33
0030 TXA Transfer X to A 7 4-33
0408 CXR Complement X Register 7 4-32
0048 TAX Transfer A to X 7 4-33
0410 CXA Complement of X to A 7 4-33
0068 ANX AND of A and X to X il 4-33
. 0428 EAX Exchange A and X 7 4-33
0070 ANA AND of A and X to A 7 4-33
0508 NXR Negate X Regster 7 4-32
0090 IPX Increment P to X 7 4-34
0510 NXA Negate X to A 7 4-33
00A8 DXR Decrement X Register 7 4-32
0528 XRP X Register to Plus One 7 4-32
00B0 DXA Decrement X to A 7 4-34
0608 NRX NORof Aand X to X . 7/ 4-33
00C8 DAX Decrement A to X 7 4-34
E-5 E-6




Instruction

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)

Instruction

Skeleton in Hex Mnemonic

0610

0688

068A

06C8

06CA

0800

0800

0A00

0B00

0C00

0D00

0E00

0F00

1028

0150

10A8*

10D0

1128

1150

11A8

11D0

1200

1320

NRA

*BSX

*BSA

*BCX

*BCA

HLT

STOP*

EIN

DIN

SAI*

SBM

SWM

ALX*

ALA*

ARX*

ARA*

RLX*

RLA*

RRX*

RRA*

ROV

BXO*

COMPUTER AUTOMATION, INC.

Machine

Description Code Format Page
NORof Aand Xto A 7 4-33
Bit Set X 7 4-34
Bit Set A 7 4-34
Bit Clear X 7 4-34
Bit Clear A 7 4-34
Halt 8 4-36
Halt with Operand 8 4-36
Enable Interrupts 8 4-38
Add to A Immediate 3 4-23
Disable Interrupts 8 4-38
Subtract from A Immediate 3 4-23
Set Byte Mode 8 4-37
Set Word Mode 8 4-37
Arithmetic Shift X Left 5 4-27
Arithmetic Shift A Left 5 4-27
Arithmetic Shift X Right 5 4-217
Arithmetic Shift A Right 5 4-27
Rotate X Left with Overflow 5 4-29
Rotate A Left with Overflow 5 4-29
Rotate X Right with Overflow 5 4-29
Rotate A Right with Overflow 5 4-29
Reset Overflow 5 4-32
Bit of X to Overflow 5 4-32

Instruction

COMPUTER AUTOMATION. INC. c

I»

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)

Instruction

Skeleton in Hex Mnemonic

1320
1328
1340
1340
1350
13A0
13A8
13C0
13D0
1400
1418
1438
1438
1478
1498
14B8
14D8
14F8
1600
1618

1658

1678

SX0
LLX*
BAO*
SAO
LLA*
LXO

LRX*

LRA*
sov
*ANDS
*ADDS
*SUBS
*STAS
*IORS
*XORS
*LDAS
*EMAS
cov
*SLAS

*CMSS

*IMSS

Description
Sign of X to Overflow

Logical Shift X Left

Bit of A to Overflow

Sign of A to Overflow

Logical Shift A Left

LSB of X to Overflow

Logical Shift X Right

LSB of A to Overflow

Logical Shift A Right

Set Overflow

AND Stack Element to A

Add Stack Element to A
Subtract Stack Element from A
Store A in Stack Element
Inclusive OR Stack Element to A
Exclusive OR Stack Element to A
Load Stack Element into A
Exchange Stack Element and A
Complement Overflow

Stack Element Address to A

Compare Stack Element to A and Skip 12

if High or Equal

Increment Stack Element and Skip
on Zero Result

E-8

Machine
Code Format Page
5 4-32
5 4-28
5 4-32
5 4-32
5 4-28
5 4-32
5 4-28
5 4-32
5 4-28
5 4-32
12 4-21
12 4-21
12 4-21
12 4-21
12 4-21
12 4-21
12 4-21
12 4-21
5 4-22
12 4-22
4-22
12 4-22




INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)

Load Stack Element into X

Store X in Stack Element

Jump to Stack Element Unconditional

Jump to Stack Element and Store

Long Logical Shift Right

Output Console Data Register to

Input Console Data Register to

Output A to Console Data Register

Input Console Data Register to A

Output X to Console Data Register

Input Console Data Register to X

Output Location to Console Data

Instruction Instruction
Skeleton in Hex Mnemonic Description

1698 *LDXS
16B8 *STXS
16D8 *JMPS
16F8 *JSTS
1900 LRL* Long Rotate Left
1940 NRM Normalize A and X
1960 MPY Multiply and Add
1970 DVD Divide
1980 LRR* Long Rotate Right
1B0O LLL* Long Logical Shift Left
1B80 LLR*
1C02 OMH

Memory and Halt
1C03 IMH

Memory and Halt
1C04 OAH

and Halt
1C05 1AH

and Halt
1C08 OXH

and Halt
1C09 IXH

and Halt
1C10 OLH

Register and Halt
1C11 IIH

Input Console Data Register to I
and Halt

E-9

COMPUTER AUTOMATION, INC.

A

o
Machine

Code Format Page
12 4-21
12 4-21
12 4-22
12 4-22
6 4-31
2 4-17
2 4-16
2 4-16
6 4-31
6 4-30
6 4-30
9 4-36
9 4-35
9 4-35
9 4-35
9 4-35-
9 4-35
9 4-36
9 4-35

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)

COMPUTER AUTOMATION, INC.

Instruction Instruction Machine
Skeleton in Hex Mnemonic Description Code Format Page
1C20 OPH Output P to Console Data Register 9 4-36
and Halt
1C21 IPH Input Console Data Register to P 9 4-35
and Halt
2080-3F80 Fwd Joc* Jump on Condition 4 4-24
20C0~3FCO0 Bkwd
2080 Fwd JAM* Jump if A Minus 4 4-25
20C0 Bkwd
2100 Fwd JAZ* Jump if A Zero 4 4-25
2140 Bkwd
2180 Fwd JAL* Jump if A Less Than One 4 4-25
21C0 Bkwd
2200 Fwd JOs* Jump if Overflow Set 4 4-26
2240 Bkwd
2400 Fwd JSR* Jump if Sense Switch Reset 4 4-26
2440 Bkwd
2800 Fwd JXz* Jump if X Zero 4 4-26
2840 Bkwd
3080 Fwd JAP* Jump if A Positive 4 4-25
30C0 Bkwd
3100 Fwa JAN* Jump if A Not Zero 4 4-25
3140 Bkwd
3180 Fwd JAG* Jump if A Greater Than Zero 4 4-25
31CO0 Bkwd
3200 Fwd JOR* Jump if Overflow Reset 4 4-26
3240 Bkwd
3400 Fwd JSS* Jump if Sense Switch Set 4 4-26
3440 Bkwd
3800 Fwd JXN* Jump if X Not Zero 4 4-26
3840 Bkwd




A
COMPUTER AUTOMATION. INC. :‘A\- COMPUTER AUTOMATION, INC.

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd) INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)
Instruction Instruction Machine Instruction Instruction Machine
Skeleton in Hex  Mnemonic Description Code Format Page Skeleton in Hex -~ Mnemonic Description Code Format Page
4000 SEL* Select Function 9 4-40 5B00 RDX* Read Word to X Register 9 4-41
4002 PFE Power Fail Enable 9 4-38 5C00 INAM* Input to A Register Masked 9 4-41
4003 PFD Power Fail Disable 9 4-38 5D00 RDAM* Read Word to A Register Masked 9 4-41
4005 CIE Console Interrupt Enable 9 4-38 SE00 INXM* Input to X Register M;asked 9 4-41
4006 CID Console Interrupt Disable 9 4-38 5F00 RDXM* Read Word to X Register Masked 10 4-42
4007 TRP Trap 9 4-39 6000 AOT* Automatic Output Word from Memory 10 4-47
4400 SEA* Select and Present A 9 4-40 6400 AOB* Automatic Output Byte from Memory 10 4-47
4404 0oCA .Output A to Console Register 9 4-36 6800 oTZ* Output Zero 9 4-41
4600 SEX* Select and Present X 9 4-40 6800 SIN* Status Inhibit 8 4-37
4604 (0109 ¢ Output X to Console Register 9 4-36 6900 WRZ* Write Zero 9 4-42
4800 SSN* Sense and Skip On No Response 9 4-40 6C00 OTA* Output A Register 9 4-41
4900 SEN* Sense and Skip On Response 9 4-40 6C00 SOA Status Output from A 9 4-38
5000 AIN* Automatic Input Word to Memory 10 4-47 6D00 WRA* Write from A Register 9 4-42
5400 AIB* Automatic Input Byte to Memory 10 4-47 6E00 OTX* Output X Register 3 4-41
5800 INA* Input to A Register 9 4-41 6E00 SOX Status Output from X 9 4-38
5800 SIA Status Input to A 9 4-38 6F00 WRX* Write from X Register 3 4-42
5801 ISA Input Sense Register to A 9 4-35 7100 BIN* Block In 11 4-44
5804 icA Input Console Register to A 9 4-35. 7500 BOT* Block Out 11 4-45
5900 RDA‘- Read Word to A Register 9 4-41 7800 IBA* Input Byte to A Register 9 4-42
5A00 INX* Input to X Register 9 4-41 7900 RBA* Read Byte to A Register 9 4-43
5A00 SIX Status Input to X 9 4-38 TA00 IBX* Input Byte to X Register 9 4-43
5A01 IsX Input Sense Register to X 8 4-35 7TB00 RBX* Read Byte to X Register 9 4-43
5A04 IcX Input Console Register to X 9 435 7C00 IBAM* Input Byte to A Register Masked 9 4-42
E-11 E-12




INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)

Instruction Instruction

Skeleton in Hex Mnemonic Description
7D00 RBAM* Read Byte to A Register Masked
TE00 IBXM* Input Byte to X Register Masked
TF00 RBXM* Read Byte to X Register Masked
8000 AND* AND to A
8000 ANDB* AND Byte to A
8800 ADD* Add to A
8800 ADDB* Add Byte to A
9000 SUB* Subtract from A
9000 SUBB* Subtract Byte from A
9800 STA®* Store A
9800 STAB* Store A Byte
A000 IOR* Inclusive OR to A
A000 IORB* Inclusive OR Byte to A
A800 XOR* Exclusive OR to A
A800 XORB* Exclusive OR Byte to A
B000 LDA* Load A
B000 LDAB* Load A Byte
B800 EMA®* Exchange Memory and A
B800 EMAB* Exchange Memory Byte and A
C000 CAI* Compare to A Immediate
C100 CXi* Compare to X Immediate
C200 AXI* Add to X Immediate
C300 SXI+* Subtract from X Immediate

E-13

COMPUTER AUTOMATION, INC.

Machine
Code Format

Page

9

9

4-43

4-43

4-43

4-12

4-12

4-13

4-13

4-12

4-12

4-12

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd)

COMPUTER AUTOMATION. INC. —

Instruction Instruction Machine )
Skeleton in Hex Mnemonic Description Code Format Page
C400 LXP* Load X Positive Inmediate . 3 4-23
C500 LXM* Load X Minus Immediate 3 4-23
C600 LAP* Load A Positive Immediate 3 4-23
C1700 LAM* Load A Minus Immediate 3 4-23
CD00 SCM* Scan Memory 1 4-14
CDO00 SCMB* Scan Memory Byte 1 4-15
D000 CMS* Compare and Skip if High or Equal 1 4-22
D000 CMSB* Compare Byte and Skip if High or Equal 1 4-14
D800 IMS* Increment Memory and Skip on Zero 1 4-14
Result
E000 LDX* Load X 1 4-13
E000 LDXB* Load X Byte 1 4-13
E800 STX* Store X 1 4-13
E800 STXB* Store X Byte 1 4-13
F000 JMP* Jump Unconditional 1 4-14
F600 WAIT Wait for Interrupts 1 4-37
F800 JST* Jump and Store 1 4-14




COMPUTER AUTOMATION, INC.

Appendix F
ALPHA LSIEXECUTION TIMES

F.1 GENERAL

’I:his appendix defines the execution time of each instruction in the ALPHA LSI instruc-
tion set. Two Processors and a variety of Memories, with varying access times, are
offered with the ALPHA LSI. The variation in memory access time makes a tabulation

. of execution times difficult. For this reason time calculation algorithms are provided.
These algorithms are useful with any memory access time by making the appropriate
memory parameter substitution.

F.2 MEMORY PARAMETERS

Currently, four Memories are offered in the ALPHA LSI family; three of these are core

Memories, while the fourth is a semiconductor Memory. Table F-1 lists the parameters

of these Memories. All times listed are in nanoseconds.

Table F_-_{_.‘ LSt _I'family Memory Parameters

Memory ¥

Type Configuration [~ RA RO WA WO M M ROI WOl
Core 980 Addon 4K, 8K %0 300 600 180 800 800 400 220 420
Core 1200 Add on 16K 1200 400 800 200 1000 600 400 300 500
Core 1600 Add on or integra) 4K, SK 1800 450 1150 230 1350 600 400 0 0
8C 1200 Add on 2K, 4K, 8K 1200 s00 700 200 1000 600 400 0 0

Integral 2K, 4K

Parsmeters in nanoseconds are:

2]
"

Cycle Time

Read Access

Resad Overhead

Write Access

Write Overhead

LSI-1 Effective Resd Access

LSi-1 Effective Write Access
Interleaved Effective Read Overhead
Interleaved Effective Write Overhead

EXE2 =
§g==z338%
won iy o "o

COMPUTER AUTOMATION, INC. - —

F.3 LSI-1 EXECUTION TIME ALGORITHMS

The LSI-1 execution time algorithms are listed in table F-2. The algorithms are parti-
tioned by class and subclass. Numerous instructions have two times listed with the
reason for the dual listing given in parenthesis. All numeric values are in microsec-
onds. The value of A (address calculation time) is derived from the list of addressing
modes at the beginning of the table. The variables m and m' are derived from table
F-1 and are in nanoseconds.

The letter i stands for indirect address levels. Where indirect addressing is used, the
value (3.2 + m)i must be added for each level of indirect addressing that is employed.

The letter n denotes a shift. The value 1.6n or 3. Zh must be added to the basic execu-
tion time of shift instructions for each bit shifted.

The letter w is used by the SCM and Block I/0 instructions. The parenthetical expres-
sion which precedes the w is the time calculation on a per word basis.

Table F-2. LSI-1 Execution Time Algorithms

MEMORY REFERENCE CLASS

A = Address Calculation Time for Memory Reference Instructions:

DIRECT SCRATCHPAD 1.6+m
DIRECT RELATIVE 1.6+m
DIRECT INDEXED 3.2+m
INDIRECT SCRATCHPAD 3.2+m)i

1.6+ (3.2+m)i
1.6+ (3.2+m) i

INDIRECT REALTIVE
INDIRECT INDEXED

ARITHMETIC
ADD 6.4+m+A
SUB 6.4+m+A
LOGICAL
AND 6.4+m+A
IOR 6.4+m+A
XOR 6.4+m+A
DATA TRANSFER
LDA 4.8+m+A
LDX 4.8+m+A
STA 4.8+m'+A
STX 4.8+m'+A
EMA 8.0+m+m'+A
F-2




— A
COMPUTER AUTOMATION, INC. :-

Table F-2. LSI-1 Execution Time Algorithms (Cont'd)

PROGRAM TRANSFER

JMP 4.8+A

JST (Non-Interrupt) 8.0+m'+A
JST (Interrupt) 6.4+m'+A
IMS 9.6+m+m'+A
SCM (12.8+m+A) w
CMS 12.8+m+A

COMPUTER AUTOMATION, INC. I

Table F-2. LSI-1 Execution Time Algorithms (Cont'd)

CONTROL
Jss
JSR
Jos
JOR

6.4+m

SHIFT CLASS

DOUBLE WORD MEMORY REFERENCE CLASS

DVD 118.4+3m+ (3.2+m) i
MPY 110.4+3m+ (3.2+m) i
NRM (count expires) 17.6+3m+m'+9.6n+ (3.2+m) i
NRM (count does not expire) 20.8+3m+m'+9.6n+ (3.2+m) i

BYTE IMMEDIATE CLASS

AAl 4.8+m
AXI 4.8+m
SAl 4.8+m
SX1 4.8+ m
CAl 6.4+m
CX1 6.4+m
LAP 4.8+m
LXP 4.8+m
LAM 4.8+ m
‘LXM 4.8+m

CONDITIONAL JUMP CLASS

MICROCODED
Joc)
ALL Double Register Tests 14.4+m
ALL Others 6.4+m

ARITHMETIC

JAG
JAP

JAL 6.4+ m

ARITHMETIC SHIFTS
ARA
ARX
ALA
ALX

3.2+m+1.6n.

