
NAKED MINI® LSI SERIES

COMPUTER HANDBOOK

91-20400-00A2
OCTOBER 1974

NAKED MINI® LSI SERIES

COMPUTER HANDBOOK

Patent Pending

ffi
ComputerAutomation

Naked Mini~ Division
18651 Von Karman, lrvine, Calif. 92664
Tel. 714-833-8830 TWX 910-595-1767

COPYRIGHT 1973, COMPUTER AUTOMATION, INC.

Printed in Sweden
Studentlitteratur
Lund 1976

COMPUTER AUTOMATION , INC. ~

~
·~ ··

NAKED MINI LSl-1

ALPHA LSI

NAKED MINI LSl-2I20

ii

COMPUTl:R AUTOMATION. INC. ~

TABLE OF CONTENTS

Paragraph Page

1.1
1.1.1
1.1. 2
1.1. 3

1. 2

Section 1. GENERAL INFORMATION

INTRODUCTION .
The ALPHA LSI Family
Upward Compatibility
General Features

1-1
1-1
1-1
1-2

1. 3

1. 4
1. 4 .1
1. 4. 2
1.4.3
1.4.4
1.4.4.1
1.4.4.2
1.4.5
1. 4. 5 .1
1.4.5.2
1.4.5.3
1. 4. 6
1. 4. 7
1. 4 .8

1. 5
1. 5. 1
1.5.l.l
1.5.1.2
1.5.1.3
1.5.1.4
1.5.1.5
1. 5. 2
1.5.2.1
1.5.2.2
1.5.2.3
1.5.2.4
1. 5. 3
1.5.3.1
1.5.3.2
1.5.3.3

THE NAKED MINI LSI CONCEPT

THE ALPHA LSI .

CHARACTERISTICS
Processor and Memory .
Instruction Set. . .
Registers .
Memory Addressing . .

Memory Reference Addressing
Stack Addressing

1/0 Structure
Control Modes . .
Input Output Modes
Vectored lnterrupts

Processor Options . .
Plug-ln Options . . .
Peripheral Equipment

DATA HANDLING CHARACTERISTICS
Data Word Format . .

Bit Identification .
Bit Values. . ..
Signed Numbers .
Positive Numbers
Negative Numbers

Data Byte Format . .
Byte Mode Processing
Register Load
Arithmetic Operations
Data Packing . .

Memory Address Formats
Word Addressing
Byte Addressing. .
Indirect Addressing

1-2

1-2

1-3
1-3
1-3
1-4
1-5
1-5
1-6
1-6
1-6
1-6
1-8
1-8
1-9
1-10

1-10
1-10
1-10
1-11
1-li
1-11
1-11
1-12
1-12
1-13
1-13
1-13
1-14
1-14
1-15
1-15

iii

Paragraph

2.1

2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.6.1

2.2.7
2.2.8

2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.2
2.3.2.1
2.3.2.2
2.3.3
2.3.3.1
2.3.3.2

3.1

3.1.1

3 .1. 2
3.1.2.1
3.1.2.2
3.1.2.3
3.1.2.4

COMPUTH AUTOMATION, INC. ~

TABLE OF CONTENTS (Cont'd)

Section 2. INTEGRATION

INTRODUCTION .

ALPHA LSI INTEGRATION
Mounting (Figure 2-1)
Cooling (Figure 2-2) .
Joining Two Half PC Boards
Option Board Installation . .
Module Installation, Processor Chassis Only
Expansion (Figure 2-3) .

Module Installation , Processor and Expansion
Chassis •..............

AC Power Application
110 to 220/240 Power Line Conversion .

Page

NAKED MINI LSI INTEGRATION
Mounting .

LSI-1 Mounting Considerations (Figure 2-4) .
LSl-2 Mounting .

Cooling .
LSl-1 Cooling.
LSI-2 Cooling .

Interconnection . .
NAKED MINI LSI-1 lnterconnections.
NAKED MINI LSI-2 lnterconnections.

Section 3. CONSOLES

PROGRAMMING CONSOLE .

Switches and lndicators,

Machine Modes .
Stop Mode.
Step Mode.
Run Enable Mode .
Run Mode

2-1

2-1
2-1
2-1
2-4
2-5
2-5
2-7

2-9
2-9
2-10

2-11
2-11
2-11
2-13
2-13
2-13
2-13
2-13
2-13
2-14

3-1

3-1

3-7
3-7
3-7
3-7
3-8

iv

COWUlllt AUIOMA TION . INC . ~

TABLE OF CONTENTS (Cont'd)

Paragraph Page

3.1.3
3.1.3.1
3.1.3.2
3.1.3.3
3.1.3.4

3.1.4

Console Operation.
Console Preparation
Console Data Entry Procedure­
Console Display Procedure
Program Execution.

Unattended Operation

3.2
3.2.1
3.2.2
3.2.3

OPERATOR CONSOLE
lntroduction . . .
Switches and lndicators
Strapping Requirements

4.1
4.1.1
4.1. 2
4.1. 3
4.1.3.1
4.1.3.2
4.1.3.3
4.1.3.4
4.1.4
4.1. 5

4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.1.5
4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.3
4.2.4
4.2.5
4.2.6

Section 4. INSTRUCTIONS AND DIRECTIVES

INTRODUCTION
Instruction and Directive Classes .
Symbolic Notation .
Assembler Source Statement Fields

Label Field . .
Op Code
Operand Field •
Comments Field. . . .

Arithmetic Operations and Overflow.
Relocatability

MEMORY REFERENCE INSTRUCTIONS .
Word Mode Operations and Instruction Format

Word Mode Direct Addressing.
Word Mode Indirect Addressing.
Word Mode Direct Indexed Addressing
Word Mode lndirect Postindexed Addressing.
Word Mode Summary.

Byte Mode Operations and Instruction Format
Byte Mode Direct Addressing
Byte Mode lndirect Addressing
Byte Mode Direct Indexed Addressing
Byte Mode Indirect Postindexed Addressing .
Byte Mode Summary

Arithmetic Memory Reference Instructions . .
Logical Memory Reference Instructions
Data Transfer Memory Reference Instructions . . .
Program Transfer Memory Reference Instructions .

V

3-8
3-8
3-9
3-9
3-10

3-11

3-11
3-11
3-12
3-13

4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-4
4-4
4-5

4-6
4-6
4-6
4-7
4-7
4-7
4-9
4-9
4-10
4-10
4-10
4-10
4-12
4-12
4-12
4-13
4-13

Paragraph

4.3
4.3.1
4.3.2

4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.1.3
4.4.1.4
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6

4.5
4.5.1
4.5.2

4.6
4.6.1
4.6.2
4.6.3
4.6.4

4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6

4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6

4.8.7

Cowumt AUTOMATION. INC. ~

TABLE OF CONTENTS (Cont'd)

Page

DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS 4-15
Format. . . . 4-15
Instructions 4-16

STACK, DOUBLE WORD INSTRUCTIONS (LSI-2 only). 4-18
Addressing Modes (Figure 4-13). . . . 4-19

Direct Access to Stack 4-19
Indexed Access to Stack 4-19
Auto-Postincrement Access to Stack (POP). 4-19
Auto-Predecrement Access to Stack (PUSH) 4-19

Arithmetic Stack Instructions . . 4-21
Logical Stack Instructions 4-21
Data Transfer Stack Instructions. . . 4-21
Program Transfer Stack lnstructions 4-22
Stack Control Instruction , 4-22

IMMEDIATE INSTRUCTIONS.
Format ...
Instructions

CONDITIONAL JUMP INSTRUCTIONS .
Format .
Microcoding ,
Arithmetic Conditional Jump Instructions .
Control Conditional Jump Instructions. . .

SHIFT INSTRUCTIONS .
Operand Restrictions and Instruction Format
Arithmetic Shift Instructions
Logical Shift Instructions
Rotate Shift Instructions.
Double Register (Long) Logical Shift Instructions
Double Register (Long) Rotate Shift Instructions .

REGISTER CHANGE INSTRUCTIONS.
Format .
A Register Change Instructions.
X Register Change Instructions.
OV Register Change Instructions .
Multi-Register Change Instructions.
Extended Multi-Register Change Instructions (LSI-2
only) .

Console Register Instructions.

4-22
4-22
4-23

4-24
4-24
4-24
4-25
4-26

. 4-26
4-26

. 4-27
. 4-27
. 4-28
. 4-29
. 4-30

. 4-31
. 4-31
. 4-31
. 4-32
. 4-32
. 4-33

. 4-34
. 4-35

vi

COMPUml AUTOMATION . INC. ~

· TABLE OF CONTENTS (Cont'd)

Paragraph

4.9
4.9.1
4.9.2
4.9.3
4.9.4
4.9.5

4.10
4.10.1
4.10.1.1
4.10.1.2
4.10.2
4.10.2.1
4.10.2.2
4.10.3
4.10.3.1
4.10.3.2
4.10.4
4.10.5

4.11
4.11.1
4.11.2
4.11.3

4.12
4.12.1
4.12.2

4.13
4.13.1
4.13.2

4.14

4.15

4.16

5.1
5.1.1
5.1.1.1

CONTROL INSTRUCTIONS .
Format .
Processor Control Instructions.
Mode Control Instructions. . . .
Status Control Instructions. . .
lnterrupt Control Instructions

INPUT /OUTPUT INSTRUCTIONS .
Control Input/Output Instructions .

Sense Instructions
Select Instructions

Word Input/Output Instructions ..
Unconditional Word Input/Output Instructions.
Conditional Word Input/Output Instructions . .

Byte Input Instructions.
Unconditional Byte Input Instructions
Conditional Byte Input Instructions .

Block lnput/Output Instructions ...
Automatic Input/Output Instructions.

ASSEMBLER CONTROL DIRECTIVES
Conditional Assembly Controls .
Program Location Controls .
Machine Directive (MACH) ...

DATA AND SYMBOL DEFINITION DIRECTIVES.
Formats ..
Directives

PROGRAM LINKAGE DIRECTIVES
Formats .

Page

4-36
4-36
4-36
4-37
4-37
4-38

4-39
4-39
4-40
4-40
4-40
4-41
4-41
4-42
4-42
4-43
4-43
4-45

4-48
4-48
4-49
4-49

4-50
. 4-50
. 4-51

4-52
4-52

Directives . 4-52

SUBROUTINE DEFINITION DIRECTIVES.

LISTING FORMAT AND ASSEMBLER INPUT CONTROLS

USER DEFINED OPERATION CODE DIRECTIVE

4-53

4-54

. 4-55

Section 5 . INPUT / OUTPUT AND INTERRUPT OPERATIONS

INTRODUCTION. 5-1
Discussion of Input/Output Operations 5-1

Control • . . 5-1
vii

Paragraph

5.1.1.2
5.1.1.3
5.1. 2
5.1.2.1
5.1.2.2
5.1.2.3

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

5.3
5.3.1
5.3.2
5.3.3

5.4
5.4.1
5.4.2

6.1

6.2

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.6.1
6.3.6.2
6.3.6.3
6.3.7
6.3.8
6.3.9

COMPUTE R AUTOMATION . INC. ~

TABLE OF CONTENTS (Cont'd)

Sense .
Data Transmission.

lnterrupt Operations.
Non-Input/Output .
Input/Output .
End-of-Block Interrupts.

NON-INTERRUPT INPUT/OUTPUT EXAMPLES.
Control Instructions
Unconditional Instructions. .
Conditional Instructions . .
Block 1/0 lnstructions . . .
Automatic 1/0 lnstructions.

INTERRUPT STRUCTURE AND EXAMPLES.
General Interrupt Handling
Examples of Initialization and Enabling Sequences.
Examples of Interrupt lnstructions

Section 6. PROCESSOR OPTIONS

INTRODUCTION•.........

REAR EDGE CONNECTORS (Figures 6-2 and 6-3) .

TELETYPE/CRT /MODEM CONTROLLER.
Baud Rate Selection . .
Word Length Selection
Parity Selection
Stop Bit Selection . . .
Alternate Interrupt Locations.
Data Interface Selection. . . .

Current Loop Interface (Figure 6-3)
EIA RS232C/CCITT Interface (Figure 6-4) ..
TTL/DTL Compatible Interface (Figure 6-5).

Special Teletype Controls
Half-Duplex Usage ...•...•..
Half-Duplex Controller Instructions.

Page

5-2
5-2
5-4
5-5
5-5
5-5

5-6
5-8
5-9
5-9
5-9
5-10

5-10
5-10
5-11
5-12

INTERRUPT LATENCY. 5-14
Interrupt Service. . 5-14
Priority Resolution • . . . 5-15

6-1

6-1

6-2
6-2
6-6
6-6
6-7
6-7
6-7
6-7
6-8
6-10
6-11
6-11
6-12

viii

COMl'UTE R AUTOMATION, INC. ~

TABLE OF CONTENTS (Cont'd)

Paragraph

6.3.10
6. 3 .11

6.4
6.4.1
6.4.2
6.4.3
6.4.3.1
6.4.3.2

6.5
6.5.1
6.5.2
6.5.3
6.5.4
6. 5.4. I
6.5.4.2
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9

6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5

6.7
6. 7 .1
6.7.2
6.7 .3
6.7.4
6.7.5

6.8
6.8.1

Full-Duplex Usage
Full-Duplex Controller Instructions

REAL TIME CLOCK
Clock Source Selection.
Discussion of Usage . .
Summary .

RTC Interrupt Locations
RTC Instructions.

AUTOLOAD .
Description
Device and Mode Selection .
Autoload Sequence
Termination of Autoload . .

TTY and High-Speed Paper Tape Reader .
Magnetic Tape, Cassette and Disk

Error Detection
Accessing Autoload ROM .
Remote Autoload Initiation
Automatic Autoload
Autoload Operation Summary .

BASIC VARIABLES PACKAGE
Independent Processor lnterrupt Operations
Interrupt Offset
Secondary Console Sense Register .
Secondary Console Switch Functions
I/0 Timing Extension

POWER FAIL/RESTART
General ..
Power Fail
Restart . .
lnterrupt Control Option
Programming Examples

AUTOMATIC START-UP
Restart

Page

6-16
6-17

6-22
6-22
6-22
6-24
6-24
6-24

6-24
6-24
6-25
6-26
6-26
6-26
6-26
6-27
6-27
6-27
6-28
6-28

6-28
6-28
6-29
6-29
6-29
6-29

6-30
6-30
6-30
6-30
6-30
6-30

6-34
6-34

ix

COMl'UT£R AUTOMATION. INC. ~

TABLE OF CONTENTS (Cont'd)

Paragraph Page

7.1
7 .1.1
7 .1.2

7.2
7.2.1
7.2.2

7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3

8.1

8.2
8.2.1
8.2.2
8.2.3
8.2.3.1
8.2.3.2
8.2.3.3
8.2.3.4

8.3
8.3.1
8.3.2
8. 3. 3
8.3.4
8.3.5
8.3.6
8.3.7

8.4
8.4.1
8.4.1.1
8.4.1.2

Section 7. MEMORY INTERLEAVING AND BANKING

INTRODUCTION . . .
Memory lnterleaving .
Memory Banking

INTERCONNECTIONS .
Memory Interleaving .
Memory Banking

USAGE AND INSTALLATION
Memory lnterleaving (Figure 7-2)
Memory Banking (Figure 7-3)

Operation
Memory Installation
Cabling .

Section 8. MAXI-BUS CHARACTERISTICS

INTRODUCTION

MAXI-BUS COMPONENTS (Figure 8-2)
Address Bus (A)
Data Bus (D) . . .
Control Bus (C)

1/0 Commands
Utility Signals
lnterrupt Signals
DMA Signals

1/0 TRANSFER TIMING
I/0 Bus Considerations
Sense lnstruction Timing
Select Instruction Timing
Input Timing
Output Timing
Automatic Input and Output Timing
I/ 0 Instruction List

INTERRUPT CHARACTERISTICS
lnterrupt Lines

Power Fail Interrupt
Console (TRAP) Interrupt

7-1
7-1
7-1

7-1
7-1
7-2

7-3
7-3
7-3
7-3
7-5
7-7

8-1

8-2
8-2
8-2
8-4
8-4
8-4
8-5
8-6

8-7
8-8
8-8
8-8
8-8
8-9
8-9
8-10

8-11
8-11
8-12
8-12

X

COMPUTt R AUTOMATION . INC. ~

TABLE OF CONTENTS (Cont'd)

Paragraph

8.4.1.3
8.4.1.4
8.4.1.5
8.4.2
8.4.2.1
8.4.2.~
8.4.2.3
8.4.2.4
8.4.2.5
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7

8.5
8.5.1
8.5.1.1
8.5.1.2
8.5.1.3
8.5.1.4
8.5.2
8.5.2.1
8.5.2.2
8.5.2.2.1
8.5.2.2.2
8.5.2.3

8.6

8.7
8.7.1
8.7.2
8.7.3

8.8

8.9

8-10

Interrupt Line 1 .
lnterrupt Line 2 .
lnterrupt Request

Processor Generated Interrupts
Power Fail/Restart lnterrupt (Optional)
Autoload (Optional)
Console lnterrupt and Trap (Standard)
Real Time Clock (Optional)
Teletype/CRT /Modem Controller ...

Offsetting Processor Generated lnterrupts
Peripheral Generated Interrupts .
Interrupt Transfer Timing (Figure 8-5)
Interrupt Operation Control . . .
Interrupt Request Line Trade Offs

DMA OPERATIONS ..
General Characteristics .

Processor Provisions
Memory Operations
1/0 Operations
Limitations

DMA Timing .
Maxi-Bus Acquisition Timing (Figure 8-6)
Memory Transfer Timing (Figure 8-7) ..

DMA Read Access Timing (Figure 8-8)
DMA Write Access Timing (Figure 8-9)

1/0 Transfer Timing

ELECTRICAL CHARACTERISTICS

MOTHERBOARD ORGANIZATION
lnterrupt Priority
Memory Bank Control, DMA Priority
Processor Power Supply Signals . .

EXPANSION AND CONSOLE INTERCONNECT

NAKED MINI LSI MAXI-BUS REQUIREMENTS

TWO-MODULE OPTIONS

Page

8-12
8-12
8-12
8-12
8-13
8-13
8-13
8-13
8-13
8-13
8-15
8-15
8-16
8-17

8-18
8-18
8-18
8-18
8-19
8-19
8-19
8-20
8-21
8-22
8-23
8-23

8-24

8-24
8-25
8-25
8-25

8-25

8-26

8-26

xi

Paragraph

COMPUTER AUTOMATION, INC. ~

TABLE OF CONTENTS (Cont'd)

Page

Section 9. :OEVICE INTERFACE CONTROLLER, DESIGN TECHNIQUES

9.1

9.2
9.2.1
9.2.2
9.2.2.1
9.2.2.2
9.2.2.3
9.2.3

9.2.3.1
9.2.3.2
9.2.4
9.2.5
9.2.5.1
9.2.5.2

9.3

9.3.1
9.3.2
9.3.3
9.3.4

9.4
9.4.1
9.4.2

9.4.3

9.4.4
9.4.5

9.4.6

9.5
9.5.1
9.5.2
9.5.2.1
9.5.2.2
9.5.2.3

INTRODUCTION

l/0 CONTROL IMPLEMENTATION
Device Address Decoder (Figure 9-1)
Function Decoder (Figure 9-2)

Example A
Example B
Example C

Select, Input or Output Instruction Decoding
(Figure 9-3) .

Example A .
Example B .

Initialization Implementation (Figure 9-4)
Positive Sensing
Positive Sensing
Negative Sensing

DATA TRANSFER CONTROL IMPLEMENTATION (Figure
9-6)

Example A
Example B
Example C
Example D

PERIPHERAL DIVICE INTERRUPT IMPLEMENTATION 9-10
lnterrupt Address Rationale 9-10
Single lnterrupt Implementation Using IUR - (Figure
9-7) 9-12

End-of-Block Interrupt Implementation Using IUR
(Figure 9-8) 9-15

Reentrant Interrupt Implementation (Figure 9-9) 9-15
Single Interrupt Implementation Using IL!- or IL2-
(Figure 9-10) 9-16

End-of-Block lnterrupt Implementation Using !Ll and
IL2 (Figure 9-11) 9-18

7

DIRECT MEMORY ACCESS IMPLEMENTATION
Initialization
Execution (Figures 9-13 through 9-15)

Maxi-Bus Acquisition
Priority Auction
Data Transfer . .

9-1

9-1
9-1
9-2
9-2
9-2
9-5

9-5
9-5
9-5
9-5
9-6
9-6
9-9

9-9
9-9
9-10
9-10
9-10

9-18
9-18
9-21
9-21
9-21
9-22

xii

COMl'UTE R AUTOMATION. INC. ~

TABLE OF CONTENTS (Cont'd)

Paragraph

9.5.3
9.5.4
9.5.4.1
9.5.4.2
9.5.4.3
9.5.4.4

9.6

9.7

9.8

9.9

9.10

9.11

Termination
Basic DMA Controller Architecture

Control Section . .
Word/Byte Counter
Address Counter
Data Channel .

PRIORITY AND MEMORY BANKING PROPAGATION

1/0 BUS LOADING RULES . .

POWER AND GROUND SYSTEM CONCEPTS

FILTERING TECHNIQUES . . .

STANDARD INTERFACE CONNECTOR

NORMAL INTERFACE PINS

Page

9-22
9-26
9-26
9-28
9-28
9-29

9-29

9-30

9-30

9-31

9-32

9-32

10.1

10.2

10.3
10.3.1
10.3.2
10.3.3
10.3.4

10.4
10.4.1
10.4.2
10.4.3
10.4.4

10.5
10.5.1
10.5.2
10.5.3
10.5.4

Section 10. CONSOLE INTERFACE REQUIREMENTS

INTRODUCTION

CONSOLE - PROCESSOR INTERFACE (Figure 10-1)

CONSOLE TRANSFER TIMING
Establishment of Stop Mode (Figure 10-2)
Register Entry and Display (Figure 10-3)
Step Mode Operation (Figure 10-4)
Establishment of Run Mode (Figure 10-5)

CONSOLE WORD FORMATS (Figure 10-6)
Computer Status Word
Console Sense Word .
Console Data Word
Console Control Word

MINIMUM CONSOLE REQUIREMENTS
Stopping the Processor
Resetting the System
Starting the System
Visual lndicators

10-1

10-1

10-3
10-3
10-4
10-4
10-5

10-5
10-7
10-7
10-7
10-7

10-8
10-8
10-8
10-9
10-9

xiii

Paragraph

10. 6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.6.6
10.6.7

10.7

10.8

11.1

11. 2
11.2.1
11.2 .2
11. 2. 3
11. 2 .4
11. 2. 5
11. 2.6

11. 3
11.3.1
11.3.2

11. 4

11. 5

11.5.1
11. 5. 2

COMPUTE R AUTOMATION , INC. ~

TABLE OF CONTENTS (Cont'd)

OPTION AL CONSOLE FEA TURES . . .
Data Entry and Display
Register and Memory Display and
Sense Register Entry and Display
Sense Switch Feature . . .
Console Interrupt Feature .
Autoload Initiation Controls
Step Mode Feature

Modification

USER CONSOLE INTERCONNECTION (Figure 10-7)

OPTION CARD CONSOLE ACCOMMODATIONS

Section 11. POWER SUPPLY INTERFACE REQUIREMENTS

INTRODUCTION

DC POWER REQUIREMENTS
Estimating DC Current Requirements
Overvoltage and Reverse Voltage Protection
Ripple and Noise Requirements
Turnon/Turnoff Overshoot
Regulation Requirements .
DC Power Storage

POWER MONITOR FACILITIES (Figures 11-2 and 11-3)
+5H (Hangpower) Regulator
Power Fail Detector

AC LINE SYNCHRONIZED TIMING SOURCE (OPTIONAL)

INTERCONNECTION REQUIREMENTS (Figures 11-4 and
11-5) .

Motherboard Interface Requirements
NAKED MINI LSI Power Connections

Page

10-9
10-9
10-10
10-10
10-10
10-10
10-10
10-11

10-11

10-11

11-1

11-1
11-1
11-1
11-4
11-4
11-4
11-4

11-4
11-4
11-5

11-6

11-6
11-7
11-7

Section 12. INTERFACE CONTROLLER MECHANICAL CONSIDERATIONS

12.1

12.2

INTRODUCTION

CHASSIS CONSTRAINTS

12-1

12-1

xiv

COMl'UTE R AUTOMATION . INC. ~

TABLE OF CONTENTS (Cont'd)

Paragraph

12.3

12.4

12.5

PRINTED CIRCUIT BOARD CONSIDERATIONS (Figures
12-1 thru 12-3)

WIRE-WRAP BREADBOARD PC BOARD (Figure 12-4)

FILLER BOARD PC BOARD (Figure 12-5)

Appendix A. HEXADECIMAL TABLES

Appendix B. RECOMMENDED DEVICE AND INTERRUPT ADDRESSES

Page

12-2

12-2

12-2

Appendix C. INSTRUCTION Set BY CLASS

Appendix D. INSTRUCTION SET IN ALPHABETICAL ORDER

Appendix E. INSTRUCTION SET IN NUMERICAL ORDER

F .1

F .2

F.3

F.4

F.5

F.6

Appendix F. ALPHA LSI EXECUTION TIMES

GENERAL

MEMORY PARAMETERS

LSI-1 EXECUTION TIME ALGORITHMS

LSl-2 EXECUTION TIME ALGORITHMS

ALPHA LSI FAMILY INSTRUCTION EXECUTION TIMES .

MAXIMUM 1/0 TRANSFER RATES

G.1

G.2

Appendix G. SOFTWARE SUMMARY

INTRODUCTION

BOOTSTRAP

F-1

F-1

F-2

F-8

F-17

F-17

G-1

G-2

XV

COMl'U Tl:R AUTOMATION. INC. ~

TABLE OF CONTENTS (Cont'd)

Paragraph

G.3
G.3.1
G.3.2
G.3.3
G.3.4
G.3.5
G.3.6
G.3. 7
G.3.8
G.3.9
G.3.10
G.3.11

SOFTWARE OPERATION SUMMARY
Autoload .
Binary Loader (BLD) .
Binary Dump/Verify (BLD/VER)
Object Loader (LAMBDA)
BETA-4 Assembler
BETA-8 Assembler
IMEGA Conversational Assembler .
Source Tape Preparation Program
Debug (DBG)
Concordance (CONC) .
OS-Command Summary (DOS, MTOS and COS)

Page

G-2
G-2
G-3
G-3
G-4
G-4
G-4
G-5
G-6
G-7
G-8
G-9

LIST OF ILLUSTRATIONS

Figure

1-1
1-2
1-3
1-4
1-5
1-6
1-7

2-1
2-2
2-3
2-4
2-5

3-1

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

Data Word Bit ldentification
Byte Storage, Two Bytes Per Word
Data in Memory, One Byte Per Word .
Data in Memory, Two Bytes Per Word
Basic Word Address Format . .
Byte Address Format
lndirect Address Pointer Format

ALPHA LSI Outline and Mounting Diagram
ALPHA LSI Ventilation Systems
Motherboard Priority String
Expansion Chassis Cabling Scheme
NAKED MINI LSI-1 Outline and Mounting Diagram

Console Switches and lndicators .

lnstruction and Directive Classes
Source Statement Format
Arithmetic Overflow
Word Mode Memory Reference Instruction Format
Word Mode Addressing Summary
Byte Mode Memory Reference lnstruction Format
Byte Mode Addressing Summary
Double-Word Memory Reference Format
Di vide .

Page

1-11
1-12
1-13
1-14
1-14
1-15
1-16

2-2
2-3
2-7
2-9
2-13

3-2

4-1
4-2
4-5
4-6
4-8
4-9
4-11
4-15
4-16

xvi

COMl'UTE R AUTOMATION . INC. ~

TABLE OF CONTENTS (Cont'd)

LIST OF ILLUSTRATIONS (Cont'd)

Figure Page Figure

4-10 Multiply and Add 4-17 5-5
4-11 NRM Shift Path 4-17 5-6
4-12 Stack Instruction Format 4-18 5-7
4-13 Stack Organization and Management 4-20
4-14 Immediate Instruction Format 4-23 5-8
4-15 JOC Jump on Condition Format 4-24 5-9
4-16 JOC Expression 1 Definitions 4-25 5-10
4-17 Conditional Jump Format 4-25 5-11
4-18 Single Register Shift Format . 4-26 5-12
4-19 Double Register (Long) Shift Format 4-26 5-13
4-20 Arithmetic Left Shift . 4-27 5-14
4-21 Arithmetic Right Shift 4-27 5-15
4-22 Logical Left Shift 4-28
4-23 Logical Right Shift 4-28 6-1
4-24 Rotate Left Shift . 4-29 6-2
4-25 Rotate Right Shift 4-29 6-3
4-26 Long Left Shift 4-30 6-4
4-27 Long Right Shift 4-30 6-5
4-28 Long Rotate Left Shift 4-30 6-6
4-29 Long Rotate Right Shift 4-30 6-7
4-30 Register Change Format 4-31 6-8
4-31 Control Format 4-36 6-9
4-32 Computer Status Word Format 4-37 6-10
4-33 Single Word Input/Output Instruction Format 4-39 6-11
4-34 Block Input/Output lnstruction Format 4-44
4-35 Automatic Input/Output Instruction Format 4-45 7-1
4-36 ln-line Auto I/O Instruction Sequence 4-46 7-2
4-37 lnterrupt Location Auto I/O lnstruction Sequence 4-47 7-3
4-38 Begin Conditional Assembly Directives Format 4-48
4-39 End Conditional Assembly Directive Format 4-48
4-40 Location Control Directive Format 4-49 8-1
4-41 MACH Directive Format 4-49 8-2
4-42 Data and Symbol Definition Directive Format 4-51 8-3
4-43 Program Linkage Directive Formats 4-52 8-4
4-44 Subroutine Definition Directive Formats 4-53 8-5
4-45 Title Directive Format 4-54 8-6

8-7
5-1 Sense Routines 5-2 8-8
5-2 Unconditional Data Transmission 5-2 8-9
5-3 Conditional Data Transmission 5-3 8-10
5-4 Block Data Transmission 5-3 8-11

xvii

COMl'UTE R AUTOMATION. INC. ~

TABLE OF CONTENTS (Cont'd)

LIST OF ILLUSTRATIONS (Cont'd)

In-line Auto 1/0 Data Transmission

Page

5-4
Initialization and Unconditional Output to Line Printer 5-6
Unconditional Character Read from Teletype Paper Tape
Reader . 5-6

lnitialization and Conditional Control of Line Printer . . 5-6
Conditional Input from Teletype Keyboard with Auto Echo. 5-7
Uninterruptable Block Output to Line Printer 5-7
Automatic Byte lnput from Card Reader 5-8
Line Printer lnterrupt Initialization Sequence . 5-11
Real Time Clock lnterrupt lnitialization Sequence . 5-12
Line Printer Interrupt Instructions . . 5-12
Real Time Clock lnterrupt Instructions . . 5-13

Processor Option Board 6-3
Option Board Connector Jl Pin Assignments 6-4
Option Board Connector J2 Pin Assignments 6-5
Current Loop lnterface 6-8
IEIA RS232C/CCITT Interface 6-9
TTL/DTL lnterface 6-10
Half-Duplex Program-Controlled Data Output 6-11
Program-Controlled TTY Reader Input . 6-12
Full-Duplex Auto-Input Under Interrupt 6-18
RTC lnterrupt Programming Example . 6-23
Power Fail/Restart Software Routines 6-32

Memory Control Connector . . . 7-2
lnterleaved Memory Installation 7-•4
Memory Banking Example 7-6

Maxi-Bus Configuration 8-1
Maxi-Bus Components . 8-3
1/0 Transfer Timing 8-7
ALPHA LSI Interrupt Organization 8-14
Interrupt Transfer Timing 8-16
Maxi-Bus Acquisition Timing 8-20
Memory Addressing Comparisons 8-21
Read Access Timing 8-22
Write Access Timing 8-23
Maxi-Bus Expansion Connector, Pin assignments 8-26
ALPHA LSI Motherboard Slot Organization (Rear View) 8-29

xvitt

COMl'UTE R AUTOMATION . INC. ~

TABLE OF CONTENTS (Cont'd)

LIST OF ILLUSTRATIONS (Cont'd)

Figure

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16

10-1
10-2
10-3
10-4
10-6
10-7

11-1
11-2
11-3
11-4
11-5

12-1
12-2
12-3
12-4
12-5

C-1

C-2

C-3

Page

Device Address Decoding Techniques 9-3
Function Decoder Configurations (Typical) 9-4
Initialization Circuit 9-6
Select, Input, or Output Instruction Decode Configurations 9-7
Positive and Negative Sense, Circuit Configurations 9-8
Data Transfer Control 9-11
Single Interrupt Implementation Using IUR- 9-14
Reentrant lnterrupt Implementation . . 9-16
Simple ILl -/IL2- Interrupt Structure . 9-16
End-of-Block lnterrupt Implementation 9-17
DMA Operational Phases 9-19
End-of-Block Interrupt Implementation Using !Ll- and IL2- 9-19
Maxi-Bus Acquisition and Priority Auction Controls 9-23
State Counter and Decoder 9-24
DMA Transfer Timing
Basic DMA Controller Architecture

Processor /Console Interface . . .
Establishment of Stop Mode
Register Entry /Display Sequence
Step Mode Sequence
Console Word Formats
Motherboard/Console Connector (Jl) Pin Assignments

ALPHA LSI Power Supply
Power Monitor Block Diagram . . .
Power Monitor Timing Requirements
User Power Supply Transition Adapter .
Motherboard Power Adapter Pin Assignments

Full Board Design Guide
Half Board Design Guide
Standard PC Board Hardware
Wire-Wrap Breadboard PC Board
Filler Board PC Board

Class 1 - Single-Word Memory Reference lnstruction
Format .

Class 2 - Double-Word Memory Reference Instruction
Format .

Class 3 - Stack Instruction Format (LSI-2 only)

9-25
9-27

10-2
10-3
10-4
10-5
10-6
10-12

11-3
11-5
11-6
11-7
11-8

12-3
12-4
12-5
12~6
12-6

C-1

C-1
C-1

xix

COMPUT£ R AUTOMATION, INC. ~

TABLE OF CONTENTS (Cont'd)

LIST OF ILLUSTRATIONS (Cont'd)

Figure

C-4
C-5
C-6
C-7
-C-8
C-9

E-1

E-2

E-3
E-4
E-5
E-6
E-7
E-8
E-9
E-10
E-11
E-12

Page

Class 4 - Byte Immediate Instruction Format . C-2
Class 5 - Conditional Jump Instruction Format C-2
Class 6 - Register Shift Instruction Format C-2
Class 7 - Register Change and Control Instruction Format. C-2
Class 8 - Input/Output lnstruction Format C-2
Class 9 - JOC Jump-On-Condition Instruction Format . . C-3

Single-Word Memory Reference Instruction Machine Code
Format . E-1

Double-Word Memory Reference Instruction Machine Code
Format . E-1

Byte Immediate Instruction Machine Code Format . . . E-1
Conditional Jump lnstruction Machine Code Format . . E-2
Single-Register Shift Instruction Machine Code Format E-3
Double-Register Shift lnstruction Machine Code Format E-3
Register Change Instruction Machine Code Format E-3
Control Instruction Machine Code .Format E-3
lnput/Output Instruction Machine Code Format . .
Automatic lnput/Output Instruction Machine Code Format
Block Input/Output Instruction Machine Code Format
Stack Instruction Machine Code Format

E-4
E-4
E-4
E-5

LIST OF TABLES

Table

3-1
3-2
3-3

4-1

6-1
6-2
6-3
6-4

8-1
8-2

Console Switches/lndicators
Switch/lndicators - Operator Console
Device Selection

MACH Flag Word Values

Baud Rate Selection . .
Word Length Selections
Clock Source Selection
1/0 Stretch Selection

1/0 Instruction List .
Maxi-Bus Load, Drive and Termination Summary

Page

3-2
3-12
3-13

4-50

6-6
6-6
6-22
6-30

8-10
8-27

XX

COMPUTER AUTOMATION. INC. ~

TABLE OF CONTENTS (Cont'd)

LIST OF TABLES (Cont'd)

Table Page

9- I
9-2

10-1

11-1

A-1
A-2

B-1
B-2
B-3

F-1
F-2
F-3
F-4

F-5

F-6
F-7
F-8

G-1

Power and Ground Pin Assignments
Normal lnterface Pins

Console Special Signal Load/Drive Summary

Standard Module Load Currents

Hexadecimal- Decimal Conversions
8-BIT ASCII Teletype Codes . .

Recommended Device Addresses
Recommended lnterrupt Address map
Device Address - Command Summary

LSl Family Memory Parameters
LSI-1 Execution Time Algorithms
LSI-2 Execution Time Algorithms
LSI-1 Memory Reference Instruction Address Calculation
Times .

LSI-2 Memory Reference Instruction Address Calculation
Times .

Stack Instruction Address Calculation Times
ALPHA LSI Family Instruction Execution Times
ALPHA LSI Family Maximum Data Transfer Rates

Assembler Directives

9-31
9-32

10-13

11-2

A-2
A-3

B-2
B-3
B-4

F-1
F-2
F-9

F-17

F-18
F-19
F-20
F-27

G-1

xxi

COMPUT£ R AUTOMATION, INC. ~

Sectlon 1

GENERAL DESCRIPTION

1 .1 INTRODUCTION

The ALPHA LSI and NAKED MINI®LSI (hereafter referred to as ALPHA LSI when
discussed together) are general purpose, stored program digital computers. They
are extensions of the successful and proven 16-bit computer family from Computer
Automation, Inc.

1 .1. 1 The ALPHA LSI Family

The ALPHA LSI is not just one computer that can be packaged with or without a
chassis, power supply and console. Instead, it is an integrated family of compatible
components -- two central processors; three kinds of memories in fourteen sizes
and three speeds; peripheral controllers; computer options, general purpose
interfaces; etc. -- which can be combined in a multitude of configurations to match
a wide range of needs.

Several central processors are available and are referred to as the NAKED MINI LSI
type 1 (LSI-1) and the NAKED MINI LSI type 2 (LSl-2). The LSI-1 and LSl-2 Process­
ors feature the same basic architecture, instruction set and 1/0 capabilities. They
differ in terms of performance wherein the LSI-2 is faster than the LSl-1 and also
features additional instructions. Both processors are plug-to-plug compatible and,
except for timing differences, programs will execute properly in either Processor
without change (except when the additional instructions applicable to LSl-2 only are
used).

Several memories are available: Core 980, Core 1200, Core 1600, and semiconductor -
SC1200. The numbers define the full cycle time of the memory in nanoseconds and each
memory type can be interleaved.

The user can mix memories of varying speeds, sizes, and technologies with either
processor to obtain the best price/performance margin possible.

1.1. 2 Upward Compatibility

The ALPHA LSI is upward software and 1/0 compatible with earlier 16-bit computers
from Computer Automation. Upward software compatibility means that virtually all
programs written for the earlier 16-bit computers will run without change on the

1-1-

ALPHA LSI. However, due to the expanded and improved instruction set of the
ALPHA LSI, programs written for these computers may not run on the earlier
computers.

1.1 . 3 General Features

The ALPHA LSI computer family features a 16-bit word format and 168 basic instruc­
tions (188 in the LSl-2). The instruction set is divided into seven major classes
(eight with LSl-2) which provide memory-to-register and register-to-register data
movement as well as conditional jump, single and double-register shift, register
change, machine control and Input/Output instructions. The computer utilizes eight
addressing modes (12 in the LSl-2) for effective and efficient management of memory
resources.

The ALPHA LSI computer has fully buffered 1/0 structure coupled with five levels of
interrupts and five 1/0 modes which permit high speed, low speed, synchronous and
asynchronous data transfers to take place.

The ALPHA LSI may readily accommodate additional memory modules and 1/0 by
adding expansion chassis to the basic system . An optional Memory Banking feature
permits the user to extend the upper limit of Memory from 32K words to 256K words.

1. 2 THE NAKED MINI LSI CONCEPT

COMPUT£ R AUTOMATION. INC. ~

The NAKED MINI LSI-1 computer consists of the Processor and first memory module
on one printed circuit (PC) board. The NAKED MINI LSl-1 isa complete stand alone
computer without a chassis, motherboard, power supply or operators console.

The NAKED MINI LSI-1 computer is designed to be used as a system component along
with other system components. It depends on the system power supply for a power
source, the system control panel for operational control signals, and the system
enclosure for structural and environmental support.

The NAKED MINI LSl-2 computer consists of the Processor (full PC board) and one
or more memory modules, a motherboard and a chassis. Like the LSl-1, the
NAKED MINI LSI-2 Processor depends on the system power supply for power anda
system control panel for operational control signals.

1.3 THE ALPHA LSI

Take a NAKED MINI LSI-1 or -2 computer and add a power supply module, a mother­
board, a chassis and an operator' s console and you get the ALPHA LSI computer.
The Motherboard interconnects the NAKED MINI LSI computer with additional 1/0
and memory modules, the power supply, and the operator' s console.

1-2·

COMl'UTE R AUTOMATION. INC. ~

1.4 CHARACTERISTICS

The characteristics of the ALPHA LSI are explained in subsequent sections of this
manual. The following is an overview of the characteristics of this computer.

1. 4.1 Processor and Memory

Some of the significant characteristics of the Processor and Memory are:

Parallel processing of full 16-bit words and 8-bit bytes.

Seven 16-bit hardware registers, one 8-bit Status register.

Memory word size of 16 bits, with each word addressable as a full 16-bit
word or as two separate 8-bit bytes.

Memory capacity is 1,024 words minimum, expandable to 32,768 words per
bank maximum. (Up to 262,144 words with option al Memory Banking.)

Computer cycle time is 1.6 microseconds for LSl-1; 150 nanoseconds for
LSl-2.

Direct Memory Access (standard) provides data transfer rates up to 1,020,000
words per second in a single memory bank or 1,666,667 words per secorid
with interleaved memory banks.

Binary 2' s complement arithmetic processing.

Automatic memory scan (standard).

Hardware Multiply and Divide (standard).

1. 4. 2 lnstruction Set

These eomputers have a very powerful instruetion set consisting of 168 basic instruc­
tions divided into seven classes (188 instructions and 8 classes with the LSl-2
Processor). The instruction classes are:

1. Memory Reference.

Access Memory in either full Word or Byte mode and perform logical
and arithmetic operations involving data in Memory and data in hard­
ware registers. The hardware Multiply, Divide and Normalize
instructions are included in this class ,

2. Stack (LSl-2 only)

Similar to the Memory Reference class of instructions except they
operate on words maintained in "stacks" in Memory. The number,
size, and location of stacks in use at any time are unlimited,
as are the number of stacks in use by any code module, and the
number of code modules using any given stack.

COMl'UTE R AUTOMATION. INC. ~

3. Byte lmmediate.

Similar to the Memory Reference class in that logical and arithmetic operations
are performed involving data in hardware registers. The memory data, however,
is contained within the instruction word so that it is immediately available for
processing without requiring an operand cycle to fetch it from Memory.

4. Conditional Jump.

Test conditions within the Processor and perform conditional branches depending
on the results of the tests performed. Jump may be as much as ::_ 64 locations
from the location of the conditional jump instruction.

5. Shift.

lnclude singleregister logical, arithmetic, and rotate shifts; double register
logical and rotate shifts.

6. Register Change.

Provide logical manipulation of data within hardware registers.

7. Control.

Enable and disable interrupts; suppress status, control word, or byte mode
data processing; and perform other general control functions.

8. lnput/Output.

Provide communications between the computer and externa! devices They include
conventional 1/0 instructions plus Block Transfer and Automatic lnput/Output
instructions. 1/0 may be to/from register or directly to/from Memory.

1. 4. 3 Registers

Following are descriptions of hardware registers of interest to the operator and
programmer. Except for the I and P registers , all others are under program control.

1. A Register. A 16-bit register used for arithmetic, logical and input/output
operations.

2.

3.

X Register.
modification.
operations.

OV (Overf!ow). A one-bit register set by arithmetic
occurs . It is also used for extended shift operation.
modified by software.

A 16-bit register that holds the index value for memory address
It is also used for input/output and certain arithmetic and logic

logic when an overf!ow
It can be tested and

4. BM (Byte mode). A one-bit register that specifies either word or byte mode.
It is set and cleared by software.

5. EIN (Enable lnterrupts). A one-bit register that, when set, enables interrupts
of processor operation. It is set and cleared by software.

6. I Register. A 16-bit register that holds the instruction currently being pro­
cessed by the computer.

1-3 1-4

COMf'Uml AUTOMATION. INC. ~

7. P Register. A 16-bit register that holds the program location counter. It
addresses each instruction and increments as each instruction is executed.
For skip or jump instructions (modifying normal program sequence), P is
loaded with the next instruction to be executed.

1. 4. 4 Memory Addressing

1. 4. 4. 1 Memory Reference Ad dressing

An important feature of these machines is the ability to access full 16-bit words and 8-
bit bytes (half words) in Memory. Memory may be as small as lK x 16-bit words, and
as !arge as 32K x 16-bit words. Since Memory may contain 32K words, and since each
word contains two bytes, provisions are made for addressing up to 64K bytes.

Instructions which access Memory may operate in either Word or Byte mode. Memory
Reference instructions are sixteen bits in length (one-word instructions), with the
eight least-significant bits, plus three control bits, dedicated to memory addressing.
The eight least-significant bits address 256 words or bytes. The ALPHA LSI computer
uses thc threc control bits to specify several addressing modes. These addressing
modes are discussed bricfiy below and are explained in detail in section 3. The address­
ing modes used are Scratchpad, Relative Forward, Relative Backward, lndexed, and
Indirect.

1. Scratchpad

Scratchpad addressing acccsses the first 256 words in Memory in Word mode,
or the first 256 bytes in Byte mode. The first 256 words in Memory are referred
to as "Scr-atchpad" memory, because !hese are common words which can be
addressed words which can be addressed directly by instructions located anywhere
in Memory.

2. Relative.

In Word mode, relative addressing can address an area of Memory extending
from the instruction address forward 256 words (+256) or backward 255 words
(-255). In Byte mode, the range is forward 512 bytes. Bytes cannot be directly
addressed relative backward.

3. Indexed.

The Index (X) register can be added to the address field of Memory Reference
instructions to form an effective memory word or byte address.

4. Indirect.

Indirect addressing uses scratchpad or relative addressing to
access a word in Memory which contains the address of a memory
operand. The word that contains a memory address rather than
an operand is called an address pointer. In Word mode, multi-

1-5

COMl'UT£ R AUTOMATION. IN<. ~

leve! indirect addressing is possible; i.e., one address pointer
may contain the address of another address pointer rather than
the address of an operand. In Byte mode, only one lev el of in­
direct addressing is possible.

lndirect addressing may also be used in conjunction with indexing,
When indexed indirect addressing is specified, the indirect opera­
tion is performed first and then the contents of the X register are
added to the contents of the address pointer. This process is called
Post lndexing.

I. 4. 4. 2 Stack Addressing

All stack accesses are controlled by a stack pointer. Stacks may be accessed in the
conventional "PUSH" and "POP" fashion utilizing automatic hardware predecrement
and postincrement respectively, of the stack pointer. Stack contents can also be
accessed directly or with indexing through the stack pointer without altering the stack
pointer value.

1. 4. 5 1/0 Structure

The ALPHA LSI series computers are highly flexible system components designed
for easy application to control, communications, and monitoring tasks. These com­
puters are extremely easy to program using assembly language. Organization of the
Processor enables the computer to obtain high memory efficiency, avoiding the prob­
lem of "core burning", so prevalent in many computers. Memory utilization is fur­
ther enhanced by the powerful and flexible 1/0 instruction set. The 1/0 structure is
simple and efficient, sharply reducing the amount of 1/0 logic required by units in­
terfacing with the Processor.

1 . 4. 5 . 1 Control Modes

Two type of 1/0 instructions, Select and Sense, provide control information to and
from an interface. The Select instructions establish operating modes, control inter­
rupts or initialize the interface. The Sense instructions permit the Processor to
obtain the operational status of an interface.

1 . 4. 5 . 2 Input Output Modes

The ALPHA LSI computer features five distinct 1/0 modes which, when combined with
an extensive set of 1/0 instructions, provides a very powerful and easy to use I/0

1-6

cowuru AUTOMATION, INC. ~

structure. These modes are:

1. Programmed 1/0 via Registers
2. Programmed 1/0 via Memory
3. Automatic 1/0 under lnterrupts
4. Block 1/0
5. DMA

Transfers can be made to or from the A or X registers or directly to or from Memory,
whichever is more convenient. Both word and byte data can be handled directly,
with byte data being packed automatically, if desired, without the need for time and
space-consuming programmed routines.

1. Programmed Input/Output via Registers

For greater convenience in handling data that must be examined
immediately upon input, or is the result of computations that must be
output immediately, programmed 1/0 transfers the data directly to
and from the operating registers of the Processor. Furthermore,
programmed 1/0 instructions can be combined with Sense and Skip
instructions to allow testing of controller or peripheral status prior
to making a transfer.

2. Programmed lnput/Output via Memory

T'hi s mode capitalizes on the power of the Automanc 1/0 instructions
to transfer data to or from Memory without disturbing the working
registers of the Processor. Any size block of data may be transferred
into or out of Memory.

3. Automatic lnput/Output under Interrupt Control

This mode permits an interface to transfer data to or from Memory at
its own data rate with minimal disturbance of the main program.
When all data has been transferred, the interface develops an End­
of- Block interrupt. This, in turn, causes an interrupt subroutine to
be entered which performs the necessary housekeeping associated
with End-of-Block operations.

4. Block Input/Output

For high speed transfer rates, Block 1/0 transfers data blocks of any
length. Data is exchanged directly between Memory and the peripheral
interface with the index register providing the word count. During
execution of Block 1/0 instructions, the computer is totally dedicated to
the Block 1/0 transfer and cannot respond to interrupts until the entire
block has been transferred.

1-7

COMPUml AUTOMATION, INC. ~

5, Direct Memory Access (DMA)

For very high speed transfer rates, DMA transfers data directly to and
from Memory. Since this data transfer does not require the Processor,
the Processor can be performing other operations while interleaving with
DMA on a cycle stealing basis. Multiple DMA controllers may use the
DMA feature simultaneously (interleaved cycles) up to the full memory
transfer rate. When more than one memory module is installed, the modules
may be two way interleaved to provide data transfer at twice the individual
memory data rates.

1. 4. 5. 3 Vectored Interrupts.

The LSI series computers feature vectored hardware priority interrupts, wherein each
peripheral controller supplies its own unique interrupt address to any location in
Memory. There are five standard interrupt levels (two interna! and three externa!) .
The third externa! leve!, with control lines, can accommodate a virtually unlimited
number of vectored interrupts.

1. 4. 6 Processor Options

Four general options are offered with the ALPHA LSI computer. They are: Power
Fail/Restart; the Teletype/CRT Interface; Real Time Clock, and Autoload.

The Power Fail/Restart option mounts directly on the NAKED MINI LSI computer PC
board. The other three options mount on an option board which plugs into a special
connector (in piggyback fashion) on the NAKED MINI LSI computer PC board. None of
these options interface directly with the motherboard.

I. Teletype/ CRT Modem lnterface.

Interfaces a modified ASR-33 Teletype, CRT terminal, or modem to the
computer. This is a fully-buffered interface that includes remote
Teletype motor on/off control. In addition to the standard TTY baud rate
(110 baud), nine user selectable baud rates, ranging from 75 to 9600
bauds, are provided for driving a CRT terminal. Either Half or Full­
duplex operation is selectable on command.

2. Power Fail/Restart.

This option includes the hardware necessary to detect low input power
conditions and bring the computer to an orderly halt until normal input
power is restored. When normal power is restored, this option will
generate an order ly restart. The Power Fail/Restart option allows

1-8

COMl'UTE R AUTOMATION . INC. ~

completely unattended operation of the computer at locations where power
conditions are unreliable.

3 . Real Time Clock .

The Real Time Clock option features a crystal controlled interna! clock
which may be wired to produce clock rates of 100 microseconds, 1
millisecond, 1 O milliseconds, or twice the input AC line frequency,
(8, 33 or 10 milliseconds -60 Hz and 50 Hz, respectively). The 10 milli­
second (crystal derived) rate is standard. An externa! clock source
may also be used. The Real Time Clock provides time-of-day
information to the computer and may be used to time periodic events
that must be controlled by the computer.

4, Multi-Device Autoload

The Multi-Device Autoload option consists of a Read-Only Memory
(ROM) programmed with a complete binary Joader which is capable
of Joading binary programs from any one of several input devices.
The Autoload hardware reads from the ROM when the Console AUTO
switch is activated.

1. 4. 7 Plug-ln Options

Locations are provided within the ALPHA Li>l computer chassis for the installation of
processor options, peripheral interfaces, and memory modules. The options are
mounted on printed circuit boards which plug into the locations within the computer
chassis, Some of the available plug-in processor options are:

1. Digital 1/0 interfaces: up to 64 bits.

2. Relay 1/0 interfaces: up to 32 isolated relays.

3. Modem interfaces: asynchronous and synchronous.

4. Memory Banking controller: extends upper limit of Memory
to 262,144 words.

5. Read Only Memory (ROM) .

6, Priority lnterrupt module.

1-9

COMPUT£R AUTOMATION. INC. ~

1. 4. 8 Peripheral Equipment

The following is a partial list of the various types of peripheral equipment for which
interfaces to the ALPHA LSI have been developed. This list does not· imply that these
are the only devices for which interfaces can be developed. The interface structure of
these computers is. such that virtually any peripheral device can be interfaced to the
computer.

1. ASR-33 Teletypewriter

2. High speed Paper Tape Readers and Punches

3 . Line Printers

4. Card Readers

5. Open reel and cassette Magnetic Tape Units

6 . Magnetic Disks

7. CRT terminals

8. Communications interfaces

1.5 DATA HANDLING CHARACTERISTICS

1. 5 .1 Data Word Format

Processor registers and memory Jocations are capable of storing data words consisting
of 16 binary digits or "bits". A word may be handled as a single 16-bit field or as two
8-bit bytes. The following pnragraphs describe the word format of the computer.
Byte format is described later in this section .

1. 5. 1.1 Bit Identification

A data word may contain a single number, or it may contain a string of individual binary
bits, with each bit having a unique meaning. For purposes of explanation and identifica­
tion, each bit within a word is uniquely identified. The identification is accomplished
by numbering each bit within a word from right to left. The bit on the extreme right

1-10

COMPUTER AUTOMATION, INC. ~

of the word is bit 0, and the bit on the extreme left is bit 15. Figure 1-1 illustrates the
format of a 16-bit data word with the bit number shown above the bit position.

15 14 13 12 11 10 9 8 6 5 4 3

Figure 1-1. Data Word Bit Identification

1. 5 .1. 2 Bit Values

The ALPHA LSI is a binary computer; therefore numeric information stored in the
computer and processed by the computer must be in binary format. Figure 1-1 illustrates
the binary value of a one- bit (1) in each bit position of the 16-bit data word. These
values are expressed as powers of two. For example, a 1 in bit 3 has the value of 23
or 8. The single exception to this rule is bit 15 which is the sign bit.

1. 5 .1. 3 Signed Numbers

The ALPHA LSI is capable of performing arithmetic operations with signed numbers.
Binary two's complement notation is used to represent and process numeric information.
Bit 15 of a data word indicates the algebraic sign of the number contained within that
word.

1. 5. 1. 4 Positive Numbers

A positive number is identified by a O in bit 15, and the binary equivalent of the magni­
tude of the positive number is stored in bits O to 14. The largest positive signed number
which can be stored in a 16-bit word is +32, 767

1. 5 .1. 5 Negative Numbers

A negative number is identified by a 1 in bit 15 of the data word. A negative number
is represented by the binary two's complement of the equivalent positive number. A
negative number must follow the mathematical rule where:

For example:
0 - (+n) = -n

0-(+5)=-5

1-11

COWUTBl AUTOMATION. INC. ~

Negative numbers must also be constructed such that:

(+n) + (-n) = O

The binary two's complement of some numeric value may oe constructed by subtracting
the binary representation of the absolute magnitude of that value from O.

Note that the formation of a binary two's complement negative number from the equivalent
positive number automatically sets the sign bit to a one. The largest negative number
that can be stored in a 16-bit word is -32, 76810•

1. 5. 2 Data Byte Format

A 16-bit data word is capable of storing two 8-bit bytes. Since most data transfers
between mini computers and peripheral devices are in the form of bytes rather than
words, the ALPHA LSI computer provides the capability of addressing individual bytes
as well as full data words. Figure 1-2 illustrates the storage of two bytes within one
computer word .

Bit positions within bytes are identified much the same as in 16-bit words. Figure
1-2 also illustrates the numbering of data bits within a byte. The bits are numbered 0
through 7, where bit O is the least-significant bit (LSB), and bit 7 is the most-signi­
ficant bit (MSB) of the byte.

16-BIT WORD

15 14 13 12 11 10 9 8 6

BYTE 0 BYTE 1

6 5 4 3 2 6 5 4 3

8-BIT BYTE 8-BIT BYTE

Figure 1- 2. Byte Storage, Two Bytes Per Word

1. 5. 2 .1 Byte Mode Processing

There are two control instructions in the computer which control Word mode processing
and Byte mode processing. One of the instructions causes the computer to enter Byte
mode processing, and the other causes the computer to enter Word mode processing.

In Word mode, all Memory Reference instructions access full words in Memory. In
Byte mode, all Memory Reference instructions (except IMS, MPY, DVD, NRM, JMP, and
JST) access one byte within a word. The method of addressing individual bytes is
discussed in a subsequent part of this section. The present discussion is concerned
with computer operations while in Byte mode as contrasted with computer operations
in Word mode.

1-12

COMPIJTER AUTOMATION. INC. ~

Byte mode affects the address and operand cycles of the computer only. All other com­
puter functions operate the same as in Word mode. In Byte mode, the computer operand
cycle reads a single byte from Memory instead of a full word. The following paragraphs
illustrate Byte mode operations for Memory Reference instructions.

l. 5. 2. 2 Register Load

In Word mode, the full word is Joaded into the selected register. In Byte mode, the
selected byte is loaded into the Jower eight bits of the selected register and the upper
eight bits are set to zero. Note that the location of the byte within the memory word
does not determine the location the byte will occupy in the register being Joaded.

1. 5. 2. 3 Arithmetic Operations

For arithmetic purposes, bytes are handled as positive numbers only. The reason is
that a byte occupies the lower eight bits of a register, or a data bus, and the upper
eight bits contain zeros.

I. 5. 2. 4 Data Packing

One of the most useful features of Byte mode processing is in the packing and unpacking
of data in Memory. Since most of the peripheral devices used with mini computers are
byte oriented, high-speed data transfers between the computer and the peripheral
device generally require data to be packed one byte per word. Such an arrangement
is iJ!ustrated in figure 1-3. In this illustration, the upper eight bits of each data word
to be transmitted to a peripheral device contain zeros. A full 16-bit word is transmitted
to the device, but the device discards the upper eight bits and accepts only the Jower
eight bits. Data received from a byte oriented peripheral device during high-speed
data transfers is packed in Memory one byte per word in the same format described pre­
viously (figure 1-3). If a software subroutine were required to pack the data two bytes
per word, in the format illustrated in figure 1-4, it would waste memory space and time
in performing the formatting required for high-speed data transfers.

15 14 13 12 11 10 9

WORD 0

WORD 1

WORD 2

WORD 3

WORD 4

WORD 5

8 7 6 4 3 0

0 0 0 0 0 0 0 0 BYTE 0

0 0 0 0 0 0 0 0 BYTE 1

0 0 0 0 0 0 0 0 BYTE 2

0 0 0 0 0 0 0 0 BYTE 3

0 0 0 0 0 0 0 0 BYTE 4

0 0 0 0 0 0 0 0 BYTE 5

Figure 1-3. Data in Memory, One Byte Per Word

1-13

WORD0

WORDl

WORD2

15 14 13 12 11 10 9

COMPIJTER AUTOMATION . INC. ~

BYTE 0 BYTE 1

BYTE 2 BYTE 3

BYTE 4 BYTE 5

Figure 1-4. Data in Memory, Two Bytes Per Word

The capability of the ALPHA LSI computer to address individual bytes in Memory allows
high-speed data transfers using the memory format shown in figure 1-4 for both trans­
mission and reception of data. Bytes may be addressed sequentially and transmitted
or received sequentially, just as words are transmitted or received sequentially in
conventional unpacked data transfers. This arrangement saves memory space since
none of the memory word is wasted, and it saves time since no software routines are
required to pack and unpack data for interna! processing.

1. 5. 3 Memory Address Formats

Maximum memory capacity (exclusive of Memory Banking control) in the ALPHA LSI
computer is 32,768 words which mesns a byte capacity of 65,536 bytes. A fifteen bit
address is required to address 65,536 bytes. The following paragraphs discuss the
formats of the addresses that must be presented to Memory for addressing both words
and bytes. This discussion is concerned only with address formats. Section 3 of
this manual discusses the memory address modes which form these addresses.

1. 5. 3. 1 Word Addressing

Figure 1-5 iJ!ustrates the format of an address presented to Memory to address a full
word. This is the format that is used to address instructions or full data words. The
address is contained in bits O - 14, and bit 15 contains a zero.

15 14 13 12 11 10 9 8

H WOAD AOORESS: 15 BITS

Figure 1-5. Basic Word Address Format

1-14

COMl'UlD AUlOMATION, INC. ~

1. 5, 3 , 2 Byte Addressing

Figure 1-6 illustrates the format used to address a byte within a data word. Bits 1-15
contain the address of the memory word, and bit O specifies which byte within the word
is to be addressed .

Bit O = O specifies Byte O (Most Significant Byte) .

Bit O = 1 specifies Byte 1 (Least Significant Byte) .

If the computer is set for Byte mode, all operand addresses presented to Memory are
assumed to be byte addresses . The computer assumes that the address is in the format
shown in figure 1-6. If the computer is set for Word mode processing, all addresses
presented to Memory are assumed to be word addresses in the format shown in figure
1-5. The se assumptions apply to operand cycles only. They do not apply to instruc­
tion cycles or indirect addressing cycles.

15 14 13 12 11 10 9 8 4 3

l w_o_R_o_Ao_o_R_E_s_s_, _15_s_,_Ts ll"r ~""I

O=BYTEO /
(LEFT BYTE)

1 = BYTE 1
(RIGHT BYTE)

BYTE INDICATOR:

Figure 1-6, Byte Address Format

1. 5. 3. 3 lndirect Addressing

The ALPHA LSI computer is capable of performing single level indirect addressing
for addressing bytes, and multi-level indirect addressing for addressing words. Indl­
rect addressing uses direct addressing to read a word in Memory, called an address
pointer, which contains the address of another word. In Byte mode, the address
pointer contains the address of the byte to be addressed. The format of the address in
the address pointer is the same as that shown in figure 1-6.

In Word mode, the format of the address in the address pointer is that shown in figure
1-7. Bits O - 14 contain the address of another word in Memory. Bit 15 isa multi­
level indicator. If bit 15 contains a 1, the address in bits O - 14 is the address of
another indirect address pointer. The number of levels of indirect addressing which
may be used is limited only by memory size.

1-15

COMl'UlD AUTOMATION. INC. ~

15 14 13 12 11 10 9 8 I ~ WORD ADORESS: 15 BITS

) MUL TILEVEL INDIRECT INDICATOR:

6 5 4 3 2 0

0 = OPERAND
ADDRESS

1 = POINTER
ADDRESS

Figure 1-7. lndirect Address Pointer Format

1-16

COMPUTI: R AUTOMATION. INC. ~

Section 2

INTEGRATION

2 .1 INTRODUCTJON

This section provides detailed information pertaining to the mounting, cooling, and
interconnection of either the ALPHA LSI or NAKED MINI LSI-1 and -2 computers.

2. 2 ALP HA LSI INTEGRATION

The following paragraphs discuss mounting, cooling, installation of PC boards, and ac
power application for the ALPHA LSI computer.

2. 2. 1 Mounting (Figure 2-1)

The ALPHA LSI computer is designed to be mounted in a standard 19-inch rack
or cabinet. Figure 2-1 provides outline and mounting dimensions to facilitate instal­
lation of the computer.

2. 2. 2 Cooling (Figure 2-2)

The ALPHA LSI Computer is designed to operate over a temperature range of 0° C to
50° C. When the computer is installed in an enclosure, the installation requirements
depend on the ventilating system employed such that the thermal requirements of the
computer are maintained .

There are three installation criteria which provide the minimum cooling conditions
allowable for the ALPHA LSI computer.

1. Closed Ventilation System

2. Side Ventilation System

3. Top/Bottom Ventilation System

In the closed ventilating system, it is assumed the ambient temperature will be main­
tained by the thermal interface. The minimum size enclosure must provide adequate
air flow paths for the computer' s interna! fans.

2-1

COMPUT£R AUTOMATION. INC. ~

'<I ~- ..,
(1) ..,
I

2-2

COMPUTE R AUTOMATION . INC. ~

(')
0
"' ID
0.

<
å
"' ~
"' i

14------- > --..i
,------7,

\
\
\

~\il
{ I
~ I

I
I " \\ ~ i!

\\ ! ' i 1~
\\~ ------~J

I I\~ I ~J\

~

I
I
I
I
I I
I I
I I
I I
I I
I I
I I

0 -> :;1:1_
> > > l:,j :;1:1

---- ---- ---- (').., .., .., .., >-it"' "" "" "" -o, ...
~~

"' >-'l (') < a 0 t"' l:,j

~ 0 "'z l:,j

"' -<: >-i ti, l:,j oo- l:,j

0 0 >-it"' z
>-i l:,j > (')
>-i == ::l t"'
0 0 0

"' ==
z C:

:;1:1
l:,j ...

~ >-'l 00 ?" "" :.., 0 > _,
ti, "' "' C: _,

I I ~ t"'
0 I I >

I I = >-'l
ö I I = z

"' I I (')
0 I I =
I "' I 0 I 0 I
I I

.... "' I .0 ~ "" ';" I
0 0 I S'

2-3

COMPUTtll AUTOM ATION . INC. ~

The side ventilating system establishes the minimum enclosure size and rectangular
surface for the minimum size opening. This provides for a safety guard if necessary.

The top/bottom ventilating system defines the minimum arrnow paths fora cabinet
with stacked equipment or an individual console enclosure.

Figure 2-2 defines the minimal dimension parameters for each of these ventilating
systems.

2 • 2 • 3 Joining Two Half PC Boards

Most 1/0 modules occupy only half s PC board slot in the computer. When several half
board options are used, it is recommended that half boards be joined together to form
full boards. In those cases where an odd multiple of half board 1/0 modules is used,
a blsnk Filler PC board is available from Computer Automation, lnc. to join with the
last half board . (Ref er to section 12 for further details on the Filler PC board,
Part No. 10053-00).

Half board modules are joined together by means of a stiffener kit which is supplied
with each half board module (CAI part no. 95-20389-00) . Each stiffener kit consists
of the following parts:

1. Two 14-inch stiffener bars
2 . Twelve 4-40 x . 500 inch nylon screws
3. One nylon board extractor with roll pin
4. One interface connector

When joining two half boards together, two stiffener kits are required.

The stiffener bars are installed on the component side of each printed circuit board .
One stiffener bar is located parallel to the computer interface contacts on each mod­
ule. Another stiffener bar is located at the back edge of each module parallel to the
peripheral interface contact strips. Finally, two stiffener bars (one for each module)
are located on the adjacent edges of each module (what would be the center of a full PC
board).

Stiffener bars are installed in the following manner:

1. First determine the physical placement of the module in the computer, that is,
the relative placement of the module with regard to the priority string.

2. Next, install the center stiffener bars. The nylon screw is inserted through
from the solder side of the board. Tighten the screws.

3. Install a stiffener bar on the front and rear ed ges of both modules. Do not
tighten the screws .

2-4

COMl'UT£R AUTOMATION. INC. ~

4. N ext, find a lev el work surface. St and both modules in a vertical position
with the front edge down. En sure that the contact edge of each module is
touching the table surface and that the modules are butted together. Tighten
the nylon screws on the front edge. Now tighten the screws on the back edge.

5. Finally, examine the board extractors on one of the processor boards in the
computer. Find the simi!ar extractor mounting holes on each module. Mount
the extractor on each side of the module and insert the roll pin.

This completes the joining operation. The PC board is now ready to install in the
computer. When all boards are installed, be sure to in stall the board retainer at the
rear of the computer.

2. 2. 4 Option Board Installation

The Option PC board (option board) mounts in piggyback fashion to the left half (as
viewed from the front) of either the LSI-1 or LSI-2 processor module. Supportstand­
offs are provided with the processor modules. All loose hardware (screws, lock­
washers, washers and rear-edge connectors) is provided with the option board.

The option board has three edge connectors. Connector PI interfaces with Jl on the
processor module. Connector Jl is the option jumper connector and connector J2
is the Teletype interface connector. Detailed information about the use of connectors
J 1 and J 2 is provided in section 6 of this manual.

To install the option board, proceed as follows:

1. Take the option board and insert Jl and J2 through the slots in the rear stiffener
of the processor module.

2. Position connector PI for insertion into connector Jl on the processor module.

3. Gently push the option board into processor connector Jl aligning the four
mounting holes with the processor module standoffs.

4. Install a screw, lockwasher, and washer in each standoff and tighten.

5. lnstall rear edge connectors per instructions in section 6.

2. 2. 5 Module Installation, Processor Chassis Only

CAUTION

Do not remove or install any PC boards or cables while power is
applied to the computer.

2-5

COMPIJT£R AUTOMATION. INC. ~

The ALPHA LSI motherboard slot organization is shown in figure 2-3. All modules,
except the processor module which is restricted to the top slot (slot A) , can be placed
in any location within the processor chassis. In the placement of these modules,
however, consideration must be given to priority chains. These priority chains,
namely Interrupt, DMA, and Memory Banking, must be maintained. DMA and memory
modules provide for' the propagation of all priorities. The 1/0 modules provide for
Interrupt priority, but may not provide for DMA and Memory Banking. If 1/0 modules
are placed above DMA or memory modules, the priority input and output pins relating
to DMA and Memory Banking must be jumpered. The priority input and output pins
for DMA and Memory Banking are given in the chart below.

PRIORITY IN
MNEMONIC PIN

PRIORITY OUT
MNEMONIC PIN

DMA DPIN-

Memory Banking MBIN

209

237

DPOT­

MBOT

210

238

NOTE

Some 1/0 modules have the priority input snd output pins brought
out to plated holes to facilitate jumpering. If these plated holes
are not provided, the jumpers should be soldered directly to the
connector pin etch.

Interrupt priority is determined by physical location of the interface module within the
chassis. The priority line begins with slot B 200 and weaves through the motherboard
as shown in figure 2-3. It is routed through each 1/0 controller so it can inhibit the
lower priority devices when requesting service. Therefore, all 1/0 modules must be
placed in consecutive priority leve! slots to provide continuity in the priority chain.
If the priority chain is broken, down-stream interrupts may not be serviced. If they
are serviced, they will be serviced improperly.

As with Interrupt priority , DMA priority is determined by the physical location of the
DMA control!er. The DMA priority chain runs down the 200-series side connectors
only, the highest priority being in slot B 200 and the lowest in slot E200. Half board
DMA cor..trol!ers must be installed in 200-series connectors only.

The Memory Banking chain runs down the 200-series side connectors only. If half
board m~mory modules are used, they must be instsl!ed in 200-series connectors only.

If no apecific module placement scheme is required, the general rules below may be
applied ·:o facilitate module installation. If these rules are fol!owed, no particular
problems should occur.

NOTE

Install all modules with component side up .
2-6

COMPUTER AUTOMATION. INC. ~

.... '<: ~ '<: '<:
0 m m m

'<: '<: '<: '<:
"' I I I I s te ä ä ä 0

0

8

C

0

8
C")

8
.,
8

)>

8

)>

8

_m
zx
m)> ,, z

no~
)>00
o,Z Z ... z mm<"l
n:i::
-<)>
ö~ z;;;

2-7

COMPUTER AUTOMATION . INC. ~

1 . Install processor module in the top slot (slot A) .

2. Install memory modules next. The various sizes and types of memory
modules can be intermixed in any order. (Ref er to section 7 for
Memory lnterleaving and Banking information.) Half board memory
modules must be installed in 200-series connectors only.

3. Install DMA controllers after memory modules.

4. Inställ 1/0 modules last.

Documentation is provided for each type of 1/0 interface module. This document defines
the software and cabling requirements of the interface module. Ref er to the appropriate
interface description to resolve any questions about the interface module.

CAUTION

All 1/0 interface modules must have the rear-edge cable connector
installed prior to operation of the Processor . If the connector is
not installed , a default device address of zero will be assigned to
the module, causing improper instruction execution. Device ad­
dress zero is reserved exclusively for Processor use. For details
concerning assignment of a unique device address to each 1/0 inter­
face module, ref er to the associated interface description which is
packed with each module.

2. 2. 6 Expansion (Figure 2-4)

In the event insufficient slots are provided in the processor chassis for a given
application, the Maxi-Bus may be expanded via one or more expansion chassis. The
expansion chassis is identical to the processor chassis (same motherbosrd, etc.) but
includes a Buffer PC board (buffer board) to regenerate Maxi-Bus signals, and also
ribbon cables of the appropriate length for interconnecting between chassis. (The
length of the cables depends upon whether the interconnection is from the processor
chassis to the first expansion chassis, or between subsequent expansion chassis.)

To facilitate the computer system expansion, Maxi-Bus expansion connectors J2 and
J 3 are provided on the motherboard immediately above slot A. (Ref er to figure 8-11
for the pin assignments of connectors J2 and J3.) Connectors J2 and J3 are connected
to buffer board connectors J 2 and J 1 , respectively, in the first expansion chassis.
If further expansion is required, connectors J 4 and J3 at the bottom of the buffer
board are connected to J2 and Jl, respectively, of the next buffer board. The inter­
connect cables should be routed through slots located at the front , bottom and top
of each chassis.

2-8

COMPU T£R AU TOM ATION . INC . ~

The Buffer PC board is mounted with the component side facing the expansion chassis
motherboard. Emanating from the center of the component side of each buffer board
are two ribbon cables (Wl and W2). When facing the front of the chassis, the cable
on the right, W2, interfaces with connector J2 on the expansion chassis motherboard.
The cable on the left, Wl, interfaces with connector J3.

Expansion may extend to a maximum of three chassis. As expansion chassis are
installed, a speed degradation will occur. Memory modules located in expansion
chassis will exhibit an apparent slower system access and cycle time (200 ns for
each expansion chassis). Similarly, 1/0 modules located in a second expansion
chassis or beyond may require that the processor timing circuit be altered to provide
additional phase stretching du ring 1/0 operations (ref er to paragraph 6. 6. 5). (A
minimum 1/0 stretch period of 100 ns is recommended for each "subsequent" expan­
sion chassis beyond the "fi r st" expansion chassis.) This timing circuit is modified
simply by changing an option-jumper connector which configures all jumper­
controlled processor options in the machine. T'h i s option-jumper connector mounts
to the rear-edge of the processor option board. Note that whenever any stretch is
inserted, all 1/0 timing throughout the system is slowed down by the stretch period.

J3 Jl J2

Processor Chassis
Motherboard
(53500-00)

Expansion Chassis
Motherboard
(53500-00)

'-,...e:.=J .. -_-_-._r::._~:::,=..,=_~~Jo'...:-}!::-=-=-1~==:::::~.,.Subsequent
' ',, Expansion Chassis

Assemblies
', ', (12097-01)

",~
W2

J3 J4

Figure 2-4. Expansion Chassis Cabling Scheme

2-9

COM!'UTER AUTOMATION. INC. ~

2. 2. 6. 1 Module Installation, Processor and Expansion Chassis

In general, the processor chassis module installation rules described in paragraph
8. 2. 5 (referring to priority chains, placement of half board DMA and memory modules,
etc.) are also applicable to module installation in expansion chassis. In addition to
these general rules I the following rule applicable to installation of DMA controllers in
expansion chassis must be adhered to.

DMA controllers cannot communicate with memory or 1/0 modules
located in up-stream chassis. They can , however, communicate
with these modules if they are installed in any slot within the
same chassis, or within any down-stream chassis.

Expansion chassis must be in stall ed below the processor chassis.

If no specific module placement scheme is required, the general rules b elow may be
applied to facilitate module installation in the processor and expansion chassis.

1. Install the processor module in slot A of the processor chassis.

2. Install DMA controllers immediately below the processor module.

3. Install all memory modules next.

4. Im:tall all 1/0 modules last.

NOTE

NOTE

If the LSl-1 Processor is being used anda DMA module is in an
expansion chassis, it will not be able to communicate with the
Memory on the LSI-1 Processor board. For this reason, another
memory module with which the DMA controller can communicate
must be placed within the same chassis, or a chassis down-stream
from the DMA controller.

2. 2. 7 AC Power Application

Computers intended for use with 110 Vac are shipped with a line cord containing a
standard 3-prong ac plug. Computers intended for use with 220/240 Vac are shipped
with a lir,e cord, but without a plug due to the various plug configurations possible
when using 220/240 Vac. In these instances, the customer must install an appropriate
ac plug. Color coding for the wires contained in the ac line cord are as follows:

2-10

COMPUTER AUTOMATION, INC. ~

Black

White

Hot line-fused

Neutral line-unfused

Green Ground

Before plugging the ac line cord into a power source, be sure that the main power switch,
located on the back of the chassis, is in the OFF position, Plug the ac line cord into the
power source,

CAUTION

Connect ac line cord to properly grounded 3-prong receptacle only.

NOTE

When ac power is applied, the fans will operate when the main
power switch is in the ON position. Ensure that they are oper­
ating.

2.2.8 110 to 220/240 Power Line Conversion

The ALPHA LSI computer may be powered from either 110 Vac or 220/240 Vac, To
convert from 110 to 220/240, or 220/240 to 110, follow the procedure outline below and
perform the appropriate step 4 for the conversion desired, Step 4a is for converting
from 110 to 220/240 and step 4b is for converting from 220/240 to 110.

Step 1

Step 2

Step 3

Turn power off and remove line cord from ac power source.

Remove Console from front of chasais ,

Disconnect ac power connector Pl from the power supply. Power
connector Pl is connected to the power supply through an opening
in the motherboard.

Step 4a

Step 4al

Step 4a2

Step 4a3

110 Vac to 220/240 Vac

Using a Molex removal tool, remove pin 3 from power connector Pl.
(The pins are numbered on the wiring side of the connector.)
Insulate the pin with a piece of electrical tape and tie back to cable.

Remove pin 6 from power connector Pl and insert in pin 3 of Pl.

In stall a 220/ 240 Vac plug on the line cord.

2-11

Step 4a4

Step 4a5

Step 4b

Step 4bl

Step 4b2

Step 4b3

Step 4b4

Step 5

Step 6

Step 7

Change line fuse from 7A, 125 V to 3A, 250 V.

·Proceed to step 5.

220/240 Vac to 110 Vac

COMPUTER AUTOMATION. IN(. ~

Using a Molex removal tool, remove pin 3 from power connector
Pl and insert in pin 6 of Pl, (The pins are numbered on the
wiring side of the connector .)

Take the pin which is tied back to the power cable (contains a
blue and a black wire) and insert in pin 3 of Pl,

Install a 110 Vac plug on the line cord.

Change line fuse from 3A to 7A.

Reconnect power connector Pl to the power supply.

Install the Console .

Connect the line cord to the appropriate source of ac power ,
Then turn power on and test the computer,

2.3 NAKED MINI LSI INTEGRATION

The following paragraphs discuss mounting, cooling and interconnection of the NAKED
MINI LSI-1 and -2 computers.

2. 3 . 1 Mounting

There are two mounting considerations: one for LSI-1 and one for LSl-2.

2. 3 .1.1 LSI-1 Mounting Considerations (Figure 2- 5)

The LSI-1 computer may be mounted in any plane as long as the cooling requirements
are satisfied, The computer may be bard mounted with mobile or fixed interface eon­
nector or slide mounted with fix ed interface connectors,

Five mounting holes are provided for bard mounting, Two holes are at the front of
the rnodule near the corners, two are at the back of the module and one hole is located
in the center of the module. It is recommended that standoffs be used when bard
mounting the computer.

2-12

t AIR OUT PUT +
l':).94 @J@l

156 + .004 DIA ~ • -.001 16
16.050

=1

5 t/OUNTI NG HOLES

7.300 MEMORY CAP.D
/MAIN CA~D

\

---0 ru I~
7

~-

!~~~=------=-=~~'~~~=' t
.__________t~··. ,6 ~I~~ l.20@

AIR FLOW [Ej .___ ~ -~~~ ~ 2 PLACES
,_. 16.90 - ·

MAX LENGTH '1 _

\.fil ~f~oOPTION

THE COMPUTER MAY BE MOUNTED UTILlllNG SLIDE IN RAILS. THE
AREA PROVI DED AT THE EDGE OF EACH SIDE Q, THE MAIN CAP.D
IS FREE OC ETCH ASO COMPONENTS T0 OIMcNSION INDICATED.
THE CCMPUTEf\ MAY BE HARD MOUNTEO UTILlllNG THESE CIVE (5)
MOUNTING HOLES.
MATES WITH CONNECTOR(SPECTRA STRIP P/N SS800-034)0R EOUIVALENT.

,IATES WITH CONNECTOR (VIKING P/N 3VH2S/IJN-5) OR EQUIVALENT

MATES WITH CONNECTOR (WINCHESTER P/N 88DJl85) OR EQUIVALENT.

MATES WITH CONNECTOR (VIKING P/N 2VK430/l-12) OR EQUIVALENT.

t~f E~~Ö~0 ,i~\'dN A~iA~~ R~ÅL f8f,uoTu\\ ~~tTL}_ lT~ f_EPT rnEE o,
OBSTRUCTIONS AND AIR LEAKS SHALL BE ALLOWABLE TO THE
EXTENT THAT A MINIMUM OF 150 FPM OF AIR l·S EXHAUSTEO
FROM ANY PART ACROSS THE OUTPUT SIOE OF THE COMPUTER
MAIN CARD AS INDICATEO.
AIR SHALL BE SUPPLIED AT THE VOLUME OF 20CFM MINIMUM
WITH A MAXIMUM PRESSURE DROP OF .2 INCHES OF WATER
THROUGH AN AIR CORRIOOR AS INDICATEO,
AIR FLOW $HALL BE IN THE INDICATEO DIRECTION ONLY,
THE NAKED MINI ALPHA LS! COMPUTER MAY BE MOUNTEO IN
ANY PLANE PROVIDING NOTES .e_,';1 ! IQ ARE ADHEf\ED TOO.

THE OPTION CARD IS ACCESSABcE BY THE REMOVAL OF FOUR(4) ,.4
SCREWS AND PULLING THE CARD FROM THE CONNECTOR IN THE
DIRECTION SHOWN.

1%?Jt0t~o c~~Eu1
iG Af~P~t~6EFl~ÖMTHr'Ht'c~t1~Tg~ 1i0TMl "

4

DIRECTION SHOWN.
THE MEMORY AND OPTION CARO ARE ACCESSABLE FROM THE SURFACE
JNOICATEO.
CLEAR AP.EA (ETCH OR FEED THRUS) .350 DIA MINIMUM AROUND MOUNTIN[
HOLES 80TH SIOES.
MAXIMUM H<IGHT OF MEMORY CARD ! OPTION CARO (OPTION CARD
NOT SHOWN).
MAXIMUM COMPONENT HEIGHT OF MAi N CARD.

13]
GJ
0
0

NOTES: UNLESS OTHERWISE SPECIFIEO

Figure 2-5. NAKED MINI LSI-1 Outline and Mounting Diagram

COMPUTE R AUTOMATION , INC. ~

For slide mounting, a clear area of O . 200 inch is provided along each side of the
module to accommodate various types of PC board guides. The PC board guide should
be able to handle a PC board thickness of O. 062 inch. The LSI-1 computer module should
be supported along all four edges. The interface connectors aiong the front of the
module should be hard mounted to the users structure and some type of support should
be provided at the rear of the moduie .

2.3.1.2 LSI-2 Mounting

The LSI-2 is mounted in the same manner as the ALPHA LSI. Ref er to paragraph 2. 2 .1
and figure 2-1.

2.3.2 Cooling

The cooling requirements for the LSI-1 and LSI-2 are discussed below.

2 . 3 . 2 . 1 LSI-1 Cooling

The LSI-1 computer is designed to operate over a temperature range of 0° C to 50° C.
Cooling air must flow from the processor side of the module to the memory side of the
module. Notes 8, 9, and 10 of figure 2-5 must be adhered to.

2. 3. 2. 2 LSI-2 Cooling

The LSI -2 chassis has a fan housing with three fans. These fans provide adequate
cooling for the computer .

2. 3 . 3 Interconnection

The interconnection requirements of the LSI-1 and LSI-2 are discussed below.

2.3.3.1 NAKED MINI LSI-1 Interconnection

The LSI-1 interconnections consist of bringing power to the module, strapping all of the
signals from Pl to P2 (with the exception listed below), and interfacing the system
controI console to Pl.

There are ten special signals that interface with the Pl connector that are not part of
the Maxi-Bus. Eight of these signals are dedicated console interface signals while the
other two are dedicated power supply signals. Under no circumstances should these
signals be strapped across to the P2 connector. These dedicated signals and their pin
assignments are listed below.

2-14

COMPUTE R AUTOMATION . INC. ~

Signal Pin Dedicated to

ssw- Pl-9 Console
IF- Pl-10 Console
TTLF- Pl-11 Power Supply
+5H Pl-12 Power Supply
AL- Pl-33 Console
BM- Pl-34 Console
ov- Pl-37 Console
START- Pl-38 Console
SERV- Pl-83 Console
CINT- Pl-84 Console

Table 8-2 lists Maxi-Bus and power signals, along with associated pin assignments.

2.3.3.2 NAKED MINI LSI-2 Interconnections

All LSI-2 interconnections are made at the motherboard. Motherboard connector Jl
provides the console interface while connector FlOO provides the power interface.
Console interface information is available in section 10 while power supply interface
information is available in section 11.

To convert the LSl-2 from 110 Vac to 220/240 Vac, refer to paragraph 2 .2 .8.

NOTE

The NAKED MINI LSI-2 consists of a processor module,
memory module(s), chassis, motherboard and fan housing.
In addition to de power, the user must provide fan power
of 110 Vac at 0.6 amps to pin 1 and 2 of connector Pl of
the fan housing.

·2-15

Section 3

3. 1 PROGRAMMlNG CONSOLE

The ALPHA LSI Programming Console provides the switches and indicators required to
operate, display and control the computer. This section describes the controls and
indicators on the Console, provides operating procedures, and defines machine modes.

3. 1. 1 Switches and lndicators

For the convenience of the user, the switches and indicators have been grouped into
the following sections:

1. Status
2. Control
3. Entry and Display

Figure 3-1 illustrates the ALPHA LSI Console. All console switches, except the Console
Enable switch, are momentary contact touch switches and all indicators are light­
emitting diodes (LED' s) . The switches and indicators are listed and explained in
table 3-1.

NOTE

Due to the momentary contact nature of the Console
switches, the information entered via these switches
is volatile since it is stored electrically rather than
mechanically. The information will be lost <luring a
power outage. All pertinent information can be
restored, however, upon power resumption through
use of the Power Fail/Restart option and appropriate
software to restore the Status word. (Ref er to Power
Fail/Restart, section 6, and Status Control instruct­
ions , section 4 .)

3-1

l"l"'\UINrffD &IITnuanrw. tW.

Table 3-1. Console Switches and Indicators

SWITCH OH INDICATOR PURPOSE

System Status Section

ON Indicator

ENABLE Slide Switch
and Indicator

BYTE Indi cator

OV Indicator

SENSE Swltch and
Indicator

System Control Section

STOP Swi1ch and
Indicator

On when power is applied, off when power is removed.
The main power switch is located on the rear of the
computer.

The console enable/disable slide switch is located in a
recess on the edge of the console. When the switch is on,
the ENABLE indicator is on. Likewise, when the switch
is off the indicator is off. When in the ENABLE state, all
switches and indicators are enabled. When in the
disabled state, the only functions that are effective are:

1. The SEN SE switch and indicator.
2. The console sense register, console sense register

display, hex entry keyboard for the console sense
register, console interrupt, and interrupt indicator.

On when the Processor is in Byte mode. Off when the
Processor is in Word mode.

On when the Processor Overflow flag is on. Off when
the Overflow flag is off.

The SENSE Switch toggles the SENSE indicator.
The SENSE indicator may be tested by program instruct­
ions. The Sense test will be true if the SENSE indicator
is on.

The STOP switch toggles the STOP indicator. The
indicator is on when the Stop mode is established. When
the indicator is off the Run Enable mode is established.

When the Stop mode is established and the Console is
enabled (ENABLE indicator on) , data entry and display
operations may be performed. In addition, the Processor
will fetch and execute one program instruction each time
the RUN switch is pressed.

When in the Run Enable mode, data entry and display
operations may not be performed. The Run mode is
enabled but not entered until the RUN switch is pressed.

3-2

• • • • \i'-ff r 1: .31, <g,K l: • r rr .(j.;;;,

• • •
••••••••••••••••

• • • • • • • • • •
a

aaara aaaa
IIIIDII ··- •

Figure 3-1 . ALPHA LSI Console

COMPUTER AUTOMATION. INC. ~

Table 3-1. Console Switches and lndicators (Cont'd)

SWITCH OR INDICATOR PURPOSE

RESET Switch and
lndicator

AUTO Switch and
Indicator

INT Switch and
Indicator

RUN Switch and
lndicator

Entry / Display Section

Register Display
lndicators (0 thru 15)

The indicator is en when the RESET switch is an and
remains on only as long as the switch is pressed. The
RESET switch generates a system reset signal which
causes the Processor anct all mteriaces to oe imrianzeo ,

The RESET switch should not normally be used to stop
the computer. If RESET is pressed while the computer
is running, the instruction currently being executed
may not complete. The STOP switch should normally
be used to halt the computer. The only time that
RESET should be used to haLt the computer is in the
case where the Processor is hung up in a non­
escapable one instruction loop (e.g., multi-leve!
indirect address instruction with closed address chain).

The RESET switch should not be used after entering
data via the Console or any flags and indicators turned
on du ring data entry will be turned off.

The AUTO switch is used to initiate an Autoload sequence
if the Autoload option is installed. The AUTO switch is
enabled only du ring the Run Enable mode. Depressing
the Switch establishes the Run mode and initiates the
Autoload sequence. The indicator turns on when the
switch is pressed and remains on until the Autoload
sequence is completed. With no Autoload option
installed, depression of AUTO will still cause the
processor to run starting at location : 0000. However,
no loading occurs.

The INT switch is used to initiate a Console interrupt.
The switch is enabled only during the Run mode. The
indicator turns on when the switch is pressed and
remains on until the Processor honors the Console
interrupt request.

The RUN switch is used to establish the Run mode when
the STOP indicator is off. When the STOP indicator is
on, the RUN switch causes one instruction to be fetched
and executed when pressed. The WRITE/READ and
register indicators (A ,X ,I ,P and M) are turned off
whenever RUN is pressed. The RUN indicator is
turned on when in the Run mode.

The 16 Register Display indicators display the contents
of either the Console Data register or the Console Sense

3-4

COMPUTER AUTOMATION. INC. ~

Table 3-1. Console Switches and Indicators (Cont'd)

SWITCH OR INDICATOR PURPOSE

Register Select Switches
and Indicators (A, X, I,
P and M)

WRITE/READ Switch
and Indicator

register depending on the state of the S REG/DATA
indicator. When the S REG /DATA indicator is off, the
contents of the Console Data register are displayed.
The Console Data register contains either: 1) the
most recent contents of the A, X, I or P register or
Memory as requested by the Register Select switches;
2) the last processor output to the Console Data
register; or 3) the last keyboard entry to the Console
Data register.

When the S REG /DATA indicator is on, the contents of
the 4-bit Console Sense register are displayed on the
Register Display indicators. The Console Sense
register contains either the last keyboard entry to the
sense register or the last processor output via the
Status Output command. The upper 12 Register
Display indicators are turned off when displaying the
Console Sense register .

The five Register Select switches determine which one
of four processor registers or memory data is to be
involved in a read/write operation. Each switch has a
corresponding indicator which turns on when a given
switch is pressed. The indicators are interlocked such
that only one indicator is on at a time. The A, X, I and
P switches cause a transfer to occur between the target
register and the Console Data register. The M switch
causes a transfer between the addressed memory loca­
tion addressed by P Register and Console Data register
to occur and also causes the P counter to increment after
the transfer. This feature permits manual scanning or
loading of sequential memory locations by repeated
pressing of the M switch .

The WRITE/READ switch is used in conjunction with the
Register Select switches. When the WRITE/READ
indicator is on, the contents of the Console Data register
will be written into the target register or addressed
memory location when the appropriate Register Select
switch is pressed. When the WRITE/READ indicator is
off, the contents of the selected register or addressed

3-5

COMPUT£ R AUTOMATION . INC. ~

Table 3-1. Console Switches and Indicators (Cont'd)

SWITCH OR INDICATOR PURPOSE

Hexadecimal Entry
Keyboard (0 thru F)

S REG/DATA Switch
and Indicator

CLEAR Switch

memory location are copied into the Console Data
register and displayed .

The Hexadecimal Entry Keyboard consists of 16 switches
which are used to enter data into either the 16-bit
Console Data register or the 4-bit Console Sense register
as determined by the S REG/DATA switch and indicator.

When the S REG/DATA indicator is off, each depression
of a key causes a corresponding 4-bit binary hex code
to be entered into the four least-significant bits (LSB's)
of the Console Data register with the previously entered
data shifted four places to the left . The Console Data
register will be statically displayed as Iong as the
S REG/DATA indicator is off and the computer program
does not alter the contents of the Console Data register .