LOGICAL SHIFTS
LRA
LRX
LLA
LLX

3.2+m+1.6n

ROTATE SHIFTS
RRA
RRX
RLA
RLX

3.2+m+1.6n

DOUBLE REGISTER LOGICAL SHIFTS

LLL }3.2+m+3.2n
LLR

LRL

DOUBLE REGISTER ROTATE SHIFTS
} 3.2+m+3.2n
LRR

REGISTER CHANGE CLASS

A REGISTER CHANGE

ZAR

ARP

ARM

CAR 4.8+ m
NAR

1AR

DAR

F-4




COMPUTER AUTOMATION, INC.

Table F-2. LSI-1 Executive Time Algorithms (Cont'd)

X REGISTER CHANGE

Table F-2. LSI-

COMPUTER AUTOMATION. INC. =-

1 Executive Time Algorithms (Cont'd)

ZXR CONTROL CLASS
XRP
XRM PROCESSOR CONTROLS
CXR 4.8+m NOP } 4.8+m
NXR HLT (STOP)
IXR
DXR MODE CONTROLS
SBM 4.8+m
OVERFLOW REGISTER CHANGE " SWM }
SOV 4.8+m
ROV 4.8+m STATUS CONTROLS
cov 4.8+ m SIN
SAO 6.4+m SIA
SX0 6.4+m SIX 5.6+m
LAO 6.4+m SOA
LXO 6.4+m SOX
BAO 6.4+m+1.6n
BXO 6.4+m+1.6n INTERRUPT CONTROLS
EIN 4.8+m
MULTI-REGISTER CHANGE DIN 6.4+m
ZAX 6.4+m CIE 5.6+m
AXP 6.4+m cID 5.6+m
AXM 6.4+ m PFE 5.6 +m
TAX 4.8+m PFD 5.6+m
TXA 4.8+ m TRP 5.6+m
EAX 8.0+m
ANA 4.8+ m
ANX 4.8+m INPUT/OUTPUT CLASS
NRA 6.4+m
NRX 6.4+m CONTROL
CAX 4.8+m SEL 5.6+m
CXA 4.8+ m SEA 5.6+ m
NAX 4.8+m SEX 5.6+m
NXA 4.8+ m SEN 7.2+m
1AX 4,.8+m SSN 7.2+m
IXA 4.8+m
IPX 4.8+m UNCONDITIONAL WORD
DAX 4.8+m INA 5.6 +m
DXA 4.8+ m INAM 7.2+m
INX 5.6 +m
CONSOLE REGISTER INXM 7.2+m
ICA OTA 5.6+m
ICX OoTX gg +m
ISA 0TZ .6+m
ISX 5.6+ m
OCA
ocx
F-5 F-6




A
COMPUTER AUTOMATION, INC. a

Table F-2. LSI-1 Execution Time Algorithms (Cont'd)

CONDITIONAL WORD

RDA
RDAM
RDX
RDXM
WRA
WRX
WRZ

7.2+ m
10.4+m
7.2+m
10.4+m
7.2+m
7.2+m
7.2+ m

UNCONDITIONAL BYTE

IBA
IBAM
IBX
IBXM

7.2+ m
8.8+ m
7.2+m
8.8+m

CONDITIONAL BYTE

RBA
RBAM
RBX
RBXM

BLOCK
BIN
BOT

AUTOMATIC
AIN

AIN (Under Interrupts)

AOT

AOT (Under Interrupts)

AIB

AIB (Under Interrupts)

AOB

AOB (under Interrupts)

10,4+ m
12.0+m
10.4+m
12.0+m

11.2+2m+ (7.2+m) w
11.2+2m+ (7.2+m) w

23.2 + 2m + 3m'
20.0 + 2m + 3m’
23.2 + 3m + 2m'
20.0+ 3m + 2m'
23.2 4+ 2m + 3m’'
20.0 + 2m + 3m'
23.2 + 3m + 2m'
20.0 + 3m + 2m'’

COMPUTER AUTOMATION, INC. l

F.4 LSI-2 EXECUTION TIME ALGORITHMS

The LSI-2 execution time algorithms are listed in tablé F-3. The algorithms are parti~-
tioned by class and subclass as in table F-2.

The Memory Reference instruction address calculation times precede the instruction
execution algorithms. Note that four different sets of address calculations are provided.
The list of Memory Reference instructions have algorithms which list A,, A, , A3,

or A 4 . The appropriate address calculation variable should be used as indicated.

The Stack instruction address calculation times precede the Stack instruction execution
algorithms. Note that three different sets of address calculations are provided. The
list of Stack instructions have algorithms which list S, , S 2, or S3 . The appropriate
address calculation variable should be used as indicated.

All Memories may be interleaved to achieve higher transfer rates. Core 1600 and
SC1200 may be interleaved 100 percent to achieve twice the data transfer rate of a
single memory module. Core 1200 and Core 980 may be interleaved to achieve a
maximum transfer rate of 171 and 163 percent, respectively, of a single memory
module. Interleaving is always effective for DMA operation.

Overlapping is effective for LSI-2 as indicated by the execution time equations. Terms

of the form n/RO or m/WO mean that the larger of the two times indicated are to be used.
When overlapping is achieved by alternate memory accesses in different memory modules,
the overhead times are masked and the effective RO and WO become zero except for Core:
980 and Core 1200 which have an overhead time even when interleaved.

As in table F-2 , numerous instructions have several times listed to define variations
of an instruction. The symbols i, n, and W are described in paragraph F.3.




A
COMPUTER AUTOMATION, INC. =-

Table F-3. LSI-2 Execution Time Algorithms

MEMORY REFERENCE CLASS

PROCESSOR '
MODE ADDRESSING MODE A A,
direct scratchpad RA + 700/RO RA + 800/RO
direct relative forward RA + 700/RO RA + 800/RO
direct relative backward RA + 850/RO RA + 950/RO
WORD direct indexed RA + 700/RO RA + B0O/RO
indirect scratchpad 2RA + 700/RO + 400/RO + (RA + 400/RO) (i-1) | 2RA + 700/RO + 500/RO + (RA + 400/RO) (i-1)
indirect relative forward 2RA + T00/RO + 400/RO + (RA + 400/RO) (i-1) | 2RA + 700/RO + 500/RO + (RA + 400/RO) (i-1)
indirect relative backward | 2RA + 700/RO + 400/RO + (RA + 400/RO) (i-1) | 2RA + 700/RO + 500/RO + (RA + 400/RO) (i-1)
indirect relative indexed 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) | 2RA + 700/RO + 800/RP + (RA + 460/RO) (i-1)
direct scratchpad RA + 1000/RO RA + 1100/RO
direct relative RA + 700/RO RA + 800/RO
direct indexed RA + 1000/RO RA + 1100/RO
BYTE indirect scratchpad 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) | 2RA + T00/RO + 800/RO + (RA + 400/RO) (i-1)
indirect relative forward 2RA + 700/RO + T00/RO + (RA + 400/RO) (i-1) | 2RA + T00/RO + 800/RO + (RA + 400/RO) (i-1)
indirect relative backward | 2RA + 700/RO + 7T00/RO + (RA + 400/RO) (i-1) | 2RA + 700/RO + 800/RO + (RA + 400/RO) (i-1)
indirect indexed 2RA + T00/RO + 900/RO + (RA + 400/RO) (i-1) | 2RA + T00/RO + 1000/RO + (RA + 400/RO) (i-1)
PROCESSOR
MODE ADDRESSING MODE Aj Ay
direct scratchpad RA + 1000/RO RA + 1300/RO
direct relative forward RA + 1000/RO RA + 1300/RO
direct relative backward RA + 1150/RO RA + 1450/RO
WORD direct indexed RA + 1000/RO RA + 1300/RO
indirect scratchpad 2RA + 700/RO + T00/RO + (RA + 400/RO) (i-1) | 2RA + T00/RO + 1000/RO + (RA + 406/RO) (i-1)
indirect relative forward 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) | 2RA + 700/RO + 1000/RO + (RA + 406/RO) (i-1)
indirect relative backward | 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) | 2RA + 700/RO + 1000/RO + (RA + 400/RO) (i-1)
indirect relative indexed 2RA + 700.RO + 1200/RO + (RA + 400/RO) (i-1)| 2RA + 700/RO + 1500/RO + (RA + 400/RO) (i-1)
direct scratchpad RA + 1300/RO RA + 1600/RO
direct relative RA + 1000/RO RA + 1300/RO
direct indexed RA + 1300/RO RA + 1600/RO
BYTE indirect scratchpad 2RA + 7T00/RO + 1000/RO + (RA + 400/RO) (i-1){ 2RA + T00/RO + 1300/RO + (RA + 400/RO) (i-1)
indirect relative forward 2RA + 7T00/RO + 1000/RO + (RA + 400/RO) (i-1)| 2RA + T00/RO + 1300/RO + (RA + 400/R0O) (i-1)
indirect relative backward | 2RA + 700/RO + 1000/RO + (RA + 400/RO) (i-1){ 2RA + 700/RO + 1300/RO + (RA + 400/RO) (i-1)
indirect indexed 2RA + T04/RO + 1200/RO + (RA + 406/RO) (i-1)! 2RA + T00/RO + 1500/RO + (RA + 400/RO) (i-1)
A, is used with ADD, SUB, AND, IOR, XOR, EMA, LDA, LDX, CMS and IMS.
Ajis used with STA, STX and JST.
Ay is used by JMP only.
A, is used by SCM only.
N
ARITHMETIC
ADD
SUB
| A, +RA + (400/RO)
LOGICAL
AND
IOR
XOR
/




Table F-3. LSI-2 Execution Time Algorithms (Cont'd)

DATA TRANSFER
LDA
LDX
STA
STX
EMA

PROGRAM TRANSFER
JMP

JST (Non-Interrupt)

JST (Interrupt)
IMS

SCM
CMS

A, + RA + 400/RO
A, + RA + 400/RO
A, + WA + 250/RO
A, + WA + 250/RO
A, +RA + 500/RO* + WA + 550/WO

Ay
A,+ WA + 550/WO
A+ WA + 700/WO
A, + RA + (500/RO)* + WA

+ 700/RO # 0 in line no skip
or + 1450/RO = 0 in line skip
or + 850/RO # 0 interrupt no echo
or + 1600/RO = 0 interrupt echo
A, + RA + 550/RO + (RA + 1600/RO) (w-1)
A +RA

+ 550/RO for A< Y
or + 850/RO for A=Y
or +1150/RO for A > Y

A
COMPUTER AUTOMATION, INC. —

DOUBLE WORD MEMORY REFERENCE CLASS

DVD

MPY

NRM

2RA + 1000/RO + (RA + 400/RO) i
+ (2950 + 450n) /RO
2RA + 1000/RO + (RA + 400/RO) i
+ (3100** + 600n) /RO
2RA + 1000/RO + (RA + 400/RO) i
+ (1400 + 600n) /RO + WA + 1750/WO

ARITHMETIC
ADDS
SUBS

LOGICAL
ANDS
IORS
XORS

DATA TRANSFER
LDAS
LDXS
STAS
STXS
EMAS

PROGRAM TRANSFER
JMPS

JSTS
IMSS

CMSS

STACK CONTROL

Sy + RA + 400/RO

S1 + RA + 400/RO
S; + RA + 400/RO
S2 + WA + 250/RO
S2 + WA + 250/RO
Sy + RA + 500/RO* + WA + 550/WO

S,
Sz + WA + 550/WO
Sy + RA + 500/RO* + WA
+ 700/RO # 0 in line, no skip

or + 1450/RO = 0 in line, skip

or+ 850/RO # 0 interrupt, no echo
or + 1600/RO = interrupt, echo
S;1+RA

+ 550/RO A<Y
or+ 850/RO A=Y
or + 1150/RO A>Y

SLAS S3
STACK CLASS
BYTE IMMEDIATE CLASS
ADDRESSING MODE S S2 S3
AAl RA + 1000/RO
direct access 3RA + 2(400/RO) + 550/RO Sy + 100 Sy + 300 AXI RA + 700/RO
" SAI RA + 1000/RO
indexed access 3RA + 2(400/RO) + 850/RO | Sy + 100 Sy + 300 sx1 RA + 700/RO
cu} RA + 1000/RO skip
auto-postincrement 3RA + 2(400/RO) + 500/RO* | Sq + 100 S1 + 300 CX1 RA + 850/RO no skip
or auto-predecrement + WA + 400/WO LAP RA + 700/RO
LXP RA + 700/RO
*not effected by interleave LAM RA + T00/RO
LXM RA + 7T00/RO
S; is used with ADDS, SUBS, ANDS, IORS, XORS, EMAS, LDAS, LDXS,
CMSS and IMSS. * Not Affected By Interleave
Sz is used with STAS, STXS, and JSTS. ** +300 for Negative Multiplier
S3 is used by JMPS and SLAS.
F-10 F-11

COMPUTER AUTOMATION, INC. ey




Table F-3.

COMPUTER AUTOMATION, INC.

LSI-2 Execution Time Algorithms (Cont'd)

CONDITIONAL JUMP CLASS

MICROCODED
Joc

ARITHMETIC
JAG
JAL
JAM
JAP
JAZ
JXN
IXZ

CONTROL
JOR
JOs
JSR
Jss

RA + 700/RO = No Jump

RA + 1000/RO = Jump

Table F-3. LSI-2 Execution Time Algorithms (Cont'd)

DOUBLE REGISTER LOGICAL SHIFTS
LLL
LLR

DOUBLE REGISTER ROTATE SHIFTS
LRL
LRR

COMPUTER AUTOMATION, INC. [RS—

RA + 2350 + 150n/RO

REGISTER CHANGE CLASS

SHIFT CLASS

ARITHMETIC SHIFTS
ALA
ALX
ARA
ARX

LOGICAL SHIFTS
LLA
LLX
LRA
LRX

ROTATE SHIFTS

RLA
RLX
RRA
RRX

& RA + 1150 + 150n/RO

A REGISTER CHANGE

ZAR
ARP
ARM
CAR
NAR
IAR

DAR

X REGISTER CHANGE

ZXR
XRP
XRM
CXR
NXR
IXR

DXR

OVERFLOW REGISTER CHANGE
Sov
ROV
cov
SAO
SXO
LAO
LXO
BAO
BXO

RA + 1000/RO

RA + 1006/RO

RA + 850/RO

RA + 1300 + 150n/RO
n is number of bits away from 0 to 15




A .
COMPUTER AUTOMATION, INC. I _— COMPUTER AUTOMATION, INC. ‘

Table F-3. LSI-2 Execution Time Algorithms (Cont'd)
Table F-3. LSI-2 Execution Time Algorithms (Cont'd)
REGISTER CHANGE CLASS (Cont'd) STQXUS CONTROLS
SIX
MULTI-REGISTER CHANGE :
%
ZAX RA + 1300/RO » e L
AXP RA + 1300/RO So;
AXM . RA + 1300/RO 8
TAX RA + 1000/RO
TXA RA + 1000/RO IN’(I:‘:'ISRUPT CONTROLS
EAX RA + 1300/RO CIE RA + 1600/RO
ANA RA + 1000/RO DIN
ANX RA + 1000/RO EIN } RA + 850/RO
NRA RA + 1000/RO PFE
NRX RA + 1000/RO .
600/RO
cAx RA + 1000/RO L } 58 By
CXA RA + 1000/RO
NAX RA + 1300/RO
NXA RA + 1300/RO INPUT/OUTPUT CLASS
=
. / SEN RA + 1550/RO no skip
i B4+ 20N/ RO RA + 1900/RO skip
e BA.~1000/RO SEA RA + 1600/RO
ey A= RIGE SEL RA + 1600/RO
BCX SEX RA + 1600/RO
SSN RA + 1900/RO no skip
BSA RA + 1300/RO i
BSX RA + 1700/RO skip
EIX RA + 500/RO + normal time of instruction UNCONDITIONAL WORD
executed INA )
CONSOLE REGISTER INAM
ICA INX
ICX INXM \ RA + 1600/RO
ISA OTA
RA + 1600/RO
ISX OTX
ocA oTZ J
(010 ¢
CONDITIONAL WORD 3\
RDA
CONTROL CLASS RDAM
RDX RA + 2050/RO successful
PROCESSOR CONTROLS RDXM .
HLT (STOP) RA + 1150/RO WRA RA + 2000/RO unsuccessful repeat period
NOP WRX
WRZ J
MODE CONTROLS
SBM RA + 1000/RO UNCONDITIONAL BYTE
SWM IBA
IBAM
RA + 0/RO
IBX A + 1600/
IBXM
F-14 F-15




COMPUTER AUTOMATION, INC. I —_—

Table F-3. LSI-2 Execution Time Algorithms (Cont'd)

CONDITIONAL BYTE

RBA
— RA + 2050/RO successful
B RA + 2000/RO unsuccessful repeat period
RBXM
BLOCK
BIN 2RA + 400/RO + 1550/RO + WA + 850/WO
+ (WA + 2000/WO) (W-1)
BOT 3RA + 2 (400/RO) + 1300/RO +

+ (RA + 2050/RO) (W-1)
NOTE
Time given assuming device sense response is present. If not present,
BIN and BOT retest for ready every 850 ns.

AUTOMATIC
AIN/AIB 3RA + 3WA + 400/RO + 800/RO
+ 500/RO* + 550/WO + 1700/WO
+ 550/WO if inline,
or + 400/WO if interrupt
AOT/AOB 4RA + 2WA + 400/RO + 800/RO
+ 500/RO* + 2(550/W0O)
+ 1750/RO inline,
or + 1600/RO if interrupt

* Not Affected By Interleave
** (1050/WO) if WC =0

COMPUTER AUTOMATION, INC. 'l &

F.5 ALPHA LSI FAMILY INSTRUCTION EXECUTION TIMES

The execution times of the ALPHA LSI instruction set is listed in table F-7. The
Memory Reference instruction address calculation times for the LSI- } and LSI-2

are listed in tables F-4 and F-5, respectively. The LSI-2 Stack Instruction Address
calculation times are listed in table F-6.

F.6 MAXIMUM I/O TRANSFER RATES

The maximum I/0 transfer rates for the LSI-1 and LSI-2 computers are listed in

table F-8.

Table F-4. LSI-1 Memory Reference Instruction Address Calculation Times

DIRECT SCRATCHPAD 2
DIRECT RELATIVE 2
DIRECT INDEXED 3.
3
1
1

o NN

INDIRECT SCRATCHPAD
INDIRECT RELATIVE
INDIRECT INDEXED

.6 +3.8
.6+3.81




COMPUTER AUTOMATION, INC.

Table F-5. LSI-2 Memory Reference Instruction Address Calculation Times

MEMORY {(PROCESSOR| ADDRESSING Ay A, Ay A,
TYPE MODE MODE
direct scratchpad 1.8 1.8 1.8 1.75
direct relative forward 1.6 1.8 1.6 1.75
direct relative backward 1.6 1.8 1.6 1.9
WORD direct indexed 1.6 1.6 1.6 1.75
indirect scratchpad 3.2+1.6 (i-1) [ 3.2+1.6 (i-1) 3.2+1.6 (i-1) | 3.2+ 1.6 (i-1)
indirect relative forward 3.2+1.6 (i-1) [ 3.2+1.6 (i-1) 3.2+1.6 (i-1) | 3.2+1.6 (i-1)
indirect relative backward 3.2+1.6 (i-1) | 3.2+1.6 (i-1) 3.2+1.6 (i-1) { 3.2+ 1.6 (i-1)
CORE 600 indirect indexed 3.2+1.6 (i-1) |3.2+1.6 (i-1) 3.2+1.6 (i-1) | 3.35 + 1.6 (i-1)
direct scratchpad 1.6 1.6 1.75 2.05
direct relative 1.6 1.6 1.6 1.75
direct indexed 1.6 1.6 1.75 2.05
BYTE indirect scratchpad 3.2+1.6 (i-1) | 3.2+1.6 (i-1) 3.2+1.6 (i-1) | 3.35+ 1.6 (i-1)
indirect relative forward 3.2+1.6 (i-1) | 3.2+1.6 (i-1) 3.2+1.6 (i-1) | 3.35+ 1.6 (i-1)
indirect relative backward 3.2+1.6 (i-1) |3.2+1.6 (i-1) 3.2+1.6 (i-1) | 3.35+ 1.6 (i-1)
indirect indexed 3.2+1.6 (i-1) | 3.2+1.6 (i-1) 3.2+1.6 (i-1) | 3.55+ 1.6 (i-1)
direct scratchpad 1.2 1.2 1.4 1.7
direct relative forward 1.2 1.2 1.4 1.7
direct relative backward 1.25 1.35 1.55 1.85
WORD direct indexed 1.2 1.2 i 1.4 1.7
indirect scratchpad 2.4+1.2 (i-1) | 2.4+1.2 (i-1) 2.4+1.2 (i-1) | 2.6 +1.2 (i-1)
indirect relative forward 2.4+1.2(@(-1) | 2.4+1.2 (i-1) 2.4+41.2 (i-1) | 2.6 +1.2 (i-1)
indirect relative backward 2.4+1.2 (1-1) |2.4+1.2 (i-1) 2.4+1.2(i-1) | 2.6 +1.2 (i-1)
indirect indexed 2.4+1.2(-1) | 2.4+1.2 (i-1) 2.6+1.2 (i-1) | 2.9+1.2 (i-1)
CORE 1200
direct scratchpad 1.4 1.5 1.7 2.0
direct relative 1.2 1.2 1.4 1.7
direct indexed 1.4 1.5 1.7 2.0
BYTE indirect scratchpad 2.4+1.234-1) |2.4+1.2 (i-1) 2.6+1.2 (i-1) | 2.9+1.2 (i-1)
indirect relative forward 2.4+1.2(¢G-1) |2.4+1.2 (-1 2.6+1.2 (i-1) | 2.9+1.2 (i-1)
indirect relative backward 2.4+1.2d-1) |2.4+1.2 (i-1) 2.6+1.2 ({-1) | 2.9+1.2 (i-1)
indirect indexed 2.5+1.2 (i-1) | 2.6+ 1.2 (i-1) 2.8+1.2 (i-1) | 3.1+1.2 (i-1)
direct scratchpad 1.08 1.18 1.38 1.68
direct relative forward 1.08 1.18 1.38 1.68
direct relative backward 1.23 1.33 1.53 1,83
direct indexed 1.08 1.18 1.38 1.68
WORD indirect scratchpad 2.06 + .98 (i-1)] 2.06 + .98 (i-1) 2.16 + ,98 (i-1)] 2.46 + .98 (i-1)
indirect relative forward 2.06 + .98 (i-1)| 2.06 + .98 (i-1) 2.16 + .98 (i-1)] 2.46 + .98 (i-1)
indirect relative backward 2.06 + .98 (i-1)] 2.06 + .98 (i-1) 2.16 + ,98 (i-1)} 2.46 + .98 (i-1)
indirect indexed 2.16 + .98 (i-1)]| 2.26 + .98 (i-1) 2.46 + 98 (i-1)] 2.76 + .98 (i-1)
CORE 980
direct scratchpad 1.38 1.48 1.68 1.98
direct relative 1.08 1.18 1.38 1.68
direct indexed 1.38 1.48 1.68 -] 1.98
BYTE indirect scratchpad 2.16 + .98 (i-1)| 2.26 + .98 (i-1) 2.46 + .98 (i-1)} 2.76 + .98 (i-1)
indirect relative forward 2.16 + .98 (i-1)| 2.26 + .98 (i-1) 2.46 + .98 (i-1)| 2.76 + .98 (i-1)
indirect relative backward 2.16 + .98 (i-1)| 2.26 + .98 (i-1) 2.46 + .98 (i-1)| 2.76 + .98 (i-1)
indirect indexed 2.36 + .98 (i-1)| 2.46 + .98 (i-1) 2.66 + .98 (i-1)| 2.96 + .98 (i-1)
direct scratchpad 1.2 1.3 1.5 1.8
direct relative forward 1.2 1.3 1.5 1.8
direct relative backward 1.35 1.45 1.65 1.95
direct indexed 1.2 1.3 1.5 1.8
WORD indirect scratchpad 2.4+1.2(i-1) ;1 2.4+1.2 (i-1) 2.4+1.2 (G-1) | 2.7+1.2 (i-1)
indirect relative forward 2.4+1.2 (G-1) { 2.4+1.2 (i-1) 2.4+1.2 (1-1) | 2.7+ 1.2 (i-1)
indirect relative backward 2.4+1.2(-1) 12.4+1.2 -1) 2.4+1.2 (3-1) | 2.7+1.2 (i-1)
indirect indexed 2.4+1.2 (-1) | 2.5+1.2 (i-1) 2.7+1.2(i-10 | 3.0+ 1.2 (i-1)
SC1200
direct scratchpad 1.5 1.6 1.8 2.1
direct relative 1.2 1.3 1.5 1.8
direct indexed 1.5 1.6 1.8 2.1
BYTE indirect scratchpad 2.4+1.2 (i-1) | 2.5+ 1.2 (i-1) 2.7+1.,2@G-1){3.0+1.2(-1)
indirect relative forward 2.4+1.2 (G-1) | 2.5+1.2 (i-1) 2.7+1.23G-1) {3.0+1.2 (-1)
indirect relative backward 2.4+1.2 G-1) | 2.5+1.2 (-1) 2.7+1.2(-1) | 3.0+1.2 (i-1)
indirect indexed 2.6+1.2 (G-1)}2.7+1.2 (i-1) 2.9+1.2(i-1) | 3.2+1.2 G-1)

A is used with ADD, SUB, AND, IOR, XOR, EMA, LDA, LDX, CMS and IMS.

A2is used with STA, STX and JST.

Az is used by JMP anly.

A4 is used by SCM only.

F-18




COMPUTER AUTOMATION, INC. —

Table F-6. Stack Instruction Address Calculation Times

MEMORY ADDRESSING
TYPE MODE S S2 S3
direct access 4.8 4.9 5.1
CORE indexed access 4.8 4.9 5.1
1600 auto-postincrement 6.4 6.5 6.7
or auto-predecrement
direct access 3.6 3aT 3.9
CORE indexed access 3.65 3.75 3.95
1200 auto-postincrement 4.8 4.9 5.1
or auto-predecrement
direct access 2.94 3.04 3.24
CORE indexed access 3.19 3.29 3.49
980 auto-postincrement 3.92 4,02 4.22
or auto-predecrement
direct access 3.6 3.7 3.9
SC indexed access 3.75 3.85 4.05
1200 auto-postincrement 4.8 4.9 5.1

or auto-predecrement

S; is used with ADDS. SUBS, ANDS, IORS, XORS, EMAS, LDAS, LDXS, DMSS
and IMSS.

Sz is used with STAS, STXS, and JSTS.
S3 is used by JMPS and SLAS.
NOTE
Times given in tables F-5, F-6 and under "LSI-2" in tablc F-7
apply to the LSI-2/20. LSI-2/10 times are twice thosc given

for the 2/20 with a C1600 memory, regardless of the memory
used with the 2/10.

F-19




02-4

Table F-7. ALPHA LSI Family Instruction Execution Times

LSI-1 LSI-2
C1600
MNEMONIC C1200
C980 C1600 C1200 C980 SC1200
SC1200
MEMORY REFERENCE
Arithmetic
ADD A+7
ADDB
SUB A+1T
SUBB
Logic.
AND A+
ANDB
IOR A+1T A1+ 1.6 Ay+1.2 A1+ 0.98 Ay+1.2
IORB
XOR A+1T
XORB
Data Transfer
LDA A+5.4
LDAB
LDX A+5.4 J
LDXB
STA A+5.2
STAB .
STX A+5.2 Ag+ 1.6 Ag+ 1.2 Ao+ 0.98 Ag+ 1.2
STXB
EMA A+9 A +3.2 Aj+2.4 A3 +1.96 Aj+2.4
EMAB A +3.2 A1+ 2.4 Ap+1.96 A1+ 2.4
Program Transfer
CMSs A+13.4 Aj+1.6 A1+ (1.2 0r 1.55) Ay + (0.98 0or 1.53) Ap + (1.2 0r 1.65)
CMSB A1 +1.6 A1+ (1.2 0r 1.55) A1+ (0.98 or 1.53) A} + (1.2 0r 1.65)
IMSN A +10.6 A;+ (@3.00r 3.3) Al + (2.20r 2.85) A) + (1.86 0r 2.61) Aj + (2.1 0r 2.85)
IMSI A} + (3.0 0r 3.43) Al + (2.250r 3.0) Al + (2.01 or 2.76) A] + (2.250r 3.0)
JMP A+4.8 A3 A3 A3 A3
JSTN A+8.4 Ag+1.6 Ag+ 1.2 Ax+0.98 A2+1.2
JSTI A+6.8 Ay+ 1.6 Ag+ 1.2 Ay +0.98 Ag+ 1.2
SCM A+13.4 A4+ (1.6 + 2.05W) A4+ (1.2+2.0W) Ag+ (0.98 +1.98W) Ag+ (1.2 +2.1W)
SCMB A4+ (1.6 + 2.05W) Ag+ (1.2+2.0W) Ayt (.098 + 1.98W) Agt (1.2 +2.1W)
DOUBLE WORD MEMORY REFERENCE
DVD 3.8i +120.2 13.35 12.74 12,44 12.9
MPY 3.8 +112.2 15.75 15.1 14,84 15.3
NRM1 3.8i+19.8+ 9.6n 7.05+ .6n 6.35 + .6n 6.07 + .6n 6.55 + .6n
NRM2 3.81+23+9.6n

NI ‘NOILYWOLNY ¥3LNdWOD




12-4

Table F-7. ALPHA LSI Family Instruction Set Execution Times

MNEMONIC

C1600

LSI-2
C1200

C980

SC1200

STACK

Arithmetic Y

ADDS
SUBS

Logic
ANDS
IORS
XORS

Data Transfer
LDAS

STXS
EMAS

"

S;+1.6

LDXS
STAS S +1.6

S +3.2

Program Transfer

CMSS
IMSS
JMPS
JSTS

Stack Control
SLAS

S;+1.6

S+ @.0or 3.3)
S3

S,+1.6

S3

Sy +1.2

S +1.2
S +2.4
S, + (1.2 or 1.55)
S+ (2.2 or 2.85)

S3
S, +1.2

S3

Sy +0.98

S +0.98
S. +1.96
S; + (0.98 or 1.53)
S+ (1.86 or 2.61)

S3
S, +0.98

S3

S1+1.2

S +1.2
S +2.4
St + (1.2 or 1.65)
S1+ (2.10r 2.85)

S3
S, +1.2

S3

:
z
5
_g




¢i-4

Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd)
} LSI-1 LSI-2
C1600
MNEMONIC C1200
C980 C1600 C1200 C980 8C1200
8C1200
= BYTE IMMEDIATE
AAl 5.4 1.6 1.4 1.38 1.5
AXI 5.4 1.6 1.3 1.08 1.2
8Al 5.4 1.6 1.4 1.38 1.5
8x1 5.4 1.6 1.2 1.08 1.2
CAl 7 1.6 1.250r 1.4 1.280r 1.38 1.350r 1.5
cxi T 1.6 1.850r 1.4 1.280r 1.38 1.850r 1.5
LAP 5.4 1.6 1.2 1.08 1.2
LXP 5.4 1.6 1.3 1.08 1.2
LAM 5.4 1.6 1.2 1.08 1.2
LXM 5.4 1.6 1.3 1.08 1.2
CONDITIONAL JUMP
Microcoded
Joci 13 )
Joc2 7
Arithmetic
JAG 7
JAP 7
JAZ 7
JAN 7
JAL 7 > 1.6 1.2001.4 1.080r 1.38 1.20r 1.5
JAM 1
JXz 7
JXN 7
Control
JOR 7
Jos ]
JSR 1 z
Jss 7 d

SHIFT n
Single Register ‘
Arithmetic Shifts

s.8+1.6n 1.6+ .15n 1.55 + .15n 1.58 + .15n 1.65 + .15n I

REEE




€2-4

Table F-7.