When the S REG/DATA indicator is turned on, each
depression of a hex entry key causes the corresponding
binary hex code to be entered into the four-bit Console
Sense register. The Console Sense register is statically
displayed in the four least significant Register Display
indicators solongas S REG/DATA is in the on state and
the computer program does not modify the contents of
the Console Sense register. The upper 12 Register
Display indicators are extinguished.

The S REG/DATA switch toggles the S REG/DATA
indicator which determines whether the Console Data
register or the Console Sense register is to be connected
to the hex entry keyboard and the Register Display
indicators. If the S REG /DATA indicator is off, the hex
entry keyboard is used to enter data into the Console
Data register and the Register Display indicators are
connected to the Console Data register. If the S REGI
DATA indicator is on, the keyboard and display are
connected to the Console Sense register.

The CLEAR switch, when pressed, clears data from the
Console Data register. The switch does not affect the
Console Sense register.

3-6

COMPU TER AUTOMATION. INC. ~

3. 1. 2 Machine Modes

There are four machine modes which are controlled from the Console: These modes
are:

1. Stop Mode
2. Step Mode
3 . Run Enable Mode
4. Run Mode

Mode selection is made by use of the RUN and STOP switches. The RUN and STOP
indicators define the current machine mode as follows:

STOP RUN MODE

on off Stop
on on Step
off off Run Enable
off on Run

3.1.2.1 Stop Mode

The Stop mode unconditionally halts program execution and enables the Entry and
Display section of the Console. The Stop mode is manually entered from either the
Run mode or the Run Enable mode when the STOP switch is pressed. While in the Stop
mode, the Entry and Display section of the Console is enabled.

3.1.2.2 Step Mode

The Step mode is a transient condition in which s single instruction is executed. The
Stop mode is re-entered upon completion of the instruction. A single instruction is
executed each time the RUN switch is pressed while the STOP indicator is on. Interrupts
are not serviced while in Step mode.

3.1. 2. 3 Run Enable Mode

The Run Enable mode is an intermediate mode between the Stop and Run modes. Either
the Run or Stop mode may be entered from the Run Enable mode. Conversely, the Run
Enable mode can be entered from the Run mode by execution of a programmed halt. The
Run Enable mode can be entered from the Stop mode by turning off the STOP indicator.
While in the Run Enable mode , the Entry and Display section of the Console is disabled .

3-7

COMPUTE R AUTOMATION. INC. ~

3.1. 2 .4 Run Mode

The Run mode can be entered only from the Run Enable mode. When entered, the Run
mode permits the user's program to execute. The Run mode can be established manually
from the Console; serrn-automaricaily Dy rueune v: i.~1C A.u.!v!v~d ~~!!8~; , nn+nmati;r,ttlly
by means of the Power Fail/Restart option.

The Run mode is entered manually from the Run Enable mode by pressing the Console
RUN switch. If the Autoload and Power Fail /Restart options are installed, the Run mode
is entered from the Run Enable mode when the AUTO switch is pressed. The Power Fail/
Restart option automatically establishes the Run mode upon application of adequate power
regardless of processor or console status prior to the power failure.

3. 1. 3 Console Operation

The ALPHA LSI Console is used for initial start-up, program debug, and trouble­
shooting. The primary functions exccuted at the Console are register display and
register change, and the display and entry of memory data. The following paragraphs
discuss detailed procedures for performing these operations.

3. 1. 3. 1 Console Preparation

There are several common steps that must be performed before any console operation
may be attempted. These steps prepare the Console and the computer for console
operations. The initial steps are:

1. Power On

2. Enable
Console

3. Press
STOP

The main power switch for the computer is at the rear of the
chassis. Place the power switch in the up position (ON) .
The ON indicator on the Console will light and the chassis
blowers will run.

Enable the Console by moving the Console Enable slide switch
(located in the recess on the side of the Console) to the enable
position. The ENABLE indicator is on when the Console is
enabled.

The computer may come up in the Run mode because of a
previously loaded program. Pressing STOP causes the
computer to leave the Run mode.

NOTE

In some cases the RUN indicator may remain on after the
.STOP switch is pressed. This condition may exist when
the computer is attempting to execute certain 1/0
instructions. This does not indicate a malfunction of the
computer. When this occurs, step 4 of this procedure
will correct the condition .

3-8

COMPIJTI:R AUTOMATION. INC. ~

4. Press
RESET

Pressing RESET puts the computer in Word mode and
initializes the computer and peripheral interfaces. It
forces the termination of any incomplete instructions.

3. 1. 3. 2 Console Data Entry Procedure

The Console Data Entry procedure is used to store data into selected registers or
memory locations from the ALP HA LSI Console. The general procedure is to
enter the data into the Console Data register via the hex keyboard and then transfer
the data to a target register or addressed memory location via the Register Select
switches. The detailed procedure is as follows:

Prepare the Console and the computer for console
operations as described in paragraph 3. 1. 3 .1.

Enables Console Data register entry, display and
transfer.

1. Ready Console

2. Turn S REG/DATA
Indicator- off

3. Turn WRITE/READ
lndicator on

4. M(mory Address
--p

5. Data -- Target
Register or Memory

6. Sequential Memory
Stores

Enables writing into a selected target register or
memory location.

Before writing into memory locations , the memory
address where data is to be stored is entered into the
Console Data register and the P switch is pressed to
transfer the contents of the Console Data register to
P. This step is not required to enter data into the
A, X, I or P registers only.

The data is entered into the Console Data register.
The appropriate register select switch is pressed to
transfer the contents of the Console Data register to
the target register or addressed memory location.

The P register is automatically incremented each
time M is pressed. To store data in sequential
memory locations, go back to step 5 for each succeeding
word. To store data in a new location, go back to
step 4.

3. 1. 3. 3 Console Display Procedure

The Console Display procedure is used to display the contents of selected registers or
memory locations. The general procedure is to transfer the data from a register or
memory location to the Console Data register by use of the appropriate Register Select
switch. The detailed procedure is as follows:

3-9

COMPUTER AUTOMATION. IN(. ~

1. Ready Console

2. Turn S REG/DATA
Indicator off

3. Turn WRITE/READ
lndicator on

4. Memory Address
--P

5. Turn WRITE/READ
Indicator off

6. Target Register or
Memory -- Console

7. Sequential Memory
Displays

Prepare the Console and the computer for console
operations as described in paragraph 3. 1. 3. 1.

Enables Console Data register, entry, display and
transfer.

Enables writing desired address into P register.
(Required only prior to displaying memory
locations .)

The address of the memory location to be displayed is
entered into the Console Data register and the P switch
is pressed. (Required only prior to displaying
memory locations .)

Enables reading from a selected register or memory
location.

When the appropriate Register Select switch is pressed,
the contents of the selected target register or memory
Iocation are copied into the Console Data register and
displayed.

The P register is incremented each time M is pressed.
Therefore, to display data in sequential memory
locations , go back to step 6 .

CAUTION

The following caution is applicable when stepping through
a program on the LSl-2 computer:

If the computer is halted (execution of HLT instruction)
within the range of a SIN instruction, any Console operation
will cause execution of the remaining instructions within
the SIN range before the Console is serviced.

3. 1. 3. 4 Program Execution

Programs to be executed may be entered into Memory by a number of different means.
Short programs may be entered using the Console Data Entry procedure described in
paragraph 3. 1. 3. 2. Lon ger programs may be entered using the Autoload feature or
various loader programs. Regardless of the means used to get a program into Memory,
the method used to execute that program is generally the same. The Program counter
(P register) must be set to the starting address of the program, and the computer Run
mode must be entered. The fol!owing steps are used to start program execution from
the Console:

3-10

COMPUTER AUTOMATION. INC. ~

1 . Ready Console

2. Start Address
--P

Enter any required starting information associated
with the program in the A, X or Sense register as
appropriate.

3. Press STOP This enables Run mode, but does not cause the
computer to enter Run mode.

4. Press RUN

Prepare the Console and the computer for console
operations as described in paragrapti 3. 1. 3. 1.

Enter the starting address of the program to be
executed in the P register.

NOTE

Pressing the RUN switch causes the computer to
enter the Run mode. The computer will continue to
run until it executes a Halt instruction, or until the
STOP switch is pressed.

3. 1. 4 Unattended Operation

If for any reason the computer is left unattended when executing a program, it is
recommended that the Console be disabled by placing the Console Enable switch to
the Disable position.

3.2 OPERATOR CONSOLE

3. 2. 1 lntroduction

The Operator Console provides minimum facilities for the control and display of pro­
cessor operations. It can be used in systems having at least one of the following
options: Power Fail/Restart (PFR), Autoload (AL) or Automatic Start-up (ASU).

The Operator Console is connected to console interface connector Jl on the mother­
board and receives its power, +5VDC and ground, through the motherboard. The
console provides switches to reset the system, to interrupt the processor, and to
start the processor or initiate autoload , depending on the options in stall ed. Indicators
are provided to indicate power on , system running, and overf!ow .

3-11

COMl'IJ nR AU TCM:.T:ON. INC.

• 0 0 Switches and !ndicators ,). £.."'

All switches are of the momentary-contact type activated in the down position. All
indicators are LED' s. swucn and. indicucor uµen1Liu11 i::, ::,Ull1iä1C1.i"izi;d i~ !:::.!;!:; 2. 2.

Table 3. 2 Switch/lndicators - Operator Console

Switch/Indicator Function

ENABLE Activation of this switch provides a ground-true signal that
Switch enables all other switches on the Operator Console. ENABLE

must be held down while any other switch is activated and
not released until the activated switch is released.

RESET The RESET switch, when activated, forces system Reset (RST-)
Switch ground true initializing the processor and all interfaces.

START In systems having the Autoload option, this switch, when acti-
Switch vated, generates the Autoload signal (AL-, ground-true)

starting the Autoload sequence. For this operation, signals
must be strapped as described in paragraph 3. 2. 3.

In systems without Autoload option, AL- starts the processor oper-
ting from location : 0000 by initiating a powcr-up sequence provid-
ing that signals are strapped as described in paragraph 3. 2. 3.

INTerrupt When activated, this switch generates the Console Interrupt
Switch signal (CINT-, ground true) commanding the processor to

interrupt normal processing. Once the processor has serviced
this intcrrupt, the Console Intcrrupt Enable Mask (CIE) is not
reenabled for 1. 5 ms, under software control.

Power ON This indicator, when "on ," indicates that power (+5VDC) is
Indicator applied to the Operator Console.

RUN Indicator This indicator, when "on ," indicates that the processor is in
Run mode. This LED is energized as a result of Memory Start,
MST-, from the processor.

OVerflow This indicator, when "on ," indicates data overflow in the pro-
Indicator ccssor. It is energized by the OV flip-flop.

3-12

COMl'UT£R AUTOMATION, INC. ~

3. 2. 3 Strapping Requirements

Since the Operator Console does not have a SENSE switch or Sense Register, jumpers
(-- ou,Hnhao' m .. ot ho> ;n.otRllPcl to replace these functions. The requirements vary with
two system configurations:

1. Systems Without Autoload Option. To start processor operation upon acti­
vation of the START switch as explained in table 3. 2, AL- must be jumpered
to QATLD- on the option board or at processor connector Jl. Alternately,
AL- can be jumpered to PFD- on the motherboard.

2. Systems with Autoload Options. With this option, the activation of START
initiates an Autoload sequence. To perform an autoload and execute from
a loader device, the Sense Switch signal (SSW-, pin 2) and Enable Data Sense
Word (ENDSW-, pin 28) must be strapped to ground at option board eon­
nector Jl. Also, data sense signals DS00 - DS03 must be strapped at the
option board connector Jl for proper selection of the loader device. These
signals are on the following pins of Jl (see figure 6-2):

DS 00-, pin 34
DS0l-, pin 33
DS 02-, pin 36
DS03-, pin 31

The device is selected by strapping the appropriate pin (s) according to
table 3. 3.

Table 3.3 Device Selection

LOAD (Jl pin no.) EQUIVALENT
LOADER DEVICE MODE STRAP TO GND HEX ADDRESS

TTY /P. T Reader ABS None :0
Hi Speed P. T. ABS 34 : 1
Mag Tape ABS 33 :2
Cassette ABS 33,34 :3
Disc ABS 36 : 4

TTY /P. T Reader REL 31 : 8
Hi Speed P. T. REL 31,34 : 9
Mag Tape REL 31,33 :A
Cassette REL 31,33,34 :B
Disc REL 31,36 :C

To perform an Autoload and execute without a loader device, all data sense signals
(bits) must be grounded (: F). This causes an unconditional exit to location : 31 (see
paragraph 6. 5. 6).

3-13

COMl'UTl: R AUTOMATION . INC. ~

Section 4

INSTRUCTIONS AND DIRECTIVES

4 .1 INTRODUCTION

This section deals with the various instructions and directives recognized by the
assembler. The Beta assembler- translates programs which are written in a symbolic
language (mnemonics, etc.) inta an object language (machine code - see appendices
C and D) which may be loaded inta the ALPHA LSI computer. Outputs from the
assembler consist of the program object code (typically a punched paper tape) and
the program assembly listing. The Beta assembler is a two-pass assembler. A symbol
table for the program is compiled on the first pass and the program object code and
assembly listing are produced on the second pass.

4. 1. 1 lnstruction and Directive Classes

The instruction and directive classes are listed below in figure 4-1. They are
discussed in this section.

CLASS
CLASS 2
CLASS 3
CLASS 4
CLASS 5
CLASS 6
CLASS 7
CLASS 8
CLASS 9
CLASS 10
CLASS 11
CLASS 12
CLASS 13
CLASS 14
CLASS 15

SINGLE-WORD MEMORY REFERENCE INSTRUCTIONS
DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS
STACKINSTRUCTIONS
BYTE IMMEDIATE INSTRUCTIONS
CONDITIONAL JUMP INSTRUCTIONS
SHIFT INSTRUCTIONS
REGISTER CHANGE AND CONTROL INSTRUCTIONS
INPUT /OUTPUT INSTRUCTIONS
JUMP ON CONDITION INSTRUCTIONS
ASSEMBLER CONTROL DIRECTIVES
DATA AND SYMBOL DEFINITION DIRECTIVES
PROGRAM LINKAGE DIRECTIVES
SUBROUTINE DEFINITION DIRECTIVES
LISTING FORMAT AND ASSEMBLER INPUT DIRECTIVES
USER DEFINED OPERATION CODE DIRECTIVES

Figure 4-1. Instruction and Directive Classes

4-1

COMPUTER AUTOMATION . INC. ~

4 .1. 2 Symbolic Notation

The symbolic source code input to the Beta assembler consists of individual symbolic
statements. All of the statements taken together make up a program which is to be
translated.

All instructions and certain directives generate an object code. Other directives serve
only to control the as'sembly process.

A source statement represents either an instruction or a directive. It contains four
fields - the Label field, the Operation Code (Op Code) field: the Operand field and the
Comments field. Adjacent fields are separated by one or more spaces which allows
free-form symbolic input to the assembler. A space in the first character position of a
source statement indicates no label present. The listing output from the assembler is
formatted for ease in reading, with the Op Code, Operand and the Comments fields
beginning at fixed positions on the listing. Source statements on paper tape are
terminated with a carriage return. Line feeds and "rubouts" are ignored. All source
statements are limited to 72 characters.

The instructions and directives acceptable to the BETA assembler are described in
detail in the remainder of this section. The following conventions apply:

1. Square brackets [] enclose elements which are optional and may
be included or omitted as required.

2. Two or more elements separated by a vertical bar (I) indicates a
choice must be made from the enclosed elements.

3 . A right square bracket followed by dots (] ...)
indicates that the enclosed element may be repeated an arbitrary
number of times.

4 .1. 3 Assembler Source Statement Fields

The following paragraphs discuss the four assembler source statement fields. The
relative positions of the fields are shown below in figure 4-2.

LABEL FIELD OP CODE FIELD OPERAND FIELD COMMENTS · FIELD

Figure 4-2. Source Statement Format.

4. 1. 3 . 1 Label Field

The Label field may contain a name which can be referenced by other instruction state­
ments. It is identified by an alphabetic (A-Z) character in the first position of the
source statement. This first character may be followed by as many as five alpha­
numeric (A-Z, 0-9) or colon (:) characters. This field is terminated by one or more
spaces.

4-2

COMl'Ult R AU TOM ATION , INC . ~

At assembly time, the label is assigned the current value and relocation attribute of the
Program counter (P register). The same name may not appear in the Label field of more
than one source statement in a given program (exc:-ept when used with the SET directive).

4.1. 3. 2 Op Code Field

The Op Code field contains a legally defined symbolic instruction or directive. In
addition, user-defined Op codes may appear in this field. The Op Code field consists
of not less than one nor more than four characters, and is terminated by one or more
spaces. The Op Code field of a source instruction statement must be present.

4. 1. 3. 3 Operand Field

The various instructions and directives may or may not require operands. In any esse,
the syntax of the Operand field depends on the type of instruction or directive with which
it is associated. The Operand field syntax description is contained in the discussions of
the instructions and directives. If the Operand field is present, it contains an expres­
sion consisting of one of the following:

1. The currency symbol ($), representing the current program location.
2. A single symbolic term.
3 . A single numeric term .
4. A combination of symbolic terms, numeric terms and/or the currency

symbol joined by the arithmetic operators plus (+) or minus (-).
5. A text string.
6. A literal (=xx).

The value assigned the currency symbol by the assembler is the value of the assembler's
Working Location Counter at the time the currency symbol is encountered. The value is
absolute if an absolute assembly is being performed and relative if a relocatable assembly
is being performed. The currency symbol allows the programmer to reference memory
locations relative to the instruction being written rather than assigning labels to the
referenced location .

Symbolic terms (names) may be absolute or relative, depending on the assembly mode
under which they have been defined.

Numeric terms are always absolute. They consist of decimal, octal and hexadecimal
numbers. Decimal numbers can be any value in the range -32768 through +32767.
The first digit of the number must be non-zero. Octal numbers can be any octal value
in the range 0 through 0177777. The first - or leading - digit of the number must be
zero to specify octal numbers. Hexadecimal numbers can be any hexadecimal value in
the range : 0 through : FFFF. The number must be preceded by a colon (:) . Although
octal and hexadecimal numbers may be signed, they are normally used to generate a bit
pattern or reference a particular memory location rather than to generate s signed
numeric value.

4-3

COWUTER AUTOMATION. INC. ~

Combinations of terms (including the currency symbol) can be achieved by using the
arithmetic operators plus(+) and minus(-). The value ofthe final expression will be
in the range : 0 thru : FFFF. Corntnnanons of relative and absolute terms are governed
by additional restrictions (see paragraph 4. 1. 5) .

Text strings consist of any sequence of characters surrounded by single quotes (') .
Inclusion of a single quote within the character string is accomplished using two adjacent
single quotes. The object code generated consists of 8-bit ASCII character codes, packed
two characters per word, or one 8-bit ASCII character in the LS byte of an instruction
(e.g., the operands of lmmediate instructions). When a DATA directive is used, the
text string may consist of one or two characters. When one character is specified, the
8-bit code appears in the LSB byte of the computer word, with the MS byte set to zero.

If two characters are specified, the code for the first character is put in the MS byte of
the computer word and the code for the second character is put in the LS byte of the
computer word. When the TEXT directive is used, the text string may consist of as many
as 57 characters. The characters are packed two per word, with the code for the firat
character appearing in the MS byte of the computer word and the code for the second
character appearing in the LS byte of the computer word. Trailing character positions
are filled with blanks (: A0) - e. g. , TEXT 'A' would generate a value of : ClA0 for the
specified computer word .

Literals are designated by preceding the expression in the operand with an equal (=)
sign Oiterals are only valid for class l instructions). This affects the entire expression,
not just one term in the expression. When a literal is encountered by the assembler, a
word is reserved in the scratchpad area of Memory to hold the computed value of the
expression in the Operand field. Memory addressing is then generated to access the
scratchpad location .

4. 1 . 3. 4 Comments Field

The Comments field follows the Operand field or, for those instructions which do not
require operands, the Op Code field. This field generally contains programmer' s notes,
cryptic messages, helpful hints, etc. Comments appear on the sssembly listing, but
do not generate obj ect code.

4. 1. 4 Arithmetic Operations and Overflow

The ALPHA LSI computer performs two's complement arithmetic. All additions and
subtractions are performed on full 16-bit values. Thus, addition operations involving
byte values place the 8-bit data in the least significant 8 bits of the adder and set the
most significant 8 bits to zero (e. g. , AX! : 50 would add : 0050 to the 16-bit X register).
Subtraction operations inv?lving byte values similarly obtain the 16-bit two's comple­
ment of the data (e. g. , SXI : 50 would add : FFB0 to the 16-bit X register) .

4-4

COMPUTE R AUTOMATION. INC. ~

Arithmetic overflow occurs when the result of an arithmetic operation exceeds the range
-32768 through +32767. Specifically, this involves the carry from bit 14 to bit 15 of the
adder, and the carry out of bit 15 (CO). If the carry from bit 14 to 15 is not the same
as the carry from 15 to CO (0 and 1 or 1 and 0), an arithmetic overflow has occurred and
the overflow (OV) indicator is set. The operation is described below in figure 4-3.

1. Carry In and Carry Out 2. No Carry In and No Carry Out
No Overflow No Overflow

co s co _§.
T T, 111 1111 llll 011-carries 0 0 101-carries

-5 = '1 lll 1111 llll 1011 +5 = 0 000 0000 0000 0101
+ (-5) = 1 111 1111 1111 1011 + (+5)= 0 000 0000 0000 0101

-10 = 1 lll 1111 llll 0110 +10= 0 000 0000 0000 1010

3. Carry In and No Carry Out 4. Carry Out and No Carry In
Overflow Overflow

co s co s
0 T 111 1111 1111 111-carries 10 -carries

+32767 = 0 '111 1111 1111 1111 -32768 = '1 000 0000 0000 0000
+ (+l) = 0 000 0000 0000 0001 + (-1) = 1 111 1111 1111 1111
32768 = 1 000 0000 0000 0000 -32769 = 0 111 1111 1111 1111

Figure 4-3. Arithmetic Overflow

4. 1. 5 Relocatability

Relative and absolute programming modes are controlled by the REL and ABS directives.
The default condition of the assembler is the Relative (REL) mode. The programmer should
note that the ORG directive modifies the contents , but not the relocation attribute, of the
assembler's Working Location Counter.

An absolute program (or section of coding) can only be loaded and executed in the memory
locations specified by the user at assembly time, whereas a relative (or relocatable) pro­
grams may be loaded and executed in any memory area specified by the user at load time.
Out-of-range memory references are resolved through the use of the scratchpad area in
the base page (the first 256 words of Memory). The user should refer to the LAMBDA
Object Loader documentation.

Multiple-term expressions are reduced by the assembler to a single expression which
may be relocatable or absolute, according to the following rule:

R = (Number of added relocatable terms) - (Number of subtracted relocatable terms)

If R = 1, the expression is relocatable; if R = 0, the expression is absolute; and if R is
not equal to O or l, the expression is illegal.

4-5

COMPUT£R AUTOMATION. INC. ~

Relocatable expressions are modified by the load bias (established at program Joad
time) when the LAMBDA Object loader is executed:

Relocated Expression Value = Assembled Expression Value + Load Bias

In addition, the looation of the entire program (or block of coding) is offset by the same
load bias:

Relocated Program Location = Assembled Program Location + Load Bias.

4. 2 MEMORY REFERENCE INSTRUCTIONS

4. 2 .1 Word Mode Operations and Instruction Format

Word mode Memory Reference operations access full 16-bit memory operands. The
default mode of the computer is the Word mode - i.e., when no mode control
instruction has been executed, the computer is in the Word mode. SWM is the
mode control instruction which places the computer in the Word mode. In addition,
the SIN, SIA and SIX instructions force the computer into the Word mode. The SIN
instruction forces the Word mode for the number of succeeding instructions specified
by its associated operand. The SIA and SIX instructions unconditionally force the
Word mode. The format for the Word mode Memory Reference instructions
is shown in figure 4-4.

OPCODE [* I @ I *@] EXPRESSION [coMMENTs]

No Operator = Direct Address
* = Indirect Addressing (multi-leve!)
@ = Indexed Addressing

* © = lndirect Post-indexed Addressing (multi-leve!)

Figure 4-4. Word Mode Memory Reference Instruction Format

All (16-bit) word address pointers (defined by DATA statements) consist of fifteen
bits of address in the least significant 15 bits. The most significant bit (bit 15)
specifies indirect addressing if equal to 1 or direct addressing if equal to O.

4. 2. 1. 1 Word Mode Direct Addressing

Word mode direct addressing allows any Memory Reference instruction to access the first
256 words of Memory (the base page/scratchpad area) as well as 512 memory locations
about the instruction itself (relative to P). Relative to P forward addressing includes
256 words forward (toward higher memory) of the instruction and relative to P backwards

4-6

COMPUTl: R AUTOMATION, INC. ~

addressing includes the instruction itself and 255 memory locations backward from
the iu::,li'uctiun. When direct addrasstng is deair cd , thc cxpression in the Operand
field should not be preceded by an • or @ character. When the assembler encounters
a direct reference to an out of range memory location, it automatically generates an
address pointer in the scratchpad area and references the associated memory
location indirectly through the pointer.

4. 2 .1. 2 Word Mode Indirect Addressing

Word mode indirect addressing allows any Memory Reference instruction to access
any memory location through an address pointer in the scratchpad area or an
address pointer in the 512 memory Jocations about the instruction itself (relative to P).
Relative to P forward indirect addressing allows the address pointer to reside in any
memory location up to 256 words forward (toward higher memory) of the instruction
and relative to P backwards indirect addressing allows the address pointer to be in
any memory location 255 words or less prior to the instruction. When indirect
addressing is desired, the expression in the Operand field should be preceded by
an asterisk (*). Multi-leve! indirect addressing is accomplished by accessing address
pointers in which the most significant bit (bit 15) is set. The memory operand is not
accessed until an address pointer with the mos! significant bit reset (= 0) is
encountered. Indirect address pointers can be defined by the programmer through
the use of the DATA directive by preceding the expression in the Operand field with
an asterisk (*) .

4. 2. 1 . 3 Word Mode Direct Index ed Addressing

Word mode direct indexed addressing allows any Memory Reference instruction to
access memory locations by algebraically summing the signed contents of the X
register and any offset value in the range O through 255. The offset value is defined
by the expression in the Operand field. When direct index ed addressing is desired,
the expression in the Operand field should be preceded by an @ symbol. When the
assembler encounters an expression with a value greater than 255 in the Operand
field of a direct indexed Memory Reference instruction, it automatically generates
an address pointer in the scratchpad area and references the associated memory
location indirect postindexed, through the pointer.

4. 2. 1. 4 Word Mode Indirect Postindexed Addressing

Word mode indirect postindexed addressing allows any Memory Reference instruction
to access memory locations by algebraically summing the contents of the X register and
the contents of an address pointer in the scratchpad area. If the most significant bit
of the address pointer is set, it contains the addrass of another address pointer, which
in turn may contain the address of another pointer, and so forth. When an address

4-7

COMl'UTE R AI.ITOMATION . INC. ~

0
0

(X)+: FF

t
I

IX)

fP)+1:FF --------------

i RELATIVE TO P1 FORWARD: 256 LOCATIONS
Y • 1'1• 1 + IDI

IPI + 1 LOCATIONS IPI • 1-IP) + 1 + 255

liPI -+~RELATIVE TO P1 BACKWARO: 2S& LOCATIONS-
111 • 11) Y • IPI-CDI
LOCATIDNS IPI-IPI -~S

IP)-:FF ------------ -

:FF

i
-no

INDEXED: 2S6 LOCATIDNS
Y •!X!• fO!
LOCATIONS IXI-IXI • 2SS ~-------------

------------ SCRATCHPAO: 256 LOCATIONS
Y• IDI
LOCATIONS o-m

Direct Adressing

MEMDRY

==== OPERANO ====
____ OPERAND _

_ _ INSTRUCTIDN: IADDRESS) __

__ AODRESS POINTER (BIT IS• Dl __

__ ADDRESS POINTER IBIT IS• I) __

SCRATCH PAD ADDRESSING DR RELATIVE TO P AD DRESSING IS
ustn TD ADDRESS AN ADORESS POINTER

BITS 0-14 OF THE ADDRESS POINTER CONTAIN A MEIIORY ADDRESS. IF BIT IS OF
THE ADDRESS POINTER CONTAINS AI-BIT, THE MEMORY ADDRESS IN BITS0-14 IS
THE ADDRESS OF ANOTHER AODRESS POINTER.

0 IF BIT IS OF THE ADDRESS POINTER CDNTAINSAO-BIT. THE AODRESS IN BITS0-14
IS THE ADDRESS OF THE MEMORY OPERAND.

0 IF INOEXING IS SPECIFIED BY THE INSTRUCTION, THE AD DRESS IN BITS O - 141S
ADOED TO THE CONTENTS OF THE X REGISTER TO FORM THE EFFECTIVE OPERAND
AODRESS.

Indirect Adressing

Figure 4-5. Word Mode Adressing Summary

4-8

Cowumt AU TOM ATION . INC . ~

pointer with the most significant bit (bit 15) set to zero is found, the contents of the X
register are added to it to form the effective memory ad dress. The memory operand
is then accessed. When indirect postindexed addressing is desired, the expression
in the Operand field should be preceded by an asterisk (*) and an @symbol.

Becaus'e the Scan Memory (SCM) instruction always uses indirect postindexed
addressing, the assembler automatically generates the necessary machine code
and does not al!ow @ or • operators on the associated operand expression. The
operand expression for this instruction should reference a user-defined address
pointer in the base page .

4. 2. 1. 5 Word Mode Summary

A summary of Word mode addressing is shown in figure 4-5.

4. 2. 2 Byte Mode Operations and Instruction Format

Byte mode Memory Reference operations access 8-bit byte operands. The Byte mode
is estab!ished by execution of the Set Byte Mode (SBM) instruction. Byte mode
is inhibited (the computer is forced into the Word mode) by execution of the SIN, SWM,
SIA and SIX instructions. The SIN instruction inhibits Byte mode operations for the
number of succeeding instructions specified by its associated operand. The SWM,
SIA and SIX instructions unconditionally force the computer into the Word mode.
The format for Byte mode Memory Reference instructions is shown below in figure 4-6.

OP CODE [•I@ I•@] EXPRESSION

No Operator = Direct Address
* Indirect Addressing (One Leve!)
@ Indexed Addressing

*@ Indirect Postindexed Addressing (One Leve!)

[coMMENTS]

Figure 4-6. Byte Mode Memory Reference Instruction Format

AI! (16-bit) byte address pointers (BAC directive) consist of fifteen bits of word
address in the most significant 15 bits. The least significant bit (bit 0) specifies
the mos! significant 8 bits (MS byte) of the addressed word if equal to O, or the least
significant 8 bits (LS byte) if equal to 1. Only one leve! of byte rnemory reference
indircct addressing, specified in the instruction itself, is possible. Byte operands
affecting the register are always right-justified, i.e., bytes cannot be loaded into, added
to or stored from the MS bytes of the A and X registers.

The JMS, MPY, DVD, NRM, JMP and JST instructions are not affected by the Byte
mode. They always use full 16-bit word operands.

4-9

COMPUTEII AUTOMATION. INC. ~

4, 2. 2 . 1 Byte Mode Direct Addressing

Byte mode direct addressing allows any byte Memory Reference instruction to access
the first 256 bytes (128 words) of Memory as well as 512 byte locations forward
(toward higher memory) of the instruction itself. When direct addressing is
desired, the expression in the Operand field should not be preceded by an * or @
character. When the assembler encounters a direct reference to an out of range
byte location, it automatically generates a byte address pointer in the scratchpad
area and references the associated byte location indirectly through the pointer ,

4. 2. 2. 2 Byte Mode Indirect Addressing

Byte mode indirect addressing allows any byte Memory Reference instruction to
access any byte location through a byte address pcinter in the scratchpad area
or a byte address pointer in the memory locations about the instruction itself
(relative to P). Relative to P forward indirect addressing allows the byte address
pointer to reside in any memory location up to 256 words forward (toward higher
memory) of the instruction and relative to P backwards indirect addressing allows
the byte address pointer to be in any memory location 255 words or less prior to the
instruction. When indirect addressing is desired, the expression in the Operand
field should be preceded by an asterisk (*). Byte address pointers to be used by
indirect byte Memory Reference instructions can be defined by the programmer by
using the BAC directive. Since a byte address pointer utilizes all 16 bits to specify
a given byte location, indirect byte ad dressing is limited to one leve!,

4. 2 . 2 . 3 Byte Mode Direct Indexed Addressing

Byte mode direct indexed addressing allows any byte Memory Reference instruction
to access byte locations by summing the contents of the X register and any base value
in the range O through 255. The base value is defined by the expression in the
Operand field. When direct indexed addressing is desired, the expression in the
Operand field should be preceded by an @ symbol. When the assembler encounters
an expression with a value greater than 255 in the Operand field of a direct inde~ed
byte Memory Reference instruction, it automatically generates a byte address pomter
in the scratchpad area and references the associated byte memory location indirect
postindexed through the byte address pointer.

4. 2. 2. 4 Byte Mode Indirect Postindexed Addressing

Byte mode indirect postindexed addressing allows any byte Memory Reference
instruction to access byte locations by summing the contents of the X register and the
contents of a byte address pointer in the scratchpad area. When indirect postindexed
byte addressing is desired, the expression in the Operand field should be preceded by
an asterisk (*) and an @ symbol.

4-10

COMl'UTER AUTOMATION. INC. ~

~~ESS ,-------11 ... EII_D __ R_Y ---.:::ESS

1x1,m - - - - - - - - - - - - - 1x1,m
2

INOEXEO: 256 BYTtS
V !!Y~~ • IY' ... Ini

BYTE LOCATIONS 1x1-1x1 + (Dl
WORO LOCATIONS 1x1n-11x1 + IOlln

IXI - - - - - - - - - - - - - - IXln

2Uf't+1+2HI---------------- (,,+l+ZI&
RELATIVE TO P1 FORWARD: 512 BYTES
Y IWOROI • 11'1 + 1 + IOI
BYTE LOCATIONS 2 IIPI + 11- 2 IIPI + 1 + 1011
WORO LOCATIONS I,,+ 1-(ft) +I+ 1D1

2U'1+11 --------------- IP'l+I

:FF ~ - - - - - - - - - - - - - - - :JF
SCRATCHPAO: 256 BYTtS
Y IBYTEI • 101
BYTE LOCATIONS 0-255
WORO LOCATIONS 0--117 ·OO ._ :00

Direct Addressing

IYTt OPERAND

BYTE OPERAND

INSTRIICTION: AOORESS

AOORESS POINTER: BYTE

CD

CD SCRATCHPAO DR RELATIVE AODRESSING IS USEO TO AOORESS A FULL WORO AOORESS
POINTER.

(D IF INOEXING IS NOT REQUIREO. THE AOORESSPOINTER CONTAJNSTHE EFFECTIVE 11-BIT
BYTE AOO RESS.

@ IF INOEXING IS REQUIRED. THE BYTE AOORESS IN THE AOORESS POINTER IS AOOEO TO THE
VALUE IN THE X REGISTER TO FORII THE EFFECTIVE BYTt AOORESS.

Indirect Addressing

Figure 4-7. Byte Mode Addressing Summary

4-11

Because the Scan Memory Byte (SCMB) instruction always uses indirect postindexed
addre~Ring, the Assembler automatically generates the necessary machine code and
does not allow @ or * operators on the associated operand expression. When
performing byte seans, the operand expression for this instruction should reference
a user cieiineö. Uyi.e t1UU.i.·~~i:; vu.iui.~r i11 i.iu~ Utu>t: 1-HlKt:.

4. 2. 2 . 5 Byte Mode Summary

A summary of Byte mode addressing is shown in figure 4-7.

4. 2. 3 Arithmetic Memory Reference Instructions

ADD

ADDB ADD BYTE TO A. Adds contents of effective byte location to contents
of A register. OV is set if arithmetic overflow occurs.

SUB SUBTRACT FROM A. Subtracts contents of effective memory location
from contents of A register. OV is set if arithmetic overflow occurs.

SUBB SUBTRACT BYTE FROM A. Subtracts contents of effective byte location
from contents of A register. OV is set if arithmetic overflow occurs.

4. 2 . 4 Logical Memory Reference Instructions

AND AND TOA. Logically AND's contents of effective memory location with
contents of A register . Result replaces contents of A register .

ANDB AND BYTE TOA. Logically AND's contents of effective byte location with
contents of LS byte of A register. Result replaces contents of LS byte of A
register. MS byte of A register is reset to zero.

IOR

IORB

XOR

COMPUTER AUTOMATION. INC. ~

ADD TO A. Adds contents of effective memory location to contents of A
register. OV is set if arithmetic overflow occurs.

INCLUSIVE OR TO A. Inclusively OR' s contents of effective memory
location with contents of A register. Result replaces contents of A
register.

INCLUSIVE OR BYTE TO A. lnclusively OR' s contents of effective byte
location with contents of LS byte of A register. Result replaces contents
of LS byte of A register. MS byte of A register remains unchanged.

EXCLUSIVE OR TO A. Exclusively OR' s contents of effective memory
location with contents of A register. Result replaces contents of A
register.

4-12

COMPUTtll AUTOMATION. INC. ~

XORB EXCLUSIVE OR BYTE TOA. Exclusively OR's contents of effective byte
location with contents of LS byte of A register. Result replaces contents
of LS byte of A register. MS byte of A register remains unchanged.

4. 2. 5 Data Transfer Memory Reference Instructions

LDA LOAD A. Loads contents of effective memory location into A register.

LDAB LOAD A BYTE. Loads contents of effective byte location into LS byte
of A register . MS byte of A register is reset to zero .

LDX LOAD X. Loads contents of effective memory location into X register.

LDXB LOAD X BYTE. Loads contents of effective byte location into LS byte
of X register. MS byte of X register is rese! to zero.

ST A STORE A. Stores contents of A register in effective memory location.

STAB STORE A BYTE. Stores contents of LS byte of A register in effective
byte location.

STX STORE X. Stores contents of X register in effective memory location.

STXB STORE X BYTE. Stores contents of LS byte of X register in effective
byte location .

EMA EXCHANGE MEMORY AND A. Simultaneously stores contents of A
register in effective memory location and loads contents of effective
memory location into A register.

EMAB EXCHANGE MEMORY BYTE AND A. Simultaneously stores contents
of LS byte of A register in effective byte location and loads contents
of effective byte location into LS byte of A register. MS byte of A
register is rese! to zero.

4. 2. 6 Program Transfer Memory Reference Instructions

CMS COMPARE MEMORY TOA AND SKIP IF HIGH OR EQUAL. Compares
contents of effective memory location with contents of A register. If
A register is greater than contents of memory location, a one word
skip occurs. If A register is equal to contents of memory location,
a two word skip occurs. If A register is less than contents of memory
location, next sequential instruction is executed.

4-13

COMl'IJTER AUTOMATION. INC. ~

CMSB COMPARE BYTE AND SKIP IF HIGH OR EQUAL. Compares contents of
effective byte location with contents of A register. If A register is greater
than contents of byte location, a one word skip occurs. If A register is
equal to contents of byte location, a two word skip occurs. 1(A register is
less than contents of byte Iocation, next sequential instruction is executed.
All 16 bits of A register are compared to contents of effective byte location,
so MS byte of A register should be equal to zero.

IMS

JMP

JST

SCM

INCREMENT MEMORY AND SKIP ON ZERO RESULT. Contents of effective
memory location are incremented by one. If increment causes result to
become zero, a one word skip occurs. If not, next sequential instruction
is executed. OV is set if arithmetic overflow occurs.

NOTE

IMS is often used as an interrupt instruction in which case,
when the increment causes a zero result, an ECHO signal is
generated and sent to the interrupting device. The inter­
rupting device uses the ECHO signal to develop an EOB (End­
of-Block) interrupt. Under these conditions a skip does not
occur and OV is unaffected. (See paragraph 5.3).

JUMP UNCONDITIONAL. P register is loaded with the address of effective
memory Iocation causing an unconditional branch to that address.

JUMP AND STORE. Contents of P register (address of JST instruction +l)
are stored in effective memory location and P register is then loaded with
address of effective memory location +1, causing an unconditional branch
to that address.

NOTE

JST is often used as an interrupt instruction. When used
as such, all interrupts under EIN/DIN control are auto­
matically disabled upon instruction execution. (See
paragraph 5. 3). In this case, the P register content is
not the address of JST instruction + 1.

SCAN MEMORY. Compares contents of A register with contents of memory
location in data buffer defined by address pointer in scratchpad (base
address of data buffer - 1) added to contents of X register (buffer length).
If a match is found, Scan is terminated and next sequential instruction is
executed. X register is decremented once for each word scanned. Thus,
data buffer is scanned in descending order, beginning with highest
memory location and ending with Iowest (base address). When a match
is found, X register contains number of words remaining to be scanned.
Remainder of data buffer can be scanned simply by executing SCM
instruction again. If a match is not found when X register reaches zero,
a one word skip occurs and instruction terminates.

4-14

COMl'UTE R AUTOMATION. INC. ~

SCMB SCAN MEMaRY BYTE. Compares contents of A register with contents of
memory byte locations in data buffer defined by byte address pointer in
scratchpad (byte base address of pointer - 1) added to contents of X regis­
ter (data buffer length in bytes). If a match is found, Scan is terminated
and next sequential instruction is executed. X register is decremented once
for each byte scanned. Thus, data buffer is scanned, by byte, in descend­
ing order, beginning with highest memory byte location and ending with
lowest (base address). Remainder of data buffer can be scanned simply
by executing SCMB instruction again . If a match is not found when X regis­
ter reaches zero, a one word skip occurs and instruction terminates. All
16 bits of A register are compared to contents of effective byte location, so
MS byte of A register should be equal to zero.

NaTES

1. The SCM and SCMB instructions are interruptable. Upon
completion of interrupt processing, Scan resumes operation
at the point where the interrupt occurred.

2. The Set Byte Mode (SBM) instruction must be executed prior
to the execution of the SCMB instruction.

4.3 DaUBLE-WaRD MEMaRY REFERENCE INSTRUCTIONS

4. 3 .1 Format

The Double-Word Memory Reference instructions require two consecutive memory
locations and allow direct and indirect addressing. Indexed addressing is not
allowed and is, in fact, not useful, since these instructions manipulate both the
A and X registers. The format for Double-Word Memory Reference instructions
is shown in figure 4-8.

[LABELJ aP-CaDE l:]EXPRESSION 1GExPRESSION 2] [coMMENTs]

No Operator = Direct Address
* = Indirect Addressing (multi-level)
EXPRESSION 1: any absolute or relative expression defining the

effective memory location.
EXPRESSION 2: an optional instruction count in the range O thru

31 for NRM.

Figure 4-8. Double-Word Memory Reference Format

4-15

COMPUTE R AUTOMATION. INC. ~

4. 3 . 2 Instructions

DVD DIVIDE. Divides contents of the A and X registers by contents of memory
location addressed by Expression 1. This address pointer (Expression 1)
may be direct or indirect and occupies second word of double-word DVD
instruction.

Prior to execution of instruction, A and X registers contain signed 30 bit
dividend (as shown in figure 4-9) , and addressed memory location
contains signed full-word divisor. Both dividend and divisor must be
positive.

Quotient is placed in X register (sign plus 15 bits) and fractional
remainder in A register (sign plus 15 bits). av is set if a divide fault
occurs (Divisor s most significant half of dividend). If no divide fault
occurs, av is returned to original state (prior to DVD instruction) .
Note that least significant half of dividend is 15 bits, left justified.

0 15 14 13 12 11 10 9 8 7 6 "I o--,1-------D-1_v_1D_E_N_D_I_M_S_H_l 'I I DIVIDEND ILSHI

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 15 14 13 12 11 10 9 8 7 6 .. ,-s'Tl R_E_M_A-1N_D_E_R I l s I ouoTIENT
15 14 13 12 11 10 9 8 7 6 5 4 3 2

MPY

5 4 3 2

A REGISTER X REGISTER

5 4 3 2

A REGISTER X REGISTER

Figure 4-9. Divide

MULTIPLY AND ADD. Multiplies contents of X register by contents of
the memory location addressed by Expression 1 and then adds contents of
A register to product. Address pointer (Expression 1) may be direct or
indirect and occupies second word of double-word MPY instruction.

Prior to execution of MPY instruction, X register contains signed
full-word multiplicand, addressed memory location contains full-
word multiplier, and A register contains "offset" to be added. (Ref er
to figure 4-10.) Multiplier and offset must be positive or zero. ,­
Multiplicand may he either positive, negatiye or zero. Result is
placedIn A and X registers (sign plus 30 bits). Note that least
significant half of result is a 15-bit left justified value consistent
with format of least significant haH of dividend.

4-16

COWUT£R AUT OM ATION . INC . ~ ----, ..------------------ Cowumt AU TOM ATION , INC . ~

In all cases OV will be reset (= 0) at completion of a full multiply. The
contents of OV prior to execution of MPY will be returned in the least
significant bit (bit 0) of the X register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I
O

I
OFFSET I Is I MULT!PltCAND

A REGISTER X REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Is I RESULT (MSH) I I AESUL T ILSHI lov I
A REGISTER X REGISTER

Figure 4-10. Multiply and Add

NRM NORMALIZE A AND X. Contents of A and X registers are arithmetically
shifted left (see figure 4-11) until bit 15 of A register is not equal to bit
14 or unti! maximum shift count specified (Expression 2) is exhausted.
Exponent (count cell), addressed by Expression 1, is a two's complement
number which is decremented (incremented in two's coniplement) once for
each shift until normalization occurs. Address of exponent may be direct
or indirect and occupies second word of double-word NRM instruction. No
indication is given if arithmetic overflow occurs when exponent is decremented.

NRM instruction treats A and X registers as a combined 31-bit, plus
sign, register.

OV is reset (= 0) if normalization occurs; otherwise it is set (= 1) . In
either case, exponent will be decremented once for each shift performed.

A full 31-bit normalize is performed if no instruction count (Expression
2) is specified. Otherwise, specified count will determine maximum
shifts performed. A normalize operation with a count of zero (Expression
2) provides a test for normalization without affecting contents of A and X
registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D1~1-----+-----~0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ILOST) A REGISTER X REGISTER

Figure 4-11. .NRM Shift Path
4-17

4.4 STACK, DOUBLE WORD INSTRUCTIONS (LSl-2 only)

Stack instructions permit the programmer to enter or retrieve a full 16-bit word from
a stack. A stack is a group of continuous memory locations whose length is variable
up to 32, 768 words. A stack is organized on a last-in-first-out basis whereby the
last word entered into the stack will be the first word retrieved from the stack.

A stack can start at any address and fills from upper memory toward lower memory
(decreasing addresses). The stack instructions themselves do not provide any stack
boundary limit testing features. The user must provide boundary limit testing as
overhead associated with using Stack instructions.

All stack accesses are controlled by a stack pointer for each stack. The stack pointer
is a 15-bit address which points to the most recently accessed location in the stack.
The contents of the stack pointer are referred to as the stack element address--SEA.
The stack pointer may be located anywhere in Memory.

Stack instructions occupy two consecutive words in memory and operate in Word mode
only, independent of processor status. The first word contains the instruction while
the second word contains the address of the stack pointer. The format for Stack
instructions is shown below in figure 4-12 .

With the stack pointer and the stack pointer address, indirection is not possible since
the Processor ignores bit 15. If bit 15 of the stack pointer is a 1, the stack pointer
will be treated as a negative number when indexing (see paragraph 4. 4 .1. 2) .

AM

OPCODE OPERAND [. AM] [coMMENTs]

No Operator = Direct Access
PUSH (stack pointer decremented prior to access)

+ POP (stack pointer incremented after access)
@ Indexed (single leve!)

Figure 4-12. Stack Instruction Format

The Label and Comment fields are optional with this class of instruction.

The Op Code field must be present. The legal op codes for Stack instructions are
defined in paragraphs 4. 4. 2 through 4. 4. 6 inclusive.

The Operand field consists of one or two expressions. The first expression represents
a memory address and must be present. The second expression (AM) is optional
and, when included, must be separated from the first by a comma. This expression
represents the addressing mode of the Stack instruction. Figure 4-12 gives a list of
valid expression characters and their associated addressing modes, and 4. 4. 1 describes
them in greater detail .

COMl'UTl: R AU TOM ATION . IN(. ~

These instructions generate two 16-bit words. The first word is the Stack instruction
Op code. The second word is the absolute address of the stack pointer.

4. 4. 1 Addressing Modes (Figure 4-13)

To provide flexibility in stack management, four addressing modes are provided with
Stack instructions.

4. 4. 1.1 Direct Access to Stack

In the Direct Access mode, the second word of the instruction (stack pointer address -­
SPA) is used to fetch the stack pointer from Memory. In this mode, the stack pointer
contains the effective stack element address (SEA) and is used to access the stack
element for entry, retrieval, or te sting of data.

4. 4. 1. 2 Indexed Access to Stack

In the Indexed Access mode, the SPA in the second word of the instruction is used to
fetch the stack pointer from Memory. The contents of the signed X register are then
algebraically summed with the stack pointer to form the effective SEA. After the
summation, bit 15 is treated as a O for accessing the stack element. This allows
access to the nth element in the stack relative to the last stack entry when the X
register contains n. For example, if X = 0, the most recent stack entry is accessed
while if X = 1 , the next most recent entry is accessed.

4. 4. 1. 3 Auto-Postincrement Access to Stack (POP)

In the Auto-Postincrement mode, the SPA is used to obtain the stack pointer. In this
mode, the stack pointer contains the effective SEA and provides direct access to the
stack element. Upon completion of the stack access, the stack pointer is incremented
and restored to its memory location. This mode of addressing appears to remove (POP)
the most recent entry from the stack when used with a load type instruction.

4. 4. 1. 4 Auto-Predecrement Access to Stack (PUSH)

In this mode, the stack pointer is accessed via the SPA, decremented by one, and
restored. The stack element is then accessed using the decremented contents of the
stack pointer. This mode of addressing appears to insert (PUSH) a new entry onto
the stack when used with a store type instruction.

4-19

COMPUTER AUTOMATION. INC.

:7FFF . . .
Full t Full SEA+ n

' UPPER
STACK INSTRUCTION MEMORY

OP GODE
p

STACK POINTER - P+l ADDRESS

, POP

Full SEA + 1 l -----...f STACK POINTER* I SPA SEA - STACK ELEMENT· Full SEA I -
Empty SEA- 1
Empty SEA- 2 PUSH

j

"Stack Pointer Always Points to Most Rec:ent Entry in Stack.

1
LOWER
MEMORY

Empty SEA · n ! Empty . . .
:0000

Figure 4-13. Stack Organization and Management

4-20

COMl'UTER AUTOMATION . INC. ~

4. 4. 2 Arithmetic Stack lnstructions

ADDS ADD STACK ELEMENT TOA. Adds contents of stack element to contents
of A register. OV is set if arithmetic overflow occurs.

SUBS SUBTRACT STACK ELEMENT FROM A. Subtracts contents of stack
element from contents of A register. OV is set if arithmetic overflow
occurs.

4. 4. 3 Logical Stack lnstructions

ANDS AND STACK ELEMENT TOA. Logically AND's contents of stack element
with contents of A register. Result replaces contents of A register.

IORS INCLUSIVE OR STACK ELEMENT TOA. Inclusively OR's contents of
stack element with contents of A register. Result replaces contents
of A register .

XORS EXCLUSIVE OR STACK ELEMENT TOA. Exclusively OR's contents of
stack element with contents of A register. Result replaces contents
of A register .

4. 4. 4 Data Transfer Stack lnstructions

EMAS EXCHANGE STACK ELEMENT ANDA. Simultaneously stores contents
of A register in stack element and loads contents of the stack element
inta A register.

LDAS LOAD ST ACK ELEMENT INTO A. Loads contents of stack element inta
A register.

LDXS LOAD STACK ELEMENT INTO X. Loads contents of stack element inta
X register.

STAS STORE A IN STACK ELEMENT. Stores contents of A register in stack
element.

STXS STORE X IN STACK ELEMENT. Stores contents of X register in stack
element.

4-21

COMl'Ult R AUTOMATION . INC. ~

4. 4. 5 Program Transfer Stack Instructions

CMSS COMPARE STACK ELEMENT TOA AND SKlP IF HIGH OR EQUAL. Campares
contents of stack element with contents of A register. If A register is
greater than contents of stack element, a one word skip occurs. If A
register is equal to contents of stack element, a two word skip occurs.
If A register is less than contents of stack element, next sequential
instruction is executed.

IMSS lNCREMENT STACK ELEMENT AND SKIP ON ZERO RESULT. Contents of
stack element are incremented by one. If increment causes result to
become zero, a one word skip occurs. If not, the next sequential instruct­
ion is executed. OV is set if arithmetic overflow occurs.

JMPS JUMP UNCONDITIONAL. P register is loaded with contents of stack
pointer (SEA) , causing an unconditional branch to the addressed stack
element location. Next instruction is executed from location SEA.

JSTS JUMP AND STORE TO STACK ELEMENT. Contents of P register (P + 2)
are stored in stack element and P register is then loaded with address of
stack element plus one (SEA + 1). Next instruction is accessed from
location SEA + 1 .

4. 4. 6 Stack Control Instruction

SLAS STACK ELEMENT ADDRESS TOA. Loads contents of stack pointer inta A
register.

4.5 IMMEDIATE INSTRUCTIONS

4. 5 .1 Format

Immediate instructions are similar to Memory Reference instructions in that they
perform logical and arithmetic operations involving memory data and operating
registers. The memory data, however, is stored within the immediate instr~ction .
itself rather than in a separate operand word or byte. The operands of the tnstructions
may be any absolute expression which is within the range O through : FF (i. e. , an!
absolute expression which fits inta eight bits). The Immediate instruction format 1s
shown in figure 4-14.

4-22

COMPIJ Tl: R AUTOM ATION . INC. ~

OP-CODE EXPRESS JON [coMMENTSJ

EXPRESSION: must be absolute and in the range : 0 thru : FF

Figure 4-14. Immediate Instruction Format

4. 5. 2 Instructions

AAI ADD TO A IMMEDIATE . Operand is added to contents of A register.
OV is set if arithmetic overflow occurs.

AX! ADD TO X IMMEDIATE. Operand is added to contents of X register.
OV is set if arithmetic overflow occurs.

SAi SUBTRACT FROM A IMMEDIATE. Operand is negated (two's
complemented) and added as a 16-bit word to A register. OV is set
if arithmetic overflow occurs.

SXI SUBTRACT FROM X IMMEDIATE. Operand is negated (two's
complemented) and added as a 16-bit word to X register. OV is set
if arithmetic overflow occurs.

CA!

CXI

LAP

COMPARE TOA IMMEDIATE. Operand is compared to contents of
LS byte of A register. If unequal, a one word skip occurs. If equal,
next sequential instruction is executed. Contents of A register are
not disturbed. MS byte of A register does not take part in comparison.

COMPARE TO X IMMEDIATE. Operand is compared to contents of
LS byte of X register. If unequal, a one word skip occurs. If equal,
next sequential instruction is executed. Contents of X register are
not distrubed. MS byte of X register does not take part in comparison.

LOAD A POSITIVE IMMEDIATE. Operand is loaded into LS byte of
A register . MS byte of A register is set to zero.

LXP

LAM

LXM

LOAD X POSITIVE IMMEDIATE. Operand is loaded into LS byte
of X register. MS byte of X register is set to zero .

LOAD A MINUS IMMEDIATE. The operand is negated (two's comple­
mented) and loaded as a 16-bit word into the A register.

LOAD X MINUS IMMEDIATE. The operand is negated (two's cornple­
mented) and loaded as a 16-bit word into the X register.

4-23

COMPUTtR AUTOMATION. INC. ~

4. 6 CONDITIONAL JUMP INSTRUCTIONS

4.6.1 Format

Conditional Jump instructions test conditions within the computer and perform program
branches depending on the results of the test. A jump occurs if the specified condi­
tions are satisfied. All branches are direct and relative to the P register (location
of the Conditional Jump instruction) . The range of Conditional Jump instructions is:

Forward Jumps:
Backward Jumps:

P + 1 through P + 64
P through P - 63

4. 6. 2 Microcoding

A general code, JOC , for Jump On Condition, is provided so the programmer can
microcode jump conditions. There are five different conditions which may be tested
individually or in combination:

1 . Sign of A (positive or negative)
2. Contents of A (zero or not zero)
3. Contents of X (zero or not zero)
4. Overflow indicator (set or reset)
5. SENSE indicator (on or off)

The conditions may be tested individually or in combination. Figure 4-15 shows the
format for the JOC instruction:

JOC EXPRESS JON 1, EXPRESS JON 2 [coMMENTS]

EXPRESSION 1: must be absolute and in the range : 0 thru : 3F
EXPRESSION 2: must represent a location within -63 thru +64

computer words.

Figure 4-15. JOC Jump On Condition Format

JOC commands consist of two groups, the AND group and the OR group. The AND test
group requires that all of the test conditions specified by bits 0 through 4 of Expression 1
be true for the jump to take place. The OR group requires that any one or more of the
test conditions specified be true if the jump is to take place. Expression 1 consists of 6
bits (T0 through T5) as defined by figure 4-16. Bit T5 specifies which test group
is used. Bits T0 through T4 specify inclusion of a specific test condition if equal
to 1. If equal to 0, the associated test condition is not examined.

4-24

COWUTI: R AUTOMATION. INC. ~

JOC :XX,ADR

1
1
1
1
1

AND GROUP (Ts
x;o
SENSE on
av reset
AIO
A positive

1) OR GROUP (Ts 0)
X=O
SENSE off
OV set (resets OV)
A = 0
A negative

Figure 4-16. JOC Expression 1 Definitions

The following Conditional Jump instructions are special cases of the general JOC
instruction. Since they are utilized more often than the general conditional jumps,
they have been given their own mnemonics. Figure 4-17 illustrates the general
format for the Conditional Jump instructions.

OP-CODE EXPRESSION [coMMENTS]

EXPRESSION: must represent a location within -63
thru +64 computer words.

Figure 4-17. Conditional Jump Format

4. 6. 3 Arithmetic Conditional Jump lnstructions

JAG JUMP IF A GREATER THAN ZERO. Jump occurs if contents of A register
are greater than zero.

JAP

JAZ

JUMP IF A POSITIVE. Jump occurs if contents of A register are greater
than or equal to zero (A15 = 0) .

JUMP IF A ZERO, Jump occurs if contents of A register are zero.

JAN JUMP IF A NOT ZERO. Jump occurs if contents of A register are not zero.

JAL JUMP IF A LESS THAN OR EQUAL TO ZERO. Jump occurs if contents of
A register are less than or equal to zero.

JAM JUMP IF A MINUS. Jump occurs if contents of A register are less than.
zero (A16 = 1),

4-25

COWUTI: R AUTOMATION. INC. ~

JXZ

JXN

4. 6. 4 Control Conditional Jump lnstructions

JSS

JSR

JOS

JUMP IF X ZERO. Jump occurs if contents of X register are zero.

JUMP IF X NOT ZERO. Jump occurs if contents of X register are not zero.

JUMP IF SENSE INDICATOR SET. Jump occurs if SENSE indicator is on.

JUMP IF SENSE INDICATOR RESET. Jump occurs if SENSE indicator
is off.

JUMP IF OVERFLOW SET. Jump occurs if OV equal one. OV is reset
to zero during jump.

JOR JUMP IF OVERFLOW RESET. Jump occurs if OV equal zero.

4. 7 SHIFT INSTRUCTIONS

4. 7. 1 Operand Restrictions and Instruction Format

Shift instructions move bit patterns in the computer registers either right or left.
Shifts may involve a single register (A or X), a single register and the overflow (OV)
indicator , or both the A and X registers and the OV indicator . The Processor provides
logical, arithmetic and rota te shifts. The operands (n) for single register and double
register instructions can be any absolute value from 1 through 8 and 16, respectively.
The single register shift instruction format is shown in figure 4-18 and the instruction
format for double register (long) shifts is shown in figure 4-19.

OP-CODE EXPRESSION [coMMENTs]

EXPRESSION: must be absolute and in the range 1 thru 8.

Figure 4-18. Single Register Shift Format

OP-CODE EXPRESSION [coMMENTs]

EXPRESSION: must be absolute and in the range 1 thru 16.

Figure 4-lS. Double Register (Long) Shift Format

4-26

COMPUTER AUTOMATION. INC. ~

4. 7. 2 ~·ith~tic Shift I11struetions

The s hitt pat hs fur thc ar ithmet .c shiit in st ructions are i lrust i-ate d below in f1gures 4-20
and 4-2i.

15 14 13 1 :' 11 1C 9 8 6 5 3 2

G;E __ o_ATA-=-~==.=:-
A OR X REGISH H

Figure 4--20. Ai-ithrnntic Lett Shill

15 14 1:; 12 ,·, 10 9 6 5

G---+--1---DATA~-~I·
A C,R X REGISTE~

Figure ~-21. Arithmetic Rip ht Shift

A.LA AHJTl!'v!ETIC SHJFT A LEFT. Contents of A register (bits 0-14) are
shifted left n pl ace s , The sign bit (bit 15) is unchanged. Zeros are
s hift cd into bit O and bits sh iftnd out of bit 14 are !ost.

AI.X ARITHMETIC SHIFT X LEFT. Contents of X register (bits 0-14) ar-e
shifteu Ieft n places. The sign bit (bit 15) is unchanged. Zeros a r e
s hiftn.I into bit O and bits shifted out of bit 14 ar e !ost.

ARA

ARX

ARITW,IETIC SHIFT A Il.lCHT. Contcnts of A icgf ster are sh ift cd 1ight
il p laccs . The sign bit (l,it 15) is unchangcd and is shifted into and
propag.rtcd through bit 14. Bits shifted out of bit O are !ost.

-\RITII'·TF.TIC SHIFT X RIGHT. Contents of X ri:-gister are sh ift od rig'it
n placPs. The sign bit (bit 15) is unchanged enn is shifted i nto ar-d
propagated through bit 14. Bits shifted out of hit O are !ost.

4. 7. 3 Log·i_caJ ~1_!ft __lnstructions

The- shift pat hs for the Iog icnl shift instructions ar e illustrated below in figures 4-22
and 4 23.

4-27

COMPIJTER AUTOMATION. INC. ~

LLA

LLX

LRA

LRX

•Dl DATA--~lo
ov

1s 14 13 12 11 10 Y £ 6 s 4

A OR X REGISTER

Figure 4-22. Log ical Left Shifl

15 14 13 12 11 10 9 8 6 5

A ()R X REGISTER

3 2 o+--1 --- DATA -----=-J--t-tO-t-•
Figure 4-23. Logical Right Shift

ov

LOG!CAL SHJFT A LEFT. Contents of A register are shifted left n
ptace.s through OV. Zeros are shifted into bit O. Bits are shifted
from bit 15 of A into OV. Bits shifted out of OV are !ost. A and OV
act as a 1 7-bit register.

LOGJCAL tiHlFT X LEFT. Contents of X register are shifted left n
p lacc s through OV. Zeros are shifted into bit O. Bits are shifted
from bit 15 of X into OV. Bits shifted out of OV are !ost. X and OV
act as a 1 7-bit register.

LOGJCAL SHIFT A RIGHT. Contents of A register are shifted right n
places through OV. Zeros are shifted into bit 15. Bits are shifted
from bit O of A into OV. Bits shifted out of OV are !ost. A and OV act
as a 17-bit register.

LOGICAL SHIFT X RIGHT. Contents of X register are shifted right n
places through OV. Zeros are shifted into bit 15. Bits are shiftcd
from bit O of X into OV. Bits shifted out of OV are lost . X and OV act
as a 17-bit register.

4. 7. 4 Rotate Shift Jnstructions

The s hi:' p at ns for the rotate shift ins\rc,ctions are illustrcetcd bclow in figurcs 4-24
and 4-23.

4-20

COMPUTER AUTOMATION. INC. ~

15 14 13 12 11 10 9

ov

8 7 6 5 4 3 2 1

A OR X REGISTER

Figure 4-24. Rotate Left Shift

876543210

A OR X REGISTER

Figure 4-25. Rotate Right Shift

RLA

RLX

RRA

RRX

ov

ROTATE A LEFT WITH OVERFLOW. Contents of A register are shifted
left n places through OV. OV is shifted into bit O and bit 15 is shifted
into OV. No bits are !ost when this shift is executed. A and OV act as
a 17-bit register.

ROTATE X LEFT WITH OVERFLOW. Contents of X register are shifted
lo.ft n places through OV . OV is shifted into bit O and bit 15 is shifted
into OV. No bits are lost when this shift is executed. X and OV act as
a 17-bit register.

ROTATE A RIGHT WITH OVERFLOW. Contents of A register are shifted
right n places through OV. OV is shifted into bit 15 and bit O is shifted
into OV. No bits are Iost when this shift is executed. A and OV act as
a 17-bit register.

ROTATE X RIGHT WITH OVERFLOW. Contents of X register are shifted
right n places through OV. OV is shifted into bit 15 and bit O is shifted
into OV. No bits are !ost when this shift is executed. X and OV act as
a 17-bit register.

4. 7. 5 Double Register (Long) Logical Shift lnstructions

The shift paths for the Long Logical Shift instructions are shown below in figures
4-26 and 4-27.

4-29

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 10 I DATA -------1 · I DATA-------10
ov

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

A REGISTER

Figure 4-26. Long Left Shift

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 I DATA -------+l-··1-------DATA --------fl-+-0-+••
A REGISTER

COMl'UTER AUTOMATION. INC. ~

X REGISTER

X REGISTER

Figure 4-27. Long Right Shift

LLL LONG LOGICAL SHIFT LEFT. Contents of A and X registers are logically
shifted left n places through OV. Zeros are shifted into bit O of X register.
Bits shifted from bit 15 of X enter bit O of A, and from bit 15 of A they en ter
OV. Bits shifted out of OV are lost . A, X and OV act as a 33-bit register.

LLR LONG LOGICAL SHIFT RIGHT. Contents of A and X registers are logically
shifted right n places through OV. Zeros are shifted into bit 15 of A register.
Bits shifted from bit O of A enter bit 15 of X, and from bit O of X they enter
OV. Bits shifted out of OV are !ost. A, X and OV act as a 33-bit register.

4. 7. 6 Double Register (Long) Rota te Shift Instructions

Shift paths for the Long Rotate Shift instructions are shown below in figures 4-28
and 4-29:

ov

ov

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

-+--------DATA -------1•-----+--------0ATA--------'

A REGISTER

Figure 4-28. Long Rotate Left Shift

X REGISTER

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~------DATA ---------1-• -------- DATA --------f--

A REGISTER X REGISTER ov

Figure 4-29. Long Rotate Right Shift

4-30

COMPUTE R AU TOMATION . INC. ~

LRL

LRR

LONG ROTA TE LEFT. Contents of A and X registers are shifted left n places
through OV. OV is shifted into bit O of X register. Bits shifted from bit 15
of X enter bit O of A, and from bit 15 of A they enter OV. No bits are lost
when this shift is executed. A, X and OV act as a 33-bit register.

LONG ROTATE RIGHT. Contents of A and X registers are shifted right
n places through OV. OV is shifted into bit 15 of A register. Bits shifted from
bit O of A enter bit 15 of X, and from bit O of X they enter OV. No bits are lost
when this shift is executed. A, X and OV set as a 33-bit register.

4.8 REGISTER CHANGE INSTRUCTIONS

4. 8. l Format

Register change instructions perform arithmetic and logical operations involving the
A register, the X register and/or the OV indicator. The Register Change instruction
format is shown in figure 4-30.

OP-CODE [EXPRESSION]

EXPRESSION: ther-e is no expression in the Operand field
except for the BAO and BXO instructions
where it must be absolute and in the range
0 thr-u 15.

[coMMENTSJ

Figure 4-30. Register Change Format

4. 8. 2. A Register Change Instructions

ARM A REGISTER TO MINUS ONE. Sets contents of A register to -1 (: FFFF).

ARP

CAR

DAR

IAR

NAR

A REGISTER TO PLUS ONE. Sets contents of A register to + 1.

COMPLEMENT A REGISTER. Performs one's complement on contents of A
register.

DECREMENT A REGISTER. Subtracts one from contents of A register. OV
is set if arithmetic overflow occurs .

INCREMENT A REGISTER. Adds one to contents of A register. OV is set if
arithmetic overflow occurs.

NEGATE A REGISTER. Performs two's complement on contents of A register.
OV is set if arithmetic overflow occurs .

ZAR ZERO A REGISTER. Sets contents of A register to zero.

4-31

COMPUTtR AUTOMATION. IN(. ~

4. 8. 3 X Register Change Instructions

ZXR ZERO X REGISTER. Sets contents of X register to zero.

XRP

XRM

CXR COMPLEMENT X REGISTER. Performs one's complement on contents of X
register.

NXR

IXR

DXR

4. 8. 4 OV Register Change Instructions

SOV SET OVERFLOW. Sets OV indicator (=1).

ROV RESET OVERFLOW. Resets OV indicator (=O).

cov

SAO

sxo

LAO

LXO

BAO

BXO

X REGISTER TO PLUS ONE. Sets contents of X register to +l.

X REGISTER TO MINUS ONE. Sets contents of X register to -1 (: FFFF).

NEGATE X REGISTER. Performs two's complement on contents of X register.
OV is set if arithmetic overflow occurs.

INCREMENT X REGISTER. Adds one to contents of X register. OV is set
if arithmetic overflow occurs.

DECREMENT X REGISTER. Subtracts one from contents of X register. OV
is set if arithmetic overflow occurs .

COMPLEMENT OVERFLOW. Complements OV.

SIGN OF A TO OVERFLOW. Bit 15 of A register is copied into OV.
A register remains unchanged.

SIGN OF X TO OVERFLOW. Bit 15 of X register is copied into OV.
X register remains unchanged.

LSB OF A TO OVERFLOW. Bit O of A register is copied into OV. A
register remains unchanged.

LSB OF X TO OVERFLOW. Bi! 0 of X register is copied into OV. X
register remains unchanged .

BIT OF A TO OVERFLOW. Bit n of A register is copied into OV. A
register remains unchanged. Bit n is specified in Operand field.

BIT OF X TO OVERFLOW. Bit n of X register is copied into OV. X
register remains unchanged. Bit n is specified in Operand field.

4-32

COMl'Umt AU TOM ATION . INC . ~

4. 8 . 5 Multi-Register Change Instructions

ZAX

AXP

AXM

TAX TRANSFER A TO X. Transfers contents of A register to X register. A
register remains unchanged.

TXA

EAX

ANA

ANX

NRA

NRX

CAX

CXA

NAX

NXA

IAX

IXA

IPX

ZERO A AND X. Sets contents of A and X registers to zero.

A AND X REGISTERS TO PLUS ONE. Sets contents of A and X registers to +l.

A AND X REGISTERS TO MINUS ONE. Sets contents of A and X registers to
-1 (: FFFF).

TRANSFER X TO A. Transfers contents of X register to A register. X register
remains unchanged.

EXCHANGE A AND X. Exchanges contents of A and X registers.

AND OF A AND X TO A. Contents of A and X registers are logically ANDed.
Result replaces contents of A register . X register remains unchanged .

AND OF A AND X TO X. Contents of A and X registers are logically ANDed.
Result replaces contents of X register. A register remains unchanged.

NOR OF A AND X TO A. Contents of A and X registers are logically NORed
Result replaces contents of A register. X register remains unchanged.

NOR OF A AND X TO X . Contents of A and X registers are logically NORed
Result replaces contents of X register. A register remains unchanged .

COMPLEMENT OF A TO X. Performs one's complement on contents of A
register and places result in X register. A register remains unchanged.

COMPLEMENT OF X TOA. Performs one's complement on contents of X
register and places result in A register . X register remains unchanged .

NEGATE A TO X. Performs two's complement on contents of A register and
places result in X register. A register remains unchanged. OV is set if
arithmetic overflow occurs.

NEGATE X TOA. Performs two's complement on contents of X register and
places result in A register. X register remains unchanged. OV is set if
arithmetic overflow occurs.

INCREMENT A TO X. Adds one to contents of A register and places result
in X register. A register remains unchanged. OV is set if arithmetic
overflow occurs.

INCREMENT X TO A. Adds one to contents of X register and places result
in A register. X register remains unchanged. OV is set if arithmetic over­
flow occurs .

INCREMENT P TO X. Adds two to current program counter (address of IPX)
and places result in X register. P is then incremented for the next instruc­
tion fetch. Example:

4-33

(P)
(P+l)
(P+2)

DAX

DXA

BCA

BCX

BSA

BSX

EIX

GO

ROUT ,

IPX
JMP
EQU

EQU

JMP

ROUT
$

$

COMl'Umt AUTOMATION. INC. ~

Place P+2 in X
Jump to routine with address of GO in X

Subroutine starts here

Return to GO

DECREMENT A TO X. Subtracts one from contents of A register and places
result in X register. A register remains unchanged. OV is set if arithmetic
overflow OP.curs .

DECREMENT X TO A. Subtracts one from contents of X register and places
result in A register . X register remains unchanged . OV is set if arithmetic
overflow occurs .

4. 8. 6 Extended Multi-Register Change Instructions (LSI-2 Only)

BIT CLEARA. The contents of the X register are ones complemented
and then logically ANDed with the contents of the A register. The
result replaces A and the original value of X is Ieft unchanged.

BIT CLEAR X. The contents of the X register are ones complemented
and then logically ANDed with the contents of the A register. The result
replaces X and the original value of A is Ieft unchanged.

BIT SET A. Contents of X register are logically ORed with contents of A
register . Result is placed in A register and X register remains unchanged.

BIT SET X. Contents of A register are logically ORed with contents of X
register . Result is placed in X register and A register remains unchanged.

Execute instruction pointed to by X . Instruction contained in location
addressed by contents of X register is executed immediately following EIX
instruction. Next sequential instruction following EIX instruction is skipped.

Note the following:

1. If the executed instruction isa multi-word instruction, the second and
succeeding words of the instruction must be located at the second location
after the EIX instruction (EIX+2).

2 . If the executed instruction modifies the P register , the modification is
relative to location EIX + 1.

4-34

COMl'UlER AUTOMATION . INC. ~

3. If the executed instruction is a SCM or conditional 1/0 instruction, the
Iocation following the EIX instruction (EIX + 1) should be coded with a
JMP $-1. This is required for recovery purposes in the event of an
interrupt or the lack of a true sense response .

4. EIX is not interruptable.

4. 8. 7 Console Register Instructions

!AH INPUT CONSOLE DATA REGISTER TOA AND HALT. Contents of Console Data
register are loaded inta A register. Computer then halts.

IXH INPUT CONSOLE DATA REGISTER TO X AND HALT. Contents of Console
Data register are loaded inta X register. Computer then halts.

!CA INPUT CONSOLE DATA REGISTER TOA. Contents of Console Data register
are loaded inta A register.

ICX

IIH

IMH

IPH

ISA

ISX

OAH

OXH

INPUT CONSOLE DATA REGISTER TO X. Contents of Console Data register
are loaded inta X register.

INPUT CONSOLE DATA REGISTER TO I AND HALT. Contents of Console
Data register are loaded inta I register. Computer then halts.

INPUT CONSOLE DATA REGISTER TO MEMORY AND HALT. Contents of
Console Data register are stored inta memory location following IMH instruc­
tion. Computer halts with P register set to location following modified
memory locarion .

INPUT CONSOLE DATA REGISTER TO P AND HALT. Contents of Console
Data register are loaded inta P register. Computer then halts. When RUN
is depressed , execution of the program will begin at address just input
to P register .

INPUT CONSOLE SENSE REGISTER TOA. Four-bit contents of Console
Sense register are loaded inta least significant 4 bits of A register . Mast
significant 12 bits of A register are set to zero.

INPUT CONSOLE SENSE REGISTER TO X. Four-bit contents of Console
Sense register are loaded inta least significant 4 bits of X register. Mast
significant 12 bits of X register are set to zero .

OUTPUT A TO CONSOLE DATA REGISTER AND HALT. Contents of A register
are loaded inta Console Data register. Computer then halts.

OUTPUT X TO CONSOLE DATA REGISTER AND HALT. Contents of X register
are loaded inta Console Data register. Computer then halts.

4-35

COMPUTtR AUTOMATION. INC. ~

OCA OUTPUT A TO CONSOLE DATA REGISTER. Contents of A register are loaded
inta Console Data register.

ocx

OLH

OMH

OPH

OUTPUT X TO CONSOLE DATA REGISTER. Contents of x· register are loaded
inta Console Data register.

OUTPU'I' LOCATION TO CONSOLE DATA REGISTER AND HALT. Location of
OLH instruction is loaded inta Console Data register. Computer then halts.

OUTPUT MEMORY TO CONSOLE DATA REGISTER AND HALT. Contents of
memory location following OMH instruction are loaded into Console Data
register. Computer halts with P register set to location following
output memory location (OMH instruction +2).

OUTPUT P TO CONSOLE DATA REGISTER AND HALT. Contents of P register
(address of OPH instruction + 1) are loaded inta Console Data register.
Computer then halts.

4.9 CONTROL INSTRUCTIONS

4.9.1 Fo:~mat

Control instructions are used for general status manipulation in the computer. The
general format for these instructions is shown in figure 4-31.

OP-CODE [EXPRESSION] [coMMENTs]

There is no expression in the Operand field, except for the
SIN and STOP instructions.
For SIN, the expression must be absolute and in the range
1 thru 6.
For STOP, the expression must be absolute and in the range
1 thru 255.

Figure 4-31. Control Format

4. 9. 2 Processor Control Instructions

HLT HALT. Halts the computer.

NOP NO OPERATION. Performs no active function. Normally used to reserve space
for other instructions .

STOP HALT WITH OPERAND. Halts computer with specified operand occupying
least significant 8 bits of I (instruction) register. Operand may be any
absolute expression in the range O through 255. As an example, STOP 5
would halt with : 0805 in I register.

4-36

Cowumt AUTOMA TION . INC . ~

WAIT WAIT FOR INTERRUPT. Executes as JMP $. Program loops on one location
waiting for an interrupt. After interrupt is serviced, return is made to WAIT
instruction to await further interrupts.

4. 9. 3 Mode Control Instructions

SBM

SWM

SET BYTE MODE. Conditions computer to address byte (8 bit) operands
rather than word operands when executing Memory Reference instructions
(see paragraph 4. 2 . 2) .

SET WORD MODE. Conditions computer to address word (16 bit) operands
rather than byte operands when executing Memory Reference instructions
(see paragraph 4. 2. 1). "Reset" condition of computer is Word mode.

4. 9. 4 Status Control Instructions

The format of the 8-bit Computer Status word is shown in figure 4-32:

15 14 13 12 11 10 8 6 2 0

BYTE

"~' "''"m I I I L_
1
• ov SET 0 • OV RESET

1 • BYTE MOOE
0 •WORO MODE

NOTE 1 = INTERRUPTS ENABLED

Bits 3 thrn 7 ere ,..., when no consote is installed ~: ~~1~:~~~~,.°;~s~!O
Bits 8 thru 15 are reserved for future expansion o 2: SENSE INDICATOR OFF

SIN

Figure 4-32. Computer Status Word Format

STATUS INHIBIT. Inhibits interrupts and places computer in Word mode
for number of succeeding instructions specified by operand. Operand may
be any absolute expression in range 1 through 6. As an example, execution
of SIN 4 instruction will force Word mode operation for four succeeding
instructions and will inhibit interrupt acknowledgement until after comple­
tion of five succeeding instructions since interrupts are serviced at end of
instruction execution.

NOTE

The following should be noted when using the SIN instruction in the LSI-2
computer.

1. Do not place a HLT instruction within a SIN instruction range.

4-37

COMPUTER AUTOMATION. INC. ~

SIA

SIX

2. Do not attempt to step through a SIN range when the computer is in Step
mode. If an instruction sequence which falls within a SIN range must be
examined, press the RESET pushbutton first to clear the SIN counter.
The sequence can then be stepped through. Note thatthe computer will
revert to the Word mode .

STATUS INPUT TOA. Computer Status word is loaded into LS byte of A
register. Resets OV and places computer in Word mode. State of interrupts
is unchanged. MS byte of A register is set to zero.

STATUS INPUT TO X. Computer Status word is loaded into MS byte of X
register. Resets OV and places computer in Word mode. State of interrupts
is unchanged. MS byte of X register is set to zero.

SOA STATUS OUTPUT FROM A. Least significant byte of A register is loaded into
computer Status register. This instruction does not alter Interrupt Enable fiag.

SOX STATUS OUTPUT FROM X. Least significant byte of X register is loaded into
computer status register. This instruction does not alter Interrupt Enable flag.

4. 9. 5 Interrupt Control Instructions

EIN ENABLE INTERRUPTS. Enables recognition of externa! interrupts by the
computer. Interrupts will not be serviced for a minimum of one instruction
time following EIN and possibly as long as three instruction times (maximum).

DIN DISABLE INTERRUPTS . Prevents Processor from responding to any interrupts.
A special jumper option on processor option board allows Power Fail, Console
and Trap interrupt operation independent of DIN.

CIE

CID

PFE

PFD

CONSOLE INTERRUPT ENABLE. Enables Console interrupts. Console
interrupts are generated each time INT switch is pressed when computer is in
RUN mode. Console interrupts are also under control of EIN /DIN instructions.
A special jumper option on processor option board allows Console interrupts
to be enabled independent of EIN /DIN instructions. Console interrupts are
disabled when a Console interrupt or TRAP is serviced.

CONSOLE INTERRUPT DISABLE. Disables Console interrupts.

POWER F AIL INTERRUPT ENABLE. When option placing Power Fail interrupt
outside EIN and DIN control is selected, Power Fsil Interrupt Enable (PFE)
instruction allows recognition of Power Fail interrupts. If Power Fail interrupt
were disabled at issuance of PFE, PFE does not take effect until after two
succeeding instructions have been executed.

POWER FAIL INTERRUPT DISABLE. When option placing Power Fail interrupts
outside EIN and DIN control is selected, Power Fail Interrupt Disable (PFD)
instruction inhibits recognition of Power Fail interrupts.

4-38

COMPU Tl:R AUTOMATION. INC. ~

TRP TRAP. Generates an interrupt to Console interrupt location if interrupts
are enabled or if special jumper option placing Power Fail, Console and
Trap interrupts outside EIN /DIN control is in use. In latter case, there is
no enable or disable instruction associated with Trap interrupts. Console
interrupt is disabled when TRAP is serviced. Interrupts will not be serviced
for a minimum of one instruction time following TRP.

4 .10 INPUT /OUTPUT INSTRUCTIONS

Input/Output instructions are either single word or multiple word instructions. All
single word instructions use the same format (see figure 4-33). Multiple word formats
are described separately in paragraphs 4. 10. 4 and 4 .10. 5. All 1/0 instructions have 8
bits available for addressing a particular peripheral device and a particular register or
function within a device. The se 8 bits are arbitrarily divided into a 5-bit Device
Address field to address one of 32 devices and a 3-bit Function Code field to specify one
of 8 registers or functions within a device. The device address and function code may be
expressed as either one or two self-defined (i.e., numeric expressions) or absolute
expressions. If a single expression is used, it must be in the range : 0 through : FF and
it represents both the device address and function code. If two expressions are used,
the first must be the device address in the range : 0 through : lF and the second must be
the function code in the range: 0 through : 7.

OP-CODE EXPRESSION 1[,EXPRESSION 2] [coMMENTs]

If EXPRESSION 2 is not present, EXPRESSION 1 must be absolute
and in the range : 0 through : FF.
If EXPRESSION 2 is present, EXPRESSION 1 must be absolute and
in the range : 0 through : lF.
EXPRESSION 2 must be absolute and the range : 0 through : 7.

Figure 4-33. Single Word lnput/Output lnstruction Format

Both Word and Byte 1/0 instructions are available. Whether a full 16-bit word or an 8-bit
byte is transferred depends upon the instruction used and is not affected by the word/
byte addressing mode flip-flop (SWM/SBM) used by Memory Reference instructions.

4 .10 .1 Control lnput/Output Instructions

The Control 1/0 instructions are divided into Sense and Select instructions. Sense
instructions are used to test the status of a function within the addressed peripheral
device. Select instructions are used to control the operation of specific functions
within the addressed peripheral device. The functions tested or controlled depend upon
the individual peripheral device. Control 1/0 instructions use the Single Word 1/0
instruction format shown in figure 4-33.

4-39

COMl'UTER AUTOMATION . INC. ~

4.10.1.1 Sense Instructions

SEN

SSN

SENSE AND SKIP ON RESPONSE. Tests specified function in addressed
peripheral device. If a true response is obtained, next sequential instruction
is skipped. If a false response is obtained, next sequential instruction is
executed.

SENSE AND SKIP ON NO RESPONSE. Tests specified function in addressed
peripheral device. If a false response is obtained, next sequential instruc­
tion is skipped. If a true repsonse is obtained, next sequential instruction
is executed.

4. 10. 1. 2 Select Instructions

SEL SELECT FUNCTION. Transmits specified function code to addressed peri­
pheral device along with a Select Control signal. All zeros are placed on
Data bus . Any action generated is a function of peripheral device interface
design.

SEA SELECT AND PRESENT A. Transmits specified function code to addressed
peripheral device along with a Select Control signal. Contents of A register
are placed on Data bus. Any action generated is a function of peripheral
device interface design .

SEX SELECT AND PRESENT X. Transmits specified function code to addressed
peripheral device along with a Select Control signal. Contents of X register
are placed on Data bus. Any action generated is a function of peripheral
device interface design .

NOTE

When a Select type instruction is used to turn off interrupts that may be
pending, it should be preceded by a SIN 1 instruction to disable Processor
recognition of the pending interrupt. This is necessary since the Processor
examines interrupt requests prior to the Select taking effect and will there­
fore respond to the interrupt even though it is no longer pending.

4.10.2 Word lnput/Output lnstructions

Word 1/0 instructions transmit 16 bits of data at a time. They are divided into
Unconditional and Conditional instructions. Conditional instructions are automatically
repeated until a true sense response is obtained, at which time the data transmission
occurs and the next instruction in sequence is executed. Response to an interrupt
may occur "within" a conditional 1/0 instruction - i.e., during a false sense response
an interrupt can be acknowledged and the computer will return to execution of the
conditional 1/0 instruction after servicing the interrupt. lf a word input is requested
from an 8-bit device, the upper 8 bits will be input as zeros. lf an output is performed
to an 8-bit device, the upper 8 bits will be ignored by the device.

4-40

..-------------------- COMf'UTE RAUTOMATION,INC. ~

4 .10. 2. 1 Unconditional Word Input/Output lnstructions

INA INPUT TO A REGISTER. Unconditionally transfers a full ie-su data word
from addressed peripheral device to A register.

INAM INPUT TO A REGISTER MASKED. Unconditionally transfers a full 16-bit
data word from addressed peripheral device to Processor and logically
ANDs data word with contents of A register. Result replaces contents of
A register.

INX INPUT TO X REGISTER. Unconditionally transfers a full 16-bit data word
from addressed peripheral device to X register.

INXM INPUT TO X REGISTER MASKED . Unconditionally transfers a full 16-bit
data word from addressed peripheral device to Processor , and logically
ANDs data word with contents of X register. Result replaces contents
X register.

OTA OUTPUT A REGISTER. Unconditionally transfers full is-su contents of
A register to addressed peripheral device .

OTX OUTPUT X REGISTER. Unconditionally transfers full 16-bit contents of
X register to addressed peripheral device.

OTZ OUTPUT ZERO. Unconditionally transfers a 16-bit word containing all zeros
to addressed peripheral device .

4.10.2 .2 Conditional Word Input/Output lnstructions

ROA READ WORD TO A REGISTER. Tests specified function in addressed peri­
pheral device. If a false response is received, instruction is repeated (and
interrupts may be acknowledged) . When a true response is received, a full
16-bit data word is transferred from addressed device to A register.

RDAM READ WORD TO A REGISTER MASKED. Tests specified function in addressed
peripheral device. If a fal se response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
a full 16-bit data word is transferred from addressed device to Processor
and logically ANDed with contents of A register. Result replaces contents of
A register.

RDX READ WORD TO X REGISTER. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received, a
full 16-bit data word is transferred from addressed device to X register.

4-41

COMf'UTE R AUTOM ATION . INC. ~

RDXM READ WORD TO X REGISTER MASKED. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
a full 16-bit data word is transferred from addressed device to Processor and
logically·ANDed with contents of X register. Result replaces contents of X
register.

WRA WRITE FROM A REGISTER. Tests specified function in addressed peripheral
device. If a false response is received, instruction is repeated (and inter­
rupts may be acknowledged). When a true response is received, full 16-bit
contents of A register are transferred to addressed device.

WRX

WRZ

WRITE FROM X REGISTER. Tests specified function in addressed peripheral
device. If a false response is received, instruction is repeated (and inter­
rupts may be acknowledged). When a true response is received, full 16-bit
contents of X register are transferred to addressed device.

WRITE ZERO. Tests specified function in addressed peripheral device. If
a false response is received, instruction is repeated (and interrupts may be
acknowledged) . When a true response is received, a 16-bit word eontatn­
ing all zeros is transferred to addressed device.

4. 10. 3 Byte lnput Instructions

Byte Input instructions input 8 bits of data to the LS byte of a target register leaving the
MS byte unchanged. They are divided into Unconditional and Conditional instructions.
Conditional instructions are automatically repeated until a true sense response is
obtained, at which time the data transmission occurs and the next instruction in sequence
is executed. Response toan interrupt may occur "within" a Conditional Byte Input
instruction - i.e., during a false sense response an interrupt can be acknowledged and
the computer will return to execution of the conditional instruction after serviceing the
interrupt. Byte Input instructions use the Single Word Input/Output instruction format
as shown in figure 4-33.

4 .10. 3 .1 Unconditional Byte Input lnstructions

IBA INPUT BYTE TO A REGISTER. Unconditionally transfers an 8-bit data byte
from addressed peripheral device to LS byte of A register. MS byte of A
register remains unchanged .

IBAM INPUT BYTE TO A REGISTER MASKED. Unconditionally transfers an 8-bit
data byte from addressed peripheral device to Processor and logically ANDs
data byte with contents of LS byte of A register. Result replaces LS byte
of A register and MS byte of A register remains unchanged.

4-42

COMPUTE R AUTOMATION . INC. ~

IBX JNPUT BYTE TO X REGISTER. Unconditionally transfers an 8-bit data byte
from addressed peripheral device to LS byte of X register. MS byte of X
register remains unchanged.

IBXM INPUT BYTE TO X REGISTER MASKED. Unconditionally transfers an 8-bit
data byte from address peripheral device to Processor and logically ANDs
data byte with contents of LS byte of X register. Result replaces LS byte
of X register and MS byte of X register remains unchanged.

4. 1 O. 3. 2 Conditional Byte Input Instructions

RBA READ BYTE TO A REGISTER. Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
an 8-bit data byte is transferred from addressed device to LS byte of A
register and MS byte of A register remains unchanged.

RBAM READ BYTE TO A REGISTER MASKED . Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
an 8-bit data byte is transferred from addressed device to Processor and
logically ANDed with contents of LS byte of A register. Result replaces
LS byte of A register and MS byte of A register remains unchanged.

RBX READ BYTE TO X REGISTER. Tests specified function in addressed periph­
eral device. If a false response is received, instruction is repeated (and
interrupts may be acknowledged). When a true response is received, an
8-bit data byte is transferred from addressed device to LS byte of X register.
MS byte of X register remains unchanged.

RBXM READ BYTE TO X REGISTER MASKED . Tests specified function in addressed
peripheral device. If a false response is received, instruction is repeated
(and interrupts may be acknowledged). When a true response is received,
an 8-bit data byte is transferred from addressed device to Processor and
logically ANDed with contents of LS byte of X register. Result replaces LS
byte of X register and MS byte of X register remains unchanged .

4 .10. 4 Block lnput/Output Instructions

The two instructions in this class provide for high-speed, full 16-bit data word transfers
between Memory and the addressed peripheral device. The Processor is totally dedicated
to these instructions until the specified block of data has been completely transferred -
i.e., no interrupts may be serviced until the instructions have been executed to comple­
tion.

4-43

COMPUTER AUTOMATION. IN(. ~

The Block Transfer instructions are double-word instructions. The second word of the
instruction contains the base address minus one of the associated memory data buffer.
The X register contains the (positive) number of words to be transfer-red - i.e., the
length of the data buffer. The memory location of each word transferred is obtained by
summing the base address minus one and the contents of the X register. As each data
word is transmitted, the X register is decremented by one. Thus, the data buffer is
output or input in descending order, beginning with the highest memory location and
ending with the lowest memory location (base address plus length -1). When the X
register is decremented to zero, the next instruction in sequence is executed.

The format for the Block Transfer instructions is shown in figure 4-34.

OP-CODE

DATA

EXPRESSION 1 [EXPRESSION 2] [coMMENTS]

EXPRESSION 3 [coMMENTS]

If EXPRESSION 2 is not present, EXPRESSION 1 must be absolute and
in the range : 0 thru : FF .
lf EXPRESSION 2 is present, EXPRESSION 1 must be absolute and in
the range : 0 thru : lF.
EXPRESSION 2 must be absolute and in the range : 0 thru : 7.
EXPRESSION 3 is an absolute or relocatable expression giving the
base address -1 of the buffer.