ALPHA LSI Family Instruction Execution Times (Cont'd)

LSI-1

MNEMONIC

C1600
C1200
C980
SC1200

C1600 C1200 C980 8C1200

SHIFTS (Cont'd)

Logical Shifts
LLA
LLX
LRA
LRX

,Rotate Shifts

RLA
RLX
RRA
RRX

Double Register

Logical
LLL
LLR
LRL
LRR

3.8+ 1.6n

3.8+3.2n

1.6 + .15n 1.55 + .15n 1.53 + .15n 1.65 + .15n

2.8+ .15n 2.75+ .15n 2.73 + .16n 2.85 + .15n

REGISTER CHANGE

Accumulator

ARM
ARP
CAR
DAR
IAR

NAR
ZAR

Index
ZXR
XRP
XRM
CXR
NXR
IXR
DXR

5.4

1.6 1.4 1.38 1.5

NI ‘NOUVIWOLNY 33LNdNOD

4




Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd)

LSI-1 LSI-2

C1600
MNEMONIC C1200

C980 C1600 C1200 C980 SC1200
SC1200

REGISTER CHANGE

ve-4

Overflow
sov
ROV 5.4 1.6 1.25 1.23 1.35
cov

SAO

SX0 7 1.75 1.7 1.68 1.8

LAO

LXO

BAO > 5.4+1.6n 1.75 + 15n 1.7+1.5n

BXO

-

.68 + 15n 1.8+ 15n

Multi-Register
ZAX

o]
-
-
-3
o
-
-3
-

.68 1.8

4

e

»
[N RS R B B B R ]
b O OB e DD

%
>
“INI ‘NOLLYINOLNY ¥3LNINOD

EIX 1.6 1.2 0.98 1.2

Console Register
ICA
ICX
ISA 6.2 2.05 2 1.98 2.1
1sX
OCA
ocx




Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd)

LSI-1 LSI-2

C1600
MNEMONIC C1200

C980 C1600 C1200 C980 SC1200
SC1200

REGISTER CHANGE (Cont'd)

> Indefinite

CONTROL

Ge-4

Processor

NOP
HLT 5.4 1.6 1.55 1.53 1.65

STOP
WAIT Indefinite Indefinite Indefinite Indefinite Indefinite

Mode Control
SBM
SWM 5.4

o
-

1.38
.38

-
- -
-

-
-
oo

Lol

Status
SIA
SIN
SIX
SOA
SOX

Interrupts
EIN
DIN 7
CIE
CID
PFE 6.2 2.05 2 1.98 2.1
PFD
TRP

[2]
F'S
-
- -
—
~n
[
-
~N
w
[
4
o

INPUT/OUTPUT

Control
SEN 7.8 2o0r2.35 1.950r 2.3 1.93 or 2.28 2.050r 2.4
SSN 7.8 2.150r 2.35 2.1o0r 2.3 .08or 2.28 2.20r 2.4

SEL
SEA 6.2 2.05 2 1.98 2.1

SEX

[ -]




92-4

Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd)

LSI-1
C1600
MNEMONIC C1200
C980 C1600 C1200 C980 $C1200
SC1200
INPUT/OUTPUT (Cont'd)
Unconditional Word
INA 6.2
INAM 7.8
INX 6.2
INXM 7.8 2.05 2 1.98 2.1
OTA
oTX 6.2
OTZ
Conaditional Word
RDA 7.8
RDAM 11
RDX 7.8
RDAM 11 2.450r 2.5 2.40r 2.45 2.380r 2.43 2.5 or 2.55
WRA
WRX 7.8
WR2
Unconditional Byte
IBA 7.8
IBAM 9.4
IBX 7.8 2.05 2 1.98 2.1
IBXM 9.4
Conditonal Byte
RBA 11
RBAM 12.6
e 11 2.450r 2.5 2.40r 2.45 2.380r 2.43 2.5or 2.55
RBXM 12.6
Block
BIN 12.4+ 7.6W 5+ 2,25W 4.2+ 2.2W 3.94 + 2,18W 4.3+2.2W
BOT 12.4+ 7.8W 4,95 + 2.5W 4.1+ 2,45W 3.64 +2,43W 4.2+ 2.55W
Automatic
AIB 25.6
AIBI 22.4
AIN 25 .6 9.95 7.9 6.98 8
AINI 22.4
AOB 25.8 18.2 8.15 7.23 8.35
AOBI 22.6 10.05 8 7.08 8.2
AOT 25.8 10.2 8.15 7.23 8.35
AOTI 22.6 10.05 8 7.08 8.2

NI ‘NOUVINOLNY ¥3LNINOCD

A\

=]=d




Table F-8.

ALPHA LSI Family Maximum Data Transfer Rates

(dMl’UTER AUTOMATION. INC. —_——

LSI-1 LSI-2
C1600
1/0 MODE C1200 L
C980 C1800 C1200 C980 8C1200
$C1200
DMA (Non Interleaved) same as LSI-2 | 625,000 w/s 833,333 w/s 1,020,000 w/s 833,333 w/s
DMA (Interleaved) same as LSI-2 | 1,250,000 w/s 1,409,000 w/s 1,666,666 w/s 1,666,666 w/s
Block In 131,579 w/s 444,444 w/s 454,545 w/s 458,711 w/s 454,545 w/s
Block Ou 131,579 w/s 400,000 w/s 408,163 w/s 411,522 w/s 392,156 w/s
Programmed In (Cond) Word 34,247 w/s 112,369 w/s 130,718 w/s 136,040 w/s 124,223 w/s
Byte 34,247 b/s 112,369 b/s 125,896 b/s 130,718 b/s 119,760 b/s
Programmed Out (Cond) Word 34,247 w/s 112,994 w/s 131,578 w/s 135,135 w/s 126,582 w/s
Byte 34,247 b/s 112,994 b/s 126,582 b/s 129,870 b/s 122,222 b/s
Programmed In (Memory) 24,631 w/b/s 71,942 w/b/s 85,108 w/b/s 92,678 w/b/s 82,987 w/b/s

Programmed Out (Memory)
DMC In

DMC Out

24,631 w/b/s
26,738 w/b/s

26,738 w/b/s

72,727 w/b/s
63,081 w/b/s

62,111 w/b/s

82,440 w/b/s
74,627 w/b/s

73,260 w/b/s

90,570 w/b/s
82,101 w/b/s

81,766 w/b/s

80,645 w/b/s
73,529 w/b/s

71,684 w/b/s

w/8 = words per seconds
b/s = bytes per seconds
w/b/s = words or bytes per seconds

Rates given under "LSI-2" apply to the LSI-2/20.

NOTE

For L.SI-2/10

transfer rates in I/0 modes other than DMA, divide rate given

in C1600 column by 2, regardless of memory used with the 2/10.

In DMA mode, maximum transfer rates are the same in both

models.

I 27




COMPUTER AUTOMATION, INC.

G.2 BOOTSTRAP
To Enter:
Appendix G
Set P = : nFF8
SOFTWARE SUMMARY Erter Data o
Enter Data
BepwEss M} Once per word
G.1 INTRODUCTION To Display:
This appendix contains short usage summaries of the standard system support Set P = : nFF8
software offered by Computer Automation, Inc. Set READ mode
Depress M (Once per word)
Table G-1. Assembler Directives Loc TTY HSPT
:nFF8 403B 4033
:nFF9 7939 7931
ABS Define Absolute Assembly :nFFA 1357 1357
Asterisk (*) Comment Line :nFFB 7939 7931
BAC Byte Address Constant :nFFC 98C00 9C00
CALL Subroutine Call :nFFD 0128 0128
DATA Data Definition (: Hex, 0 Octal, 'ASCII', Address) :nFFE 3145 3145
END End of Assembly :nFFF 0800 0800
ENDC End of Conditional Assembly
ENT Subroutine Entry
EQU Equate Symbol G.3 SOFTWARE OPERATION SUMMARY
EXTR External Reference - Scratchpad
IFF Conditional Assembly if False
IFT Conditional Assembly if True G.3.1 Autoload
MACH Set Machine Assembly Mode
NAM External Name Definition RESET .
ORG Define Origin Enter option control value in Console Sense Register:
Period (.) Page Eject without Title
REF External Reference - Pointer Device .
REL Define Relocatable Assembly Mode TTY HSPT MT Cassette Disk
RES Reserve Storage Load Abs :0 21 12 23 14
RTN Subroutine Return Load Rel :8 :9 tA :B :C
SAVE Save Presently Existing Symbol Table
SET Set Symbol Redefinable To relocate (Load Rel), set X = load address
STOP Stop For Load and Go, set SENSE Switch
TEXT 'ASCII Message' Ready Device
TITL Page Eject with Title AUTO
Up Arrow (}) Pause
WAIT Wait for Interrupt
G-1 G-2




COMPUTER AUTOMATION. INC. e

G.3.4 Object Loader (LAMBDA)

Load LAMBDA

Set P = first location of LAMBDA

Set A = Relocation Bias or zero

Set X = Base Page Bias or zero

Enter option control value in Console Sense register:

G.3.2 Binary Loader (BLD)

Load BLD

Set P = first location of BLD

To relocate, set X = load address; enter :8 into Sense register
Ready tape in reader (TTY or HSPT)

Defined and Defined Undefined

i \Ws Undefined Only Only Neither
Load Mode TTY LP TTY|LP TTY { LP
: Library 10 i 12 13 ;4 A5 16
Unconditional :8 :9 tA |:B i€ :D :E

G.3.3 Binary Dump/Verify (BDP/VER) Ready tape in reader (TTY or HSPT)

RUN

Load BDP/VER
Set P = first location of BDP/VER G.3.5
Set A = Initial location

BETA-4 Assembler

Set X = Last location éo:n; IEE'I(‘,?(;S
Enter option control value in Console Sense register: R% = =43

Enter option control number in Console Sense Register:

Device | Include EOF Suppress EOF Listing
Mode TTY HSPT TTY | HSPT Device TTY Line Printer
Punch Complete Error Complete Error
Punch Abs : 0 1 : 2 3 Device Listing Only Listing Only
Rel :8 9 ‘A B TTY 0 o -2 :3
Verity —AbS 4 (] :6 7 HSP 4 5 T6 T
Rel A D :E F To repeat Pass 2, add : 8
To flag out-of-range memory reference instructions, set SENSE switch.
Ready source in reader (TTY or HSPT)
For transfer address, set SENSE switch RUN
RUN
If Halt (I = : 0802), set A = transfer address, RUN G.3.6  BETA-8 Assembler
Load BETA-8
Set P =:0100
RUN
Select Options
For -
Enter SI= LO= BO= SD= P#=
B BATCH Error Error Error Error
L Error Error Library Error Error
X Error Error Only N/A Error Error
[1] Punch EOF No Listing No Binary | No Save 1
1 Keyboard TTY TTY Memory 1
2 TTY D.P. Error Unit 0 2
3 HSPT Cent. HS Unit 1 1
4 Card Rdr. Cent. TTY Unit 2 1
5 Card Rdr. Cent. TTY Unit 3 1




COMPUTER AUTOMATION. INC.

G.3.7 OMEGA Conversational Assembler

Load OMEGA
Set P =: 0100
RUN

Command Summary (@ = space):

>AF.
>An.

>B.
>CInLnOn.
>CI0.

>DF.
>Dn.
>Dném.

>Eh.
>1.

>LF.
>Ln.
>Lném.

>PLTEQ1€F.
>PLén@m.
>Pén@m.
>PTén@m.
>Qn.
>Rn.

>8n.
>Sném.

>T.
>Tn.

>XA.
>XE.
>XA2, or XE2.
>XLA. or XLE.

Device Selection

Ingut: [¢})]

0 = none

1 = Teletype Keyboard
2 = Teletype Paper Tape 2 = Error

Add keyboard lines to buffer after last line.
Add keyboard lines to buffer after line n.

Clear the buffer.

Connect devices.
Punch EOF .

Delete the last buffer line.
Delete buffer line n.
Delete buffer lines n through m.

Set end of buffer to h (hexadecimal) and intialize OMEGA.

Initialize OMEGA.

List the last buffer line.
List buffer line n.
List buffer lines n through m.

Punch the buffer with leader and trailer.
Punch buffer lines n through m with leader.
Punch buffer lines n through m.

Punch buffer lines n through m with trailer.

Set ADD function terminator character to n.
Read source to line n and add to buffer.
Read source to line n-1, add to buffer, and skip line n.

Read source to line n-1, add to buffer and skip lines n
through m.

Reset tape line count to zero.
Reset tape line count to n.

Assemble.

Assemble with ERROR only listing.
Assemble starting with Pass 2.
Suppress EOF for current assembly.

Object: (O) List: (L)
0 = none 0 = none

1 = Teletype Paper Tape 1 = Teletype

3 = High Speed Paper Tape 3 = High Speed Paper Tape 3 = Centronics Printe;

4 = Card Reader

5 = Memory (assemb.le) G-5

2 = Data Products Printer

G.3.8 Source Tape Preparation Program

Load STP

Set P = first location of STP

RUN

Command Summary (@ = space):

> AF.
> An.

> B.

> CTT.

> CRT.

> CRP.

> CTP.

> DF.

> Dn.

> Dn@m.

> Eh.

> Ln@m.

> PLT@leF
> PL@n@m.
> Péné@m.
> PTén@n.
> Qn.

> Rn.

> 8n.

> Sné@m.

> T.
> Tn.

Add keyboard lines to buffer after last line.
Add keyboard lines to buffer after line n.

Clear the buffer.

Connect teletype reader and teletype punch.
Connect high speed reader and teletype punch,
Connect high speed reader and high speed punch.
Connect teletype reader and high speed punch.

Delete the last buffer line.
Delete buffer line n.
Delete buffer lines n through m.

Set end of buffer to h (hexadecimal) .

Initialize STP (clear buffer and set T to zero) .