BIN

Figure 4-34. Block Input/Output Instruction Format

The expressions in the Operand field of these instructions must be either self-defining
(i. e., numeric expressions) or absolute expressions. If only one expression is pres­
ent, it must be in the range : 0 through : FF. The high-order 5 bits represent the
peripheral device address and the low-order 3 bits represent the function code. If two
expressions are present, the first must be in the range : 0 through : lF and the second
must be in the range : 0 through : 7. The first expression represents a peripheral de­
vice address, and the second expression represents a function code.

The expression in the Operand field of the DATA statement must not be an indirect
address (no*). It represents the memory location less one Oow-order memory loca­
tion) of the data buffer .

BLOCK IN. Tests specified function in addressed peripheral device and
transfers a full 16-bit data word from addressed device to memory data
buffer each time a true sense response is received. Instruction executes until
all data words have been input. lnterrupts are not acknowledged until com­
pletion of instruction .

4-44

COMl'UTER AUTOMATION, INC. ~

BOT BLOCK OUT. Tests specified function in addressed peripheral device and
transfers a full 16-bit data word from memory data buffer to addressed de­
vice each time a true sense response is received. Instruction executes
until all data words have been output. Interrupts are not acknowledged until
completion of instruction.

4 .10. 5 Automatic lnput/Output Instructions

The Automatic Input/Output instructions (Auto 1/0) provide data transfers directly be­
tween Memory and peripheral devices without affecting the A and X registers. The se
multiple word instructions effectively constitute complete 1/0 subroutines, thus facili­
tating their use as interrupt instructions. They increment a (negative) data word or
byte counter, increment a data word or byte pointer and transfer a data word or byte
between Memory and a peripheral device .

Each Auto 1/0 instruction occupies three words in Memory. The first word contains the
instruction itself, the second word contains the two's complement (negative) of the word
or byte count for the data buffer, and the third word contains an address pointer speci­
fying the address minus one, of the first (lower-order memory) location in the memory
data buffer. The data buffer is input or output in order of ascending memory locations
(low-order to high-order). The format for these instructions is shown in figure 4-35.

COMPUTER AUTOMATION. INC. ~

[LABEL] EXPRESSION 1 G EXPRESSION 2] [coMMENTs]
p Automatic 1/0 lnstruction OP-CODE P+l Word/Bvte Counter (nezattve)

[LABEL] [coMMENTs]
P+2 Word/Bvte Address Pointer (start address -1) DATA EXPRESSJON 3 P+3 End-of-Block Exit <Word Count - 0)
P+4 Next Instruction (Word Count 1' 0)

{BAC} [coMMENTs] [LABEL]
D~;A

EXPRESSION 4
Figure 4-36. ln-line Auto 1/0 lnstruction Sequence

If EXPRESSION 2 is not present, EXPRESSION 1 must be absolute and
in the range : 0 thru : FF .
IF EXPRESSION 2 is present, EXPRESSION 1 must be present and in
the range : 0 thru : lF.
EXPRESSION 2 must be absolute and in the range : 0 thru : 7.
EXPRESSION 3 is the negative word or byte count of the data buffer.
EXPRESSION 4 is an absolute or relocatable expression defining the base
address -1 of the buffer .

Figure 4-35. Automatic Jnput/Output Instruction Format

The expressions in the Operand fields of the first two statements must be either self­
defined (i .e., numeric expressions) or absolute expressions. If only one expression is
present in the operand field of the instruction, it must be in the range : 0 through : FF.
The high-order 5 bits represent the device address and the low order 3 bits represent
the function code. If two expressions are present, the first must be in the range : 0
through : IF, and the second must be in the range : 0 through : 7. The first expres_sion
represents a peripheral dev ice address, and the second expression represents a function
code.

4-45

The absolute expression för the second word represents the negative (two's complement)
data word or byte count for the data buffer. This word is incremented once prior to
each data word or byte transfer and must be preset each time a block of data is to be
transferred .

The expression in the Operand field of the third word of the instruction is an address
pointer specifying the byte or word address minus one , of the data buffer starting
location. This word is incremented once prior to each data word or byte transferred
and must be preset each time a block of data is to be transferred .

Operation of Auto 1/0 instructions differs depending upon usage. When used as an
in-line program instruction, the Auto 1/0 instruction sequence is as shown in figure
4-36. Each time the instruction is executed, the word/byte count and address pointer
are incremented , one word or byte of data is transferred , snd then the incremented
word count is examined. lf the word count has not yet reached zero, the next instruc­
tion executed is from location P+4. Jf the word count reached zero, the next instruction
executed isat Iocation P+3 (End-of-Block exit location). Since Auto 1/0 instructions
do not sense for the peripheral device to be ready prior to data transfer, a Sense (SEN)
instruction should be used prior to each execution (one word transferred) of the instruc­
tion, i. e. , to transfer a block location, P+4 would normally contain a jump back to a
Sense instruction prior to location P.

Auto 1/0 instructons may also be used under interrupt control at an interrupt location
to implement a Direct Memory channel. In this application, the Auto 1/0 instruction is
executed once each time the peripheral device indicates that it is ready for a data transfer
by interrupting to the location containing the Auto 1/0 instruction. Since the Auto Il?
instructions do not alter any processor registers, no jumping to an interrupt subroutme
to save registers, status, and return location is required. The Auto 1/0 instruction is,
in itself, a one instruction subroutine. When executed under interrupts, the skips after
execution are suppressed. lnstead, if the word count has not reached zero after a data
transfer, control is passed directly bsck to the main-line program st the point it was
interrupted. lf the word count did reach zero, a special signal (ECHO-) is sent to the
peripheral device to indicate that it should stop requesting further data transfers. The
Auto 1/0 instruction transfers control back to the main-line program whether the ECHO­
signal is true or false. Upon receipt of ECHO-, the peripheral device stops data transfer
requests, performs any stop action required (e. g. , CRC checking or generation for
magnetic tape), and then generates an End-of-Block interrupt so the program can
process the data block input or prepare another block for output. Although the End-

4-46

COMPUTER AUTOMATION. INC. ~

of- Block interrupt can be vectored to any location by the peripheral controller, it is
standard practice for the controller to vector this interrupt to four locations beyond
the data transfer interrupt location. Figure 4-37 illustrates the typical usage of Auto
1/0 instructions under interrupts.

Data Transfer lnterrupt Location

End-of- Block lnterrupt Location

Automatic 1/0 lnstruction
Word/Bvte Counter (negative)
Word/Bvte Address Pointer (start address -1)
Unused
JST EOBSUB (Jump and Store to End-of-Block
subroutine)

Figure 4-37. lnterrupt Location Auto 1/0 lnstruction Sequence

AIB

AIN

AUTOMATIC INPUT BYTE TO MEMORY. lncremcnts byte counter and address
pointer, and unconditionally transfers an 8-bit data byte from addressed
peripheral device to updated byte location in memory data buffer, which is
addressed by address pointer. When byte count is incremented to zero,
normal one-word skip after data transfer does not take place , or when used
as an interrupt instruction, an ECHO signal is sent to addressed device.

AUTOMATIC INPUT WORD TO MEMORY. lncrements word counter and address
pointer, and unconditionally transfers a full 16-bit data word from addressed
peripheral device to updated word location in memory data buffer, which is
addressed by ad dress pointer. When word count is incremented to zero,
normal one-word skip after data transfer does not take place, or when used
as an interrupt instruction, an ECHO signal is set to addressed device.

AOB

AOT

l+l
1+2
1+3
1+4

AUTOMATIC OUTPUT BYTE FROM MEMORY. lncrements byte counter and
address pointer, and unconditionally transfers an 8-bit byte from updated
byte location in memory data buffer, which is addressed by address pointer,
to addressed peripheral device. When byte count is incremented to zero,
normal one-word skip after data transfer does not take place, or when used
as an interrupt instruction, an ECHO signal is sent to addressed device.

AUTOMATIC OUTPUT WORD FROM MEMORY. lncrements word counter and
address pointer, and unconditionally outputs a full 16-bit data word from
updated word location in memory data buffer, which is addressed by address
pointer, to addressed peripheral device. When word count is incremented to
zero, normal one-word skip after data transfer does not take place, or when
used as an interrupt instruction, an ECHO signal is sent to addressed device.

4-47

COMPUTt R AUTOMATION . INC. ~

4 .11 ASSEMBLER CONTROL DIRECTIVES

The assembler control directives provide for conditional assembly of source statements
and establish and/or alter the contents and relocatability of the P register. lf a label
is present on any of these control directives, it is generally assigned the current value
and relocation attribute of the assembler's Working Location Counter. These directives
do not generate computer instruction words.

4. 11. 1 Conditional Assembly Controls

The IFF (If False) and IFT (lf True) directives are provided to conditionally assemble
subsequent lines of source code. The format for these two instructions is shown in
figure 4- 38 .

OP-CODE EXPRESSION [coMMENTs]

EXPRESSION: must be an absolute value of zero (False)
or non-zero (True)

Figure 4-38. Begin Conditional Assembly Directives Format

The absolute expression must be previously defined (but not as an externa!). The last
Jine affected must be ,m ENDC directive which signals the end of the conditional assem­
bly. The ENDC directive has the following format:

ENDC

There is no expression in the operand field.

[coMMENTJ

Figure 4-39. End Conditional Assembly Directive Format

IFF and IFT directives must not be nested - i. e. , no other IFF or IFT directive can
appear between a given IFF or IFT directive and its associated ENDC directive. If
the value of the absolute expression is zero, it is defined as false. If it is not equal
to zero, it is defined as true. If the value of the expression satisfies the condition of
the directive (false for IFF and true for IFT) , the source lines between the directive
and its associated ENDC directives are assembled. If the conditions are not met, the
source lines are skipped (not assembled). The program END directive must not
appear between an IFF or IFT directive and its associated ENDC directive.

4-48

Cowumt AUTOM ATION , INC . ~

4. 11 . 2 Program Location Controls

The following directives control the contents and relocation attributes of the assembler's
Working Location Counter. The format for these directives is shown in figure 4-40.

[LABEL] OP-CODE [EXPRESSIONJ [coMMENTS]

Figure 4-40. Location Control Directive Format

If an expression is present, it must be predefined or self-defined (e. g. , a numeric
expression). It cannot be externally defined. Each program must start with an ABS,
REL or ORG directive and end with an END directive .

ABS ABSOLUTE ASSEMBLY. Sets relocation attribute of the assembler's Working
Location Counter to absolute. If an expression is present, the location counter
is set to value of expression. Otherwise, contents of the location counter are
unchanged. Comments may appear on an ABS directive only if an expression
is present. If a label is present, it is set to value of expression.

REL RELOCATABLE ASSEMBLY. Sets relocation attribute of the assembler's Work­
ing Location Counter to relative. If an expression is present, the location
counter is set to value of expression. If no expression is present, contents
of the location counter are unchanged and Comments field must be blank. lf
a label is present , it is set to value of expression .

ORG

END

ORIGIN. Sets the assembler's Working Location Counter to value of expres­
sion. Expression must be present and defined. If a label is present, it is
set to value of expression . Relocation attribute of the location counter is
unchanged.

END OF ASSEMBLY. Signifies end of an assembly. If an expression is pre­
sent, it is interpreted by object loader as execution transfer address at end
of a successful load. Since object loader does not distinguish between END
directives in main programs and subprograms, only main programs should
include a transfer address. Comments may appear on an END directive only
if an expression is present. If a label is present, it is set to current value
of the assembler's Working Location Counter.

4. 11. 3 Machine Directive (MACH)

MACH EXPRESSION [coMMENTS]

Figure 4-41. MACH Directive Format

4-49

COMPUTtR AUTOMATION. INC. ~

The MACH directive allows the user to specify which 16-bit computer instruction set
is to be considered valid during this assembly. This allows program assembly,
and/or error detection, of programs written for either (or both) LSI-1 and -2, and
ALPHA 16 computers. Instructions declared invalid by the MACH directive will be
Oagged with a "0" .error, but will be assembled correctly.

The expression in the Operand field must be present, absolute (not relocatable or
externa!), and previously defined. The value of the expression will replace the
current value in the MACH Oag word, remaining in effect until the end of the current
assembly or until another MACH directive is encountered. The acceptable values of
the MACH directive are shown in table 4-1 below.

The la bel, if present, will be set to the current Location Counter value.

Table 4-1. MACH Flag Word Values

MACH Value Instruction f'!et Allowed

0 Common subset of ALPHA 16 and LSI only
1 ALPHA 16
2 LSI
3 ALPHA 16 and LSI
4 Extended LSl-2
5 ALPHA 16 and Extended LSl-2
6 LSI and Extended LSI-2
7 ALPHA 16, LSI and Extended LSl-2

NOTES:

1. Default value of 2 is assumed if no MACH directive is entered.
2. MACH directives should appear prior to program instructions.
3. The common subset of ALPHA 16 and LSI instructions is always allowed.

4.12 DATA AND SYMBOL DEFINITION DIRECTIVES

4 .12 .1 Formats

The directives discussed in this section define various types of data, including buffers,
address pointers, and character strings. Symbol Definition directives are also dis­
cussed. The various formats involved are shown below in figure 4-42.

4-50

COMPUTE R AUTOMATION . INC.
~

[LABEL] BAC EXPRESSION 1 G EXPRESSION 2] [coMMENTS]

[LABELJ DATA [~ EXPRESSION 1 G [•J EXPRESSION 2] [coMMENTSJ

[LABELJ TEXT EXPRESSION [coMMENTs]

(i.ABEL] RES EXPRESSION 1 G EXPRESSION 2] [coMMENTs]

LABEL r~~1 EXPRESSION [coMMENTs]
SET

Figure 4-42. Data and Symbol Definition Directive Format

4. 12. 2 Directives

BAC BYTE ADDRESS CONSTANT. Places byte values or addresses of expression in
sequential memory locations. Symbolic items in expression are assumed to be
"word address" values, and numeric items are assumed to be "byte counts" or
"byte address" values. Values of symbolic items are "doubled" to generate
byte address values. If a label is present, it assumes the value and attributes
of the assembler's Working Location Counter before the first expression is
evaluated.

DATA DATA DEFINITION. Places values of expressions in sequential memory locations.
The Operand field contains one or more expressions separated by commas. Any
valid expression may be used. Expressions are evaluated one at a time and gen­
erated as sequential constants. If a label is present, it assumes the value and
attributes of the assembler' s Working Location Counter before the first expres­
sion is evaluated. An indirect address pointer is specified by preceding expres­
sion in Operand field with an asterisk (*) .

NOTE

The expression field may contain an externally
defined symbol which will be resolved at load
time.

TEXT TEXT STRING. Generates an 8-bit ASCII character string, two characters per
word, packed left to right in sequential memory locations. Trailing character
positions are filled with blanks (: A0) to complete full words. Expression must
be a character string surrounded by single quotes ('). When a quote is desired
as a character in the string, two contiguous single quotes must appear within
the string. If a label is present, it assumes the value and attributes of the
assembler's Working Location Counter before the text string is processed.

4-51

COMPUTE R AUTOMATION . INC. ~

RES RESERVE STORAGE. Reserves storage for number of words specified by firat
expression. If second expression is present, if defines a constant which is to
be stored in each reserved memory location. Both expressions must be either
self-defined (e. g. , a numeric expression), or predefined, absolute expressions.
If the second expression is not present, object loader will not alter reserved
memory locations at load time. If a label is present, it is set to the address of
the first reserv ed memory word.

EQU EQUATE SYMBOL. Assigns value and relocatability of expression in Operand
field to symbol in label field. Symbol in label must not be defined elsewhere.
Expression must be either a self-defined (e. g. , a numeric expression) or a
predefined expression. No machine instructions are generated.

SET SET SYMBOL. Assigns value and relocatability of expression in Operand field
to symbol in Label field. This directive is identical to the EQU directive, except
symbol being defined may be redefined by another SET directive. No machine
instructions are generated .

4.13 PROGRAM LINKAGE DIRECTIVES

4. 13. 1 Formats

The directives discussed in this section provide for linkages between programs which have
been assembled separately, but are to be loaded and executed together. The formats for
the three directives are shown below in figure 4-43.

LABEL

EXPRESSION 1 G EXPRESSION 2 3 [coMMENTS]

[coMMENTs]

Figure 4-43. Program Linkage Directive Formats

Expressions must be symbolic names defined within the program segment for NAM or
referenced by the program segment for EXTR . REF may not have an Operand field
expression.

4. 13 . 2 Directives

NAM EXTERNAL NAME DEFINITION. Defines externa! entry or reference points
within current program. Operand field of NAM directive contains one or more
symbols separated by commas. Each name (or symbol) appearing in Operand
field must be defined in body of program. When this directive is used, it

4-52

COMPUTER AUTOMATION . INC. ~

must precede all data generating statements. If a label is present, it is
assigned a zero value and a relative relocation attribute. No machine instruc­
tions are generated .

EXTR EXTERN AL REFERENCE-SCRATCHP AD. Declares externa! symbols referenced
by current program. Object loader links these declared externa! symbols
through scratchpad (first 256 words of memory) at load time. Each name or
symbol appearing in Operand field and also referenced by current program
is output to object loader at load time. Since they are not defined within
current program, these symbols must not be used in multi-term expressions.
References toan EXTR-defined symbol must be direct, since assembler auto­
matically generates indirect references through scratchpad. If a label is pre­
sent, it is assigned current value and relocation attribute of the assembler's
Working Location Counter. No machine instructions are generated.

REF EXTERNAL REFERENCE-POINTER. Defines current location as linkage for
reference to externa! symbol contained in the Label field. At load time, address
assigned to externa! symbol is stored in memory location of REF directive.

4.14 SUBROUTINE DEFINITION DIRECTIVES , . r,

The following directives are provided primarily for documentation purposes. They are
used for calling and delimiting subroutines in assembler output listings. The formats
are described below in figure 4-44.

EXPRESS JON

LABEL

CALL

ENT

RTN EXPRESSION

[coMMENTs]

[coMMENTs]

[coMMENTs]

Figure 4-44. Subroutine Definition Directive Formats

No Operand field is allowed for ENT. The expression for RTN may be any expression
defining the location of a subroutine return pointer (normally the label for the subroutine
ENT).

CALL

ENT

SUBROUTINE CALL. Causes assembler to generate a Jump and Store instruc­
tion to location specified by expression. It is provided primarily for documen­
tation purposes to facilitate recognition of subroutine Call instructions.

SUBROUTINE ENTRY. Reserves a word to hold return address from a subrou­
tine call (JST). Assembler generates a HLT instruction for this directive. Any
source statement which causes one word to be reserved could be used in its
place.

4-53

COMl'Ult R AUTOMATION . INC. ~

RTN SUBROUTINE RETURN. Generates an indirect Jump via symbol in Operand
field (JMP *Expression) . Note that expression is direct.

4 .15 LIS TING FORMAT AND ASSEMBLER INPUT CONTROLS

The following controls are provided for the purpose of formatting assembler output list­
ings. With the exception of the TITL directive, these controls are simply special_ cha~­
acters in the first column or position of a source line. The format for the TITL dtrectrve
is shown below in figure 4-45.

TITL (one blank) ANY COMBINATION OF ALPHANUMERIC CHARACTERS
NOT EXCEEDING 51 CHARACTERS IN LENGTH

Figure 4-45. Title Directive Format

No label field is allowed for TITL.

TITL

(Period)

PAGE EJECT WITH TITLE. Generates a Top-of-Form to assembler listing
device. Page number is then printed, followed (on same line) by character
string specified in Operand field. Same character string is printed with
page number at top of each page until a new TITL directive is encountered.
If these directives are to be used throughout a program , first TITL directive
should appear as first source line of program , ahead of comments , user
defined op code definitions , and origin statements .

PAGE EJECT. Generates a Top-of-Form to assembler listing device. This
control must appear as first character of a source statement. Remainder of
input line will be ignored . If a TITL directive has been previously processed ,
the title will be printed at the Top-of-Form as described under TITL. If no
TITL has been processed, a Top-of-Form is generated anda page number is
printed.

* COMMENT LINE. Allows source line comments to be exactly duplicated on
(Asterisk) assembler listing device. This control must appear as first character of

source statement. All characters following asterisk on source statement
are duplicated on output listing. Comment lines may appear anywhere in
a program.

(Up
Arrow)

PAUSE. Causes assembler to halt. Assembly is continued by pressing RUN
pushbuttom. This control is most useful when paper tape input is used. Up­
arrow must appear as first character of a source line. Remainder of input
line will be ignored.

4-54

COMPUT£R AUTOMATION . INC. ~

4.16 USER DEFINED OPERATION CODE DIRECTIVE

User defined operation code directives allow the user to name or define his own instruc­
tion mnemonics for the current assembly. If included in a program, user defined op
code directives must precede all source statements other than comments or TITL direc­
tives. The user is referred to the applicable Assembler Reference manual for a detailed
discussion of their usage.

4-55

COMPUTI: R AUTOMATION. INC. ~ --~ ,------------------- COMPUTE R AUTOMATION. INC. ~

Section 5

INPUT /OUTPUT AND INTERRUPT OPERATIONS

5. 1 INTRODU CTION

5. 1. 1 Discussion of Input/Output Operations

Interfacing with the standard peripheral devices generally consists of operations
which can be treated as members of three major categories - Control, Sense, and
Data Transmission. The precise definitions of the various instructions, function codes
and status words depend on the design of the individual peripheral interfaces.

5 .1.1. 1 Control

Control instructions prepare peripheral devices for data transmission. The instructions,
Select (SEL) and Select and Present (SEA and SEX) , initialize, establish operating codes,
and control the status of the addressed peripheral device. The format for Control
instruction follows:

where:

INST DA,FC

INST = mnemonic of Control instruction (SEL, SEA, SEX)
DA = assigned address of device interface (: 01 thru : lF)
FC = any one of eight function codes (: 0 thru : 7)

The SEL instruction commands the addressed peripheral device to perform some function
(initialization, etc.) according to the function code. SEL is used where no further
information, other than the function code, is required, so zeros are placed on the Data
bus.

The SEA and SEX instructions command the peripheral device to perform some function
where additional information, other than the function code, is required. For example,
if the device interface controller contains a status or address register which must be
set during initialization, the required information is first loaded into the A or X
register. Upon execution of the appropriate Select and Present instruction (SEA/SEX),
the contents of the A or X register are placed on the Data bus. An example of the use of
a Select and Present instruction is when the Teletype controller is initialized for Full­
duplex operation (SEA/SEX 7,4 with appropriate register, A or X, = 1).

5-1

5.1.1.2 Sense

Once a peripheral device has been prepared for transmission of data with the proper
commands, it is necessary to determine whether the device is ready to accept or send
the data. This is accomplished using the Sense and Skip on Response (SEN) and
Sense and Skip on No Response (SSN) instructions. One or the other of these instruc­
tions should immediately precede an unconditional data transmission sequence such
that an appropriate Sense response is detected prior to the data transfer.

SEN
JMP

OPERANDS

DA,FC
$-1

Data Transmission

or:
SSN DA,FC
Data Transmission

Figure 5-1. Sense Routines

Refer to figure 5-1. In the first example, the Sense instruction is executed until a true
response is detected and the Jump instruction is skipped. The data transmission is
then performed. In the second example, the Sense instruction is executed only once.
If a false response is detected, the data transmission instruction is skipped.

5 .1. 1. 3 Data Transmission

Unconditional data transmission is accomplished using the Input to Register (INA and
INX) and Output from Register (OTA, OTX and OTZ) instructions. (Refer to figure
5-2).

INST

SEN
JMP
INA

or:
SEN
JMP
OTA

OPERANDS

DA,FC
$-1
DA,FC

DA,FC
$-1
DA,FC

Figure 5-2. Unconditional Data Transmission
5-2

COMl'UTt R AUTOMATION. INC. ~

When the Sense response is true, the Jump instruction is skipped and the data trans­
mission instruction is executed .

Conditional data transmission is accomplished by combining Sense operations with
data transmission using the Read to Register (RDA, RDX, RBA and RBX) and Write
from Register (WRA, WRX and WRZ) instructions. (Ref er to figure 5-3.)

INST

RBA

OPERANDS

DA,FC

or:
WRX DA,FC

Figure 5-3. Conditional Data Transmission

These instructions are executed repeatedly until a true Sense response is received.
The data transmission then occurs and the next instruction in sequence is executed.
The Sense and unconditional data transfer operations can be combined in a conditional
data transfer instruction only when the function codes for the two operations are the
same. The conditional data transmission instructions are interruptable.

Block data transmissions are performed using the Block Input to Memory (BIN) and
Block Output from Memory (BOT) instructions. (Refer to figure 5-4.)

LABEL INST OPERANDS

LXP COUNT
BIN DA,FC
DATA BUF - 1

or:
LXP COUNT
BOT DA,FC
DATA BUF - 1

BUF RES COUNT

Figure 5-4. Block Data Transmission

These instructions are executed repeatedly, transmitting one word of data each time a
true Sense response is received, until all data has been transmitted. The data is trans­
mitted in reverse order (in order of decreasing addresses). The next instruction in
sequence is then executed. The function code associated with these instructions is the
same as the function code used by the incorporated Sense. The block data transmission
instructions are not interruptable.

5-3

COMl'UTt R AUTOMATION . INC. ~

In-line automatic data transmissions are performed using the Automatic Input to Memory
(AIN and AIB) and Automatic Output from Memory (AOT and AOB) instructions. (Ref er
to figure 5-5.)

LABEL INST OPERANDS

SENSE SEN DA,FC
JMP $ - 1
AIN DA,FC
DATA Negative Data Count (Word)
DATA BUF - 1 (Word)
JMP EOB
JMP SENSE

or:
SENSE

BUF

SEN DA,FC
JMP $ - 1
AOB DA,FC
DATA Negative Data Count (Byte)
BAC BUF - 1 (Byte)
JMP EOB
JMP SENSE

RES COUNT

Figure 5-5. In-line Auto 1/0 Data Transmission

These imtructions unconditionally transmit one word/byte of data each time they are
executed and are therefore preceded by an appropriate Sen se command. In addition,
the Base Address pointer and the Negative Data Count are incremented, with the Data
Count evuntually becoming zero and generating an exit to the End-of-Block processing
routine (EOB). Automatic 1/0 instructions may be used under interrupts, in which
esse the Sense instruction is not required and the exits are replaced by a return to the
mainline program. A final interrupt toa different (End-of-Block) location is generated
by the peripheral controller when the buffer is completely transferred.

5. 1. 2. lnterrupt Operations

lnterrupts constitute a means of reacting quickly to random, externa! stimuli without
consuming valuable processing time in a continuous polling environment. Peripheral
devices which are to be operated under interrupt control are assigned reserved memory
locations anywhere in Memory. These interrupt addresses are generated by the indi­
vidual peripheral control!ers and generally have jumper selectable locations within
the firat 512 locations of Memory. Appendix B includes a table of standard interrupt
address assignments.

5-4

COWUTE R AUTOMATION. INC. ~

When an interrupt is recognized, the instruction at the associated interrupt location is
executed. If the instruction does not modify the program counter, control is immediately
restored to the mainline program. Otherwise, processing continues at the location
specified by the new contents of the P register. Although any of the instructions in the
ALPHA LSI's repertoire could be used in the reserved locations as interrupt instructions,
only certain of them are generally useful - IMS, JMP, JST and the Auto 1/0 instructions.
With LSI-1 processors, any memory reference instruction performing relative to P backwards
addressing should not be used as an interrupt instruction (the instruction would reference
the location one lower that the location actually programmed; i.e., $9 instead of $8).

Before a given peripheral device can be operated under interrupt control, the interrupts
for that device must be enabled. This enables the device to genera te an interrupt request
when the associated event occurs. In addition, Processor interrupts must be enabled.
This is accomplished using the EIN instruction and allows the Processor to respond to
the interrupt request of the peripheral device.

5 .1. 2 . 1. Non- lnput/ Output

The lncrement Memory and Skip on Zero (IMS) instruction is used in interrupt program­
ming ns n counter or timer for externa! events. As interrupt instructions, increment
results of zero do not generate skips. They generate, instead, a signal (ECHO) to the
peripheral interface which caused the interrupt. U sually this signal is used by the
device to generate a second interrupt to another reserved location at which n Jump and
Store (JST) instruction toa counter/timer maintenance subroutine would be located.

The JST instruction is used in interrupt programming as a means of transferring eon­
trol to an interrupt subroutine in a manner such that return to the mainline program at
the interrupted location can be accomplished upon completion of the operations required
by the interrupt. JST is the only instruction which disables Processor interrupts when
it is used as an interrupt instruction. Before returning to the mainline program, the
Processor interrupts should be re-enabled.

5 .1. 2. 2 lnput/Output

The Automatic lnput to Memory (AIN and AIB) and Automatic Output from Memory (AOT
and AOB) instructions were specifically designed as interrupt instructions. Used to
transfer blocks of data between Memory and the peripheral devices, these instructions
contain their own word/byte count and memory word/byte ad dress. They do not affect
the A and X registers, the OV indicator or the P register when transferring data as
interrupt instructions. As each data word/byte is transmitted, the associated pointer
and counter are automatically incremented.

5 .1. 2. 3 End-of-Block lnterrupts

When either the IMS or Auto 1/0 instructions are used as interrupt instructions, incre­
ment results of zero (any memory location for IMS and the negative word/byte count for
the Auto 1/0 instructions) produce ECHO signals which are typically used by the various
peripheral devices to generate End-of-Block interrupt requests to different reserved
interrupt locations.

5-5

COMPUTER AUTOMATION. INC. ~

5.2 NON-INTERRUPT INPUT/OUTPUT EXAMPLES

The examples shown in figures 5-6 through 5-10 are discussed in the paragraphs that
follow.

LABEL INST OPERANDS COMMENTS

Optional SEL 4,4 lnitialize Line Printer

LDA CHAR A = Char to Print
SEN 4,1 Sense Line Printer Ready
JMP $-1 (Not Ready)
OTA 4,1 Unconditionally Output A

i
Figure 5-6. lnitialization and Unconditional Output to Line Printer

LABEL INST OPERANDS COMMENTS

Optional SEL 7,4 lnitialize Teletype

SEN 7,3 Sense Teletype Ready (not busy)
JMP $-1 (Not Ready)
SEL 7,2 Command Step Read
SEN 7,1 Sense Character Buffer Full
JMP $-1 (Not Full)
INA 7,0 Unconditionally Input Character to A

Figure 5-7. Unconditional Character Read from Teletype Paper Tape Reader

LABEL INST OPERANDS COMMENTS

Optional SEL 4,4 lnitialize Line Printer

LXP :0C Top of Form Character
WRX 4,1 Output to Line Printer When Ready

Figure 5-8. lnitialization and Conditional Control of Line Printer

5-6

COMl'Ull R AUTOMATION. INC. ~ COMl'UTE R AUTOMATION. INC. ~

LABEL INST OPERANDS COMMENTS

LABEL INST OPERANDS COMMENTS

Optional SEN 5,3 Sense Card Reader Ready
JMP $-1 (Not Ready)

Optional SEN 7,3 Sense Teletype Ready (not busy) SEL· 5,4 Initialize Card Reader
JMP $-1 (Not Ready) SEL 5,3 Command Card Reader Read Card

LOOP SEN 5,0 Sense lnput Character Ready
JMP $-1 (Not Ready)

SEL 7,0 Enable Auto Echo AIB 5,0 Automatic Input Character to Buffer
DATA -80 Buffer Byte Count
BAC BUF-1 Buffer Byte Address

RBA 7,1 Input a Teletype Character to A When Ready JMP $+2 Zero Counter Results - Exit
LLA 8 Shift to Most Significant 8 Bits JMP LOOP Loop on Non-Zero Counter Results
RBA 7,1 lnput Another character to Least

Significant 8 Bits
SEL 7,4 Disable Auto Echo BUF RES 40 80 Character (Byte) Data Buffer

Figure 5-9. Conditional Input from Teletype Keyboard with Auto Echo

LABEL INST OPERANDS COMMENTS

Optional SEL 4,4 Initialize Line Printer

LXP COUNT X = Word Buffer Length
BOT 4,1 Block Output to Line Printer
DATA BUF-1 Character Buffer Address Less One

BUF RES COUNT Data Buffer

Figure 5-10. Uninterruptable Block Output to Line Printer

5-7

Figure 5-11. Automatic Byte Input from Card Reader

5. 2 . 1 Cc ntrol lnstructions

The SEL instruction is the most widely used control instruction for peripheral devices.
It is used both for initializing the devices, as in figures 5-6, 5-7, 5-8, 5-10 and 5-11,and
for causing the peripheral devices to perform specific functions, as in figures 5-7, 5-9
and the second SEL instruction in figure 5-11. Special characters are sometimes used for
control functions (e. g. , the Line Printer Top of Form character in figure 5-3).

NOTE

When a Select type instruction is used to turn off interrupts that may
be pending, it should be preceded by a SIN 1 instruction to disable
Processor recognition of the pending interrupt. This is necessary
since the Processor examines interrupt requests prior to the Select
taking effect and will therefore respond to the interrupt even though
it is no longer pending.

The SEN instruction is used to test whether the specified data source or destination in
the addressed peripheral device is ready to transmit or receive data. Sometimes both
the peripheral device and a particular buffer within the device must be ready for data
transmission, as in figures 5-7 and 5-11. In many cases , the Sense function can be
incorporated into the Conditional 1/0 instructions, as in figures 5-8 and 5-9 .

. 5-8

COMl'IJTER AUTOMATION. INC. ~

5. 2. 2 Unconditional Instructions

Unconditional Input instructions consist of both word and byte instructions. While the
Word input instructions replace all 16 bits of the register (figure 5-7) , the byte input
instructions affect only the least significant 8 bits of the register. When byte-orientated
peripheral devices are used, these instructions allow the programmer to pack the input
data before storing it in Memory.

The Unconditional Output instructions are word-oriented instructions. Since byte­
oriented peripheral devices accept only the least significant 8 bits of data output from
a register, there is no need for byte Output instructions.

5. 2. 3. Conditional Instructions

The Conditional I/0 instructions incorporate both the Sense and data transmission
functions into one instruction. These instructions make sense, of course , only when
the function codes for the Sense and data transmission operations are the same.

The Conditional Input instructions consist of both word and byte instructions. While
the word input instructions replace all 16 bits of the register, the byte input instruc­
tions affect only the least significant 8 bits of the register. When byte-oriented
peripheral devices are used, these instructions allow the programmer to pack the
input data before storing it in Memory, as in figure 5-9.

The Conditional Output instructions are word-oriented instructions. Since byte­
oriented peripheral devices accept only the least significant 8 bits of data output from
a register, there is no need for byte-output instructions .

Interrupts may be acknowledged <luring the execution of a Conditional I/0 instruction.

5. 2. 4 Block I/0 lnstructions

The Block I/0 instructions allow high speed data transmissions between Memory
and peripheral devices. They essentially access each data buffer memory location by
summing the contents of the X register and the data buffer pointer (buffer address - 1)
in the second word of the instruction. Each time the addressed peripheral device
generates a true Sense response, data is transmitted and the X register is decremented .'
Thus, the data is transmitted from, or to, the end of the buffer (higher memory
locations) first. The last word transmitted accesses the start Oowest memory
location) of the buffer. lnterrupts may be acknowledged only after the X register has
been decremented to zero and the instruction has been completed - i.e., when all data
words have been input or output.

These instructions access word memory operands only (see figure 5-10). They do not
affect the contents of the A register.

·5-9

COMl'IJTER AUTOMATION. INC. ~

5. 2. 5 Automatic I/0 Instructions

Although the Auto I/0 instructions have been designed specifically as interrupt
instructions, they may also be used in non-interrupt, in-line prograniming. They are
three word instructions, with the second word containing the negative (two' s complement)
word or byte count and the third word containing a word or byte address pointer (buffer
address - 1). Since they are unconditional transfer instructions, the specified data
source or destination in the addressed peripheral device must generate true Sense
responses before data transmission occurs. Each data transmission increments both the
data counter and the address pointer. Non-zero data counter increment results generate
a one-word skip. Zero increment results cause the next instruction in sequence (the
instruction after the address pointer which is skipped by non-zero increment results)
to be executed (see figure 5-11) .

5.3 INTERRUPT STRUCTURE AND EXAMPLES

5. 3. 1 General Interrupt Handling

Externa! interrupts cause the computer to execute one instruction outside of the mainline
program. If the instruction does not modify the P register, the computer continues with
the mainline program after executing the interrupt instruction. If the interrupt instruc­
tion modifies the P register (either a JST or JMP) , the computer continues processing st
the location specified by the new value in the P register.

If a peripheral device is to operate under interrupt control, reserved locations in Memory
are assigned to the device . The computer then executes the instruction st the reserve~
location when the peripheral device generates an interrupt to the Processor. Each device
may be assigned one or more reserved _locations. For example, a device moving blocks
of data to or from the computer may generate one interrupt for each word or byte of data
moved and a second interrupt when the entire block of data has been moved. The
interrupt for each word or byte would require one location and the interrupt indicating
the end of the block of data would require another .

Before any interrupt can be recognized by the Processor, several conditions must be met:

1. Interrupts must be enabled, in general. If any interrupts are to be
recognized, the Enable Interrupts (EIN) instruction must be executed.

2. The specific peripheral device interrupt must be enabled. Specific inter-
rupts are enabled by setting an interrupt enable fiag in the peripheral
device interface controller. Enable flags are generally set by executing a
Select (SEL) instruction with a device address and function code specifying
which interrupt is to be enabled. Using interrupt enable fiags, the programmer
can selectively enable and disable interrupts.

3. The interrupt condition must exist (i. e. , the device must be ready to
accept or transmit data) . Many peripheral devices "remember" interrupt

5-10

COMl'UT£ R AUTOMATION . INC. ~

conditions generated prior to enabling the interrupt enable flags. Care
should be taken to reset the peripheral device interrupts before enabling
the enable flag so that false interrupts do not occur immediately after
enabling the interrupts.

4. No higher priority interrupt must be waiting. Each peripheral interface
or computer option has a definite priority assignment. Interrupts are
processed according to priority if more than one interrupt is pending.

5. The computer must be in the RUN mode. Interrupts cannot be recognized
when the computer is halted, or during DMA operations.

5. 3. 2 Examples of Initialization and Enabling Sequences

lnitialization and interrupt enabling take place prior to the generation and use of the
interrupts. The examples below involving a Line Printer and the Real Time Clock
are typical of initialization sequences.

INST OPERANDS COMMENTS

SEN 4,1 Wait for Line Printer Buffer ready
JMP $-1 (Not Ready)
SEL 4,7 Reset Interrupt Enable flags
SEL 4,5 Enable Word Interrupt Enable flag
SEL 4,6 Enable EOB lnterrupt Enable flag
EIN Enable Processor interrupts

Figure 5-12. Line Printer Interrupt lnitialization Sequence

In addition to being reset by the SEL 4, 7 instruction (figure 5-12), the interrupt enable
flags may also be reset by the Line Printer Initialization instruction (SEL 4, 4). Note
that the Word interrupt enable flag is enabled before the End-of-Block (EOB) interrupt
enable flag. When specific actions in a peripheral device are additionally required to
generate interrupts (e .g., a card reader must read a card), the instruction (SEL)
causing the action must be executed before the interrupt can take place. The sequence
in figure 5-12 is used in conjunction with an AOT or AOB instruction in the Word interrupt
location and a JST instruction to an EOB routine at the EOB interrupt location.

In addition to being reset by the SEL 8, 3 instruction (figure 5-13), the interrupt enable
flags may also be reset by the Real Time Clock Initialization instruction (SEL 8, 4) .
Note that the Syne interrupt enable flag is armed before the Time and Syne interrupt
enable flags are enabled. This sequence is used in conjunction with an IMS instruction
in the Word interrupt location and a JST instruction to a Syne maintenance routine in
the Syne interrupt location.

5-11

COWUTBI AUTOMATION . INC. ~

INST OPERAND

SEL 8,3
SEL 8,2
SEL 8,0

EIN

COMMENTS

Reset RTC lnterrupt Enable flags
Arm RTC Syne Interrupt Enable flag
Enable RTC Time and Syne Interrupt Enable
flag
Enable Processor Interrupts

Figure 5-13. Real Time Clock Interrupt Initialization Sequence

5. 3. 3 Examples of Interrupt Instructions

The contents of the interrupt locations associated with the above examples are illustrated
in figures 5-14 and 5-15.

LABEL/ INST OPERANDS COMMENTS
LOCATION

: 42(Word) AOB 4,1 Automatic Output Byte Instruction
DATA -80 Negative Character Buffer Length

(Byte Counter)
BAC BUF-1 Byte Address Pointer (Start-1)

: 46(EOB) JST SUB Jump to End-of-Block Routine,
Disable Processor Interrupts

Main Memo!:I
SUB

ENT

RTN SUB

BUF RES 40

Figure 5-14. Line Printer Interrupt Instructions

Since the byte counter and address pointer are modified during the data transmission,
they must be preset each time a line of characters is to be printed prior to execution of
the initialization sequence discussed in paragraph 5. 3 .1. When all characters have
been transferred, the instruction at location : 46 is executed and control is transferred
to the EOB routine beginning at SUB. This routine might output a carriage return

5-12

COMPUTE R AUTOMATION, INC. ~

character to cause the line to be printed, or perform any other line termination pro­
cessing required . The last character of the buffer might be a carriage return (see
Llne Printer Driver documentation in Software manual) .

LABEL/
LOCATION INST

: 18 (Time) IMS

: lA (Syne) JST

OPERANDS

COUNT

SYNC

Main Memo!:X
SYNC ENT

SIN

STA ASAVE
SIA
STA STATUS
STX XSAVE
LAM 100
STA COUNT

LDX XSAVE
LAP 3
AND STATUS
LRA 1
JAZ $+2
SBM
SIN 1

LDA ASAVE
EIN
RTN SYNC

COMMENTS

Increment RTC Counter COUNT

Transfer to Syne Subroutine,
Disable Processor Interrupts

Save Main Program Return Location
Inhibit Status (Guarantee Word Mode)
to Save A Register
Save A Register

Save Status
Save X Register
Reset
RTC Counter COUNT

Perform Specified Maintenance Function

Restore X Register

Byte and OV Bits to A Register
Restore OV
Test Byte Mode
Restore Byte Mode
lnhibit Status (Guarantee Word Mode)
to Restore A Register
Restore A Register
Enable Processor Interrupts
Return to Mainline Program

Figure 5-15. Real Time Clock lnterrupt Instructions

Each acknowledgement of a Time interrupt causes the RTC counter COUNT to be incre­
mented. When COUNT is incremented to zero, recognition of the Syne interrupt (at
location : lA) generates execution of the SYNC interrupt subroutine.

5-13

COMPUTE R AUTOMATION. IN(. ~

Interrupts are automatically disabled by execution of the JST instruction, but the
addressing mode and the state of the overflow indicstor are unchanged. Because the
computer might be in the Byte addressing mode when the interrupt occurs, the Word
mode is forced for one instruction so the full 16-bit contents of the A register can be
saved and the instruction address will be treated as a word address. When this is
done, the computer status is input, which also sets the addressing mode to the Word
mode and resets the overflow indicator. The Status and the contents of the X register
are then saved. The Real Time Clock counter COUNT is reset to a negative value as
part of the required maintenance operations.

Restoration of the contents of the X register begins the exit sequence of the subroutine .
The computer status is then restored and Byte mode inhibited for one instruction to
ensure restoration of the full 16-bit contents of the A register. The interrupts are
then re-enabled and the subroutine is exited prior to acknowledgement of any other
interrupt (since the EIN instruction inhibits recovnition of interrupts for the duration
of the RTN SYNC instruction).

The save/restore sequences discussed here should be used at the beginning and end
of any interrupt subroutine to which a JST instruction at an interrupt location ref ers.
The Real Time Clock counter COUNT should also be set to a negative value before the
initialization sequence discussed in paragraph 5. 3 .1 is executed.

5.4 INTERRUPT LATENCY

Recognition of an interrupt request from a peripheral device by the computer is not
always instantaneous. The conditions discussed below delay acknowledgement of
interrupts .

5. 4. 1 Interrupt Service

Interrupt acknowledgement occurs "between" the execution of instructions - i. e. , just
after the completion of a given instruction. The Conditional Input/Output instructions
allow recognition of interrupts before their completion as long as false (not ready)
Sense responses are obtained from the specified data source or destination. After the
interrupt is serviced, processing is resumed with the Conditional Input/Output instruc­
tion. The Scan Memory (SCM) instruction similarly allows recognition of interrupts
after each specified word or byte of Memory is compared to the contents of the A register.
If interrupts were off prior to issuing an instruction, the EIN delays recognition of any
interrupt until after the execution of from one (minimum) to three (maximum) instruc­
tions. This allows return from interrupt subroutines to the mainline program before
acceptance of another interrupt. The Block Input/Output (BIN and BOT) instructions,
the Status Inhibit (SIN) instruction and all shift instructions must be completed before
recognition of an interrupt may occur. Since their use in mainline programs may
constitute non-trivial delays in the recognition of interrupts, the programmer should
use such instructions with care. In addition, when Direct Memory Access (DMA)
operations are in progress, recognition of interrupts is delayed for the duration of
data block transmission .

5-14

COMPUTf R AUTOMATION . INC. ~

5. 4. 2 Priority Resolution

Occasionally, multiple interrupt requests occur. When this happens, the interrupt
having the highest priority is acknowledged first, then the next, and so forth down
to the interrupt having the lowest priority. To avoid responding to the same interrupt
twice, one to three mainline program instructions will always be executed between
each recognition of an interrupt. The number of instructions expected depends on
the Processor type and the duration of the instructions executed. The standard
interrupt priorities are listed in figure 8-4.

5-15

Cowumt AUTOM ATION . INC . ~

Sectlon 6

PROCESSOR OPTIONS
6. 1 INTRODUCTION

This section describes how to use the various features of the Teletype/CRT /Modem eon­
troller, Real Time Clock (RTC), and Autoload (AL) options, and the Basic Variables (BV)
package which are contained on the Processor Option board (Figure 6-1). These features
are selectable by means of external jumpers on connectors located on the rear edge of the
board. In addition, the Power Fail/Restart option contained in the Processor is also
described.

The mast common operating modes require no external jumpers. Unjumpered mating eon­
nectors are supplied with the Processor Option board.

6. 2 REAR EDGE CONNECTORS (Figures 6-2 and 6-3)

The rear edge of the Processor Option board has two connectors designated Jl and J2.
Connector Jl is used to select various operating modes via externa! jumpers while eon­
nector J2 is used to interface to a Teletype, CRT, or Modem.

J 1 is designed to accept a 50-pin two-row edge connector. Identifying pin numbers silk­
screened on the board apply to the Viking type 2VH25/1JN5 connector which is numbered
1-50 with the odd numbers (1-49) in one row and even numbered pins (2-50) in the other.
In same cases, connector type 3VH25 is used. Pin designations of this connector are Al
thru A25 in one row and pins Bl thru B25 in the other. Corresponding pins of the two
types of connector are shown in figure 6-2 along with signals and related options (in
parenthesis).

J2 is designed to accommodate a 36-pin Winchester connector (8BDJ185). The pin assign­
ments, signals, and related option (in parenthesis) for connector J2 are shown in figure
6-3.

NOTE

All reserved pins listed in figures 6-2 and 6-3
are not to be used for any purpose.

Connector Jl mounts on the board with the row having pins Al thru A25 (or 1 thru 49)
interfacing with the component side of the board. The contacts for J2 are designated A
through V and 1 through 18. Pins A through V interface with the component side of the
option board while pins 1 through 18 interface with the solder side.

Connector Jl should be installed with connector pins Al and Bl (or 1 and 2) to the right
when viewed from the rear of the computer. Connector J2 has the signals brought out in
such a way that when interfacing with an ASR-33 teletype, the connector may be installed
right-side up or up-side down with no ill effects. When used with terminals other than
a Teletype, J2 must be installed with pins A and 1 to the right as viewed from the rear of
the computer .

6-1

COMl'UTER AUTOMATION. INC. ~

6. 3 TELETYPE/CRT /MODEM CONTROLLER

The Teletype/CRT /Modem (TTY /CRT) option interfaces a CRT, Modem, or modified
ASR-33 Teletype to the ALPHA LSI computer. It performs all of the data and control
signal conversion required for the computer to control the user terminal. An ASR-33
Teletype provides four Input/Output features in one package: Keyboard lnput, Page

· Printer, Paper Tape Reader and Paper Tape Punch. A CRT provides keyboard entry
and display .

The interface contains a data buffer register which performs parallel-to-serial data
conversion for transferring data from the computer to the user terminal and serial­
to-parallel converston when transferring data from the user terminal to the computer.
In addition, the interface has provisions for interrupt generation for both Word and
End-of-Block interrupts.

The TTY /CRT Interface option has been assigned a standard device address of 7.

Output from the computer is printed on the TTY page printer or displayed on the
CRT. If the TTY punch is turned on , the output is also punched. The TTY punch
and page printer cannot be separately controlled by the computer. The TTY operator
must turn the punch on or off as desired.

Input to the computer is accomplished via the TTY /CRT keyboard or the TTY Paper
Tape Reader. They are controllable separately from the computer. The Paper Tape
Reader can read bytes one at a time or continuously. Automatic Echo is a feature
which allows any input to be echoed back to the TTY /CRT for printing or display.

The Teletype or CRT can be operated in either Half-duplex or Full-duplex mode. The
Initialize instruction (SEL 7, 4) puts the controller in the Half-duplex mode. Execu­
tion of the Select and Present instructions (SEA 7 , 4 or SEX 7 , 4) with the register
contents equal to 1 puts the controller in Full-duplex mode.

The TTY /CRT controller has provisions for ten different baud rates, a variable length
word (with or without parity) , and either one or two stop bits. Additionally, the user
can select a current loop data path for teletypes , a TTL compatible data path , or an EIA
RS232C/CCITT data path for various terminals. The user should consult the terminal
manufacturers literature to determine the exact interface requirements of the terminal.

6. 3 .1 Baud Rate Selection

The TTY /CRT controller uses a variable format counter to provide internal clock timing
for the data channel. Two counter inputs (SLCTl and SLCT2) determine the count
pattern to be employed. Eight counter outputs are brought out to connector Jl. One of
these outputs (CP006, CP013, CP026, CP052, CP104, CP208, CP416 or CP568) can be
jumpered to the TCLK terminal to provide the appropriate clock period.

6-2

Figure 6-1 . Processor Option Board

(TTYI SlCTl

(All PFAl­

(TTYI CP006

(TTYI CP026

(TTYI CP104

(TTY) CP568

(TTYI CP208

(RESERVEOI

GNO

GNO

(TTY)ORIN

(TTY)TTYOF­

(BV) OS03-

(BV) OS01-

(BV) OPT­

(BVI RST-

(RTC) lKHZ

(BVI STRl

(BVI STRJ

(TTYIPS

(TTYIWlSl

(TTYIPI

Cowumt AUTOMATION, INC. ~

OPTION BOARD
CONNECTOR Jl

(ACCEPTS VIKING

A 3VH25/1JN5)
B

1* SSW- (BVI

3 4 OFST- (BVI

5 6 MAi- (BVI

7 8 TClK-(TTYI

9 10 REMOTE Al- (All

11 12 INH- (RTCI

13 14 CP013 (TTYI

15 16 CP052 (TTYI

17 18 CP416 (TTYI

19 20 RMOIS- iAll

21 22 MEC (RTC)

23 24 GNO

25 26 GNO

27 28 ENOSW- (BVI

29 30 (RESERVEO)

31 32 SMOAT- (TTY)

33 34 0S00- (BVI

35 36 OS02- (BV)

38

40

42

44

46

48

50

*Pin numbering system if type 2VH25/ 1JN5 connector installed.

Figure 6-2. Option Board Connector Jl Pin Assignments

6-4

COMPUTI:R AUTOMATION. INC. ~

OPTION BOARD
CONNECTOR J2

(ACCEPTS WINCHESTER
8BDJ18S)

(RESERVED) A iRORA

GNO DTDAT

GNO EIAT-

(TTY) ORIN RTS

(AU Al-

(BV) CINT-
(TTY)

TOAT 7 (RESERVEO)

RCV MOT+

GNO MOT-

MOT- GNO

MOT+ RCV

(RESERVEO) N TDAT
(TTY)

CINT- (BV)

Al- (Al)

EIAR- ORIN(TTY)

CTS GNO

SMDAT- GNO

IRDRA 18 (RESERVED)

Figure 6-3. Option Board Connector J2 Pin Assignments

6-5

COMl'UT£ R AUTOMATION . INC. ~

The SLCTl and SLCT2 signals are static control signals that are either grounded or
left open. Ground is available on pins 23 thru 26 of connnector Jl. The grounding
configurations for selecting the various baud rates are shown in table 6-1.

Table 6-1. Baud Rate Selection

BAUD RATE SLCTl (pin 3) SLCT2 (pin 9) JUMPER

75 GND OPEN Pin8to17
110 (standard) OPEN OPEN none

134.5 OPEN GND none
150 GND OPEN Pin 8 to 18
300 GND OPEN Pin 8 to 19
600 GND OPEN Pin 8 to 15

1200 GND OPEN Pin 8 to 16
2400 GND OPEN Pin 8 to 13
4800 GND OPEN Pin 8 to 14
9600 GND OPEN Pin8to7

6. 3. 2 Word Length Selection

The user may select either 5-, 6-, 7- or 8-bit character lengths for the controller to
process. Character length selection is controlled by WLSl and WLS2 (pins Jl-47 and
Jl-48 respectively). These signals are static control signals that are_either ~ound~d
or left open. Ground is available on pins 23 through 26. The groundmg eonfigurations
for word length selections are shown in table 6-2.

Table 6-2. Word Length Selections

WORD LENGTH WLSl (pin 47) WLS2 (pin 48)

5-bits
6-bits
7-bits
8-bits (standard)

GND
OPEN
GND
OPEN

GND
GND
OPEN
OPEN

6. 3. 3 Parity Selection

The user can choose to have parity error processing with parity error sensed by the
SEN 7, 6 instruction. Two signals control parity in the controller. Parity Inhibit
(PI, Jl-49) controls parity. When PI is open, parity is disabled. When PI is grounded,
the parity generation and check functions are enabled and a parity bit is inserted into
the transmitted word. When parity is enabled, the Parity Select signal (PS, Jl-45)
determines whether even or odd parity is generated by the transmit function and checked
by the receive function. When PS is open, even parity is selected. When PS is grounded,
odd parity is selected.

6-6

COMl'UTt R AUTOMATION . INC. ~

6. 3. 4 Stop Bit Selection

All terminal equipment requires either one or two stop bits. The Stop Bit Select sig­
nal (SBS, Jl-50) provides this selection capability. When SBS is grounded, one stop
bit is inserted in the transmitted word. When SBS is open, two stop bits are inserted
in the transmitted word. Note that the selection of two stop bits when programming a
5-bit word generates 1. 5 stop bits.

6. 3. 5 Alternate Interrupt Locations

When using the TTY /CRT controller in the Ralf-duplex mode, the standard TTY /
CRT interrupt locations of : 0002 and : 0006 may be changed to : 0022 and : 0026,
respectively by jumpering TTYOF- (Jl-29) to MEC (Jl-22). Note that this feature
is automatieally overridden when operating in the Full-duplex mode.

6. 3. 6 Data lnterfaee Seleetion

The use:' has a ehoiee of three types of data interfaee that ean be used with a terminal
deviee. These interfaee types are eurrent loop, RS232C/CCITT and TTL/DTL com­
patible.

6.3.6.1 Current Loop lnterfaee (Figure 6-3)

The Current Loop interfaee utilizes a 3-wire ground eommon interfaee whieh is ehar­
aeterized by the presenee or absence of a 20 milliamp de signalling eurrent. The
current loop interfaee converts logie signals to eurrent signals and vice-versa as
follows:

M ar k = 20 mA eurrent flow
Spaee = no eurrent flow

The eontroller eurrent loop transmit signal is TDAT, while the eontroller reeeive
signal is RCV-. TDAT is available on eonneetor J2 at pins H and 12. RCV- enters
the eontroller at J2 pins J and 11. A logie ground referenee between the eontroller
and the terminal deviee is required and is available on J2 pins K and 10.

The controller current loop reeeive and transmit eireuits have a 1500 ohm, 1 watt
resistor in series with their respeetive lines. These resistors are used to set the
eurrent level on eaeh line to 20 mA de. The eurrent loop reeeive line also has a
built-in rolloff filter whieh limits baud rates to 150 baud maximum for use with teletypes.
For faster current-loop deviees, the filter capacitor may be removed.

6-7

COMl'Umt AUTOMATION , INC. ~

TTY/CRT/MOOEM
CONTROLLER

RECEIVE
DATA

MSTOP-

I TELETYPE INTERFACE I CABLE (MOOIFIEDI
I

J2 I ,, P2 I P2
RCV SEND

,... _. K

TRANSMIT
DATA

GNO

TOAT

-

....

RECEIVE

TAANSMIT
FUNCTION

RECEIVE
FUNCTION

Figure 6-4. Current Loop Interface

6.3.6.2 EIA RS232C/CCITT lnterface (Figure 6-4)

The EIA RS232C/CCITT EIA interface uses signal levels which vary between plus and
minus seven volts. The interface provides two control signals in addition to receive/
transmit data signals. The interface signal lev els are as follows:

Data:

Control:

Mark= -7 Vdc
Space = +7 Vdc
True = +7 Vdc
False = -7 Vdc

CURRENT
SOURCE

The controller EIA receive signal is designated EIAR- and is available on J2 pin S.
The EIA transmit signal is designated EIAT- and is available on J2 pin 3. The two EIA
control signals are Request to Send (RTS) and Clear to Send (CTS). RTS is available
st J2 pin 4 while CTS enters the interface at J2 pin T.

6-8

COMPUTE R AUTOMATION . INC. ~

The RTS and CTS lines from both the controller and terminal devices are defined for
operation with a modem. When operating without a modem (direct interface as shown
in figure 6-5a) , the RTS and CTS lines must be crossed.

With the RTS and CTS control lines crossed, Half-duplex switching from Receive mode
to Transmit mode and vice-versa is controlled by the controller RTS line. When the
controller RTS line is true, the terminal device transmits to the controller. When the
controller RTS line is false, the controller transmits to the terminal device. During
Full-duplex operation, the RTS line of both the controller and the terminal device
must be true for simultaneous transmission.

When operating with a Half-duplex modem, carrier keying by means of the RTS sig­
nal is not used to switch from Transmit to Receive modes. lnstead, End-of-Message
(EOM) character detection within the support software is used. When operating with
a Full-duplex modem, no special disciplines are required.

The RTS signal is generated by the controller Motor On/Off flip-flop. The Motor
On/Off flip-flop has delay circuitry which disables the controller Sense multiplexer for
600 ms efter receipt of a Motor On command. When using the Motor On/Off flip-flop
with an EIA device, the delay circuitry must be disabled. The delay circuits are
disabled by grounding the ORIN- input, Jl pin 27 or J2 pins D and 15. Note that RTS and
Motor On are in opposite sense. That is, a Motor On instruction turns RTS off .

RTS RTS

CTS CTS

TTY/CRT/
MODEM TERMINAL

CONTROLLER EIAT RECEIVE

EIAR TRANSMIT

a. Interface Without Modem

RTS RTS

CTS CTS

TTY/CRT/ ------s--- MODEM MODEM MODEM TERMINAL
(LOCAL) (REMOTE)

CONTROLLER EIAT RECEIVE

EIAR TAANSMIT

b. Interface With Modem

Figure 6-5. EIA RS232C/CCITT lnterface

6-9

COMl'UTER AUTOMATION. IN(. ~

6.3.6.3 TTL/DTL Compatible Interface (Figure 6-5)

The TTL/DTL Compatible (TTL) interface uses signal levels which vary from O to +5
volts de. The interface signal levels are as follows:

Mark= 0.0 to +0.45 Vdc
Space = 2.4 to +5.0 Vdc

The TTL receive signal is SMDAT- which is available at Jl pin 32 and J2 pin U. SMDAT­
should be driven by an open-collector driver in the terminal device. The controller
represents only one load to the driver. The controller provi~es a ~K ohm pull-~p
resistor to +5 Vdc. The TTL transmit signal is DTDAT and 1s avaitable on Jl pm 46
and J2 pin 2. DTDAT is driven by the controller wit~ an ope~-collector dr_iver which
is capable of 50 milliamps de drive current. The termmal dev ice must pr-ov ide a pull-up
resistor to the terminal VCC supply which must not exceed 100 volts de.

•SV

7416/7417
DRIVER

SMDAT-
RECEIVE
DATA

REN8-
0Uf'EN-

CURRENT
LOOP RECEIVE

MSTOP­

RCV

OTDAT

I
I
I
I
"I ~-,

>SV

,. 936/7 404
RECEIVER

SENO DATA

RECEIVE DATA

Figure 6-6. TTL/DTL Interface

6-10

COMl'UTE R AUTOMATION. IN(. ~

6. 3. 7 Special Teletype Controls

The Teletype/CRT controller contains provisions which permit user generated soft­
ware to control Paper Tape Reader and drive motor turnon and turnoff in specially
modified ASR-33 Teletype units.

The reaåer control signal is designated IRDRA and is available at J2 pins V and 1.
The motor control signals are referred to as MOT+ and MOT- and are available at J2
pins M and 8, and L and 9, respectively,

6.3.8 Ralf-Duplex Usage

Ralf-duplex controller operations involve either input from, or output to, the terminal
device, but not simultaneously. U se of the Auto Echo feature causes input from the
device to be automatically "echoed" back for printing or display, thus eliminating
the necessity for echoing characters back under software control.

The following figures are examples of typical Ralf-duplex teletype 1/0 sequences:

LABEL INST OPERANDS COMMENTS

SBM Set Byte Addressing Mode
SEL 7,4 Initialize TTY Interface

LOOP LDAB *DATA Load Byte/Character into LS Byte
of A Register

IMS DATA Increment Byte Address Pointer
WRA 7,1 Output Byte when TTY is Ready
IMS COUNT Increment Negative Number of

Characters to be Transferred
JMP LOOP Continue Data Output if Non-zero

Increment Results
SEN 7,1 Wait for lsst character to be printed
JMP $-1
SWM Restore Word Addressing Mode

Exit

Figure 6-7. Ralf-Duplex Program-Controlled Data Output

6-11

COWUTE R AUTOM ATION . INC . ~

OPERANDS COMMENTS

LOOP

SBM
SEL

SEL

RBA
STAB

IMS
IMS

JMP

SEL

7,0

7,3

7,1
*DATA

DATA
COUNT

LOOP

7,4

Set Byte Addressing Mode
Enable Auto Echo to Print Data
Being Input
Start the Paper Tape Reader in a
Continuous Read Mode
lnput Byte when TTY is Ready
Store Character in Data Buffer in
Memory
lncrement Byte Address Pointer
Increment Negative Number of
Characters to be Transferred
Continue Data lnput if Non-zero
lncrement Results
Initialize the TTY Interface to Stop
the Paper Tape Reader and Disable
the Auto Echo

SWM Restore Word Addressing Mode

Figure 6-8. Program-Controlled TTY Reader Input

The standard Word interrupt location for Half-duplex operation is : 0002. The controller
interrupts to this location when the Word Transfer mask is set, interrupts are enabled,
and the terminal device is ready for either input or output. A jumper option allows this
interrupt location to be relocated to location : 0022. The standard End-of-Block interrupt
location for Half-duplex operation of the terminal device is location : 0006. The
controller interrupts to.this location when the Block Transfer mask is set, interrupts
are enabled,and an ECHO signal (from completion of an Auto I/O interrupt sequence) is
received from the Processor. A jumper option allows this interrupt location to be
relocated to location : 0026. An additional jumper option allows Processor mounted option
interrupts to be offset by : 0100 locations. The standard Half-duplex controller interrupts
can thus be relocated to locations: 0102 and: 0106 or: 0122 and: 0126.

6. 3. 9 Half-Duplex Controller lnstructions

SEL 7,0

SEL 7,1

ENABLE AUTO ECHO. Places controller in Read mode and causes
all inputs to be echoed back to source terminal for printing or
display. lnitialize instruction (SEL 7, 4) turns Auto Echo off.

SELECT KEYBOARD. Places controller in Read mode.

6-12

COWUTER AUTOMATION. INC. ~

SEL 7,2

SEL

SEL

SEL

SEL

SEL 7,7

SEN

7,3

7,4

7,5

7,6

0,4

SEN 7,1

SEN 7,2

SEN 7,3

SEN 7 ,4

STEP READ. Places controller in Read mode and causes character
under Paper Tape Reader read station to be read. Paper tape is then
advanced one character position. Reader switch must be in START
position.

CONTINUOUS READ . Places controller in Read mode and causes
TTY Paper Tape Reader to read continuously until reader is stopped
or tape runs out. Reader switch must be in START position.

INITIALIZE CONTROLLER. Places controller in Half-duplex and
Write modes, and resets all control fiags. Static marking condition
will be present .

ENABLE WORD TRANSFER INTERRUPTS . Sets appropriate interrupt
mask to enable generation of a Word interrupt each time Buffer Ready
condition occurs

ENABLE END-OF-BLOCK INTERRUPT. Sets appropriate
interrupt mask to enable generation of an EOB interrupt
upon reception of ECHO signal from Processor. lnstruction
must be executed after SEL 7 , 5 or immediate EOB interrupt
will occur.

DISABLE INTERRUPTS. Disable both Word and EOB interrupts
by resetting both interrupt enable masks.

SENSE TTY CONTROLLER INST ALLED. Tests for presence of TTY
controller on Option board. If controller is installed, next sequential
instruction is skipped. If controller is not installed, next sequential
instruction is executed. (Used by diagnostic programs.)

SENSE BUFFER READY. Tests for Buffer Ready condition. If buffer
is ready , next sequential instruction is skipped. If buffer is not
ready , next sequential instruction is exec_uted .

SENSE WORD TRANSFER INTERRUPTS EN AB LED. Tests if Word
interrupts are enabled. lf they are, next sequential instruction is
skipped. If they are not, next sequential instruction is executed.

SENSE CONTROLLER NOT BUSY. Tests busy state of controller.
If controller is not busy processing a character, next sequential
instruction is skipped. If controller is busy, next sequential
instruction is executed.

SENSE CLEAR TO SEND. Tests CTS line from a CRT or modem. If
signal is true , next sequential instruction is skipped. If signal is
false, next sequential instruction is executed. (This feature Is
available only with EIA RS232C/CCITT interface option.)

6-13,

COMl'Ulf R AUTOMATION. IN(. ~

SEN 7,5 SENSE TTY MOTOR ON. Tests if TTY motor is on. If it is on ,
next sequential instruction is skipped. lf it is off, next sequential
instruction is executed.

SEN 7,6 SENSE PARITY ERROR. Tests for occurrence of parity error during
most recent input operation. lf a parity error occurred, next
sequential instruction is skipped. lf a parity error did not occur,
next sequential instruction is executed. (Requires prior strapping
of parity option at rear-edge connector.)

SEN 7,7 SENSE FULL DUPLEX MODE ENABLED. Tests if controller is in
Full-duplex mode. If it is, next sequential instruction is skipped.
lf it is not, next sequential instruction is executed.

OTZ 7,6 TURN MOTOR ON. Turns TTY motor on and places controller in
Write mode. Turning motor on introduces a 600 ms delay for all
controller Sense responses and interrupts to allow motor to come up
to speed. (This feature is only available if TTY has been modified
for remote motor on/ off control.)

NOTE

Motor is unconditionally turned on whenever a
Power-up or System reset occurs.

OTZ 7,6

OTZ 7,7

CLEAR REQUEST TO SEND. When used with a CRT or modem, this
instruction turns off RTS signal and places controller in Write mode .
(This feature is available only with EIA RS232C/CCITT interface
option.)

TURN MOTOR OFF. Turns TTY motor off and places controller in
Write mode.

OTZ 7,7

OTA
OTX

WRA
WRX

7,0
7,0

7,1
7,1

REQUEST TO SEND. When used with a CRT or modem, this instruction
turns on RTS signal and places controller in Write mode. (This
feature is available only with EIA RS232C/CCITT interface opttorr.)

OUTPUT A OR X REGISTER TO CONTROLLER. Unconditionally
transfers contents of LS byte of specified register to controller and
causes character to be transmitted to terminal device.

WRITE FROM A OR X REGISTER TO CONTROLLER. Tests for Output
buffer empty condition . If buffer is empty, contents of LS byte of
specified register are transferred to controller and subsequently
transmitted to terminal device. lf buffer is not empty, instruction is
continuously repeated until it becomes empty.

6-14

COMl'UTER AUTOMATION . INC. ~

AOT

AOB

BOT

INA
INX

IBA
IBX

RDA
RDX

RBA
RBX

7,0

7,0

7,1

7,0
7,0

7,0
7,0

7,1
7,1

7,1
7,1

OUTPUT WORD FROM MEMORY TO CONTROLLER, AUTOMATICALLY.
Contents of LS byte of memory location addressed by updated AOT
address pointer are unconditionally transferred to controller and
subsequently transmitted to terminal device. (Ref er to Auto 1/0
instructions in section 4.)

OUTPUT BYTE FROM MEMORY TO CONTROLLER, AUTOMATICALLY.
Contents of memory byte Iocation addressed by updated AOB address
pointer are unconditionally transferred to controller and subsequently
transmitted to terminal device. (Ref er to Auto 1/0 instructions in
section 4.)

OUTPUT BLOCK FROM MEMORY TO CONTROLLER. Places controller
in Write mode and tests for Output buffer empty condition. When
buffer is empty, contents of LS byte of effective memory location are
transferred to controller, and subsequently transmitted to terminal
device. Word count is decremented by one. lnstruction is repeated
continuously until word count is decremented to zero. (Ref er to
Block 1/0 instructions in section 4.)

INPUT WORD FROM CONTROLLER TO A OR X REGISTER.
Unconditionally transfers contents of lnput buffer to LS byte of
specified register . MS byte of specified register is set to zero.

INPUT BYTE FROM CONTROLLER TO A OR X REGISTER.
Unconditionally transfers contents of lnput buffer to LS byte of
specified register . MS byte of register is unaffected.

READ WORD FROM CONTROLLER TO A OR X REGISTER. Tests for
lnput buffer full condition. lf buffer is full, contents are transferred
to LS byte of specified register. MS byte of specified register is set
to zero. If buffer is not full , instruction is continuously repeated
until it becomes full.

READ BYTE FROM CONTROLLER TO A OR X REGISTER. Tests for
lnput buffer full condition. lf buffer is full, contents are transferred
to LS byte of specified register . MS byte of specified register is
unaffected . If buffer is not full , instruction is continuously repeated
until it becomes full.

AIN 7,0 INPUT WORD FROM CONTROLLER TO MEMORY, AUTOMATICALLY.
Unconditionally transfers contents of lnput buffer to LS byte of memory
location addressed by updated AIN address pointer . MS byte of
memory location is set to zero. (Ref er to Auto 1/0 instructions in
section 4.)

6-15

AIB 7,0

BIN 7,1

INPUT BYTE FROM CONTROLLER TO MEMORY, AUTOMATICALLY.
Unconditionally transfers contents of lnput buffer to memory byte
location addressed by updated AIB address pointer. (Refer to Auto
1/0 instructions in section 4.)

INPUT BLOCK FROM CONTROLLER TO MEMORY. Tests for Input
buffer full condition. When buffer is full, contents are transferred
to LS byte of effective memory location. MS byte of memory location
is set to zero and word count is decremented by one. lnstruction is
repeated continuously until word count is decremented to zero. Ref er
to Block 1/0 instructions in section 4.)

6.3.10 Full-Duplex Usage

Full-duplex controller operations allow simultaneous input and output. The interface
contains two data buffers in this mode - one for input and one for output. U se of the
Auto Echo feature causes input from the device to be automatically "echoed" back for
printing or display, thus eliminating the necessity for echoing characters back under
software control. When this feature is used, normal output data and echoed data can
be intermixed but care should be taken to assure that the resulting sequence of output
characters makes sense.

Full-duplex operation also allows use of a special "loop-back" diagnostic feature. This
mode is entered by executing the Select and Present instructions SEA 7, 4 or SEX 7, 4
with the appropriate register (A or X) contents equal to 3. This feature connects the
Output buffer to the Input buffcr, allowing immediate comparison of transmitted data and
received data. Figure 6-9 is an cxample of full-duplex data-input under interrupts.

In the example, a 20-character "question" is transferred to the TTY. A one-
cha-:>. ter "answer", entered at the keyboard is also printed but not before printing
of tne q uestion is complete.

If printing of the question is not completed when the answer is entered, the -1 byte
count is incremented to zero and the processor issues an ECHO-. Upon receiving
ECHO- , the controller generates an ROB interrupt to location : 26. Location : 26
contains a JST to the EOB routine (ENDA). The program then waits for completion
of lr.e output byte transfer and the ROB interrupt. When it occurs, the A register
is cleared and the EOB routine for byte input initializes the output interrupt ·
sequence for output. The answer is then printed completing the example.

Standard
Location

Output Word Transfer lnterrupt
Output EOB lnterrupt
lnput Word Transfer lnterrupt
Input EOB lnterrupt

:0002
:0006
:0022
:0026

Offset
Location Priority

: 0102 4
: 0106 2
: 0122 3
: 0126 1

6-16

COWUTER AUTOMATION. INC. ~

The jumper option for offsetting interrupt locations to : 0022 and : 0026 (or : 0122 and
: 0126) in the Half-duplex has no effect on the interrupt locations for Full-duplex
operation. Note that the EOB interrupts have priority over the word interrupts.

6. 3 .11 Full-Duplex Controller Instructions

ENABLE AUTO ECHO. Causes all inputs to be echoed back to
source terminal for printing or display. lnitialize instructions
(SEL/SEA/SEX 7, 4) turns Auto Echo off.

SELECT KEYBOARD. Turns off Paper Tape Reader if on, without
affecting any other operation.

STEP READ. Causes character under Paper Tape Reader read
station to be read. Paper tape is then advanced one character
position. Reader switch must be in START position.

CONTINUOUS READ. Causes TTY Paper Tape Reader to read
continuously until reader is stopped or tape runs out. Reader
switch must be in START position.

INITIALIZE CONTROLLER TO HALF-DUPLEX. Places controller in
Half-duplex and Write modes, and resets all control flags. Static
marking condition will be present.

INITIALIZE CONTROLLER TO FULL-DUPLEX. Either instruction
(with appropriate register =l) will place controller in Full-duplex
mode and reset all control flags.

SEL 7,0

SEL 7,1

SEL 7,2

SEL 7,3

SEL 7,4

SEA 7,4
SEX 7,4
(A or X = 1)

SEA 7 ,4
SEX 7,4
(A or X= 3)

SEL 7 ,5

SEA 7 ,5
SEX 7,5
(A or X= 1)

SEL 7,6

JNlTIALIZE CONTROLLER TO FULL-DUPLEX DIAGNOSTIC. Either
instruction (with appropriate register = 3) will place controller in
Full-duplex mode and reset all control flags. In addition, the
Output buffer is connected to the Input buffer. Any character which
is output will be received by the Input buffer.

ENABLE OUTPUT WORD TRANSFER INTERRUPT. Sets appropriate
interrupt mask to enable generation of an Output Word interrupt
each time Output buffer ernpty condition occurs.

ENABLE INPUT WORD TRANSFER INTERRUPTS. Sets appropriate
interrupt mask to enable generation of Input Word interrupt each
time Input buffer full condition occurs.

ENABLE OUTPUT END-OF-BLOCK INTERRUPT. Sets appropriate
interrupt mask to enable generation of Output EOB interrupt upon
reception of ECHO signal from Processor, generated as a result of

6-17

COMPUllR AUTOMATION, INC. ~

LABEL/
LOCATION

:2

:6

: 22

:26

Main Memory
START
GO

ENDA

FINISH

IBUFA
OBUFA
ZAR
DONE

IBUF

INST.

AOB
DATA
BAC

ZAR

AIB
DATA
DATA

JST

LAP
SEA
SEL
SEL
SEA
SEA
EIN
WAIT

ENT
EIN
JAN
DIN
LAM
STA
LDA
STA
LDA
STA
ZAR
JMP

ENT
SEL
LAM
STA
LDA
STA
LDA
STA
LDA
STA
LAM
STA

BAC
BAC
ZAR
JST

DATA

OPERANDS

7,1
-20
OBUF-1

7,0
-1
IBUF-1

ENDA

l
7,4
7,5
7,6
7,5
7,6

$

l
: 3
IBUFA
: 4
DONE
6

GO

7,7
20
: 3
OBUFA
: 4
ZAR
: 6
IBUFA
:24
l
: 23

IBUF-1
OBUF-1

FINISH

$-$

COMMENTS

Automatic byte output
Negative byte count
Address of output buffer-1

End-of-block termination

Automatic byte input
Negative byte count
Address of input buffer-1

End-of-block terminstion

Set A to +l
Set full duplex
Enable word output mask
Enable EOB output mask
Ensble word input mask
Enable EOB input mask
Enable interrupts
Wait for interrupts

Entry for input done
Enable interrupt
Wait for line output interrupts
Disable interrupts
Setup automatic output or input character

Godo it

Done!
Turn off all masks
Re-setup output and input instructions

For next time

OBUF 'SOURCE INPUT IS - "
DATA : 8A8D CR and LF

Figure 6-9. Full-Duplex Auto-Input Under Interrupt

6-18

cowum AUTOM ATION . INC. ~

SEA 7,6
SEX 7,6
(A or X= 1)

SEL 7,7

SEA 7,7
SEX 7,7
(A or X= 1)

SEN 0,4

SEN 7,0

SEN 7,1

SEN 7,2

Output Word interrupt. lnstruction must be executed efter
SEL 7 , 5 or immediste Output EOB interrupt will occur.

ENABLE INPUT END-OF-BLOCK INTERRUPT. Either instruction
(with appropriate register = 1) will set appropriate mask to enable
generation of Input EOB interrupt upon reception of ECHO signal
from Processor, generated as a result of Input Word interrupt.
Instruction must be executed after SEA/SEX 7, 5 or an immediate
Input EOB interrupt will occur.

DISABLE OUTPUT WORD TRANSFER AND END-OF-BLOCK
INTERRUPTS. Disables both Output Word and EOB interrupts by
resetting corresponding interrupt enable masks.

DISABLE INPUT WORD TRANSFER AND END-OF-BLOCK
INTERRUPTS. Either instruction (with appropriate register= 1)
will disable both Input Word and EOB interrupts by resetting
corresponding interrupt enable masks .

SENSE TTY CONTROLLER INSTALLED. Tests for presence of TTY
controller on Option board. If controller is installed, next
sequential instruction is skipped. If controller is not installed,
next sequential instruction is executed. (U sed by diagnostic
programs.) The buffer is full, next sequential instruction is skipped.

SENSE INPUT BUFFER FULL. Tests for lnput buffer full condition.
If buffer is not full , next sequential instruction is executed .

SENSE OUTPUT BUFFER EMPTY. Tests for Output buffer empty
condition. If buffer is empty, next sequential instruction is skipped .
If buffer is not empty , next sequential instruction is executed .

SENSE OUTPUT WORD TRANSFER INTERRUPTS ENABLED. Tests
if Output Word interrupts are enabled. lf they are, next sequential
instruction is skipped . If they are not, next sequential instruction
is executed.

SEN 7,3 SENSE CONTROLLER NOT BUSY. Tests busy state of controller.
If controller is not busy processing a character, next sequential
instruction is skipped. If controller is busy, next sequential
instruction is executed.

SEN 7,4

SEN 7,5

SENSE CLEAR TO SEND. Tests CTS line from a CRT or modem.
If signal is true, next sequential instruction is skipped. If signal
is false, next sequential instruction is executed. (This feature is
available only with EIA RS232C/CCITT interface option.)

SENSE TTY MOTOR ON. Tests if TTY motor is on. If it is on, next
sequential instruction is skipped. If it is off, next sequential
instruction is executed.

6-19

COMPUTE R AUTOMATION . INC. ~

SEN

SEN

OTZ

OTZ

OTZ

OTZ

OTA
OTX

WRA
WRX

AOT

7,6

7,7

7,6

7,6

7,7

7,7

7,0
7,0

7,1
7,1

7,0

SENSE PARITY ERROR. Tests for occurrence of parity error during
most recent input operation . If a parity error occurred , next
sequential instruction is skipped . If a parity error did not occur ,
next sequential instruction is executed. (Requires prior strapping
of parity option at rear-edge connector.)

SENSE FULL DUPLEX MODE ENABLED. Tests if controller is in
Full-duplex mode. If it is, next sequential instruction is skipped.
If it is not, next sequential instruction is executed.

TURN MOTOR ON , Turns TTY motor on. Turning motor on
introduces a 600 ms delay for all controller Sense responses and
interrupts to allow motor to come up to speed. (This feature is only
available if TTY has been modified for remote motor on/off control.)

NOTE

Motor is unconditionally turned on whenever a Power-up
or System reset occurs.

CLEAR REQUEST TO SEND. When used with a CRT or modem, this
instruction turns off RTS signal . (This feature is available only
with EIA RS232C/CCITT interface option.)

TURN MOTOR OFF . Turns TTY motor off.

REQUEST TO SEND , When used with a CRT or modem, this
instruction turns on RTS signal. (This feature is available only
with EIA RS232C/CCITT interface option.)

OUTPUT A OR X REGISTER TO CONTROLLER. Unconditionally
transfers contents of LS byte of specified register to controller
Output buffer and causes character to be transmitted to terminal
device.

WRITE FROM A OR X REGISTER TO CONTROLLER. Tests for Output
buffer empty condition. If buffer is empty , contents of LS byte of
specified register are transferred to controller Output buffer and
subsequently transmitted to terminal device. If buffer is not empty,
instruction is continuously repeated until it becomes empty.

OUTPUT WORD FROM MEMORY TO CONTROLLER, AUTOMATICALLY.
Contents of LS byte of memory location addressed by updated AOT
address pointer are unconditionally transferred to controller Output
buffer and subsequently transmitted to terminal device, (Ref er to
Auto I/O instructions in section 4.)

6-20

Cowumt AU TOM ATION . INC . ~

AOB 7,0

BOT 7,1

INA 7,0
INX 7,0

IBA 7,0
IBX 7,0

RDA 7,0
RDX 7,0

RBA
RBX

7,0
7,0

OUTPUT BYTE FROM MEMORY TO CONTROLLER, AUTOMATICALLY.
Contents of memory byte location addressed by updsted AOB address
pointer are unconditionally transferred to controller Output buft'er
and snbsequently trsnsmitted to terminal device. (Ref er to Auto
1/0 instructions in section 4.)

OUTPUT BLOCK FROM MEMORY TO CONTROLLER. Tests for Output
buffer empty condition. When buffer is empty, contents of LS byte
of effective memory location are transferred to controller Output
buffer and subsequently transmitted to terminal device. Word count
is decremented by one. lnstruction is repeated continuously until
word count is decremented to zero. (Refer to Block 1/0 instructions
in section 4.)

INPUT WORD FROM CONTROLLER TO A OR X REGISTER.
Unconditionally transfers contents of controller lnput buffer to LS
byte of specified register . MS byte of specified register is set to zero.

JNPUT BYTE FROM CONTROLLER TO A OR X REGISTER.
Unconditionally transfers contents of controller lnput buffer to LS
byte of specified register . MS byte of register is unaffected .

READ WORD FROM CONTROLLER TO A OR X REGISTER. Tests for
lnput buffer full condition. lf buffer is full, contents are transferred
to LS byte of specified register. MS byte of specified register is set
to zero. If buffer is not full , instruction is continuously repeated
until it becomes full.

READ BYTE FROM CONTROLLER TO A OR X REGISTER. Tests for
Input buffer full condition. lf buffer is full, contents are trsnsferred
to LS byte of specified register. MS byte of specified register is
unaffected. lf buffer is not full, instruction is continuously repeated
until it becomes full.

AIN 7,0

AIB 7,0

BIN 7,0

INPUT WORD FROM CONTROLLER TO MEMORY, AUTOMATICALLY.
Unconditionally transfers contents of controller Input buffer to LS
byte of memory location addressed by updated AIN address pointer.
MS byte of memory location is set to zero. (Refer to Auto 1/0
instruction in section 4.)

INPUT BYTE FROM CONTROLLER TO MEMORY, AUTOMATICALLY.
Unconditionally trsnsfers contents of controller lnput buffer to
memory byte location addressed by updated AIB address pointer.
(Ref er to Auto 1/0 instructions in section 4.)

INPUT BLOCK FROM CONTROLLER TO MEMORY. Tests for Input
buffer full condition. When buffer is full , contents are transferred
to LS byte of effective memory location. MS byte of memory location
is set to zero snd word count is decremented by one . lnstruction is
repeated continuously until word count is decremented to zero.
(Refer to Block 1/0 instructions in section 4 .)

6-21

COMl'UTl:R AUTOMATION. INC. ~

6 . 4 REAL TIME CLOCK

The Real Time Clock (RTC) option provides a means to determine elapsed time and/or
creating a ttmc - of'-day clcck , with acftwarc . T'hc RTC kocps tirne by responding te
electrical pulses of a known frequency, such as the output of a crystal oscillator or the
input frequency of an se power source. The standard configuration uses a 20 MHz
crystal oscillator as the basic timing source. The 20 MHz clock is applied to a counter
chain to produce 10 kHz, 1 kHz and 100 Hz clock sources (timing increments of 100 µs,
1 ms and 10 ms, respectively). In addition, a 120 Hz clock source is available (100 Hz
when the computer is used with 50 Hz power source). The desired clock source is
selected by a jumper wire. An externa! timing source may be applied to the RTC option
if some source other than the crystal oscillator or twice the se line frequency is desired.
This allows the use of almost any timing period.

6. 4 . 1 Clock Source Selection

With no jumper installed, the RTC option operates from a built in 100 Hz timing source.
The user can select four other timing sources (10 kHz, lkHz, twice the se line
frequency (TTLF) or a TTL compatible external timing source) .

The RTC option represents only one TTL load to the externa! timing source. The
externa! timing source must be a TTL compatible logic signal with rise and fall times
of less than 50 ns. With regard to duty cycle, the only requirement is that the signal
be ground true, with a minimum of 100 ns.

When the user desires to select an alternate timing source (other than the standard
100 Hz source), the 100 Hz clock source must be inhibited by grounding the INH­
input. Clock source selection can be accomplished st connector Jl using table 6-3.

Table 6-3. Clock Source Selection

CLOCK INH- JUMPER
SOURCE (pin 12) CONNECTIClNS

100 Hz (standard) OPEN none
1,000 Hz GND Pin 39 to pin 11
10,000 Hz GND Pin 40 to pin 11
TTLF GND Pin 1 to pin 11
EXTERN AL* GND User Timing source to pin 11

*Externa! timing source must be TTL/DTL compatible.

6. 4. 2 Discussion of Usage

lf RTC interrupts are enabled, the RTC generates a Time interrupt to the Processor
each lime a clock pulse is detected from the clock source. This interrupt is usually

6-22

COMPUTtll AUTOMATION . INC. ~

serviced by an IMS instruction at the interrupt location. Increment results of zero
cause the generation of an ECHO signal to the RTC, which in turn generates a Syne
interrupt to the Processor. The Syne interrupt is normally serviced by a JST
instruction to an interrupt subroutine. The RTC has been assigned a device address
of 8.

In the programming example shown in figure 6-10, an externa! device must be sampled
once a second, using a 10 ms clock source.

LABEL/
LOCATION INST

(Time)
: 0018 or
: 0118

(Syne)
: 001A or
:OllA

Initialization
INIT

IMS

JST

LAM
STA
SEL

SEL

SEL

OPERANDS

COUNT

SYNC

100
COUNT
8,4

8,2

8,0

lnterrupt Subroutine
SYNC ENT

Set Timing Count to -100.

Initialize RTC and Clear
Unserviced Interrupt Requests.
Arm Sync-Allow Syne Interrupts
when ECHO is Received.
Enable RTC-Allow Generation
of Time and Syne Interrupts (Since
Syne is Armed) .

Reserved Location for Storage
of P Register

Save Contents of Registers, Status,
etc. (see paragraph 5. 3)

LAM
STA

100
COUNT

COMMENTS

Increment Timing Counter

Jump and Store to Interrupt
Subroutine, Disable Interrupts.

Reset Timing Counter to -100.

EIN
RTN SYNC

Enable Interrupts.
Return to Mainline Program.

COUNT DATA 0

Figure 6-10. RTC Interrupt Programming Example

6-23

COWUTE R AUTOMATION . INC. ~

The timing counter COUNT becomes zero after being incremented 100 times, i.e.,
after 100 Time interrupts, each 10 ms apart. The RTC responds to the resulting ECHO
signal by generating a Syne interrupt which is serviced by the interrupt s~broutine
SYNC. The timing counter COUNT is reset to -100 and the externa! device 1s sampled ·

6.4.3 Summary

6. 4. 3 .1 RTC Interrupt Locations

Time Interrupt location: : 0018 (offset = : 0118)
Syne Interrupt location: : 001A (offset = : 011A)

6. 4. 3. 2 RTC Instructions

ENABLE RTC . Allows Time and Syne interrupts to be generated
(if Syne is armed) .

SEL

SEL

SEL

SEL

SEL

SEN

8,0

8,2

8,3

8,4

8,7

0,2

ARM SYNC. Allows generation of Syne interrupts if RTC is enabled
and ECHO received.

CLEAR RTC INTERRUPTS. Resets both Time and Syne interrupt
requests. Does not disable or disarm interrupts, but instead
removes interrupt request history from RTC .

INITIALIZE RTC . Disarms , disables , and cleara interrupt requests.

DISARM SYNC. Prevents Syne interrupts from being generated
without disabling Time interrupts.

SENSE RTC INSTALLED. Tests if RTC option is installed on Option
board. If it is , next sequential instruction is skippad. If it is not,
next sequential instruction is executed . ·

6. 5 AUTOLOAD

6. 5 .1 Description

The Autoload option consists of a 256-word read-only memory (ROM) preprogrammed
with a binary Ioader and the necessary logic to execute the _Ioader. The autoload
program is a complete binary program loader for TTY and hign-speed paper ta_pe
(not just a bootstrap) and includes appropriate input format and data error checkmg ·

6-24 '

COMPUTE R AUTOMATION . INC. ~

For bulk storage devices, Autoload provides a first record bootstrap. Autoload requires
the presence of the power fai!/restart (PF /R) or automatic startup (ASU) processor
option.

Autoload uses main memory locations : 30 through : 3B for scratchpad. A program
occupying these addresses cannot be proper ly loaded using autoload.

The autoload sequence is initiated by depressing the console AUTO switch or , in
configurations not using a console, by momentarily grounding a pin on the option
board (see 6. 5. 7) . Upon execution, a binary program is automatically loaded
inta computer main memory from any one of the following input devices:

I. Teletype paper tape reader
2. High-speed paper tape reader
3. Nine-track magnetic tape unit
4. Cassette tape
5 . Moving head disk

If more than one magnetic tape, cassette or disk drive device is used in the system,
autoload will load from the device designated as device zero.

When selecting autoload from the console, the computer must be in the Run Enable mode
(STOP indicator off) to enable the AUTO switch. AUTO is interlocked with the RUN
switch so that Run mode is selected as autoload is initiated. A remote autoload command
(grounding a pin on the option board) can be initiated at any time.

The presence of the autoload option can be sensed using the sense instruction with
device address zero and function code zero. This instruction is used primari!y
by diagnostic and executive programs. The sense instruction takes the following
form:

SEN 0,0 SENSE AUTOLOAD INSTALLED. Tests if autoload option is installed.
Jf so, next sequential instruction is skipped. Jf autoload is not in­
stalled, the next sequential instruction is executed.

6. 5. 2 Device and Mode Selection

The input device and load mode (absolute or relocatable) is selected at the console
sense register. In computer configurations not having a console, the sense register
and certain console switch functions can be duplicated by the use of jumpers on the
option board (secondary console); see paragraphs 6. 6. 3 and 6. 6. 4. A hex code entered
inta the sense register selects the following device and load mode:

6-25

COMPUTt R AUTOM ATION . INC. ~

Load Absolute

Load Relocatable

TTY

:0

: 8

HSPT

: 1

:9

MAG TAPE

: 2

:A

CASSETTE

: 3

:B

DISK

: 4

:C

If relocation is desired, the user enters the start address in the X register. If "load
and execute" is desired, the SENSE switch is set (ON); for "load only", the SENSE
switch must be reset (OFF).

6. 5. 3 Autoload Sequence

When autoload is initiated, the processor is placed in word mode, interrupts are disabled,
and the power up sequence of the PF /R or ASU option generates a reset and starts the
computer running at location : 0000. Autoload ROM address space is : 0000 through
: 00FF. Autoload logic causes all instruction cycles to fetch instructions from ROM (main
memory disabled) and all data cycles to access memory. The first instruction is fetched
from ROM location : 0000. As the loader is executed, the program being read from the
input device is treated as data and stored in memory.

6. 5. 4 Termination of Autoload

The action performed at the end of a successful load is dependent on the type of input
device used and the position of the SENSE switch.

6. 5. 4 .1 TTY and High-Speed Paper Tape Reader

Control is transferred to the start address of the loaded program if (1) the SENSE
switch is set, and (2) a valid start address was on the tape. If the SENSE switch is
rese! or if no valid start address was on the tape, autoload halts with : 0800 in the I
register with the X register containing the next location available for loading. The
start address in the A register will be negative (: FFFF) if a valid start address was
not present .

6. 5. 4. 2 Magnetic Tape, Cassette and Disk

Control is transferred to the start address of the loaded program if the SENSE switch
was set. If the SENSE switch was reset, autoload halts with : 0800 in the I register.

6-26

COMPUTER AUTOMATION . INC. ~

6. 5. 5 Error Detection

The standard autoload program detects checksum and format errors on paper tape
devices. If an invalid checksum or format error is detected, the program halts with
: 0801 in the I register. The program may be restarted with the depression of AUTO.
If an error occurs while attempting to load from paper tape, it is possible to backup
the tape one record and press AUTO to continue. However, it is recommended that
loads exhibiting errors be completely repeated.