List the last buffer line.

List buffer line n.

List buffer lines n through m.

Punch the buffer with leader and trailer.

Punch buffer lines n through m with leader.

Punch buffer lines n through m,

Punch buffer lines n through m with trailer.

Set ADD function termination character to n.

Read tape to line n and add to buffer.

Read tape to line n-1, add to buffer, and skip line n.
Read tape to line n-1, add to buffer, and skip lines n
through m.

Reset tape line count to zero.
Reset tape line count to n.

COMPUTER AUTOMATION, INC. —_




G.3.9 Debug (DBG)

Debug is a 'binary relocatable' program and, as such, may be loaded any place in
memory. Transferring to the first location in Debug (enter start location of Debug
into the P register and depress RUN) will initialize Debug to accept any of the Debug
commands summarized below .

Command Summary (@ = space):

>A.
>Av.

>Ba.
>Ba,b.
>Ba@.
>Ba@,c.
> Cadec.
>Fa@®ov.
>la.
>Jda.

> La@.
>Ma.

>0.
>0v.

>Pad.

>Rn.
>Rnv.

> Sa@éev.
> Sa@®evom.

>T.
>Tn.

>X.
>Xv.

Display pseudo A register.
Set pseudo A register to value v.

Continue breakpoint to location a.

Continue breakpoint to location (a or b).
Breakpoint from location a to b.

Breakpoint from location a to location (b or c).
Copy locations a through b at ¢ and following.
Fill locations a through b with value v.
Inspect location a.

Jump to location a.

List contents of locations a through b.

Modify memory starting at location a.

Display pseudo O register.
Set pseudo O register to value v.

Print locations a through b.

Display relocation register Rn.
Set relocation register Rn to value v.

Search locations a through b for value v.
Search for value v using mask word m.

Enable console interrupt (TRAP).
Enable console interrupt and enable interrupts

Display pseudo X register.
Set pseudo X register to value v.

G.3.10 Concordance (CONC)

Load CONC
Set P = :x100 zero

RUN

Select Options:

COMPUTER AUTOMATION, INC. Ig ey

SI=

W 3D WN-

Repeat listing
BATCH
Keyboard
TTY

HSR

CR

Unit 0

Unit 1

Unit 2

Unit 3

LO=

List
TTY
DP,
Cent.

@ B =




G.3.11 OS Command Summary (DOS, MTOS and COS)

10.

11.

12.

13.

14,

15.

COMPUTER AUTOMATION, INC. —

COMMAND RESPONSE

/ASsign unit=device [, unit=device. . ]
/BAtch device

/BEgin address [, parameters. . ]
/CAncel

/COmment

/DA /dd/
[rmasio]

/EXec : program-name [, parameters. . ]

/J0Ob
*date, time

/LOad program-name

/LIst
*date, time

*lu pu .

/NJob
*JOB/NJOB time, current time

/REsume [parameters 2 ]
*time

/STatus

*program-name, base page limits, memory limits, flag, time

P register, A register, X register, CPU Status

/TI hh: mm:
tﬁ_;:: [ mm ss]

/TYpe




COMPUTER AUTOMATION. INC. —

Computer Handbook
91-20400-00A2
Supplement 1
November, 1974

ERRATA SHEET

Page 1-3, Section 1.4.1

Fifth paragraph under "significant characteristics" should read:

Computer cycle time is 1.6 microseconds for LSI-1, 300 nanoseconds for LSI-2/10 and
150 nanoseconds for LSI-2/20.

Page 9-24, Figurc 9-14

Figure 9-14, "State Counter and Decoder", is changed as shown in the revised figure 9-14
(attached) . Previously MST- was pulled up only by the pullup resistor in the processor
during DMA. MST- is now driven high by the active pullup of the DM8097 beforc
disengaging the bus. This is done to prevent false memory cycles because of the slow
rise time of MST-.

Page 9-25, Figure 9-15

The signal MST- was shown incorrectly in Figure 9-15 "DMA Transfer Timing". It is
changed as shown in revised figure 9-15 (attached).

Page F-18
At the top of table F-5, add the following:

See note, page F-19

Page F-19
Add the following note:
NOTE
Times given in tables ¥ 5, F-6 and under "LSI-2" in (able F-7
apply to the LSE 2/20. LSY 2/10 times are twice those given

for the 2/20 with & C1600 memory , regardless of the memory
used with the 2/10,




COMPUTER AUTOMATION, INC. —_—

Page F-27

Add the following note at the bottom of table F-8:

NOTE

Rates given under "LSI-2" apply to the LSI-2/20. For LSI-2/10
transfer rates in I/0 modes other than DMA, divide rate given
in C1600 column by 2, regardless of memory used with the 2/10.
In DMA mode, maximum transfer rates are the same in both

models.




‘Computer Handbook
90-20400-00A2
Supplement 2

May 1975

ADDENDUM

JUMBO CHASSIS AND JUMBO POWER SUPPLY

This addendum covers the optional Jumbo Chassis and Jumbo Power Supply for the LSI
Computer family. The following paragraphs are added to Section 2 of the Computer
Handbook :

2.2.6.2 Jumbo Chassis

The dimensions of the Jumbo Chassis are identical to those of the standard LSI chassis
(see figure 2-1 in the Computer Handbook). The Jumbo Chassis operates with a separ-
ately mounted power supply rather than with an integrated supply as does the standard
LSI chassis. The extra space allows the chassis to accommodate a larger motherboard
and thereby handle eight, instead of four, full-card or joined half-card I/0 or
memory modules. When the Jumbo Chassis is used as an expansion chassis, nine full-
card or joined half-card I/0 or memory modules can be accommodated. As an expansion
chassis, the Jumbo Chassis can be used exactly as a standard chassis, as described in
paragraph 2.2.6 of the Computer Handbook.

The Jumbo motherboard (figure 1) has nine pairs of connectors numbered similarly to
the standard motherboard (figure 2-3 in the Computer Handbook). The connector pairs

Expanaion Console Expansion . -~
32 J1 J3
3 TN~
- x99 Y mo_ [Py T ) ) B
a5 {
{ 8200 ) [ S 2100 1 st
. T T T
N | | l &
[_. N C200 : . ] [E ! €100 ] a8
L 1 | "
- N ~
L = = T I ] [ = 0100 j -
A l l | ,
S — il i S
T T T
| | =
{ E200! ] [ 5 rioo T :]
T T T —7 - 2 L
IN ] l [ 2l
[ #200 ] . ] [ ] §aos' | RIENS
K 1 E— |
J200 Jleo
| A— 1
— J as
% N = e [

i I —

5 Interrupt oy, Mamory OMA Priority
Priority Uhain Banki Chain

Control Chain

Figure 1. Jumbo Chassis Motherboard
(viewed from rear of Jumbo Chassis)

s2-1




are identified as A, B, C, D, E, F, H, J and K with each connector identified as the
100 or 200 side of the pair. A full-board processor plugs into the top connectors
(A100~-A200) as in the standard motherboard.

Integration information presented in paragraphs 2.2.1 through 2.2.6.1 of the Computer
Handbook is valid for the Jumbo Chassis. The routing (wiring) scheme employed for
the priority chains (DMA, memory banking, and interrupt) in the Jumbo Chassis is
identical to that used in the standard LSI chassis, except that the motherboard in
the Jumbo Chassis is equipped with more slots. Figure 1 illustrates the routing of
priority chains and gives the associated signal mnemonics and corresponding pin
numbers.

Connectors J1, J2 and J3 are the same as shown for the standard LSI motherboard
(figure 2-3 in the Computer Handbook). Power supply connector F100 is not present on
the Jumbo motherboard. Power and power supply logic signals PFD- and TTLF- are
received from the power supply through a cable connected to 12 single-pin connectors
and one 12-pin connector (J10) on the side of the motherboard (figure 1). Pin assign-
ments of the power connectors are as follows:

J4 Gnd J10-A -12v J10-1 J11 Gnd
Js Gnd J10-B +5Vv J10-2 J1l2 +12v
J6 +5V Jlo-c PFD- J10-3 Gnd J13 Gnd
J7 +5Vv J10-D TTLF - J10-4 J14 Gnd
Jg Gnd J10-E +5VH J10-5 J15 +5V
Jo -12v J1l0-F +12v J10-6 Jlé6 +5v

2.2.9 Jumbo Power Supply

The Jumbo Power Supply mounts in a standard 19-inch rack. It is approximately 5-1/4
inches high and 18 inches deep. Its dc outputs (maximum) are +5V, 36A; +5VH, 0.2A;
+12v, 5.6A; and -12v, 10.7A.

The power supply interconnects with the Jumbo Chassis by means of connectors on the
rear panel of the power supply that receive power cables from the Jumbo Chassis (see

figure 2).
19.00 ———— >

r————————4750———————>1

Jumbo —
Chassis R
6.25
.00
Power O Fuse i 2
O AC Switc
Supply 3102 3101 ‘{///

QHE Rear View

Figure 2. Jumbo Chassis and Power Supply

S2-2




One cable (to 6-contact connector J102) carries the ac voltage used to power the fans
in the Jumbo Chassis. The other cable (to 37-contact connector J10l1) carries the dc
voltages required by the Jumbo Chassis. Both cables are 5-1/2 feet long.

A fan mounted on the left side of the power supply (as viewed from the front) provides
cooling airflow through the power supply enclosure. The power supply is equipped
with a 6-foot ac line cord.

2.2.9.1 Power Line Conversion

The ac power application information in paragraph 2.2.7 of the Computer Handbook is
valid for the Jumbo Power Supply.

Strapping at the terminal board of the power transformer of the Jumbo Power Supply
can be reconfigured to permit the power supply to be operated from a power line
voltage range other than the line voltage range ordered at purchase. Strapping
procedures are given below which effect power line conversion. One of four voltage
ranges may be selected by employing the appropriate strapping procedure. For an
operating range of 90 to 121 volts, perform steps 1, 2, 3, 4, 5a, 6, and 7. For an
operating range of 103.5 to 139.7 volts, perform steps 1, 2, 3, 4, 5b, 6, and 7. For
an operating range of 180 to 242 volts, perform steps 1, 2, 3, 4, 5¢, 6, and 7. For
an operating range of 207 to 279.4 volts, perform steps 1, 2, 3, 4, 54, 6, and 7.

Step 1 Turn power off and remove the line cord from the ac power source.

Step 2 Remove the cover of the power supply by removing the 18 screws which
secure it. The cover is configured as an inverted "U" to form the
top and two sides of the power supply; the 18 screws are located at
the lower sides, at the top rear edge, and at the side and top edges
of the front panel.

Step 3 Locate the power transformer and its terminal board. The transformer
is located directly behind the front panel of the power supply at
approximately the center of the panel. The terminal board is attached
to the side of the transformer (see figure 3).

TBi01 FKONT PANEL

O

£\

]

POWER I

TRANSPORMER l

B

|

L]
o

N 5

P (COVER REMOVED) r

Figure 3. Power Transformer Terminal Board (TB101l)

Step 4 Remove the two jumper wires (which are equipped with slip-on con-
nectors) from the terminals of the terminal board.

Step 5 a Establishing a 90- to 12l1-volt Operating Range

Step 5 a 1 Attach one of the jumper wires to terminals 2 and 5; attach the
remaining jumper wire to terminals 3 and 6.

S2-3




Step 5 a 2 Attach the white wire (which is also equipped with a slip-on con-
nector) to terminal 2, if it is not already attached to terminal 2.

Step 5 a 3 Replace the fuse in the fuse holder at the rear of the power supply
with a fuse rated at 15 amperes, 250 volts (Buss MDA 15), if a fuse
of this rating is not already in the fuse holder. The replacement
fuse is not supplied.

Step 5 a 4 Proceed to step 6 below.

Step 5 b Establishing a 103.5~ to 139.7-volt Operating Range

Step 5 b 1 Attach one of the jumper wires to terminals 1 and 4; attach the
remaining jumper wire to terminals 3 and 6.

Step 5 b 2 Attach the white wire (which is also equipped with a slip-on con-
nector) to terminal 1, if it is not already attached to terminal 1.

Step 5 b 3 Replace the fuse in the fuse holder at the rear of the power supply
with a fuse rated at 15 amperes, 250 volts (Buss MDA 15), if a fuse
of this rating is not already in the fuse holder. The replacement
fuse is not supplied.

Step 5 b 4 Proceed to step 6 below.

Step 5 ¢ Establishing a 180- to 242-volt Operating Range

Step 5 ¢ 1 Attach one of the jumper wires to terminals 3 and 5. (The remaining
jumper wire is not needed; however, it should be saved as a spare.
If it is necessary at some later time to convert to the 90- to 121-
volt or 103.5- to 139.7-volt operating range, the spare jumper wire
will be needed. It is suggested that the ends of the spare jumper
wire be attached to the two upright lugs of terminal 1 for convenient
storage.)

Step 5 ¢ 2 Attach the white wire (which is also equipped with a slip-on con-
nector) to terminal 2, if it is not already attached to terminal 2.

Step 5 ¢ 3 Replace the fuse in the fuse holder at the rear of the power supply
with a fuse rated at 8 amperes, 250 volts (Buss MDA 8), if a fuse of
this rating is not already in the fuse holder. The replacement fuse
is not supplied.

Step 5 ¢ 4 Proceed to step 6 below.

Step 5 d Establishing a 207- to 279.4-volt Operating Range

Step 5 d 1 Attach one of the jumper wires to terminals 3 and 4. (The remaining
jumper wire is not needed; however, it should be saved as a spare.
If it is necessary at some later time to convert to the 90- to 121-
volt or 103.5- to 139.7-volt operating range, the spare jumper wire
will be needed. It is suggested that the ends of the spare jumper
wire be attached to the two upright lugs of terminal 1 for convenient
storage.)

s2-4




Step 5 d 2

Step 54 3

Step 54 4
Step 6

Step 7

Attach the white wire (which is also equipped with a slip-on con-
nector) to terminal 1, if it is not already attached to terminal 1.

Replace the fuse in the fuse holder at the rear of the power supply
with a fuse rated at 8 amperes, 250 volts (Buss MDA 8), if a fuse of
this rating is not already in the fuse holder. The replacement fuse
is not supplied.

Proceed to step 6 below.

Install the cover of the power supply.

Connect the line cord to the appropriate source of power, then turn
power on.

S2-5




Computer Handbook
90-20400-00A2
Supplement 3

May, 1975

ADDENDUM

MegaByter LSI-2/60

The MegaByter LSI-2/60 is a high-speed processor with an enhanced, wide-ranging
instruction set that includes features optimized for real-time, communications, and business
applications.

The software, input/output and mechanical interfaces of the LSI-2/60 are upward compatible
with LSI-2/20 and LSI-2/10 computers. The LSI-2/60's instructions perform complex
functions that normally require subroutines in other computers. The result is shorter
programs which take less memory and operate faster.

The LSI-2/60 is described here 1.1 reference to specific paragraphs of the Computer Hand-
book, 20400, that have changed or expanded as a result of the extended instruction set
associated with the LSI-2/60. The information presented below, which describes additional
instructions and modifications to instructions already existing in the Computer Handbook,
is relevant only to the LSI-2/60. Note that the instruction set as currently presented

in the Computer Handbook remains valid for the LSI-2/20 and LSI-2/10 computers.

4.2.3 Arithmetic Memory Reference Instructions

The instructions ADX, ADXB, SBX and SBXB are two-word instructions that include a
memory reference address operand. The operand may be multilevel indirect for word
mode only. For byte mode, the operand is always a byte address. Note the instruction
codes for word mode are the same as for byte mode. To operate on bytes, the byte mode
flag must be set. Operation of these instructions is similar to the standard memory
reference instructions. The format of these instructions is shown below:

[LABEL] OPCODE [*]OPERAND [COMMENTS]

No Operator = Direct Addréssing
* = Indirect Addressing (multi-level)

ADX ADD TO X. Adds contents of effective memory location to contents of
X register. OV is set if arithmetic overflow occurs.