If an error occurs while attempting to load from magnetic tape, cassette or disk,
autoload will halt with : 0801 in the I register, and may be retried by pressing AUTO.

6. 5. 6 Accessing Autoload ROM

The autoload ROM normally contains 256 words, but can be expanded to 512 words
for special autoload sequences or for use as a high-speed read-only memory. To
use it as a normal read-only memory or to read out the contents of ROM, the SEL
0 , l instruction is used . When enabled under program control , the ROM occupies
addresses : 7800 through : 7FFF, modulo 512 (: 7800 through : 79FF, : 7A00, : 7BFF,
etc.) . Any memory access in this range is automatically disabled when autoload
ROM is enabled .

An 1/0 instruction, SEL 0, 0 is used to disable the autoload ROM. When disabling
ROM, one additional access to ROM is required before the ROM is actually disabled.
This allows a program resident in ROM to turn itself off and then jump to main memory.

A diagnostic feature allows verification of the autoload sequence. This is accomplished
by setting the sense register to : F (all bits on), programming a halt at location 31,
then initiating autoload. If autoload is sequencing proper ly, the program will exit
to location : 31 and halt.

6. 5. 7 Remote Autoload Initiation

A momentary grounding (i. e. , a switch closure to ground) of pin 10 on connector
Jl on the option card, or pins E or 14 on connector J2, causes the system to reset
and an autoload program to be initiated. The signal must be ground-true for a minimum
of 100 ns. This feature should be used only in conjunction with the secondary console
sense register (paragraph 6. 6. 3) .

6-27

COMPUTE R AUTOMATION . IN(. ~

6. 5. 8 Automatic Autoload (Upon restoration of power)

An autoload sequence can b.:: automatically initiated upon restoration of power by
jumpering Jl pins 20 (RMDIS-) to Jl pin 5 (PFAL-). This feature is-particularly
useful when using volatile memories without battery backup power in unattended
operation. With this feature, memory is automatically reloaded with an operational
program from a peripheral storage device after power is restored. This feature should
be used only in conjunction with the secondary console sense register (paragraph 6. 6. 3) .

6. 5. 9 Autoload Operation Summary (Console Operation)

Following is a summary of the procedures required to Ioad programs into memory
using autoload. For details of console operation , see section 3 .

a) Enable console.
b) Press STOP to halt the computer (STOP indicator on).
c) Press RESET
d) If relocation desired, enter start address into X register.
e) Enter proper hex code for device and load mode into

sense register .
f) If load and execute desired, set SENSE switch (on); if load

and halt desired, reset SENSE switch (off) .
g) Ready the load device.
h) Press STOP to enable RUN mode (STOP indicator off) .
i) Press AUTO.

6.6 BASIC VARIABLES PACKAGE

The Basic Variables package permits the user to operate high priority (Processor)
interrupts independent of EIN /DIN control, offset interrupts, extend 1/0 transfer
timing, and perform certain console functions in the absence of a Console.

6. 6 .1 Independent Processor lnterrupt Operation

In normal operation, the Power Fail, Console and Trap inter'rupts (referred to as,
Processor generated interrupts) will not be recognized by the Processor if,interttipts
are not enabled (DIN instruction has disabled recognition of ALL interrupts) . The EIN
instruction must be executed before any interrupts can be processed.

By grounding the OPT- signal (Jl pin 35), the Processor generated interrupts can
obtain immediate recognition by the Processor when they are enabled.

With Jl-35 grounded, the PFE and PFD instructions control the Power Fail/Restart
interrupt while the CIE and CID instructions control Console interrupts. There are
no control instructions for a Trap interrupt other thsn the TRP instruction itself.

6-28

COMl'\ITT R AUTOMATION . INC. ~

6. 6. 2 lnterrupt Offset

All interrupts (except Power-up) generated within the Processor and thc Processer
Option board may be relocated (offset) from the scratchpad area of Memory by : 100
locations to allow for more efficient utilization of the scratchpad area.

Two types of offset are available on connector Jl. The high priority Processor inter­
rupts (Power Fail, Console, and Trap) and the high priority user generated interrupts
(ILl and IL2) can be offset by grounding the OFST - signal (Jl pin 4). Likewise, the
low priority Teletype/CRT controller and Real Time Clock option interrupts can be
offset by grounding the MAi - signal (Jl pin 6) .

6. 6. 3 Secondary Console Sense Register

The Basic Variables package contains four jumpers which permit the user to simulate
the Console Sense register and develop a Console Sense word in the absence of a
Console. The jumper inputs are DS00- en pin 34), DS0l- en pin 33), D802- (Jl
pin 36) and D803 (Jl pin 31). DS00- is the least significant bit of the simulated
register, while DS03- is the most significant bit. Grounding a particular jumper
input introduces a logic 1 into the corresponding bit position of the Console Sense
word. A logic 0 is introduced when a given input is left open.

The entire simulated register is enabled by grounding the ENDSW- signal which is
available at Jl pin 28. Note that all control logic required to respond to the ISA
(: 5801) and ISX (: 5A01) instructions is also provided with this feature. This feature
cannot be used when a Console is installed.

6. 6. 4 Secondary Console Switch Functions

Secondary console SENSE, RESET and INT switch signals which duplicate the functions
of the Console are available to the user. The SSW- signal (Jl pin 2) duplicates the
SENSE switch, RST- (Jl pin 37) duplicates the RESET switch and CINT- (Jl pin 38
and J2 pins F and 13) duplicates the INT switch. These switch functions are generated
by taking the input pin to ground (momentarily). RST must be ground-true a
minimum of 5 µs. SSW- must remain at ground when the SENSE switch is active.
These signals are collector-ORed with the corresponding console signals.

6.6.5 l/0 Timing Extension

The Basic Variables package features an l/0 stretch capability which permits the user
to slow down the l/0 transfer timing when driving the Maxi-Bus through multiple
expansion chassis or over long distances. Four strap connections (STRl, STR2,
STR3 and STR4) permit the user to specify 16 different increments of stretch. The
LSI-1 uses stretch increments of 200 ns while the LSI-2 has stretch increments of
100 ns. Based on these increments, the LSl-1 stretch can range from 0 to 3000 ns
while the LSI-2 stretch can range from 0 to 1500 ns.

6-29

COMPUTt R AUTOMATION . INC. ~

Note that whenever any stretch is inserted, all 1/0 timing throughout the system is
slowed down. This can have an adverse effect on speed critical 1/0 devices and in
general reduces processor throughput. The stretch strappinp; scheme for hnth th<>.
LSI-1 and LSI-2 is shown in table 6-4. Ground is available on pins 23 through 26
of connector J 1 .

Table 6-4. 1/0 Stretch Selection

STRETCH ADDITION (Nsec) STRAP CONFIGURATION

STR4 STR3 STR2 STRl
LSI-1 LSI-2 (Jl-44) (Jl-43) (Jl-42) (Jl-41)

0 0 OPEN OPEN OPEN OPEN
200 100 OPEN OPEN OPEN GND
400 200 OPEN OPEN GND OPEN
600 300 OPEN OPEN GND GND
800 400 OPEN GND OPEN OPEN

1000 500 OPEN GND OPEN GND
1200 600 OPEN GND GND OPEN
1400 700 OPEN GND GND GND
1600 800 GND OPEN OPEN OPEN
1800 900 GND OPEN OPEN GND
2000 1000 GND OPEN GND OPEN
2200 1100 GND OPEN GND GND
2400 1200 GND GND OPEN OPEN
2600 1300 GND GND OPEN GND
2800 1400 GND GND GND OPEN
3000 1500 GND GND OND OND

6. 7 POWER FAIL/RESTART

6. 7 .1 General

Power Fail/Restart (PFR) is an optional feature of the ALPHA LSI computer. It allows the
computer to operate from unreliable ac power sources without the requirement of
human monitors . A low power condition or a temporary power outage is detected in
tirne for the operating program to prepare for the power loss. When power returns to
normal, the computer is automatically restarted without loss of data or operating
position . Thus , unattended operation is possible .

6-30

Cowumt AUTOMA TION . INC . ~

6. 7. 2 Power Fail

When a power failure is detected , a Power Fail interrupt is generated to the Processor .
If the Power Fail interrupt is enabled, the Processor is interrupted to a reserved
location in Memory (location : 00lC or : 0llC if offset) . The Processor executes the
instruction (usually a JST to a software power down routine) at that location. The
Processor has 0. 9 ms to complete the power down routine, once it is started, before
the PFR option halts the computer and protects Memory from transient power conditions.

6. 7 .3 Restart

When PFR detects power restoration to an acceptable leve!, a power up sequence is
started. PFR re-enables Memory, sets the P register to : 0000, and generates a Run
signal to the computer. The computer then executes the instruction (normally a JMP
to a software power up routine) at location : 0000. The computer always undergoes
this sequence when power is applied. The software power up routine must be com­
pleted within 0. 9 milliseconds to allow enough time to process a Power Fail interrupt
if one should occur immediately after power up .

I CAUTION

When the Power Fail/Restart option is installed,
the computer will start running at location : 0000
when power is applied whether the computer was
running or not (i . e. , independent of Console
setting) prior to removal of power. To avoid
false starts , it is customary for the power down
subroutine to save a nag indicating that the com­
puter was in fact running before power failed.

6. 7. 4 Interrupt Control Option

A hardware wiring option may place the Power Fail interrupt outside EIN/DIN control.
Under this option, it is necessary to execute the PFE or PFD instructions to enable or
disable the Power Fail interrupt. Without the option, the EIN or DIN instructions must
be executed and PFE and PFD have no effect.

6. 7. 5 Programming Examples

Figure 6-11 shows examples of simple Power Fail/Restart software routines.
In these examples, the contents of the A and X registers, the computer status and the
mainline program location at the time of the Power Fail interrupt are saved during
the power down sequence and restored during the power up sequence. Note that .

6-31

COMPUTER AUTOMATION. INC.

the Power Fail interrupt is outside EIN/DIN control in this example. If the Power Fail
interrupt were inside EIN/DIN control, the power up routine would not have to include a
PFE instruction and the power down routine would not have to include a PFD instruction.

LABEL/
LOCATION ~ OPERANDS COMMENTS

: 0000 JMP UP Power Up Interrupt Location. Contains
Unconditional Jump to Power Up
Subroutine.

Interrupt Location
Power Down Interrupt Location. : 00lC or JST DOWN

: 0llC Contains a Jump and Store to Power
Down Subroutine. Using JST Auto-
matically Saves Contents of P Register
and Disables Interrupts.

DOWN ENT Reserved Location for Storage of P
Register when JST Instruction at Power
Down Interrupt Location is Executed.

PFD Disable Further Power Fail Interrupts.

SIN 1 Inhibit Byte Mode if Set.

STA ASAVE Save A Register .

SlA Read Computer Status Word to A
Register, Set Word Mode, and Reset
OV Indicator.

STA STATUS Save Computer Status Word.

Input Console Data Register to A
~

ICA
Register

STA CSAVE Save Contents of Console Data Register.

STX XSAVE Save X Register.

IMS 'PSTP Save a Flag Indicating Computer Was
Stopped by a Power Failure.

WAIT Wait for Power Down to Complete.
- l·-,l_ >'

UP ZAR JMP Instruction at Power Up Interrupt
Location Enters Here.

Figure 6-11. Power Fail/Restart Software Routines
6-32

COWUHTOMATKU< ~ 7
LABEL INST

EMA

JAN

HLT

LDX

LDA
OCA

LDA

SIN

SOA

LDA

PFE

EIN

JMP

ASAVE DATA 0

CSAVE DATA 0

XSAVE DATA 0

STATUS DATA 0

PSTP DATA 0

OPERANDS

PSTP

$+2

XSAVE

CSAVE

STATUS

5

ASAVE

*DOWN

COMMENTS

Check Flag to See if Computer Was
Stopped By a Power Failure. Reset
Flag.

No - Do Not Restart.

Restore X Register.

Restore Contents of Console Data
Register.

Load Computer Status into A Register
then set Computer Status (Sense
Switch, Data Switches, OV Indicator
and Address Mode) .

Inhibit Byte Mode if Set.

Restore A Register .

Enable Power Fail.

Enable Interrupts.

Restart Main Program by Executing
an Indirect Jump to Location Specifie
by Saved Contents of P Register .

A Register Save Location.

Console Register Save Location.

X Register Save Location.

Computer Status Word Save Location.

Flag Indicating Processor Was
By a Power Failure ,

Figure 6-11. Power Fail/Restart Software Routines (Continued)

G-33

6.8 AUTOMATIC START-UP (ASU)

COWUTHTOMATKXUK ~ 7
Automatic Start-up is an optional feature that , like PFR, automatically ·starts the pro­
cessor after a power failure. It is for use in applications where it is not required to
save the processor conditions as they were prior to power failure. Operation is simi­
lar to that of PFR except that a power fail interrupt is not generated.

6 . 8 . 1 Restart

When ASU detects power restoration to an acceptsble level, a power up sequence is
started. ASU re-enables Memory, sets the P register to : 0000, and generates a Run
signal to the computer. The computer then executes the instruction (normally a JMP
to a software power-up routine) at location : 0000. The computer always undergoes
this sequence when power is applied. The software power-up routine must be eom­
pleted within O. 9 milliseconds to allow enough time to process a power fail interrupt
if one should occur immediately after power up.

I CAUTION

When the ASU option is installed, the computer
will start running at location : 0000 when power
is applied whether the computer was running or
not (i. e . , independent of Console setting) prior
to removal of power.

6-34

COWUTI: R AU TOM ATION . INC . ~

Sectlon 7

MEMORY INTERLEAVING AND BANKING

7 .1 INTRODUCTION

All LSI Series computers include provisions for Memory Interleaving and Memory Banking.

7 .1.1 Memory Interleaving

Memory Interleaving allows memory modules to be paired so that even and odd addresses
are assigned in different memory modules. Since a relatively high percentage of memory
accesses are normally sequential, this feature allows alternate memory accesses to ad­
dress different memory modules. The result of alternate module accesses is that the
asynchronous Maxi-Bus can support a much higher data rate than would be possible
without alternate accesses. DMA transfer rates for both LSI-1 and LSI-2, and execution
times for LSI-2, can be improved substantially by use of interleaving. Execution
time for LSI-1 is limited by computer speed rather than memory access time. Therefore,
execution time in LSI-1 is not affected by interleaving.

7 . 1 . 2 Memory Banking

Memory Banking allows an optional Memory Bank controller to switch memory modules
off and on so that up to 256K (K=1024) words of Memory can be used. Each memory
module is individually controllable . A maximum of 32K words can be enabled st any
given time. Switching between memory modules occurs in a single instruction time.

7 .2 INTERCONNECTIONS

Each memory module includes a 16-pin integrated circuit socket(memory control connector)
near the rear edge of the board for jumpering interleaving controls and for connection to
an optional Memory Bank controller. Jumpering and cabling is done by using a standard
16-pin socket header . Pin-outs for the memory control connector are given in figure 7-1.

Four signals are used to control interleaving and banking. Memory modules operate in
their normal mode when no connection is made to any of the four control signals.

7. 2 .1 Memory Interleaving

When pin 5 (INTER-) is jumpered to pin 12 (GND), the memory module is set up to inter­
leave and store even addresses only. When pin 6 (ODD-) is jumpered to pin 11 (GND)
along with the pin 12 jumper, the memory module is set up to interleave and store.odd

7-1

COMPI.ITTR AUTOMATION. IN(. ~

addresses only. Memory niodules are always interleaved in pairs--one jumpered for
even (pin 5 to pin 12) and one for odd (pin 5 to pin 12 and pin 6 to pin 11).

7 . 2 . 2 Memory Banking

Two enable signals allow the Memory Bank controller to switch memory modules on and
off. The Memory Bank controller uses either high (+5 Volts) true enabling or low (0 Volts)
true enabling, depending upon the particular system configuration. For low true enabling,
the Memory Bank controller bank enable signal is connected to pin 7 (EN LO) on the memory
control connector, and pin 8 (EN HI) is strapped to pin 9 (GNO). For high true enabling
the Memory Bank controller bank enable signal is connected to pin 8 (EN HI). Pins 9 and
10 may be used as a ground return when cabling to the Memory Bank controller.

16

2 15

3 14

4 13

INTER- 5 12 GRD

ODD- 6 11 GRD

EN LO- 7 10 GRD

EN HI- 8 9 GRD

*Reserved - No Connection Allowed

Figure 7-1. Memory Control Connector

7-2

COMPIJ TER AUTOMATION, INC. ~

7. 3 USAGE AND INSTALLATION

The following paragraphs describe the usage and installation rules for Memory Inter­
leaving and Memory Banking.

7 .3.1 Memory lnterleaving (Figure 7-2)

Memory modules are always interleaved in pairs of equal capacity or equal groups.
When interleaving two equal sized modules, e. g. , two SK memory modules, one is strap­
ped for even interleaving and one is strapped for odd interleaving. The two modules
that are to be interleaved together must be installed in "adjacent" card slots with the
odd strapped module closest to the Processor. Memories are considered "adjacent" as
long as there is no intervening memory module and as long as the MBIN/MBOT, DPIN/
DPOT and PRIN/PROT chains are properly chained through any intervening lnput/Output
or DMA controllers. (The last slot of the main chassis or expansion chassis is considered
"adjacent" to the first slot in the next expansion chassis.)

If more than two equal sized memory modules are to be interleaved, they are treated in
pairs with each pair strapped for one module interleaved odd and one module interleaved
even. Each pair of modules is then installed with the odd strapped module first in each
pair. If there is not an even number of equal sized memory modules to strap in pairs,
the left over module(s) may be installed in any position as long as paired groups are
not split. See figure 7-2 for examples of memory module installation.

Memory modules of unequal sizes may be interleaved together only when two or more
memory modules are grouped together as the even half of a pair, and their total capacity
is exactly equal to the capacity of the single module used as the odd half of the pair. For
example, one SK, one 4K and two 2K modules may be interleaved together if the 4K and
two 2K modules are all strapped for even interleaving and paired as a group with the SK
module (see figure 7-2).

7 . 3 . 2 Memory Banking (Figure 7 - 3)

Memory Banking operation, memory installation rules, and cabling rules are discussed in
the following paragraphs.

7. 3. 2. I Operation

The operation of Memory Banking can best be understood by considering memory modules
to be organized in a two dimensions! matrix as shown in figure 7-3. Normally memory
modules occupy unique address spans within the computer's total addressing range of
32K words. Memory Banking allows multiple memory modules to occupy the same ad­
dress span at different times. A maximum of 32 memory modules may be attached to a
Processor . Modules are organized as a matrix of Primary modules and Alternate mod­
ules. A maximum of 32K words of Memory may be assigned as Primary modules, The

7-3

COMl'UTE R AUTOMATION, INC.

Processor
BK NORMAL

OR SKODD
BK EVEN

--

ules

l
Interleaved Memory Installation

7-4'

A. Two BK Modules

Processor
BK 000
BK EVEN

B. Four 4K Modules

Processor
4K 000
4K EVEN
4KODD
4K EVEN

C. Three BK Modules

Processor
BK 000
BK EVEN
BK NORMAL

D. One BK, one 4K, two 2K Mod

Processor
SK 000
4K EVEN
2K EVEN
2K EVEN

Figure 7-2.

COMPUTE R AUTOMATION . INC. ~

remaining memory modules are Alternate modules. At power up time, and following a
system RESET or Memory Bank controller initialization, the Primary Modules are all en­
abled and the Alternate modules are all disabled. The enabled modules can always be
operated as though they were the only modules installed.

In the example of figure 7-3, there are four Primary modules, two 4K's and two SK's.
Following initialization, the computer therefore operates as a normal 24K computer using
these modules. The two 4K modules are interleaved in this example and designated as
Primary modules 00 odd and 00 even (P00 ODD and P00 EVEN). The two SK modules are
not interleaved in the example and are designated Primary modules 10 and 20 (Pl0 and
P20). There are seven Alternate modules in this example. Each Alternate module can be
assigned as the Alternate module for only one Primary module. For example, modules
All, A12 or A13 are the first, second and third alternates for Primary module 10. Under
software control, the Memory Bank controller can disable Pl0 and enable All, A12 or
A13. Thus, a total of 32K words of Memory is available between addresses SK and 16K,
but only SK of the 32K is available st any given time.

In addition to providing for memory expansion beyond 32K, Memory Banking provides
a rapid context switching capability. For example, if module P20 contains an operating
program which uses four sets of data (i.e., four users) st different times, modules Pl0,
All, A12 and A13 could each contain one set of data. Now the operating program can
switch between data sets (users) in a single instruction. Detailed programming infor­
mation is provided with the Memory Banking controller.

7. 3 . 2 . 2 Memory Installation

When planning an installation using Memory Banking, a plan drawing similar to figure
7-3 should be prepared and each physical module assigned toa Primary module or Al­
ternate module position according to the following rules:

1. There may be, at most, 32K words of Primary modules.

2. Primary module capacities and corresponding Alternate module
capacities must be identical (e.g., Pl0, All, A12 and A13) or
Primary modules may be grouped, the sum of which has the same
capacity as the corresponding Alternate module (e. g. , P00 ODD plus
P00 EVEN matches A02) .

3. There may not be an Alternate module for which there is no
corresponding Primary module .

4. A Primary module cannot be paired with an Alternate module of
a different capacity , or with a group of smaller capacity modules,
even if the smaller alternates sum to the same capacity as the
Primary module. An exception is allowed for single alternates
smaller than the primary, but only for the last primary (e .g., A22).

7-5

COMPUTE R AUTOMATION. INC. ~

AOORESS

0

4K 4K
OOD ODD

A01 POO -- -- -- -- -- BK

4K 4K
EVEN EVEN

A02 A01 POO 8

-- -- -- -- BK BK BK BK

A13 A12 A11 P10 1

4K

-- -- A22 BK SK -- -- --
--

A22 A21 P20 .

-- -- -- -- -- -- -- --

ALTERNATE MODULES

Figure 7-3. Memory Banking Example
7-6

PRIMARY
MODULES

K

6K

4K

32K

Cowumt AUT OM ATION , INC . ~

5. When interleaved modules are banked, they must be banked in pairs
(e .g., P00 consists of two interleaved 4K modules). Modules to be
banked may be interleaved and an interleaved pair may be banked
with a single module whose size is equal to the interleaved pair
(e. g. , A0l and P00 are composed of two interleaved 4K modules
while A02 is a single SK module) .

6. After module positions are assigned, they must be installed in
the following order beginning at the Processor:

a. All alternates to Primary module 00 (the order of the
alternates is immaterial) .

b. Primary Module 00.

c. Remaining alternates and primaries with each set of al­
ternates preceding their primary.

7. Any interleaved modules must obey the rules for interleaving
given in paragraph 7 . 3 . 1 .

7. 3.2. 3 Cabling

After modules are installed, they are cabled to the Memory Bank controller by connect­
ing either the EN HI or EN LO memory control connector pin of each memory module to a
control output of the Memory Bank controller. The following rules apply to cabling:

1 . All Primary modules use EN LO .

2 . All Alternate modules use EN HI .

3. Each interleaved module pair must have the appropriate EN lines
connected together to a single Memory Bank controller output.

Cabling in this fashion guarantees that the Primary modules are selected at power up
and initialization time since the Memory Bank controller resets with all outputs low .

7-7

COMPUTI: R AUTOMATION . INC. ~

Sectlon 8

MAXI-BUS CHARACTERISTICS

8.1 INTRODUCTION

This section describes the signals and electrical characteristics of the NAKED MINI LSI
Computer Maxi-Bus. Additionally, the distribution of the Maxi-Bus and the ALPHA LSI
computer motherboard are discussed.

The Maxi-Bus consists of 58 lines (plus power and ground) that are used to convey
address , data, and control information to or from the Processor , Memory , DMA controllers
and I/O controllers (see figure 8-1) .

Maxi-Bus Expan SKm
Chassis

Memo,y

1 K to 256K wor d!

High55*1d
OWect M.mo ry
A<xeu (OMA)

Other 1/0:
Programmed 1/0
Block 1/0
Oirect Mernory

Q\anne\ (OMC)

Figure 8-1. Maxi-Bus Configuration

The Maxi-Bus provides a common transfer path for all system modules. Maxi-Bus
transfers involving Memory are asynchronous wherein the amount of time that signals
from a source device spend on the Maxi-Bus depends upon the access and cycle time of
the addressed memory module and not upon a fixed clock interval. All Maxi-Bus
operations between the Processor and I/O controllers are synchronous and therefore
do not require timing generation within I/O controllers.

All address and data signals, as well as memory control signals from a source device,
must be driven by 32 mA tri-state drivers. Certain control signals that can be driven
simultaneously by more than one device must use 32 mA open-collector drivers. Standard
TTL receivers can be used by all devices. Only one receiver per line per module is
permitted and the maximum receiver loading must not exceed 1. 8 mA per module.

Address and data lines are shared by Memory and I/O devices. Du ring communication
intervals involving Memory, all bus drivers on these lines must be tri-state. During
communication intervals involving standard 1/0 devices, bus drivers may be either tri­
state or open collector .

8-1

COMPUTE R AUTOMATION. INC. ~

8.2 MAXI-BUS COMPONENTS (Figure 8-2)

The ALPHA LSI computer Maxi-Bus consists of three major components: the Address
bus (A), the Data bus (D), and the Control bus (C).

8. 2 .1 Address Bui; (A)

The Address bus consists of 16 lines (AB0O- through AB15-)that are time shared by
tHe Processor and DMA controllers.

The Processor and DMA controllers use the 15 bits of the A bus to address memory
locations. The 16th A bus bit (MSB) is used to specify word or byte memory operation.
During 1/0 operations, the Processor uses the low order 8-bits of the A bus to convey
device address and function code information to I/O devices. The high order 8-bits
contain random information and are not normally used. The format of the low order
8-bits during I/O operations is as follows:

AB07- Device Address bit 4
AB06- Device Address bit 3
AB05- Device Address bit 2 P Field
AB04- Device Address bit 1
AB03- Device Address bit 0
AB02- Function Code bit 2

f F Field AB0l- Function Code bit 1
ABOO- Function Code bit 0

NOTE

The eight lines devoted to the device address and function code are
arbitrarily divided into groups of five and three, respectively. They can be
divided differently to increase or decrease the number of device addresses
and function codes. For example, six lines can be devoted to the device
address and only two to the function code. This would increase the number
of device addresses to 64 and reduce the number of function codes to 4.

Throughout the remainder of this design guide, all examples which involve I/0
addresses assume the arbitrary five and three division.

8. 2 . 2 Data Bus (D)

The D bus consists of 16 brdir-ectional lines (DB00- through DB15-) that are time
shared by the Processor, Memory, and 1/0 Interface controllers.

The Processor uses the D bus to read data from or write data into Memory. Likewise,
the Processor uses the D bus to transfer data to or from an I/O controller.

A DMA controller uses the D bus to read data from or write data into Memory.
8-2

COMPUTE R AUTOMATION . INC. ~

~
K.. A BUS (16 UNES)) ..

- - K D BUS (16 LINES)) ..
,. EXEC- - ~

IN- - ..
OUT- ..
PLSE- ..
RST- ..
CLK- ..
TYP1- -
MDIS- -

PROCESSOR .. MEMORY-
MOTHER- 4 SER- I/0
BOARD 4 l!,!R- MODULES

lOCL- ..
PRIN- ..

4 PAÖT- - ..
<: C BUS IUA- .. 27 LINES)

-.. !AR-
ECHO- ..

4 IL1-

4 IL2-
!;!PIN- 12PQT-

... STQP-
~CK- ..
PF!;!- ..
ljLB- ..
!i!ST- ..
RD- ..

4 MACK- -
.;

Figure 8-2. Maxi-Bus Components

8-3

COMPUTE R AUTOMATION, INC. ~

I/0 controllers use the D bus to convey an interrupt address to the Processor during
interrupt processing.

8. 2. 3 Control Bus (C)

The C bus consists of 27 unidirectional control lines which define the specific action
that an interface device is to perform. Nineteen lines are outputs from the Processor
to Memory and I/0 controllers while eight lines are inputs from either Memory or I/0
controllers to the Processor. The 27 C bus lines are subdivided into four broad
categories: 1/0 command, utility signals, interrupt signals, and DMA signals. Except
as noted below, all Processor generated or received signals may also be generated or
received by DMA controllers during DMA operations .

8.2.3.1 1/0 Commands

There are three signals in this category: EXEC-, IN- and 0UT-. These signals define
the type of 1/0 operation in process.

EXEC- Execute. Processor generated signal that indicates the current instruction
is a Select or Select and Present instruction . EXEC- is used typically to
set or reset controls in the addressed 1/0 controller.

IN- Input. Processor generated signal that indicates the current instruction
is an Input instruction and that the addressed 1/0 controller should place
input data on the D bus.

0UT- 0utput. Processor generated signal that indicates the current instruction is
an 0utput instruction and that the Processor has placed output data on the
D bus for the addressed 1/0 controller to accept.

8. 2 . 3 . 2 Utility Signals

There are five signals in this category: PLSE-, RST-, CLK-, TYPl-, and SER-.

PLSE- Pulse. Processor generated signal which is used as a strobe pulse to load
registers during an output transfer , set or reset controls during a Select
instruction, reset data transfer controls during an input transfer, and to
reset Interrupt Stimulus Store controls upon recognition of an interrupt.

RST- System Reset. Processor or Console generated signal which is used to reset
all controls in ALL interfaces to a known starting configuraton. RST- is
generated by the Processor in response to a power failure condition, an
Autoload initiation sequence, or when the Console RESET switch is
depressed. Note - not driven by DMA controllers.

8-4

COMPUTER AUTOMATION. INC. ~

CLK-

TYPl-

SER-

MDIS-

Clock. Processor generated, 1 megahertz, free-running square wave signal
that may be used as a timing reference by 1/0 controllers. It is not synch­
ronized to Processor operations . Note that only the Processor generates
this signal. DMA controllers may not generate this signal.

Type 1 Processor Installed. This signal is ground-true when the LSl-1
Processor is installed and open when the LSI-2 Processor is installed. This
signal permits DMA controllers to determine which Processor is installed
and perform hog mode transfers if necessary. The TYPl- signal is strung
through the "200" side of the motherboard only (see paragraph 6-4).

Sense Response. Signal generated by addressed 1/0 controller which, when
true, indicates a true response to an interrogation by the Processor of some
function associated with the controller or device it controls. lnterrogation
is made when a Sense or Conditional 1/0 instruction is issued.

Memory Disable. Processor generated signal which is active during power
up and power down sequences to assure no spurious memory cycles will
occur during power transitions.

8. 2. 3. 3 lnterrupt Signals

There are nine signals associated with interrupt generation and processing. These
signals are: IUR-, lOCL-, PRIN-, PROT-, IUA-, IAR-, ECHO-, ILl-, and IL2.

IUR-

IOCL-

PRIN­
and
PROT-

lnterrupt Request. Multiplexed interrupt request line which multiple I/O
controllers use to request interrupt service. Interrupts requested via this
line are recognized on a priority basis. If two or more interfaces request
interrupt service at the same time, recognition is given to the highest
priority interface via the priority string (PRIN- and PROT-).

1/0 Clock. Processor generated signal which is used by 1/0 controllers to
synchronize IUR interrupt requests into the Processor. IOCL has a minimum
duration of 150 ns; however, the duration varies with interna! Processor
operation. When an interrupt is recognized by the Processor, IOCL is
inhibited to prevent the generation of additional IUR interrupt requests.
IOCL remains inhibited until the Processor completes execution of the
interrupt instruction. DMA controllers may not generate this signal.

Priority In and Priority Out. PRlN- and PROT- form an interrupt priority
chain which is strung serially through all 1/0 controllers and memory mod­
ules. PRIN- is the name given to the priority chain where it enters an interface
If low, it allows the interface to generate interrupts. Each interface generates
a PROT- signal to indicate that neither it nor other upstream devices are
generating an interrupt. The PROT- signal from each I/O controller is the
PRIN- signal for the next downstream controller. -

8-5

COMPUTI: R AUTOMATION. INC. ~

IUA-

IAR-

ECHO-

ILl­
and
IL2-

lnterrupt Acknowledge. Processor generated signal which goes true upon
recognition of any interrupt and remains true during execution of the interrupt
instruction. DMA controllers may not generate this signal .

lnterrupt Address Request. Processor generated signal which is used to
request an interrupt address from an 1/0 controller in response to an interrupt
request. · DMA controllers may not genera te this signal.

Echo. Signal generated by the Processor when an Auto I/O instruction has
transferred all data, or by an IMS instruction when the count overflows.
ECHO- is typically used by the 1/0 controller to request an interrupt. This
interrupt vectors to a user-determined location in Memory which normally
contains a JST instruction to a subroutine. The subroutine performs the
necessary housekeeping associated with an End-of-Block or elapsed count
operation. DMA controllers may not generate this signal.

Interrupt Lines 1 and 2. 1/0 controller generated high priority interrupt
request lines which interrupt to Iocations : 0002 and : 0006, respectively.
They are higher priority than the IUR line. ILl has priority over IL2. ILl
and IL2 do not require interrupt vectoring by the interface as does IUR.

8.2.3.4 DMA Signals

Nine signals are associated with DMA control and processing. These signals are: DPIN-,
DPOT-, STOP-, SACK-, PFD-, SLB-, MST-, RD- and MACK-.

DPIN­
and
DPOT-

STOP-

PFD-

DMA Priority In and DMA Priority Out. DPIN and DPOT form a DMA priority
chain which is strung serially through all DMA controllers and memory
modules. DPIN- is the name given to the priority chain where it enters a
DMA controller. If low, it allows the controller to access Memory. Each
controller generates a DPOT- signal to indicate that neither it nor other
upstream controllers are communicating with Memory. The DPOT- signal
from each controller is the DPIN- signal for the next downstream controller.
The DPIN- and DPOT- signals are strung through the "200" side of the
motherboard only (see paragraph 8. 7).

Stop Processor. DMA controller generated signal which stops the Processor
upon completion of its current machine cycle te permtt the DMA controller to
gain control of the 1/0 bus. STOP- may be generated at any time and may
remain active for any length of time.

SACK- Stop Acknowledge. Processor generated signal which informs DMA controllers
that the Processor has relinquished control of the 1/0 bus to the DMA
controllers. SACK- will remain true until STOP- is removed.

Power Failure Detected. Power supply generated signal which, when active,
forces any DMA operations to terminate in order to permit the Processor to
shut down the system in an order ly manner.

8-6

COMPUTE R AUTOMATION, INC. ~

SLB- Select Least Significant Byte. Processor or DMA controller generated signal
which is used for Byte Mode memory accesses. When SLB- is low, the least
significant byte (bits O through 7) of the addressed memory word is accessed.
When SLB- is high, the most significant byte (bits 8 through 15) of the
addressed memory word is accessed. SLB- is used to disable Memory during
Autoload operations by forcing it low while AB15- is high (Word mode).

MST- Memory Start. Processor or DMA controller generated signal which is used to
initiate a memory cycle.

RD- Read Mode. Processor or DMA controller generated signal which, when low,
indicates the current memory cycle is a Read/Restore cycle. When high, RD­
indicates that the current memory cycle isa Clear/Write cycle.

MACK- Memory Acknowledge. Memory generated signal that is used to inform the
Processor or DMA controller that data is available on the Data bus during a
Read operation, or that data has been accepted during a Write operation.

8.3 1/0 TRANSFER TIMING

I/O transfer timing is the period during an I/O instruction when data is transferred
between the Processor and an I/O controller. (Refer to figure 8-3.)

NOTE
Unless otherwise noted, all timing intervals indicated in timing diagrams are
given in nanoseconds. All timing intervals discussed in text are nominal.

~IIOSTRETCI-I
I INSERTED I-IERE

IN-. EXEC-. OUT-

OBXX- IOUT)

08XX-(1Nl*

PLSE-

SER-*

*lNTEAFACE GENERA TED Figure 8-3, I/O Transfer Timing

8-7

COMPUTE R AUTOMATION, INC. ~

8. 3 .1 I/O Bus Considerations

The A bus is active for non-I/O as well as I/O instructions. To guard against res­
ponding toa non-I/O instruction, the I/O control signals (EXEC-, IN~, or OUT-)
should be used when interpreting the A bus. The SER- signal is the only exception
and may be driven independent of EXEC-, IN-, or OUT-.

Data should never be placed on the D bus by an 1/0 controller except in the presence of
IN- or !AR-.

8. 3 . 2 Sense Instruction Timing

No Maxi-Bus control signals are generated by the Processor during a Sense instruction.
The addressed 1/0 controller uses the function code information to determine which one
of eight possible functions are to be tested. The sense information is sent to the
Processor via the SER- line. If the Processor is looking for a Sense response, the SER­
signal is gated into the Processor. Otherwise it is ignored. The user has 275 ns to
stabilize the Sense response after receipt of the Device Address signals.

8. 3. 3 Select Instruction Timing

During Select or Select and Present instructions, the EXEC- signal is generated a
minimum of 75 ns after the A bus stabilizes. The D bus is selected for output as a
result of EXEC- and becomes stable a maximum of 150 ns after the leading edge of
EXEC- . If a command register is used, the information on the D bus can be presented
to the register by EXEC- and clocked in with PLSE-, The D bus contains all zeros
during the SEL instruction and is equal to the contents of the Processor A or X regis­
ter during the SEA or SEX instructions , respectively.

The PLSE- signal is developed a minimum of 350 ns after EXEC-. PLSE- is generally
used to clock all control flip-flops in the I/O controller. Either the leading or
trailing edge of PLSE- may be used to set or reset control flip-flops.

8. 3. 4 Input Timing

All input sequences, regardless of the Input instruction type, appear basically the same
to an 1/0 controller. For all Input instructions, the IN- signal is generated a minimum
of 75 ns after the A bus stabilizes. The D bus is selected for input as a result of IN-.
The IN- signal is used by the controller to gate data onto the D bus. Data must be
present and stable on the D bus no later than 300 ns after IN- goes low.

The PLSE- signal is developed a minimum of 350 ns after IN- goes low. PLSE- is typically
used to reset the buffer ready control in the 1/0 controller. Either the leading or trailing
edge of PLSE- may be used to reset the buffer ready control. Note, however, that data on
the D bus must remain stable until the leading edge of PLSE- and must be removed no
later than 75 ns after the trailing edge of IN-.

8-8

COMPUffl AUTOMATION, INC. ~

lf the lnput instruction issued is conditional, the Sense response (SER-) must be stable
no later than 275 ns after the A bus stabilizes to guarantee detection of SER- by the
Processor. If SER- is high from the 275 ns point to the leading edge of PLSE-, the entire
input sequence is repeated for a Conditional lnput or Block lnput, without issuing PLSE,
until the SER-line goes low. If SER- is low at the 275 ns point, the operation is terminated
after the present cycle and PLSE- is generated to indicate the Processor has accepted the
data. lf SER- changes state between the 275 ns point and the leading edge of PLSE-, the
Processor may or may not detect SER-.

All Sense responses are ignored by the Processor when executing Unconditional lnput
instructions .

8. 3. 5 Output Timing

All Output instruction sequences, regardless of the Output instruction type, appear
basically the same to an I/O controller. During an Output instruction, the OUT- signal
is generated a minimum of 75 ns after the A bus stabilizes. The D bus is selected for
output as a result of OUT-. Once selected, the D bus stabilizes in a maximum of 150
nanoseconds after leading edge of OUT-.

The PLSE- signal is generated a minimum of 350 ns after OUT- goes low. PLSE- serves
two functions. The first is to clock output data into a receiving register of the 1/0
controller. The second function is to reset the Output buffer empty control in the 1/0
controller.

lf the Output instruction is conditional, the Sense response must be stable no later than
275 ns after the A bus stabilizes to guarantee detection of SER- by the Processor. lf
SER- is high from the 275 ns point to the leading edge of PLSE-, the entire output
sequence is repeated, without issuing PLSE, until the SER- line goes low. If SER- is
low at the 275 ns point, the operation is terminated after the present cycle and PLSE-
is generated to indicate the availability of data to the controller. If SER- changes state
between the 275 ns point and the leading edge of PLSE-, the Processor may or may not
detect SER-.

Any Sense responses that are generated during an Unconditional Output instruction are
ignored by the Processor .

8. 3. 6 Automatic Input and Output Timing

The Automatic lnput and Output instructions have essentially the same transfer timing
as all other 1/0 instructions. The only difference is that when used as interrupt
instructions, Auto 1/0 instructions develop an ECHO- signal to the controller when the
last word of byte of data has been transferred. The ECHO- signal occurs a minimum of
350 ns after IN- or OUT- during the last transfer. ECHO- is typically used by the
interface to develop an End-of-Block interrupt. These instructions are unconditional and
do not require a Sense response.

8-9

COMl'UTE R AUTOMATION. INC. ~

8. 3. 7 1/ O lnstruction List

For the convenience of the user, table 8-1 provides a list of the Processor I/ O instructions .
The instructions are grouped into four major categories (Sense, Select, Input and Output) .
The Input and Output categories are further divided into Unconditional, Automatic, Con­
ditional and Block sub-categories. The Conditional and Block sub-categories require a
Sense response while the Unconditional and Automatic sub-categories do not.

Table 8-1. 1/0 Instruction List

FUNCTION MNEMONIC MACHINE CODE (HEX)

Sense SEN 49XX
SSN 48XX

Select SEL 40XX
SEA 44XX
SEX 46XX

Unconditional Input INA 58XX
INX 5AXX
IBA 78XX
IBX 7AXX
INAM 5CXX
INXM 5EXX
IBAM 7CXX
IBXM 7EXX

Automatic Input AIN 50XX
AIB 54XX

Conditional lnput RDA 59XX
RDX 5BXX
RBA 79XX
RBX 7BXX
RDAM 5DXX
RDXM 5FXX
RBAM 7DXX
RDXM 7FXX

Block Innut BIN 71XX
Unconditional Output OTA 6CXX

OTX 6EXX
OTZ 68XX

Automatic Output AOT 60XX
AOB 64XX

Conditional Output WRA 6DXX
WRX 6FXX
WRZ 69XX

Block Outnut BOT 75XX
XX - device address and funchon code

8-10

COMPUll R AU TOM ATION . INC . ~

8. 4 INTERRUPT CHARACTERISTICS

Minicomputers perform in a wide variety of applications where they communicate
with many different types of devices. These devices operate at widely varying
speeds and generate events that occur randomly rather than at evenly spaced time
intervals. If the events do occur at evenly spaced time intervals, these intervals
may be relatively far apart. For these reasons, a versatile and efficient computer
needs a priority interrupt system.

If a computer does not have a priority interrupt system, the computer must poll
all of the externa! devices which may require service. The polling must be at
frequent enough intervals so that events are serviced within a reasonable time
after they occur. Polling consumes considerable lime, and may not allow much
processing time between the handling of externa! events.

A priority interrupt system relieves the computer of the polling responsibility.
The computer may continue processing data between externa! events, and may
lake time out from main program processing to handle externa! events as they
occur.

The ALPHA LSI computers feature five lev els of interrupts. Each interrupt leve!
uses an interrupt request line to obtain attention from the Processor. Upon obtain­
ing this attention, the source of the interrupt vectors the Processor to an interrupt
location in Memory. The interrupt location contains an intezrupt instruction which
defines the specific action that the Processor is to take in processing the interrupt.

The five interrupt request lines are designated Power Fail Interrupt (PFI) , Console/
TRAP lnterrupt (CINT), Interrupt Line 1 (!Ll), lnterrupt Line 2 (IL2), and Inter-
J.',Upt Request (!UR). A priority leve! exists between each of these lines wherein
--pyJ has the highest priority, CINT is second, !Ll is third, IL2 is fourth and !UR is
lowest in priority. PFI, CINT, ILl and IL2 are self-vectoring lines (the user does
not have to supply the interrupt address). The !UR line is shared by multiple devices
and features a priority chain to resolve priority when two or more devices issue an
!UR interrupt request at the same time. Each of the multiple interrupt sources that
share the !UR line cause the Processor to be vectored to distinct locations that can
be anywhere in Memory.

8. 4. 1 Interrupt Lines

The characteristics of each of the five interrupt request lines are discussed in the
following paragraphs.

8-11

COMPUllR AUTOMATION. INC. ~

8. 4. 1. 1 Power Fail lnterrupt

The PFI line services the power down interrupt only. PFI is the highest priority inter­
rupt line in the interrupt system and is not accessible to the user via the Processor
Maxi-Bus.

8. 4 .1. 2 Console (TRAP) lnterrupt

The C~N~ l~e services_ the Co~sole and Trap interrupts only. CINT is the second high­
est prtortty mterrupt lme and 1s not accessible to the user via the Processor Maxi- Bus.

8. 4 .1. 3 lnterrupt Line 1

ILl vectors all interrupts to memory location : 0002. ILl does not provide externa!
?riority re~olution. when se~icing multiple devices. ILl is the third highest priority
mterrupt lme and 1s acceasfble to the user via the Processor Maxi-Bus.

8. 4 .1. 4 Interrupt Line 2

IL2 vectors all interrupts to memory location : 0006. IL2 is the fourth highest priority
interrupt line and is accessible to the user via the Processor Maxi-Bus. Like ILl, IL2
does not provide externa! priority resolution to service multiple devices.

8. 4 .1. 5 Interrupt Request

The !UR line vectors interrupts to the Processor from a virtually unlimited number of
devices . The !UR line has a priority string associated with it. The priority string
ensures that a device with a higher priority will be serviced before a lower priority
device when two or more !UR requests occur at the same time. When the interrupting
device has priority, it must furnish an interrupt address to the Processor upon request.
In general, !UR interrupt addresses are user defined. ThereIs a recommended list of
addresses, however (ref er to appendix B) .

8. 4. 2 Processor Generated lnterrupts

The ALPHA LSI computer generates two standard and six optional interrupts. In addi­
tion, two optional pseudo interrupts are generated. Each of these interrupts are dis­
cussed briefly in the following paragraphs in order of priority .

8-12

8 . 4. 2 .1 Power Fail/Restart Interrupt (Optional)

The Power Fail/Restart (PF /R) option generates a power down interrupt to 1ocation
: 00lC whenever a low power conditon exists. The power down interrupt bas the
highest priority of any interrupt serviced by the Processor. When power is restored
to an acceptable level, the PF /R logic causes the P register to be set to location : 0000
and the RUN mode is established to restart the system. Although location : 0000 is the
power up location, it is not a true interrupt Iocation , but rather a pseudo interrupt
location since no interrupt processing is required to get to location : 0000.

8. 4. 2 . 2 Autoload (Optional)

The Autoload option utilizes the PF /R logic to develop a pseudo interrupt to location
: 0000 of a special Autoload read-only-memory as a starting point for the Autoload
sequence.

8 . 4. 2. 3 Console Interrupt and Trap (Standard)

A Console interrupt can be developed when the Processor is in the RUN mode and the
INT switch on the Console is depressed. A Trap interrupt is developed when the
TRP instruction is executed. Both the Conaole and Trap interrupts sbare the second
highest interrupt priority and they both interrupt to location : 001H.