ADXB ADD TO X BYTE. Adds contents of effective byte location to contents
of X register. OV is set if arithmetic overflow occurs.

SBX SUBTRACT FROM X. Subtracts contents of effective memory location
from contents of X register. OV is set if arithmetic overflow occurs.

SBXB SUBTRACT FROM X BYTE. Subtracts contents of effective byte location
from contents of X register. OV is set if arithmetic overflow occurs.

S3-1




4.2.5 Data Transfer Memory Reference Instructions

The instructions EMX and EMXB are two-word instructions that include a memory reference
address operand. The operand may be multilevel indirect for word mode only. For byte
mode, the operand is always a byte address. Note the instruction codes for word mode

are the same as for byte mode. To operate on bytes, the byte mode flag must be set.

These instructions operate similar to the standard memory reference instructions. The
format of these instructions is shown below:

[LABEL] OPCODE [*]OPERAND [COMMEN TS]

No Operator = Direct Addressing
* = Indirect Addressing (multi-level)

EMX EXCHANGE MEMORY AND X. Simultaneously stores contents of X register
in effective memory location and loads contents of effective memory location
into X register.

EMXB EXCHANGE MEMORY AND X BYTE. Simultaneously stores contents of LS
byte of X register in effective byte location and loads contents of effective
byte location intd LS byte of X register. MS byte of X register is reset to
Zero.

A bit in memory is addressed by two operands. The first operand is the word address

of the word containing the bit to be operated on. The seeond operand is the bit position

in the word. The word address (defined by the second word of the instruction) may

be optionally indirect. The bit position within the word is contained in the operand 2

field of the OP code and has the limits zero through fifteen corresponding to the bit positions
0 through 15. Addressing is word mode only (not affected by byte mode flag) and multilevel
indirection is allowed. The format of these instructions is shown below:

[LABEL] OPCODE [*]OPERANDI ,OPERAND2 [COMMENTS]

No Operator = Direct Addressing
* = Indirect Addressing (multi-level)

MSB MEMORY SET BIT. Sets addressed bit in memory to 1 and copies old content
of addressed bit into OV flag.

MRB MEMORY RESET BIT. Sets addressed bit in memory to 0 and copies old content
of addressed bit into OV flag.

MCB MEMORY COMPLEMENT BIT. Complements addressed bit in memory and
copies old content of addressed bit into OV flag.

MTB MEMORY TEST BIT. Copies content of addressed bit in memory into OV flag.

S3-2




4.2.6 Program Transfer Memory Reference Instructions i

The format of the program transfer memory reference instructions described below is
as follows:

[LABEL] OPCODE [* @I*@}OPERAND [COMMENTS]
No Operator = Direct Addressing
* = Indirect Addressing (multi-level)
@ = Indexed Addressing

*@ = Indirect Postindexed Addressing (multi-level)

JST JUMP AND STORE. The 45T instruction is a one-word instruction which
has been redefined such that it will allow one instruction to be executed
after the jump is taken before any interrupt is serviced. This allows reentrant
coding of subroutines by inhibiting interrupts long enough to save the contents
of the P register. The effect of this feature adds the execition time of the
next instruction to interrupt latency which, in previous immpiementations,
was only the execution time of the JST instruction itself. This instruction
operates in word mode only and is independent of the byte mode flag. Indirect
(*), indexed (@), and indirect postindexed (*@) addressing are allowed.

DMS DECREMENT MEMORY AND SKIP. The DMS instruction is a two-word instruc-
tion. Indirect (*), indexed (@), and indirect postindexed (*@) addressing are,
allowed. If indexing is defined (index bit, IR06, is on), the X register will be
added to the final memory address to perform post indexing. When executed,
the contents of the memory location are decremented by one. If the instruction
was used as an interrupt instruction and the location was decremented to
minus one, then an echo is generated to the interrupting device. If the in-
struction was used as an inline instruction and the location was decremented
to minus one, a one-place skip occurs. This instruction operates in word
mode only and is independent of the byte mode flag.

4.4 STACK INSTRUCTIONS

The stack instructions permit the user to establish an unlimited number of simultaneous

stacks. A stack can start at dny address and fills memory from that position toward lower
memory (decreasing addresses). The stack instructions themselves provide stack boundary
limit testing for overflow.

Stack instructions occupy two consecutive words in memory and operate in word mode
only, independent of processor status. The first word contains the instruction, while
the second word contains the optionally multilevel indirect address of the stack pointer.

Four stack instructions (described below) facilitate interrupt processing and subroutine
calls:

JSKR Jump and Stack Registers
JSKS Jump and Stack Status
RTNR Return Registers

RTNS Return Status

These additional instructions do not permit indirect addressing of the stack pointer.

S3-3




The format of all stack instructions, except JSKR, JSKS, RTNR, and RTNS, is as follows:

[LABEL] OPCODE [*]OPERAND[,AM] i [COMMENTS]

AM = No Operator = Direct Access

= PUSH (stack pointer decremented prior to access)
POP (stack pointer incremented after access)
Indexed Addressing

Indirect Addressing (multi-level)

* + |
nonu

4.4.1.5 Multilevel Indirect Addressing

Multilevel indirect addressing of the stack pointer may be used with all stack instructions,
except JSKR, JSKS, RTNR, and RTNS. If, for example, a subroutine has been called

by a JSKS or JSKR, then parameters may be accessed indirectly through the stack using
the value of P that was placed on the stack. If the pop mode of addressing is used (Auto
Increment), then after the parameter has been accesséd, the P value on the stack is incre-

mented so that a return can be made without having to modify the P value directly. See
the following example.

n
o ()]
Main A2
Program Subroutine Stack @
-
<
B
SUB DATA STKPT FULL &
LDAS *STKPT, + FULL &
l FULL =
X JSKS SUB P a
Y+2 DATA A LDAS *STKPT, + =
Y+3 DATA B s
Y+4 &
STKPT | STACK |£
RTNS STKPT

P in the stack is equal to Y+2 before the subroutine executes and is equal to Y+4 at the
time that the RTNS returns to the next mainline instruction.

4.4.5 Program Transfer Stack Instructions

The format of the JSKR, JSKS, RTNR, and RTNS instructions is as follows:

[LABEL] OPCODE OPERAND[ p CNT] [COMMENTS]

CNT = Temporary Cell Count

S3-4




JSKR

JSKS

RTNR

RTNS

When either the JSKR or JSKS instruction is used, one or more temporary cells may be
stored on the stack ahead of the regular stacked information (see the illustration below).
The optional count field of the instruction is available for the user to specify the required
number of temporary cells. To specify the number of temporary cells, enter the nunber
in the CNT field of the instruction format shown above. For JSKR as many as four

JUMP AND STACK REGISTERS. The JSKR instruction will stack information
on any stack in memory in the order X, A, STATUS, and P, as shown in
figure 1. The overflow and byte mode flags will be unconditionally reset.
The stack address pointer is updated after the stack operation.

The first word of the instruction contains an OP code and the second word
contains an address pointer. This address pointer points to a location in
memory containing the location of the stack pointer address. After all elements
are stacked, a jump to the stack pointer address plus one is taken. See
illustration below.

Main
Program Subroutine
SUB DATA STKPT
Y
JSKR Su3
¥
Y RTNR STKPT

If this instruction is used as an interrupt instruction, after all elements have
been stacked and before the jump, the interrupt flag is unconditionally turned
off.

JUMP AND STACK STATUS. The JSKS instruction is identical to the JSKR
instruction, except that only STATUS and P are stacked.

RETURN REGISTERS. The RTNR instruction will fetch information from a
stack in memory in the order P, STATUS, A, and X, as shown in figure 1.
The stack address pointer will be updated after the stack fetch operation.

Interrupts will be enabled and the OV and byte mode flags will be loaded
with the value of the corresponding bits contained in the status word. Even
though the status word contains SREG and SENSE switch information, it

is not presented to the console for storage; therefore, the SREG and SENSE
switches will not be affected.

The first word of the instruction contains an OP code and the second word
contains an address pointer called the stack pointer address. The stack
pointer address contains the address of the stack address pointer.

RETURN STATUS. The RTNS instruction is identical to the RTNR instruction,
except that only STATUS and P are fetched.

83-5




T Full T A

SAP Points Here —p Full

Empty

Empty

Empty Increasing

Empty Memory Addrecsses

Empty

Empty

L 3 A

T 1
Empty

Stack Address Pointer

Stack Before A JSKR or
After a RTNR

Full
Full

A Increasing

Status Memory Addresses

SAP Points Here —» P

Empty

Empty

Empty

Stack Address Pointer

Stack after a JSKR or before a RTNR

Figure 1. Operation of JSKR and RTNR Instructions

S3-6




temporary cells may be used. For JSKS as many as six temporary cells may be used.
The corresponding RTNS or RTNR instructions must have the same count field. These
temporary cells are stored ahead of the register storage such that the following order
applies in storage from high to low memory: Temporary Cells, X, A, STATUS, P for
JSKR and Temporary Cells, STATUS, P for JSKS. Temporary cells that are created
within the stack by the temporary cell count are not disturbed by the JSKR, RTNR, JSKS,
and RTNS instructions.

FULL FULL
FULL FULL
TEMP CELL 1 TEMP CELL 1
TEMP CELL 2 TEMP CELL 2

X OR TEMP CELL 3

A STATUS
STATUS P

P EMPTY
EMPTY P2 X

¥ i EMPTY
EMPTY EMPTY
EMPTY STACK POINTER
STACK POINTER

FOR JSKR . FOR JSKS

One use of temporary cells is described in the following situation. A JSKR instruction

is executed to stack the contents of the A and X registers onto a stack. However, reloading
of the A and X registers with their former contents upon return to the called routine is

not desired. Therefore, an RTNS instruction with a temporary cell count of 2 specified

is executed to accomplish the return to the called routine. The former contents of the

A and X registers which are stored in the stack are not restored to the A and X registers,
the current (new) contents of the A and X registers are not disturbed, and the value of the
stack address pointer now points to the stack address immediately following the location at
which the original value of X was pushed onto the stack by the JSKR instruction.

In another situation, if a JSKS instruction with two temporary cells specified is executed
to call a subroutine, the subroutine output values are placed in the temporary cells.
An RTNR instruction may be executed to accomplish the return to the calling routine,

where the values in the two temporary locations in the stack are restored to the A and
X registers.

NOTE

RTNR and RTNS may be located directly ahead of a subroutine
entry point so that they can share the same stack pointer address
cell used by a JSKR or JSKS call to the subroutine.

4.4.7 Stack Overflow Protection

The stack overflow protection feature has been added to all stack instructions that push
information onto a stack. To use this feature, the stack address pointer must reside immed-
iately below the last available stack cell as shown.

S3-7




SAP+N First Stack Cell
A
SAP+N-1
o o
SAP+2
SAP+1 Last Stack Cell Increasing Memory
SAP Stack Address Pointer Addresses

Stack Overflow Feature

A stack overflow is the result of attempting to push data onto a stack where the Stack
Address Pointer is decremented to the address of the stack pointer plus one. One empty
cell is always left to allow for saving P should a JSKR or JSKS subsequently overflow.
There is no protection from popping from an empty stack.

4.4.7.1 All Push Mode (Auto Decrement) Stack Instructions Except JSKR and JSKS

When a stack instruction would cause the stack address pointer to reach the value of

the address of the stack address pointer plus one, the stack and stack address pointer
are not altered, the stacking operation is aborted, and a stack overflow trap is generated.
The overflow trap causes an interrupt to location : 8 in memory. Note that this interrupt
is outside of EIN/DIN control. If a JST is used as the interrupt instruction, the address
of the aborted stack instruction is stored in the memory cell defined by the JST.

Note that the aborted instruction is not executed, but may be executed properly once
the stack overflow condition has been corrected (e.g., by a recovery routine which removes
elements from the stack to some other temporary location) .

4.4.7.2 Jump and Stack Status or Jump and Stack Registers

When a JSKR or JSKS instruction would cause an overflow (all required variables will

not fit on the stack and still leave cne or more vacant cells), the current location in memory
that is normally stacked as the program counter (P) is placed into the stack at SAP+1.

The stack address pointer is not affected by a JSKR or JSKS if an overflow occurs. After

P has been saved, the stack overflow trap causes an interrupt to location : 8 as for other
stack instructions that overflow. Note that a JST at the interrupt location will store the
value of P associated with the actual location of the JSKR or JSKS, while the value of

P saved in the stack is associated with a mainline program. In this way, if a JSKR or

JSKS used as an interrupt instruction causes an overflow, both the mainline return address
and the location of the offending instruction are available for a recovery routine. The
aborted instruction is not executed, but may be executed properly once the stack overflow
condition has been cleared.

The following three examples show how the CPU responds to stack overflow. The first
example shows an inline stack instruction (excluding JSKR and JSKS) overflow situation
and the sccond shows an inlinc JSKR (note that JSKS operates in the same way)

53-8




Wm———

instruction overflow. In each case, the instruction has attempted to push some information
onto a stack, the trap has occurred to location : 8 and the JST has been executed to

the Stack Error Recovery routine, SER. Notice that the stack pointer has not been
affected, and the address stored in the return location of the SER routine points back

to the offending stack instruction. Notice also that for the JSKR instruction, the address
of the JSKR instruction is also pushed onto the stack at location SAP+1. The third example
shows a JSKR (note that JSKS operates in the same way) interrupt instruction overflow.

In this case, an interrupt has been generated to the JSKR, the JSKR has then attempted

to push information onto the stack, the trap has occurred to location : 8, and the JST

has been executed to the Stack Error Recovery routine, SER. Notice that in this example
the mainline return location for the original interrupt has been pushed onto the stack

at location SAP+1 and that the address of the JSKR instruction is stored in the return
location of the SER routine. Note also that the stack pointer has not been affected.

Examples of Stack Overflow

Example I. Inline Stack Instruction (excluding
JSKR and JSKS) Overflow

Main
Program Stack After Trap Occurs
» FULL SAP+2
EMPTY SAP+1
P STAS STKPT, - SAP+2 SAP

P+1
(trap occurs)

Stack Location Definition
STKPT DATA SAP

Trap Interrupt Location

:8 JST SER

~tack Error Recovery Routine

SER [Contents = P]

RTN SER

S3-9




Example II. Inline JSKR or JSKS Instruction Overflow

Main
Program
P JSKR SUB
P+1
l (trap occurs)

Trap Interrupt Location

:8 JST SER

Stack After Trap Occurs

FULL SAP+4
FULL SAP+3
EMPTY SAP+2
Contents = P SAP+1
SAP+3 SAP

Stack Error Recovery Routine

SER [Contents = P]

RTN SER

Example III. Interrupt JSKR or JSKS Instruction Overflow

Main
Program Stack After Trap Occurs

SAP+4
Interrupt Vector Location FULL SAP+3
Y JSKR SUB EMPTY SAP+2
M Contents = M+1| SAP+1
Interrupt SAP+3 SAP

M+1 ‘

(trap occurs)

Trap Interrupt Location

: 8 JST SER

Stack Error Recovery Routine

SER [Contents = Y]

RTN SER

S$3-10




cmmmm——

4.8 REGISTER CHANGE INSTRUCTIONS

The following new instructions added to section 4.8 are one-word instructions.

4.8.2 A Register Change Instructions

The format of these instructions is shown below:

[LABEL]

OPCODE BIT NO. [COMMENTS]

A bit in A is addressed by a parameter in the operand field (BIT NO.) of the instruction
and has the limits zero through fifteen corresponding to bit positions 0 through 15.

ASB

ARB

ACB

ATB

A SET BIT. Sets addressed bit in A register to 1 and copies old content
of addressed bit into OV.

A RESET BIT. Sets addressed bit in A register to 0 and copies old content
of addressed bit into OV.

A COMPLEMENT BIT. Complements addressed bit in A register and copies
old content of addressed bit into OV .

A TEST BIT. Copies content of addressed bit in A register into OV.

4.8.3 X Register Change Instructions

The format of these instructions is shown below:

[LABEL]

OPCODE BIT NO. [COMMENTS]

A bit in X is addressed by a parameter in the operand field (BIT NO.) of the instruction
and has the limits zero through fifteen corresponding to bit positions 0 through 15.

XSB

XRB

XCB

XTB

X SET BIT. Sets addressed bit in X register to 1 and copies old content
of addressed bit into OV.

X RESET BIT. Sets addressed bit in X register to 0 and copies old content
of addressed bit into OV.

X COMPLEMENT BIT. Complements addressed bit in X register and conics
old content of addressed bit into OV .

X TEST BIT. Copies content of addressed bit in X register into OV.
S$3-11




Computerautomation (O

4.8.5 Multi-Register Change Instructions

The format of these instructions is shown below:

[LABEL ] OPCODE [COMMENTS]

AXA ADD X TO A. Adds contents of A and X registers and stores result in A regis-
ter. OV flag is set if arithmetic overflow occurs.

AAX ADD A TO X. Adds contents of A and X registers and stores result in X regis-
ter. OV flag is set if arithmetic overflow occurs.

SXA SUBTRACT X FROM A. Subtracts contents of X register from contents of
A register and stores result in A register. OV flag is set if arithmetic overflow
occurs.

SAX SUBTRACT A FROM X. Subtracts contents of A register from contents of
X register and stores result in X register. OV flag is set if arithmetic overflow
oceurs.

XXA EXCLUSIVE OR X TO A. Performs exclusive OR on contents of A and X regis-
ters and stores result in A register.

XAX EXCLUSIVE OR A TO X. Performs exclusive OR on contents of A and X regis-

ters and stores result in X register.

4.8.6 Extended Multi-Register Change Instructions

The format of the following instruction is shown below:

[LABEL]

OPCODE [COMMENTS]

XNX

GO

EXECUTE INDEXED. Execute indexed is a one-word instruction that fetches
the next location in memory, adds the contents of X to it, and then executes
this new instruction. When the new instruction is completed, the instruction
that was fetched is skinped. If the new instruction modifies the program
location counter or is referencing memory, the reference is in relation to

the address following the XNX instruction. See the following example:

LDX DAFC Load X with a device address and function code
XNX Execute indexed the instruction at GO

INA : 00 Input Data

S3-12




Computerautomation (O ——

4.9.2 Processor Control Instructions

The format of the following instruction is shown below:

[LABEL]

OPCODE [COMMENTS]

WFI

WAIT FOR INTERRUPTS. The WFI instruction is a one-word instruction

that causes the processor to stop and wait for an interrupt. While the processor
is waiting for an interrupt, it is off all buses, allowing for minimum DMA

and interrupt latency. If, while the processor is waiting for an interrupt,
enough time elapses before an interrupt occurs, the run indicator will go

out; however, the processor is still waiting for an interrupt and when one
occurs, execution will resume. The processor will respond to any interrupt
that is enabled, including the console. Note: do not execute a WFI instruction
when interrupts are disabled or when the wait instruction is within the range
of an active SIN instruction. In either of these cases, the processor will

lock up and respond only to the console or reset. After an interrupt is
serviced, resumption of inline execution begins with the instruction following
the WFI instruction.

4.10.6 Cyclic Redundancy Check Instruction

The format of the following instruction is shown below:

[LABEL]

No Operator = Direct Addressing
* = Indirect Addressing (multi-level)

OPCODE [*]OPERAND 1,0PERAND2 [COMMENTS]

CRC

CYCLIC REDUNDANCY CHECK. The CRC instruction is a two-word instruction
that computes an accumulated cyclic redundancy check character that resides
in memory. The first word contains an OP code and the number of bits in

the character in A (operand 2). The second word contains an optionally multi-
level indirect pointer (operand 1) which points to a two-word buffer. The
first word of the buffer contains the 16-bit polynomial or mask for a specific
CRC type. The second word of the buffer contains the accumulated cyclic
redundancy check character.

‘The polynomial is generated such that each bit position in the polynomial

word corresponds to a power of X in the checking polynomial. The highest
power of X in the checking polynomial is always assumed to be a "1" bit;
therefore, it can be considered to the right of the bit-zero position of the
polynomial word. The next to the highest power of X is always in bit position
zero. The remainder of the polynomial is coded from right to left, starting
with the highest power of X and proceeding to the lowest. Some examples
follow:

S3-13




For a CRCy¢ and the checking polynomial of

x16 + x15 + x2 4+ 1

the polynomial word is

1010,0000,0000,0001 or : A0O1 ]

For a CRC13 and the checking polynomial of

X124+ x11 4+ x3 + X2+ X +1

the polynomial word is

0000,1111,0000,0001 or : 0F01

For an LRCg and the checking polynomial of

X8 +1

the polynomial word is

0000, 0000,1000,0000 or : 0080

The second word contains the accumulated CRC/LRC character. The

A register contains the character operated on by the instruction. The
number of bits in the character in A may range from 1 to 16. The character
must be right justified. Bit positions to the left of the defined character
length are ignored. The A, X, and OV registers are unaffected by this

instruction.

Since the CRC instruction points to its own buffer, different

occurrences of the CRC instruction can use different buffers, allowing
concurrent computation of CRC for any number of character strings or line

disciplines.

4.10.7 Text Manipulation Instructions

The instructions ADDT, SUBT,'MOVT, and CMST operate on strings of characters or
bytes as opposed to single characters or bytes. The format of the text manipulation
instructions is shown below:

[LABEL]

OPCODE * OPERANDI,[*]OPERAND 2 [COMMENTS] 'I

No Operator = Direct Addressing '
* = Indirect Addressing (one-level) I

S3-14




The ADDT, SUBT, MOVT, and CMST instructions are three-word instructions that
require two memory reference address parameters. The first parameter follows the OP
code and is the address of the source string. The second parameter follows the first
parameter and is the address of the destination string. Both parameters may be indirect,
but indirection is allowed for one level only. The effective address of each operand is
always a byte address. The formats of the four modes of addressing are as follows:

1. Direct/Direct Addressing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP Code 0 0

Byte Address of Source String

Byte Address of Destination String

2. Direct/Indirect Addressing
15 2 1 o0

OP Code 0 1

Byte Address of Source String

Address of Byte Address of Destination String

3. Indireet/Direct Addressing

15 2 1 0

OP Code 1 0

Address of Byte Address of Source String

Byte Address of Destination String

§3-15




4. Indirect/Indirect Addressing
15 2 1 0

OP Code 1 1

Address of Byte Address of Source String

Address of Byte Address of Destination String

The following is a description of the two types of strings processed, numeric strings
and byte strings.

Numeric String Formats

The ADDT and SUBT instructions operate on numeric strings only. A numeric string
is a string of 8-bit bytes in which each byte consists of a numeric code zone and a 4-bit
digit. The digit representation .; typically the ASCII digit code; however, any zone
code may be used(e.g., EBCDIC).

During the operation of an ADDT or SUBT instruction, the numeric code zone of the source
string is ignored and the numeric code zone of the destination string is used only to rezone
the result. No checking is performed to ascertain the validity of numeric digits; therefore,
special characters and nonnumeric digits must be removed from the string.

The address parameters always point to the sign character which is always the first charac-
ter of each string. For a positive string, the sign byte is set to zero; for a negative string,
the sign byte is set to : FF.

A numeric string is organized such that the sign character and the most significant digits

(MSD's) of the ASCII number are in low memory addresses and the least significant digits
(LSD's) are in high memory addresses (see illustration below).

Increasing Address

MSD - LSD
ALPHA | SCRT SIGN DN DN-1 DN-2 D4 D3 D2 D1 | DO
Y-1 Y Y+1 Y+N

Low Order Memory High Order Memory

Where Y is the effective byte address of string ALPHA, the signis :00
for plus, :FF for minus and SCRT is a scratch byte attached to the destination
string.

The numeric destination string is always preceded by a scratch (SCRT) byte. The scratch
byte is used by the ADDT and SUBT instructions as a scratch cell and must always
precede the sign byte (see illustration above). The scratch cell must always be zero

when the instruction is begun. Upon completion of the instruction, it is left equal to

Zero.

S3-16




The ASCII string length is entered in the low-order five bits of the X register. The length
as entered in the X register is the number of characters in the string including the sign
character. The A register must be entered as zero. This instruction is interruptable
during execution; therefore, if an interrupt occurs, A, X, the scratch byte, and OV

must be preserved and/or reestablished before the instruction is resumed.

Upon completion of the instruction, the X register will be unchanged and the A register
will contain a result indicator. If the A register is greater than zero, the result is positive
and non-zero. If the A register is equal to zero, the result is zero. If the A register

is less than zero, the result is negative. The OV flag will be cleared if no arithmetic
overflow occurs. If an arithmetic overflow occurs, the OV flag will be set. The scratch
cell of the destination string will remain zero at the completion of the operation. If the

X register is input as a zero or one, a NOP will be performed.

If an interrupt occurs during the execution of the instruction, the A and X registers
contain information needed to resume the instruction when the interrupt processing is
completed. Depending on where in the algorithm the instruction was interrupted, the

A and X registers will contain the following information: during the add or subtract
cycle, the A register contains a correction factor in the upper four most significant bits

(: A for subtract and : 6 for add) and a result indicator in bit 0 (1 for non-zero, 0 for zero),
and the X register contains the number of digits left to process; if, during the subtract
correction cycle, the result is to be negative, the A register will contain a correction
factor as described above (: A) and the number of digits left to process in the lower

five bits, and the X register will contain zero. OV, in any case, is the carry-in bit from
the previous operation. Note that the interrupt processing should not disturb the scratch
byte or the strings being operated upon. '

Byte String Formats

A byte string is a string of 8-bit fields or bytes of data. Bytes may contain any 8-bit

data field (e.g., two BCD characters, ASCII characters, data constants, etc.). The string
length is contained in the lower eight bits of the X register. The A register must be set

to zero before either the MOVT or CMST instruction is entered. If the X register is zero,

a NOP is performed. Note that these instructions are interruptable during execution;
therefore, if an interrupt occurs, both the A and X registers must be preserved and re-
established before the instruction is resumed. If the instruction has been interrupted
during execution, the A and X registers will contain the following information: the A
register will contain the number of characters processed and the X register will contain
the number of characters left to process. OV is unaffected by these operations.

ADDT ADD TEXT. Two numeric strings are arithmetically added together with
the resultant numeric string replacing the destination numeric string.

SUBT SUBTRACT TEXT. The source numeric string is subtracted from the destina-
tion numeric string with the resultant numeric string replacing the destination
numeric string.

MOVT MOVE A TEXT STRING. A byte string is moved from the source string to

the destination string. The string is moved character-by-character in
increasing addresses for each buffer. If the address of the source string
(ADDRI) is greater than or equal to the address of the destination string
(ADDR2), then the strings may overlap with no loss of data. If ADDRI is

less than ADDR2, then (ADDR2-ADDRI1) characters will be repeated L/ (ADDR2-
ADDRI1) times, where L is equal to the string length. OV is unaffected by

this operation. The A and X registers will remain unchanged by this operation

S3-17




CMST

COMPARE TEXT STRINGS AND SKIP. The source string is compared to the
destination string. If both strings are equal, a two-place skip occurs and

the A and X registers will remain unchanged. If the source string is less

than the destination string, a one-place skip occurs. If the source string

is greater than the destination string, the next inline instruction will be
executed. If the strings mismatch, the X register contains the number of
characters left to compare and the A register contains the character position
in the string that miscompared. To compare the remainder of the strings,

the A register must be incremented and a jump executed back to the CMST
instruction without altering the X register. Note that this instruction performs
a logical compare, comparing magnitudes only. If two numeric strings

are to be compared, the SUBT instruction should be used. The CMST instruc-
tion compares 8-bit characters one at a time starting from low memory
addresses. OV is unaffected by this operation.

S3-18




Appendix C

INSTRUCTION SET BY CLASS

Instruction
Mnemonic Description

MEMORY REFERENCE INSTRUCTIONS

ComputerAutomation (Of\ ——

Instruction
Skeleton in Hex

ADX Add to X : 4300
ADXB Add to X Byte : 4300
SBX Subtract from X : 4320
SBXB Subtract from X Byte 14320
EMX Exchange Memory and X : 4340
EMXB Exchange Memory and X Byte 1 4340
MSB Memory Set Bit :4B00
MRB Memory Reset Bit : 4B20
MCB Memory Complement Bit :4B40
MTB Memory Test Bit : 4B60
JST Jump and Store :F800
DMS Decrement Memory and Skip 14310

Decrement Memory and Skip Indexed 14350

STACK INSTRUCTIONS
JSKR Jump and Stack Registers : 4203
JSKS Jump and Stack Status 14241
RTNR Return Registers :6A03
RTNS Return Status :6A41
REGISTER CHANGE INSTRUCTIONS

ASB A Set Bit :6B10
ARB A Reset Bit :6B30
ACB A Complement Bit : 6B50
XSB X Set Bit : 6B00
XRB X Reset Bit : 6B20
XCB X Complement Bit :6B40
ATB A Test Bit :6B70
XTB X Test Bit :6B60
AXA Add Xto A : 0050
AAX Add A to X : 0028
SXA Subtract X from A : 0088
SAX Subtract A from X : 0170

S3-19




ComputerAutomation (O

Instruction ‘ Instruction

Mnemonic Description Skeleton in Hex
XXA Exclusive OR X to A : 00F0
XAX Exclusive OR A to X : 0168
XNX Execute Indexed : 0430

PROCESSOR CONTROL INSTRUCTIONS

WFI Wait for Interrupts : 01D0
CYCLIC REDUNDANCY CHECK INSTRUCTION

CRC Cyclic Redundancy Check : 4D00

TEXT MANIPULATION INSTRUCTIONS

ADDT Add Text : 4708
SUBT Subtract Text 14718
MOVT Move a Text String 14788
CMST Compare Text Strings and Skip 14798

S3-20




ADDT

ADX

ADXB

ACB

ARB

ASB

ATB

AXA

I.

II.

Table F-3. LSI-2/60 Execution Time Algorithms

RA + 1000/RO

1. Direct/Direct
12,550 + 6RA + 2WA + 850/RO + 400/RO + 850/RO
+ [10,680 + 2RA + WA] x N

2. Direct/Indirect or Indirect/Direct
12,550 + TRA + 2WA + 850/RO + 400/RO + 400/RO + 850/R0O
+ [10,680 + 2RA + WA] x N

3. Indirect/Indirect
12,550 + 8RA + 2WA + 850/RO + 400/RO + 400/RO + 400/RO + 850/RO
+ [10,680 + 2RA + WA] x N
where N is the number of digits.

Maximum Interrupt Latency

1. Direct/Direct
19,780 + S8RA + 3WA + 850/RO + 400/RO + 850/WO

2. Indirect/Direct or Direct/Indirect
19,780 + 9RA + 3WA + 850/RO + 400/RO + 400/RO + 850/WO

3. Indirect/Indirect
19,780 + 10RA + 3WA + 850/RO + 400/RO + 400/RO + 400/RO + 850/WO

3RA + 700/RO + 700/RO + 850/RO
Add (RA + 400/RO) for each indirect

3RA + 700/RO + 850/RO + 850/RO
Add (RA + 400/RO) for each indirect

3850 + RA + 300 x N
where N is the bit position number plus 1

3850 + RA + 300 x N
where N is the bit position number plus 1

3850 + RA + 300 x N
where N is the bit position number plus 1

2200 + RA + 150 x N
where N is the bit position number plus 1

RA + 1000/RO

S3-21




Table F-3. LSI-2/60 Execution Time Algorithms (Cont'd)

CMST 1. 1. Direct/Direct
5500 + 3RA + 850/RO + 400/RO + [1600 + 2RA + 1000/RO] x N

2. Direct/Indirect or Indirect/Direct
5500 + 4RA + 850/RO + 400/RO + 400/RO + [1600 + 2RA + 1000/RO] x N

3. Indirect/Indirect
5500 + 5RA + 850/RO + 400/RO + 400/RO + 400/RO
+ [1600 + 2RA + 1000/RO] x N
where N is the number of bytes.

II. Maximum Interrupt Latency

1. Direct/Direct
4800 + 5RA + 850/RO + 1000/RO + 400/RO

2. Direct/Indirect or Indirect/Direct
4800 + 6RA + 850/RO + 1000/RO + 400/RO + 400/RO

3. Indirect/Indirect
4800 + TRA + 850/RO + 1000/RO + 400/RO + 400/RO + 400/RO

CRC 700 + 4RA + WA + 550/RO + 400/RO + 700/RO + 550/RO + 450 x N
where N is the number of bits in the character
Add (RA + 400/RO) for each level of indirect

DMS I. Inline

1. Result not minus one
2200 + 3RA + 700/RO + 550/RO + [RA + 400/RO] x N

2. Result minus one
3250 + 3RA + 700/RO + 550/RO + [RA + 400/RO] x N

II. Interrupt

1. Result not minus one
1450 + 3RA + T00/RO + 550/RO + [RA + 400/RO] x N

2. Result minus one
2100 + 3RA + 700/RO + 550/RO + [RA + 400/RO) x N
where N is the number of indirect cycles
For DMS Indexed use: 850/RO instead of 550/RO

EMX 3RA + WA + 7T00/RO + 700/RO + 500/RO + 550/WO
Add (RA + 400/RO) for each level of Indirect

S3-23




ComputerAutomation (T ——

Table F-3. LSI-2/60 Execution Time Algorithms (Cont'd)

EMXB 3RA + WA + 700/RO. + 850/RO + 500/RO + 550/WO
Add (RA + 400/RO) for each level of Indirect

JSKR Inline .
7850 + 4RA + 5WA + 550/RO + 700/RO + 350/WO + 650/WO
+ 650/WO + 650/WO +.400/RO

Interrupt
8000 + 4RA + 5WA + 550/RO + 400/RO + 350/WO + 650/WO
+ 650/WO + 650/WO + 400/RO

JSKS Inline
7850 + 4RA + 3WA + 550/RO + 700/RO + 350/WO + 650/WO + 400/RO

Interrupt
8000 + 4RA + 3WA + 500/RO + 400/RO + 350/WO + 650/WO + 400/RO

JST As specified in Computer Handbook.

MCB 2450 + 3RA + WA + 550/RO + 400/RO + 550/WO + 300 x N
where N is the bit position number plus 1
Add (RA + 400/RO) for each level of Indirect

MOVT 1. 1. Direct/Direct
4300 + 3RA + 850/RO + 400/RO + [RA + WA + 1000/RO + 1300/WO] x N

2. Direct/Indirect or Indirect/Direct
4300 + 4RA + 850/RO + 400/RO + 400/RO
+ [RA + WA + 1000/RO + 1300/WO] x N

3. Indirect/Indirect
4300 + 5RA + 850/RO + 400/RO + 400/RO + 400/RO
+ [RA + WA + 1000/RO + 1300/WO] x N
where N is the number of bytes

II. Maximum Interrupt Latency

1. Direct/Direct
3650 + 4RA + WA + 850/RO + 400/RO + 1000/RO

2. Indirect/Direct or Direct/Indirect
3650 + S5RA + WA + 850/RO + 400/RO + 400/RO + 1000/RO

3. Indirect/Indirect
3650 + 6RA + WA + 850/RO + 400/RO + 400/RO + 400/RO + 1000/RO

S3-23




MRB

MSB

MTB

RTNR

RTNS

SAX

SBX

SBXB

SUBT

II.

Table F-3. LSI-2/60 Execution Time Algorithms (Cont'd)

2450 + 3RA + WA + 550/RO + 400/RO + 550/WO + 300 x N
where N is the bit position number plus 1
Add (RA + 400/RO) for each level of Indireet

2450 + 3RA + WA + 550/RO + 400/RO + 550/WO + 300 x N
where N is the bit position number plus 1
Add (RA + 400/RO) for each level of Indirect

1300 + 3RA + WA + 550/RO + 400/RO + 550/WO + 300 x N

where N is the bit position number plus 1

Add (RA + 400/RO) for each level of Indirect

TRA + WA + 550/RO + 400/RO + 500/RO + 250/WO + 2X850/RO + 2X700/RO
5RA + WA + 550/RO + 400/RO + 500/RO + 250/WO + 700/RO + 1400/RO

RA + 1000/RO

3RA + 700/RO + 700/RO + 850/RO
Add (RA + 400/RO) for each level of Indirect

3RA + 700/RO + 850/RO + 850/RO
Add (RA + 400/RO) for each level of Indirect

1. Direct/ Direct
12,050 + 6RA + 2WA + 850/RO + 400/RO + 850/RO
+ (10,380 + 2RA + WA] x N

2. Direct/Indirect or Indirect/Direct
12,050 + TRA + 2WA + 850/RO + 2 X 400/RO + 850/RO
+ [10,380 + 2RA + WA] x N

3. Indirect/Indirect
12,050 + 8RA + 2WA + 850/RO + 3 X 400/RO + 850/RO
+ [10,380 + 2RA + WA] x N
where N is the number of digits

Maximum Interrupt Latency

1. Direct/Direct
18,980 + SRA + 3WA + 850/RO + 400/RO + 850/RO

2. Direct/Indirect or Indirect/Direct
18,980 + 9RA + 3WA + 2 X 850/RO + 2 X 400/RO

3. Indirect/Indirect
18,980 + 10RA + 3WA + 2 X 850/RO + 3 X 400/RO

S3-24




Mmmm———

Table F-3. LSI-2/60 Execution Time Algorithms (Cont'd)

SXA RA + 1000/RO
WFI RA + 550/RO first execution
300 interrupt sampling period
XAX RA + 1000/RO
XCB 3550 + RA + 300 x N

where N is the bit position number plus 1

XNX 1650 + RA + 400/RO + Instruction Execution time as listed in this spec. or
the Computer Handbook

XRB 3550+ RA+300x N
where N is the bit position number plus 1

XSB 3550 + RA + 300 x N
where N is the bit position number plus 1

XTB 1900 + RA + 150 x N
where N is the bit position number plus 1

XXA RA + 1000/RO

Changes to Existing Instructions

All Stack Add RA + 300/RO for each level of indirect
Push Instr. Use 400/RO + 856/R0 in place of 2 (400/RO)

- INAM, INXM
IBA, IBAM Use RA + 1750/RO instead of RA + 1600/RO
IBX, IBXM

RA = Read Access
RO = Read Overhead
WA = Write Access
WO = Write Overhead

53-25




Table F-7. LSI-2/60 Instruction Execution Times

Instruction C1600 C1200 C980 SC1200

MEMORY REFERENCE

ADX
SBX } 4.8 3.65 3.39 3.75
For each level of
indirection, add: 1.6 1:2 0.98 1.2
ADXB
SBXB } 4.8 3T 3.54 3.9
For each level of
indirection, add: 1.6 1.2 0.98 1.2
EMX 6.4 4.8 4.12 4.8
For each level of
indirection, add: 1.6 1.2 0.98 1.2
EMXB 6.4 4.85 4.27 4.95
For each level of
indirection, add: 1.6 102 0.98 1.2
MSB
MRB 7.7+0.3N 6.45+0.3N 5.77+0.3N 6.55+0.3N
MCB
For each level of
indirection, add: 1.6 1.2 0.98 1.2
MTB 6.55+0.3N 5.3+0.3N 4.62+0.3N 5.4+0.3N

For each level of
indirection, add: 1.6 1.2 0.98 T2

where N is the bit position number plus 1

JST (As specified in Computer Handbook)
DMS
Inline
Result not minus one 5.85+1.6N 5.0+1.2N 4.64+0.98N 5.1+1.2N
Result minus one 6.9+1.6N 6.05+1.2N 5.69+0.98N 6.15+1.2N
Interrupt
Result not minus one 5.1+1.6N 4.25+1.2N 3.89+0.98N 4.35+1.2N
Result minus one 5.75+1.6N 4.9+1.2N 4.54+0.98N 5.0+1.2N
For DMS indexed use, add: ------- 0.05 0.25 0.15

where N is the number of indirect cycles

S3-27




Table F-7. LSI-2/60 Instruction Execution Times (cont'd)

Instruction C1600 C1200 C980 SC1200
STACK
JSKR ¢
Inline 19.75 16.85 15.37 16.95
Interrupt 19.9 17.0 15.42 17.1
JSKS
Inline 16.55 14.45 13.41 14.55
Interrupt 16.7 14.6 13.46 14.7
RTNR 12.8 9.7 8.54 9.9
RTNS 9.85 7.8 6.78 7.9
REGISTER CHANGE
ASB
ARB 4.3+0.3N 4.25+0.3N 4.23+0.3N 4.35+0.3N
XCB
XSB
XRB 4.0+0.3N 3.95+0.3N 3.93+0.3N 4.05+0.3N
XCB
ATB 2.65+0.15N 2.6+0.15N 2.58+0.15N 2.7+0.15N
XTB 2.35+0.15N 2.3+0.15N 2.28+0.15N 2.4+0.15N
where N is the bit position number plus 1
AXA
AAX
SXA
SAX 1.6 1.4 1.38 1.5
XXA
XAX
XNX 3.25+% 2.85+* 2.63+* 2.85+*
*=instruction execution time as listed in this spec or the Computer Handbook
PROCESSOR CONTROL
WFI first execution 1.6 1.2 0.98 1.2
interrupt sampling 0.30 0.30 0.30 0.30
period

S3-28




Table F-7. LSI-2/60 Instruction Execution Times (cont'd)

Instruction C1600 C1200 C980 SC1200

CYCLIC REDUNDANCY CHECK

CRC 7.35+0.45N 5.7+0.45N 4.9+0.45N 5.7+0.45N

For each level of
indirection, add: 1.6 1.2 0.98 1.2

where N is the number of bits in the character

TEXT MANIPULATION

ADDT
Direct/Direct 19.2+11.83N 17.85+11.68N 17.49+11.62N 18.3+11.88N
Direct/Indirect
or 20.8+11.83N 19.05+11.68N 18.47+11.62N 19.55+11.88N
Indirect/Direct
Indirect/Indirect 22.4+11.83N 20.25+11.68N 19.45+11.62N 20.75+11.88N

where N is the number of digits

Maximum Interrupt Latency

Direct/Direct 27.78 26.23 25.66 26.93
Direct/Indirect

or 29.38 27.43 26.64 28.13
Indirect/Direct
Indirect/Indirect 30.98 28.63 28.07 29.33

SUBT

Direct/Direct 18.7+11.53N 17.35+11.38N 16.99+11.32N 17.85+11.58N
Direct/Indirect

or 20.3+11.53N 18.55+11.38N 17.97+11.32N 19.05+11.58N
Indirect/Direct

Indirect/Indirect 21.9+11.53N 19.75+11.38N 18.95+11.32N 20.25+11.58N
where N is the number of digits

Maximum Interrupt Latency

Direct/Direct 26.78 25.28 24.86 25.98
Direct/Indirect

or 28.38 26.48 25.84 27.18
Indirect/Direct
Indirect/Indirect 29.98 27.68 26.82 28.39%

S3-29




Table F-7. LSI-2/60 Instruction Execution Times (cont'd)

———— ¢ T

Instruction C1600 C1200 C980 SC1200
TEXT MANIPULATION (cont'd)
MOVT
Direct/Direct 7.95+3.2N 7.15+2.9N 6.89+2,86N 7.35+3N
Direct/Indirect
or 9.55+3.2N 8.35+2.9N 7.87+2.86N 8.55+3N
Indirect/Direct
Indirect/Indirect 11.15+3.2N 9.55+2.9N 8.85+2.86N 9.75+3N
where N is the number of bytes
Maximum Interrupt Latency
Direct/Direct 9.15 8.1 7.8 8.4
Direct/Indirect
or 10.75 9.3 8.78 9.6
Indirect/Direct
Indirect/Indirect 12.35 10.5 9.76 10.8
CMST
Direct/Direct 9.15+3.65N 8.35+3.4N 8.09+3.36N 8.55+3.6N
Direct/Indirect
or 10.75+3.65N 9.55+3.4N 9.07+3.36N 9.75+3.6N
Indirect/Direct
Indirect/Indirect 12.35+3.65N 10.75+3.4N 10.05+3.36N 10.95+3.6N
where N is the number of bytes
Maximum Interrupt Latency
Direct/Direct 10.5 9.45 9.15 9.85
Direct/Indirect
or 12.1 10.65 10.13 11.05
Indirect/Direct
Indirect/Indirect 13.7 11.85 11.11 12.25
Changes to Existing Instructions
All Stack Instructions
For each level of
indirection, add: 1.6 1.2 0.98 1.2

S3-30




Table F-7. LSI-2/60 Instruction Execution Times (cont'd)

Instruction C1600 C1200 C980 SC1200

Changes to Existing Instructions (cont'd)

Push Instructions
Add: mmee—— 0.05 0.25 0.15

INAM, INXM, IBA, IBAM,
IBX, IBXM Instructions
Add: ' 0.15 0.15 0.15 0.15

S3-31




[ STATE COUNTER
s |

A Qi Q2 5
J S Q i— J e Q r J Q¢——ma3

MACK =
Q3 ol

Q3-~

- E‘SC—LK———V‘CC 74RH76 —dc 74R76 —clc  74H76
IIN o—

v
z
z * al-e K o] Q3-
0o Q3 K A o] I_m K A Q = R
: B ™~
< 10 MHZ " DPIN —C CLR I I T
- osc FCiX 74H08 & ¢
O {FCLK) (22MDi1s- O~——Q
[>9
2
<
o« SCLK
[==$
o }
a
2 Select
9 DO Bus Memory
Drivers +5 Start
a3 — 1K
aH
WRITE _E—soao
’ 5 EsTP- —1 G
Q2 oy o-——-[ EQ3
FCLK =——=q¥C 74H76
Read Data ——-OMST—(IS)
Nea Strobe a3 r a r—-—-EO3— Qi-
== a
WRITE- — ""“) BOST 74H00 OM3097
1K
Decrement
Word Counter +5 Read
Q1 — Control
03 — 7411 DECW
SCLK — Q3 =1 5438 RO-(18)
WRITE- —

Incr
Address Counter
Q2- —4
Q3 ~—{74H11 INCA
SCLK —

-
3
®
B

T

Figure 9-14. State Counter and Decoder

9-24




COMPUTER AUTOMATION, INC.

Qa3

£€Q3

ESTP—

| r
oexx- JIIIIHIHITTITIIIIGK
o n
\

MACK -

INCA

A. Write Cycle

Figure 9-15. DMA Transfer Timing

e JULUUM LML AL

. A
v Th [ I
Y \ =

9-25

/\l N

o FL
‘ \—
e
=
-