8. 4. 2 . 4 Real Time Clock (Optional)

The Real Time Clock (RTC) option generates a clock and syne interrupt. The Clock
and Syne interrupts share the first highest priority on the IUR line. The Clock
interrupt is vectored to location : 0018 while the Syne interrupt is vectored to loca­
tion: 001A.

8.4.2.5 Teletype/CRT/Modem Controller (Optional)

The processor mounted TTY /CRT /Modem controller generates both Word and End­
of-Block (EOB) interrupts vis the WR line. The Word interrupt is vectored to location
: 0002 while the EOB interrupt is vectored to location: 0006. These interrupt vectors
are the same interrupt vectors that are used by the ILl and IL2 lines. Since U.l and
IL2 do not provide priority resolution and are of a higher priority than these interrupts ,­
the TTY Word and EOB interrupts should be displaced to alternate locations when ILl
and IL2 are used. A jumper option permits the Word and EOB interrupts to be displaced
to locations : 0022 and : 0026, respectively. When used in the Full Duplex mode, the
TTY controller generates four interrupts Oocatons : 0002, : 0006, : 0022, and : 0026) .
The TTY interrupts share the second highest priority on the IUR line.

8. 4. 3 Offsetting Processor Generated Interrupts

Figure 8-4 lists, in the order of their absolute Friority, the standard interrupt locatio ns
for all Processor generated interrupts. These interrupt locations are all located in the

8-13

ABSOLUTE PRIORITY

1 POWER FAIL (PFI)

2 TRAP INTERRUPT (CINT)

3 CONSOLE INTERRUPT (CINT)

4 INTERRUPT LINE 1 (ILl)

5 INTERRUPT LINE 2 (IL2)

6 RTC SYNC INTERRUPT (IUR)

7 CLOCK INTERRUPT (IUR)

8 TTY END-OF-BLOCK (IUR)

9 TTY WORD (IUR)

10 SLOT B200

COMl'lfflR AUTOMATION. INC. ~

11 SLOT B100

12 SLOT Cl00

13 SLOT C200
IUR CHAIN

14 SLOT D200

15 SLOT Dl00

16 SLOT El00

17 SLOT E200

18 EXPANSION CHASSIS SLOT Al00

19 EXPANSION CHASSIS SLOT A200

l
20 EXPANSION CHASSIS SLOT B200

INTERRUPT ADDRESS

: 00lC (: 0llC)

: 00lE (: 0llE)

: 00lE (: 0llE)

: 0002 (: 0102)

: 0006 (: 0106)

: 001A (: 011A)

: 0018 (: 0118)

: 0006 (: 0106);
OPTIONAL : 0026 (: 0126)
: 0002 (: 0102),
OPTIONAL : 0022 (: 0122)

Slots B through E accommodate
plug-in modules (either memory
or 1/0). All I/O modules may
use the IUR line and must pro­
vide an interrupt address .
Modules with multiple interrupt
capabilities must have internal
priority resolution and multiple
addresses . The continuity of the
priority chain must not be braken.
If braken , interrupts below the
break may not be recognized or
may be recognized erroneously.

Figure 8-4. ALPHA LSI Interrupt Organization

8-14

COMl'UTE R AUTOMATION . INC. ~

scratchpad area of Memory. A jumper option permits the user to offset these locstions
by : 100 locations to place them outside the scrstchpsd area. This allows for more
efficient utilization of the scratch area. !UR interrupts generated by non-processor
mounted options may be individually offset to plsce them outside the scrstch sres.

NOTE

The power up restart and autoload start up location (locstion : 0000)
is not sffected by the offset jumper option.

8. 4. 4 Peripheral Generated Interrupts

Peripheral interface controllers msy request interrupt service vis the ILl-, IL2- or IUR­
request lines. The techniques used to develop these interrupt requests sre discussed in
detail in section 9 of this manual.

8. 4. 5 Interrupt Transfer Timing (Figure 8-5)

For the purpose of priority resolution, all interrupts must be synchronized prior to being
generated. Synchronizstion can occur only during s mainline program instruction. This
is to ensure thst when executing the interrupt instruction, no other interrupt csn inter­
vene. When synchronization is obtained, the PROT- signal from the interrupting device
goes high (false) to disable all down-stream IUR interrupts. When interupts of higher
priority than IUR are serviced, the Processor makes the PROT- signal high to disable
all IUR interrupts.

If interrupts are enabled, the Processor recognizes sn interrupt request when the
current mainline program instruction has finished execution. When recognition of
an interrupt is given, the Interrupt Acknowledge signal (IUA) is issued by the
Processor and IOCL is turned off to inhibit any change in interrupt request status
until the current interrupt operation is complete .

Approximately 2 µs after IUA- goes low, the Processor generstes the Interrlipt Address
Request signal (IAR-) and selects the D bus for input. IAR- is used by the interrupting
controller to generate the interrupt address. The IAR- signal is low for approximately
750 ns. During this interval, the user generated interrupt sddress must be available
within 300 ns of IAR- and remain stable until the leading edge of PLSE-. PLSE- is used
in the more complex interrupt structures to reset the Interrupt Stimulus Store control.

IUA- will remain low until the interrupt instruction completes execution. The durstion
(IUA low) isa function of the number of machine cycles that are required to execute
the interrupt instruction . When IUA- goes high, IOCL is re-enabled permitting subse­
quent interrupts to be generated.

8-15

COMPUTE R AUTOMATION. IN<. ~

,OCC- ~LJ·----------_...,_~
~~~+~~+-@ 

IUR-, IL1-, 1l2- 

PROT- 

ECHO- 

/FOR PFI, Cl, IL1 OR IL2 O~L Y) 

1.-!.."'2~'-"j 
-;(FO;;::-R-;;AUT=O;-;I/O;;-O::R:-;IM:;;8:-;WH::,::!J!':c:::ou:::NT=oo= .. =ro:1,>: •• =oc-,---------------ICJr- ----­ 
,,, • IOCL- IS FOR INTERRUPT SYNCHRON1ZATION ONL v . PERIOD tS NOT CONSTANT 
8 • LATENCY - DEPENOS ON CURRENT INSTRUCTION SEOUENCE 
C • PRIORITY RIPPLE TIME - 2 J'I MIN 
0 • lNTERRUPT lNSTRUCTION DURATION - \/ARIES WITH INSTRUCTION USED 

Figure 8-5. Interrupt Transfer Timing 

100MIN 

8. 4. 6 lnterrupt Operation Control 

Two levels of control are sssocisted with !Ll, IL2, and IUR interrupt processing-­ 
primary and secondary . 

The primary control level is provided by the Enable Interrupt fiip-flop (EIN) in the 
Prbcessor. The EIN flip-flop is accessible to the programmer and can be enabled or 
di_sabled on com~an~. When ?nabled, EIN allows recognition of any interrupt. Like­ 
w1se, when EIN 1s diaabled , mterrupts will not be recognized. 

The secondary control level is provided by sn interrupt ensble flip-flop in each 
1/0 controller. The interrupt ensble flip-flop ensbles or disables the interrupt structure 
of th~ 1/0 controller. Like the EIN flip-flop discussed sbove, the interrupt enable flip­ 
flop m esch controller can be ensbled or dissbled by means o! a Select instruction 
addressed to the specific I/0 controller with the appropriate function code. 

This dual system of interrupt control can be very useful to a programmer. With this 
system, the programmer csn control interrupts in general with the EIN flip-flop, 
yet enable or disable interrupts from selected devices as conditions dictate. 

lnterrupts developed via the PF and CINT lines are somewhat different in thst they 
can be generated outside EIN control. In normal operation (thst is, when operating 
under EIN control) , the Power Fall, Console and Trap interrupts require thst EIN 
be enabled. Most interrupt subroutines dissble interrupts during execution of the 
subroutines csusing high priority interrupts such as Power Fail to wait until EIN is 
re-enabled. A special jumper on the option board permits all interrupts generated 
on the PF and CINT lines to be recognized regardless of the state of EIN . 

8-16 



When the jumper option is employed, two new instru ctions (PFE and PFD) are uaed 1D 
control the Power Fail circuits. The PFE instruction must bave been issued belore a 
Power Fail interrupt can be generated. Likewise , the PFD instruction disables tbe 
generation of a Power Fail interrupt. 

The Console interrupt is controlled by the cm and CID instru ctions in tbe same way as 
in normal operation. The Trap interrupt is generated in the same manner as in 
normal operation. The only difference between normal opera tion and tbe jumper option 
is that EIN does not have to be set to generate the Console and Trsp interrupts. 

Another useful programming feature is the SIN instruction. The SIN instru ction per­ 
mits the programmer to suppress recognition of all interrupts (and Byte mode opera­ 
tion) for up to six instructions. 

Once an interrupt structure is enabled, an interrupt can be generated in five basic 
steps: 

Step 1 Stimulus Generation--The user generates the interrupt stimulUB 
in response to some event or condition. 

Step 2 lnterrupt Request Generation--The interrupt structure of the 1/0 controller, 
if enabled, stores the interrupt stimulus and generates an interrupt request. 

Step 3 Interrupt Recognition--The Processor upon receipt of the interrupt request 
waits for the current instruction to complete execution, and if system 
interrupts are enabled (EIN set) , issues an interrupt address request. 

Step 4 lnterrupt I /0 Address Generation- -The interrupt structure of the I/0 con­ 
troller responds to the interrupt address request by placing the interrupt 
addr es s on the D bus lines (except for lLl and IL2 frtterrupt). 

Step 5 Int c r r-upt lnstruction Execution--The Processor fetches and executes lbe 
instruction from the interrupt location. 

8. 4. 7 lnterrupt Request Line Trade Offs 

The user '1•- · a choice of three interrupt request lines, ILl, IL2 and !UR. The trade olfs 
associated wi th each of these lines are discussed below. 

The ILl and IL2 interrupt structures are the simplest structures to implement in terms 
of hardware since they do not require interrupt address logic, Processo r synchroni.za­ 
tion logic, or down-stream priority disable logic. All of these functions are provided 
in the Processor. The ILl and IL2 lines are intended for single device spplications 
where high speed devices require the highest available priority to minimize interrup t 
latency. 

8-17 

COMPUTtR AUTOMATION . INC. ~ 

Tbe lUR line is for multipie devree s where each device competes for service via the 
priority clmin. Tbe priority of an 1/0 controller can be chsnged by simply removing 
tbe eontroDer fram tbe computer chassis and relocating it in a higher or lower 
priority card Blot. An lUR generating controller has greater flexibility in terms of 
addreas vectoring . lf an address vector must be changed , the address may be offset 
fram ilB base location ot another location by means of address select lines. 

8.5 DIIA OPERATIONS 

Tbe ALPIIA I.SI computer bas a direct memory access (DMA) port which permits 
speciaily built CIODlrollers (referred toas DMA controllers) to transfer data via the 
Vaxi-Bus at very high speed to or from Memory or other controllers. 

8. 5. l General Cbuaderistics 

8. 5 .1.1 Processor Provisions 

The ALPHA I.SI Processor is designed to surrender the Maxi-Bus toa DMA controller 
wbenever a Stop cammand (STOP-) is received. Upon receipt of the STOP- signal, 
the Processo r completes tbe current microcycle, stops, and sends a Stop Acknowledge 
(SACK-) signal ID tbe requesting DMA controller(s). A DMA controller msy hold STOP­ 
acli,re for as long as necessary to complete requested data transfers. But once the 
STOP- line is released, the Maxi-bus cannot be reacquired by the controller until 
SACK- goes higb (see 8.5.2.1). 

8. 5. 1. 2 !lllemory Operations 

D'IIA controllers !Ill!.Y communicate directly with Memory. The DMA controller must 
emulate tbe Processer by generating a memory ad dress and appropriate control signals. 
lli;mory opern. tions may be either Read (data accessed from Memory) or Write (data 
written into lllemory) Data cannot be read, modified and rewritten in one cycle. When 
communicating witb a single mernory module, data transfer rates of up to 625,000 words 
per second can be achieved with the standard 1. 6 µs Memories. When more than one 
memory modul€ is used in the computer, DMA transfer rates of up to twice the basic speed 
al tbe memory modules can be achieved by making alternate memory accesses in different 
modules. llemory interleaving straps allow even and odd addresses to be in separate 
memory modules so tbat sequential addressing automatically alternates between modules. 

In addition b> word transfer capabilities , byte transfers may be performed by a DMA 
controller. All byte paclång and unpacking is done e.utomatically by the memory modules 
with all byte data transferred on the lower eight D bus lines (the upper eight D bus lines 
are ignored during byte transfers) . 

All ~ modules coutain data and address registers to permit asynchronous operation. 
During a Wrih: opentiuo , tbe source device furnishes an address and data along with a 
-,ry lllart Bignal . As aoon as the address and data is stored in its registers, the 

8-18 



COMl'UTER AUTOMATION . INC. ~ 

memory issues an acknowledge signal and releases the bus even though it has not actually 
finished the Write operation. During a Read operation, the memory accesses the 
addressed location, places the data on the D bus, and then issues the memory acknow­ 
ledge signal. When the source device recognizes the memory acknowledge signal, it 
removes the start signal releasing the Maxi-Bus. Any memory restore operation or 
overhead interval does not tie up the Maxi-Bus and therefore frees the Processor or 
DMA controller to perform another operation . 

8. 5. 1. 3 1/0 Operations 

A DMA controller may emulate the 1/0 instructions of the Processor. The DMA controller 
may issue lnput, Output, Sense, Select, and Select and Present instructions. It may 
perform conditional and unconditional 1/0. All 1/0 instructions and control lines of the 
Maxi-Bus that are used by the Processor for 1/0 operations are available toa DMA eon­ 
troller when the Processor is stopped. 

8. 5 . 1 . 4 Limitations 

A DMA controller is not permitted to use the interrupt processing capabilities of the 
Processor. lnterrupts are reserved for use by the Processor only. 1/0 controllers 
that are under control of a DMA controller must have their interrupt facilities disabled . 

When multiple DMA controllers are employed in a system, they must compete for control 
of the Maxi-Bus on a priority basis. DMA Priority lines are strung serially through 
the 200 series connectors of the ALPHA LSI motherboard. Therefore,DMA controllers 
must be either full boards or half boards that are installed in the 200 series connectors 
of the ALPHA LSI motherboard. 

When using the standard expansion chassis buffer board, a DMA controller must be in 
either the same chassis or in a chassis that is closer to the Processor than a memory 
module or 1/0 controller that it must communicate with. This is because the expansion 
buffer board treats unidirectional lines (such as the A bus lines) as originating from 
the Processor end of a chain of expansion chassis. Therefore, unidirectional signals 
which normally originate from the Processor cannot be transmitted to an up-stream 
memory module or 1/0 controller. 

8.5.2 DMA Timing 

The following paragraphs define DMA transfer timing. All timing intervals shown in 
timing diagrams are in nanoseconds and all timing intervals discussed in the text are 
nominal. Times determined by memory access and cycle intervals are shown for the 
standard 1. 6 µ1 memory modules and may be different for other memory modules. 

8-19 

COMf'UTf R AUTOMATION. INC. ~ 

8.5.2.1 Maxi-Bus Acquisition Timing (Figure 8-6) 

Two signals are involved with Maxi-Bus acquisition: STOP- and SACK-. When a 
DMA controller is ready to make a transfer, it drives the STOP- line low (ground­ 
true) . The Processor, upon seeing STOP- low, immediately begins preparing to va­ 
cate tha Maxi-Bus. After performing the required internal housekeeping associated 
with stopping, the Processor drives the SACK- signal low (ground-true). The time 
interval from the leading edge of STOP- to the leading edge of SACK- can be as much 
as 4800ns.for the LSI-1 Processor. 

Once SACK- goes low, the DMA controller is free to commence the transfer operation. 
Typically, DMA controllers operate on a request basis wherein they make one transfer 
for each request received from an associated peripheral. If the DMA controller receives 
another request prior to completion of the current transfer (Burat mode), it will keep 
STOP- active. Otherwise it releases the STOP- line when the current operation is 
completed, as signaled by the trailing edge of the Memory Acknowledge (MACK-) signal. 

After releasing the STOP- line, the DMA controller may not attempt to reacquire the Maxi­ 
Bus before SACK- goes high. The LSI-1 Processor can take up to 2400 ns to raise SACK­ 
and restart programmed operation . Once SACK- goes high, the DMA controller is forced 
to wait out the DMA acquisition period before acquiring the Maxi-Bus again. Therefore, 
the worst case latency period is 5600 ns for LSl-1 Processor. The LSI-2 Processor 
DMA latency is a function of the type of memory module used. The LSl-2 Processor 
DMA latency times are as follows: 

Core 980 = 1405 ns 
Core 1200 = 1825 ns 
Core 1600 = 2575 ns 
se 1200 = 3025 ns 

Latency time may be longer if a higher priority DMA controller is also requesting the 
Maxi-Bus. 

STOP- 

SACK- 

PROCESSOR 
OPERATION 

DMA I PROCESSOR I 
OPERATION RE-SYNC 

~,.__-----,~~----n-- 
1---4800 MAX---t t-- 2400 MAX --- .. t----3200 MAX ---t 

' ~------41•,--' ., L 
11j..a----WOAST CASE LATENCY --- .. •,tl 

INITIAL 
ACOUISITION RE-AOOUISfTION 

Figure 8-6. Maxi-Bus Acquisition Timing 

DMA 
OPERATION 

8-20 



8. 5. 2. 2 Memory Transfer Timing (Figure 8-7) 

Memory modules of various speeds, sizes and tecbnologies IDIIY be iDtermixed in a 
system. The standard 4K core memory has a eycle time of 1600 os wbich pnwides a 
maximum data transfer rate of 625,000 words/bytes per second. 

A memory cycle is divided into an access interval and an overbead interval. The IICCe&8 

interval is the period when data is transferred to or from llemory. The overbead inter­ 
val is used for internal memory operations. For core memories, tbe overbead mterval 
is used to restore the contents of the word just read, or to write tbe word j118l transferred 
For non-destructive readout memories, the overbead interval consi.sta primari]y oflogic 
recovery time. For dynamic MOS memories, the overbead al8o includea cyclea Blllllen by 
Memory to refresh dynamic storage. During the overbead interval, tbe llaxi-Bus is 
available for other operations. 

For DMA applications requiring data transfer rates in excesa of 625,000 words/bytes per 
second, memory interleaving can be employed. Wben alternate memory cycles addresa 
different memory modules, each memory's overhead interval can be uaed to access anothe 
memory module, yielding transfer rates up to hrice that poasible with a Bingie memory 
module. Each memory module features static control linea at tbe rear af tbe module 
which permit the memory module to operate in the interleaved mode. Eacb memory module 
can be configured to respond to either even or ocld memory addresses. Tbis feature allows 
sequentially addressed memory locations to automatically altemate between memory 
modules. 

IIIEMORY CYCLE N IIEIERY CYCLE lf+I 

ACCESS OVERHEAD OVERHEAD 

A. NORMAL (ADORESSING RANOOII) 

MEMA 

MEMORY CYCLE N MEIIOIIY CYCI.£ 11+2 I 
ACCESS OVERHEAD ACCESS I OVERIIEAI> I 

MEMORYCYCLEN+I I --YCYQ.£11+3 

MEM B OVERHEAD 

B. INTERLEAVED 

Figure 8-7. Memory Addressing Compariaona 

8-21 

COWUTER AUTOMATION. INC. ~ 

8.5.2.2.1 DMA Read Access Timing (Figure 8-8). A DMA read access sequence is 
started by the DMA controller placing the desired memory address on the A bua. 
A minimum of 75 ns is required for A bua settling and address recognition for all 
memory modulea before the DMA controller drives the Memory Start (MST-) signal 
low. The Read (RD-) signal must be driven low no later than 25 ns after MST- goea low. 

The sddressed memory module begins execution of a memory cycle when MST- goes 
low, and after it hsa finished any previous operation . When the addressed location has 
been accessed (approximately 450 ns for standard 1600 ns memories), the contents of 
tbe addressed memory location are placed on the D bus and the MACK- signal is isaued. 
The -information on the D bus will remain stable until MST- is removed. 

Upon receipt of MACK - , the DMA controller is free to disengage the A bus. After 
allowing for settling time on the D bus, the DMA controller strobes the contenta of the 
D bus into a receiving register and removes MST- and RD-. The memory module 
removes MACK- on the trailing edge of MST- and disengages the D bus on the trailing 
edge of MST- or RD-, whichever goes away firat. The DMA controller must disengage 
the A bus prior to, or coincident with, removal of MST-. The DMA controller may not 
initiate another memory cycle until MACK- hss been removed. 

ABXX- & SLB- '/JIJJJ. J/////lf/ffl!HI/III/J 
i.- 

MST- 

RD- 

DBXX- 

MACK- 

~o 

• INTERVAL DETERMINED BY CDNTROLLER TO 
ACCEPT MEMORY DATA 

Figure 8-8. Read Access Timing 

8-22 



COWUTO AU TOM ATION , INC . ~ 

8. 5. 2. 2, 2 DMA Write Access Timing (Figure 8-9). A write access sequence is sim ilar 
to a read access sequence except that the RD- signal is held high and the write data is 
presented to the addressed memory at the same time MST- is generated. 

A write access is started by placing the memory address on the A bus. After a minimum 
of 75 ns the MST- signal is driven low. The RD- signal is held high and the write data 
is gated onto the D bus no later than 25 ns after MST- goes low. The memory module 
indicates acceptance of the write data by driving the MACK- signal low. 

The DMA controller must disengage the A bus and the D bus and remove MST- when 
MACK- goes Jow. MACK- is removed on the trailing edge of MST- at the memory module. 

ABXX- & SLB- '!lfJJJ......_ ""''lllli""'Wlh_WIIAl,l,l,ljW!h_Wlhl,IM,IWH/41,1,1,MWIA""Wlh..,.1/M 

_J J--~o 
75 MIN 

MST- 

RD- 

DBXX- 

MACK- 

controller may remove MST - as soon as 
MACK- is remgnized 

Figure 8-9. Write Access Timing 

8.5.2.3 1/0 Transfer Timing 

A DMA controller may transfer data to or from another controller by emulating the Pro­ 
cessor' s operations on the I/0 control signals. A single exception to standard I/0 trans­ 
fer sequencing involves generation of MACK- during I/0 transfers under DMA control 
that do not involve the uae of Memory. In this case, the DMA controller must generate 

8-23 

COWUTtR AUTOMATION, INC. ~ 

MACK- fora minimum of 100 ns prior to completion of the 1/0 transfer. This allows other 
DMA controllers in the system to synchronize any pending Maxi-Bus requests and pro­ 
perly auction DMA priority (see paragraph 9. 5. 2. 2). 

8. 6 ELECTRICAL CHARACTERISTICS 

The Maxi-Bus is best classffled as a hybrid tri-state open-collector (wire-0R) bus, 
unterrninated. 

Most processor drivers are tri-state power elements, capable of sinking 32 mA at O. 4 
Vdc maximum and sourcing 2.0 mA at 2.4 Vdc minimum. In a few isolated cases, open­ 
collector TTL drivers (32 mA sinkat 0.4 Vdc) are used. 

Processor receivers present one standard TTL Joad to the line (-1. 6 mA at O. 8 V de , 
40 µA at 2 . 4 V de) . Depending on the nature of the particular signal , pullup resistors 
to +5 Vdc are used. 

0pen-collector drivers in 1/0 and memory modules are permitted on those bus lines 
for which pullup resistors are provided. Minimum required drive capability is 32 
mA at 0.4 Vdc max. Tri-state drivers electrically equivalent to the processor bus 
drivers are also allowed , as long as the Jogic design of the system guarantees that 
no two tri-state drivers connected to the same bus line are simultaneously enabled. 
Receivers on I/0 and memory modules may be any standard 7 4 series TTL device. 
0nly one such receiver per module is permitted. Maximum loading shall not exceed 
1. 6 mA per module . 

Logic Levels (Negative-true) 

logio "l": 
logic "O": 

+0.4 Vdc max. 
+2.4 Vdc min. 

Table 8-2 summarizes the Maxi-Bus driver, receiver and pullup circuits. 

8, 7 MOTHERB0ARD 0RGANIZATION 

Any slot (other than the slot dedicated to the NAKED MINI LSI Processor) can accept 
either an I/0 or memory module. 

Figure 8-11 provides an illustration of the system motherboard. The motherboard 
provides for six slots used as follows: 

Slot 

A 
B 
C 
D 
E 
F 

Purpose 

NAKED MINI LSI Processor 
Universal (Memory or 1/0) 
Universal (Memory or 1/0) 
Universal (Memory or I/0) 
Universal (Memory or I/0) 
Power Supply 

8-24 



COMPUTER AUTOMATION. INC. ~ 

In any given slot, either a full board (15" x 16. 5") or two ha!f boards (each 7. 5" x 16. 5") 
may be installed. One slot contains two connectors. The connector on the right (rear­ 
facing) is referred to as the 100 series connector and contains pins numbered 100 through 
186; similarly, the connector on the left if referred to as the 200-series connector and 
contains pins numbered 200 through 286. 

With the exception of the priority chains, memory bank control, and two special pro­ 
cessor power supply signals, all signals are wired in a U fashion through all half board 
connectors. All exceptions are described below (shown in figure 2-3) . 

8. 7. 1 lnterrupt Priority 

The daisy chained interrupt priority string (PRIN-, PROT-) is wired in S fashion begin­ 
ning at the 100-series connector of slot A, across to the 200-series connector, then in 
reverse direction across the two B slot connectors, etc. , until all slots are connected. 
Both ends of the chain are connected to the expansion connectors. Both PRIN- and PROT­ 
on processor connector Al00 are used to carry special signals to the Console; the actual 
origin of the priority chain is slot A200. 

8. 7. 2 Memory Bank Control, DMA Priority 

The Memory Bank control (MBIN, MBOT), DMA priority (DPIN-, DPOT-) and TYPl- lines 
daisy chain down the 200-series connectors only. Therefore, memory modules and DMA 
controllers must be either full boards or ha!f boards installed on the 200 series side only. 

8. 7. 3 Processor Power Supply Signals 

Two lines from the power supply, TTLF (Twice the Line Frequency) and +5 H (Hang 
Power) are wired directly between the power supply slot and processor slot Al00. 

8. 8 EXPANSION AND CONSOLE JNTERCONNECT 

To facilitate expansion of the computer system beyond the first chassis and to provide 
for interconnect to the ALPHA LSI Console, connectors are supplied on the motherboard 
immediately above slot A. Two connectors, J2 and J3, are provided for Maxi-Bus expan­ 
sion, and one connector, Jl, is provided to interconnect the Console, Figure 8-10 shows 
the pin assignments for connectors J2 and J3, and figure 10-7 in section 10 shows the 
pin assignments for Jl. 

8-25 

COMPU TER AUTOMATION. IN(. 
~ 

J2 J3 

DPIN- 2 DB04- +5H 1 2 PRIN- 

DPOT- 3 4 D806- SPARE 1 3 SPARE 3 
MBIN 6 DB08- MST- SPARE? 

+5V 8 D810- RD- AB15-- 
D805- 10 D812- MACK- AB14- 
D807- 12 SLB- AB13- 
D809- 14 AB02- MDIS- SPARE 5 
DBl 1- 16 AB06- PFO- AB12- 
0B13- 18 AB09- AB11- 

20 AB05- AB08- AB10- 
22 GNO GND 
24 I GNO 

GNO 26 SER- GNO SACK- 

I 28 STOP- 0B01- 
GNO 30 AB04- 0B00- 0B15- 
n.i- 31 32 0B03- D814-- 
IUR- 33 34 0B02- 
IUA- 35 36 +5V 
ECHO- 37 38 IL2- 
ABOO- 39 40 IAR- 
ABOl- 42 
GNO 44 AB03- IN- 

I 46 AB07- +5V 45 OUT- 

! 48 PROT- RST- IOCL- 
GNO 50 MBOT PLSE- CLK- 

Figure 8-10. Maxi-Bus Expansion Connector, Pin assignments 

8.9 NAKED MINI LSI MAXI-BUS REQUIREMENTS 

In applications where the NAKED MIKI LSI computer is used without the system mother­ 
board and is instead connected to !JO and/or memory modules_via user-supplied cabling, 
printed ci rcuit board, etc. , the line length of each signal must be limited to 18 inches. 

The user designed Maxi-Bus interface cabling must be designed to minimize crosstalk, 
reflections, etc , , so as to preserve signal integrity. Recommendations as to line termina­ 
tion are avairable upon request. In general, consultation with Computer Automation is 
recommended to ensure system periormance. 

8-10 TWO-'.\!ODULE OPTIONS 

Any option :0equiring more than one PC board may not use the motherboard for inter­ 
connection. L'nique interconnections may be made via a jumper cable installed on the 
rear-ed ge of the two boards. 

8-26 



COMPUT£ R AUTOMATION , INC. ~ 

Table 8-2. Maxi-Bus Load, Drive arid Termination Summary 

7 

NOTE 2 
NOTE 2 
NOTE 4 
NOTE 3 

NOTE 3 

NOTE 3 
NOTE 3 

NOTE 2 
NOTE 2 

DEVICE TYPE(S) (REFER TO NOTE 1) 

SIGNAL PIN CPU MEMORY I/O CONT DMA CONT CONSOLE BUFFER OPT.BD 

OND 1 
OND 2 
+12V 3 
+12V 4 
+l2v' 5 
+12V 6 
-12V 7 
-12V 8 
DPIN- 9 

JJ J] 
5 

DPOT- 10 4 • 
EBSEL- 11 

12 
+5V 13 
+5V 14 
MST- 15 1,6 5 1 5 5 5 
AL- 16 
MACK- 17 5,6 1 5 1 2 
RD- 18 2,6 5 2 5 

"TYP!- 19 OPNorORD 2 
SLB- 20 2,6 5 1 5 2 
PFD- 21 5,6 5 • 
MDIS- 22 3 5 5 
AB08- 23 1 5 1 5 
AB09- 24 1 5 1 5 
ABl0- 25 1 5 1 5 
ABll- 26 1 5 1 5 5 

OND 27 
OND 28 
AB12- 29 1 5 1 5 5 
AB13- 30 1 5 1 5 5 
AB14- 31 1 5 1 5 5 
AB15- 32 1 5 1 5 
DB16- 33 5,6 
DB17- 34 
STOP- 35 5,6 2 2 
SACK- 36 3 5 5 
MBIN 37 5 

J] J] 
MBOT 38 4 4 * 
DB00- 39 1,5,6 1,5 2,5 1,5 2,5 1,5 1,2,5 
DB0l- 40 1,5,6 1,5 2,5 1,5 2,5 1,5 1,2,5 
DB02- 41 1,5,6 1,5 2,5 1,5 2,5 1,5 1,2,5 
DB03- 42 1.5,6 1,5 2,5 1,5 2,5 1,5 1,2,5 
+5V 43 

NOTES: 1. DEVICE TYPES AREAS FOLLOWS- 
1) TRI-STATE DRIVER, 32ma (8835 or EQUIV.) 
2) 32 MA OPEN-COLLECTOR DRIVER (7438 or EQUIV .) 
3) 32 MA TTL DRIVER (7437 OR EQUIV.) 
4) 16 MA TTL DRIVER (7400 OR EQUIV .) 
5) TTL RECEIVER (7404 OR EQUIV.) 
6) PULL-UP RESISTOR (1 KOHM) 
J) JUMPER 
*) STRAIGHT THRU SIGNAL (NO DEVICES IN SIGNAL PATH) 

8-27 



COMPUTE R AUTOMATION , INC. ~ 

Table 8-2. Maxi-Bus Load, Drive and Terrnination Surnrnary (Cont'd) 

DEVICE TYPE(S) (REFER TO NOTE 1) 

SIGNAL PIN CPU MEMORY 1/0 CONT DMA CONT CONSOLE BUFFER OPT. BD 

+5V 44 
DB04- 45 1,5,6 1,5 2,5 1,5 2,5 1,5 1,5 
DB05- 46 1,5, 6 1, 5 2,5 1,5 2,5 1,5 1,5 
DB06- 47 1,5,6 1,5 2,5 1, 5 2,5 1, 5 1,5 
DB07- 48 1,5,6 1, 5 2,5 1, 5 2,5 1,5 1,5 
DB08- 49 1,5 ,6 1,5 2,5 1,5 2,5 1,5 1 
DB09 50 1,5,6 1,5 2,5 1,5 2,5 1, 5 1 
DBl0- 51 1,5,6 1,5 2,5 1,5 2,5 1,5 1 
DBll- 52 1,5,6 1,5 2,5 1,5 2,5 1, 5 1 
DB12- 53 1 ,5 ,6 1,5 2,5 1,5 2,5 1,5 1 
DB13- 54 1,5 ,6 1,5 2,5 1,5 2,5 1, 5 1 
D814- 55 1, 5 ,6 1,5 2,5 1,5 2,5 1,5 1 
DB15- 56 1, 5 ,6 1,5 2,5 1,5 ~.5 1,5 1 
EXEC- 57 1,6 5 5· 5 5 5 
IN- 58 1,6 5 5 5 5 5 
GND 59 
GND 60 
IOCL- 61 1,6 5 5 5 5 5 
OUT- 62 1,6 5 5 5 5 5 
CLK- 63 3 5 5 5 5 
SER- 64 5,6 2 2 2 2 
!UR- 65 5,6 2 2 2 2 
IL!- 66 5,6 2 2 2 
!AR- 67 1,6 5 5 5 5 5 
IL2- 68 5,6 2 2 2 
RST- 69 2,5,6 5 5 2,5 2 5 
IUA- 70 1,6 5 5 5 
PLSE- 71 1,6 5 5 5 5 5 
ECHO- 72 1,6 5 5 5 5 
+5V 73 
+5V 74 
AB03- 75 1,6 5 5 1,5 5 5 5 
AB04- 76 1,6 5 5 1,5 5 5 5 
AB05- 77 1,6 5 5 1,5 5 5 5 
AB06- 78 1,6 5 5 1,5 5 5 5 
AB07- 79 1,6 5 5 1,5 5 5 5 
AB00- 80 1,6 5 5 1,5 5 5 5 
AB0l- 81 1,6 5 5 1,5 5 5 5 
AB02- 82 1,6 5 5 1,5 5 5 5 
PRIN- 83 JJ 5 5 5 
PROT- 84 4 4 4 * 4 
GND 85 
GND 86 

2. DPIN-, DPOT-, MBIN-, MBOT-, AND TYPl- ARE STRUNG THROUGH THE 200 SERIES CONNECTORS ONLY. 
THESE PIN POSITIONS ARE UNASSIGNED ON THE 100 SERIES CONNECTORS AND ARE RESERVED FOR 
FUTURE EXPANSION. 

3. THESE PINS CARRY SPECIAL SIGNALS ON SLOT Al00 AND ARE RESERVED FOR FUTURE EXPANSION ON 
THE REMAINING 100 AND 200 SERIES CONNECTORS. 

4. EBSEL-, PIN 211, IS USED FOR TEST ONLY. 

8-28 



J2 
(EXPANSION BUFFER INTERFACE) 

Jl 
(CONSOLE INTERFACE) 

J3 
(EXPANSION BUFFER INTERFACE) 

A200---~ 

B200 ---~ 

C200 ---~ 

D200---~ 
00 

I 
t-.:) 

c.o E200 

,,• 
0 

F100 
(POWER SUPPL Y INTERFACE) 

Figure 8-11. ALPHA LSI Motherboard Slot Organization (Rear View) 

8100 

C100 



COMPUTl:R AUTOMATION. INC. ~ 

Section 9 

DEVICE INTERFACE CONTROLLER, 
DESIGN TECHNIQUES 

9.1 INTRODUCTION 

This section describes how to designa device interface (l/0) controller that will be com­ 
patible with the 1/0 structure of the ALPHA LSI computer. The logic circuits described 
here are from Computer Automation, lnc. standard interface products that are success­ 
fully performing at user installations throughout the world. 

9.2 1/0 CONTROL IMPLEMENTATION 

The following paragraphs describe 1/0 controller design requirements for compatibility 
with the 1/0 structure of the Processor. 

9.2.1 Device Address Decoder (Figure 9-1) 

The Device Address decoder is a comparator circuit which campares the five-bit 
Device Address field of an 1/0 instruction with the user assigned device address. 

The example A address decoder uses an exclusive OR (EX OR) gate and an inverter 
for each of the five device address bits to be decoded. The outputs of the inverters 
are tied together to form a wired-AND address decoder output signal, DAXX. 

Address decoding is controlled by the five Peripheral Select signals (PS0- through 
PS4-). These signals are brought in from the device interface connector to 
corresponding EX OR gates. If a true (low) address bit is to be decoded, the corre­ 
sponding address select signal must be externally wired to ground (ground = true). 
Likewise, if a false address bit is to be decoded, the ad dress select signal must be 
left open permitting the pull-up resistor to provide the false (high) address select 
signal. 

When the device address bit agrees with the address select signal, the output of the 
EX OR gate is low. All five device address bits must agree with the user defined 
address selection. If agreement is obtained, the decoder output signal DAXX goes 
high enabling recognition of 1/0 instructions. 

Example B shows an address decoder which decodes Device Address 6. This type 
of decoder is used only in dedicated applications and does not provide the flexibility 
that the example A decoder offers. Refer to appendix B for standard device address 
assignments. 

9-1 

COMPUTI:R AUTOMATION, IN(. ~ 

------, 
CAUTION 

Device Address : 00 should not be used. This address 
is reserved for Processor mounted options, the Console 
and certain control instructions. Using it will cause 
improper operation of the Processor. Furthermore, 
a device interface connector containing properly installed 
device address jumpers must be applied to the rear- 
edge connector at all times. If it is not, a default address 
of : 00 will be assigned to the module, causing the same 
problem referred to above. 

9. 2. 2 Function Decoder (Figure 9-2) 

The Function decoder uses an MSI chip, or a network comprised of SSI chips, to 
decode the contents of the Function field of the Ad dress bus. The result is a function 
code (1 of 8 maximum) which performs some function in the selected 1/0 controller. 

The choice of chips depends upon the user' s application. Figure 9-2 shows three 
examples, A, B and C, of how to implement the Function decoder. When decoding 
three or less functions, example C may be the most efficient. However, if chip 
count is a factor, example A or B is probably more efficient. In any case, where 
more than three functions are to be decoded, example A or B is probably the most 
efficient. 

9 . 2 . 2 . 1 Example A 

Example A uses a TTL 7442 MSI chip which isa 4 to 10 Decoder. Inputs A, Band C 
are the 21 , 2 2 , and 23 in puts respectively. Input D is the 24 input. When high, 
input D enables decoded output 8 or 9. However, only the first eight outputs of 
the decoder (0 through 7) are normally used, since eight is the maximum capacity 
of the three Function field lines in its normal configuration. D input is the enable 
input for the first eight decoded outputs, and utilizes the DAXX- signal for this 
purpose. When the device address is decoded, the DAXX- signal goes low, thus 
enabling the Function decoder. 

Input lines from the Function field of the A bus are first unloaded by inverter gates and 
then applied to the decoder. As an example, if all Function field lines were fal se (high, 
implying Function Code 0), lows would be applied to inputs A, B and C. The 
decode of all low inputs would be zero thus causing FC0- to go low. (Decoded 
outputs of a 7442 are always low .) lf a high signal is required, it can be obtained 
by using a simple inverter gate, such as the TTL 7 404 illustrated. 

9.2.2.2 Example B 

Example B is the same as example A, except that the outputs are reversed (output 
7 = FC 0, output 6 = FC 1 , etc.) . However, example B can only be used where the 
Function field lines will not be applied to any other circuit on the same 1/0 controller. 

9-2 



,. 
FCO- 

(ffl ASOO- 
A 0 1801 FOl 

~:~iER 1 FC1- 

~ A801- FC2- 
181) ; FC3- 

FC4- 

I C 
FC5- 

FC6- 

I DAXX- D FC7- 

7442 } NOT USED 

EXAMPLE A 

AB00-- 
180) 

A801- 
l81) 

AB02- 
1821 

FC7- 

ABOO-- A FC7 !80) 

4T010 FC6- 
DEOODER 

AB01- FC5- 
(811 

FC4- 

FC3- 
AB02- C 1821 FC2- 

FC1- 

DAXX D FCO- 

7442 }NOTUSED 

... 
I 

EXAMPLE B "' 

FCO-- 

FCO 

EXAMPLE C 

7410 

Figure 9-2. Function Decoder Configurations (Typical) 

7410 

FC1- 

FC2- 

(ffl ,. 
~ PSO- 

; ••v 
,K 179JAB07- 

I 17BIAII06- PS•- 

I 175) A803- 

DAOO 

DAXX- 

OAXX 
ITIIIAI04- "' I 

"' 
PS3- 

,. 

Eu,,,pk A. Non-OcicaHd Applh:ation Eu~ 8. Oldimted Apptication 

Figure 9-1. Device Address Decoding Techniques 



COMPUTt R AUTOMATION , INC. ~ 

This complies with the rute tnat each controller represents no more than one load to 
each 1/0 line. 

9.2.2.3 Example C 

Example C can decode only three function codes. TTL 7410 3-input NAND gates are 
the decoders. The three Function field signals sre applied to the appropriate NAND 
gates to produce FC0- through FC2-. If the decoded device address is to enable 
the function codes, TTL 7 420 NAND gates can be used, with the DAXX signal 
applied to the fourth input of each gate. 

9. 2. 3 Select, Input or Output Instruction Decoding (Figure 9-4) 

Similar to the Function decoder, the Select, Input or Output (1/0) instructions can be 
decoded by an MSI chip or a network of SSI chips. Figure 9-4 shows two methods, 
example A and B, of implementing this circuit. When the various instructions are 
fully decoded using the Function field signals of the A bus, the Function decoder is not 
generally needed. 

9.2.3.1 Example A 

Example A shows a TTL 7 442 4 to 10 Decoder used ss a Select, lnput or Output instruction 
decoder . The decoder also decodes the contents of the A bus Function field, but only for 
the specific type of 1/0 instruction with which it is being used. Assume the decoder is 
used as a Select instruction decoder. The contents of the Function field are applied to the 
A, B and C inputs to produce the appropriate function code--any one of up to eight associ­ 
ated with the Select instruction. The decoder is enabled by NANDing DAXX (device 
address decoded), EXEC and PLSE. The Select instruction and associated functions are 
decoded by the one circuit. Ref er to paragraph 6. 4 for Select instruction timing. 

9 . 2 . 3. 2 Example B 

Example B shows a decode network of SSI chips. This circuit can offer greater 
efficiency than the 7 442 chip, depending upon the application. For example, if 
three types of 1/0 instructions (Select, lnput and Output) are used by a control!er, and 
less than three functions are associated with each type instruction, it is probably 
more efficient to use decoders of this type, each utilizing the outputs of a single 
Function decoder . 

9. 2. 4 Initialization Implementation (Figure 9-3) 

lnitialization circuitry establishes a known static state within an 1/0 controller. Initializa­ 
tion is started by executing a Select instruction with a function code dedicated to initial- 

9-5 

COMPUTl: R AUTOMATION . INC. ~ 

isation (nominally Function Code 4) or when the RST- signal goes low (upon depression 
of the RESET switch on the Console, or during a power fail/restart situation). Figure 
9-3 shows a circuit configuration for implementing initialization. When the device 
address and function code of the Select instruction are decoded, the DAXX and FC4 
signals go hig-h to prime the 3-input NAND gate. EXEC goes high during the Select 
instruction, enabling the gate to produce the INZX - and INZX signals . These signals are 
distributed throughaut the controller to reset or set flip-flops, data registers, counters, 
etc . , to establish the known static state. 

FC4 
EXEC 
DAXX 

RST 

Figure 9-3. Initialization Circuit 

9.2.5 Sense 'nstruction Implementation (Figure 9-5) 

The Sense instruction circuit can be implemented using an MSI chip or a network 
comprised of SSI chips. As in the Function and 1/0 instruction decoders, application 
determines the most efficient method. An MSI chip can accommodate up to eight 
sense conditions , and provide its own function decoding. (Function code deter­ 
mines sense condition to be interrogated.) 

The SSI network can be implemented more efficiently where three or less sense 
conditions are to be interrogated. However, the circuit requires in puts from a 
Function decoder. Both positive and negative, internal and external signals can 
be sensed. An example of each is described below and illustrated in figure 9-5. 

9. 2. 5 .1 Positive Sensing 

Example A shows positive sensing using a TTL 74151A MSI chip. The 74151A is an 8 to 
1 Multiplexer that provides interna! function code decoding and an enable input (EN) . 
It also provides both true and complement outputs. The top four inputs (0 through 3) 
are shown accepting Externa! Sense (ES0 through ES3) signals from the externa! device. 
Pull-up resistors should be connected to each externa! input line (lOK typical). Interna! 
Sense (1S4 through 1S7) signals are applied to inputs 4 through 7. When the device 
address is decoded, the multiplexer is enabled by DAXX- at the EN input. The outputs 
of the A bus Function field unloading gates are applied to the decode input of the multi­ 
plexer (AD0, 1, and 2). The appropriate sen se signal, as determined by the function 
code, is then applied to the two outputs. 

9-6 



ffl) EXTERNAL SENSE 

IOK IOK 

ESO- 

~ ES1- 1 
B-INPUT 8-INl"UT 

~ 
llUL TIPl.EXER MUL 'rlPLEXER 

2 ES2- 
OUT OTUSEO 

!i 
OOT "" 

~ 
esa- 

INTERNAL SENSE 

i '" , ... 
"' I '"' , .... 

74111A 

,,. 
157 OVT tS7- OUT SER- CX) 

74161A OAXX 
, .. , I 

"' DAXX- EN 

--=- 
EXAMPLE A EXAMPLE C 

IOK 

"'' ESO-- 

'" ..., _ _._..~- ~~- 
FCl,--L_~ 

152 

FC2 

EXAMPi..EB 

POSlflVE SENSE. 

~TE FOR EXAMl't.ES I 6 D, 
All FUNCTION COOE 
OECOOES MUST BE 
OEVELOf'ED USING 
OAXX AS IN FIG.9-2 
EXAWLES A 6 B. 

EXAMPLE 0 

NEGATIVE SEN!K 

Figure 9-5. Positive and Negative Sense, Circuit Configurations 

ffl) 
~ A800- A 11111 

e 4TO 10 
DECOOER 

; A801- • (81} 

I AB02- 
1821 C 

PLSE- DAXX 

1711 

EXEC- 
1671 

I 

! 
IN- I 
168) --: 

T : 
I 

OUT- __ J 
1821 

7442 

EXAMPLEA 

EXP2- 

EXP3- 

EXP4- 

EXP6- 

Expg._ 

EXP7- 

} NOTUSIED 

EXPO (SELECT COMDI 
INPO IINPUT C:OMOI 
011'0 IOUTPUT COMOI 

(OUTI 
IINI 
EXEC 
DAXX-­ 
PLSE--t.:;..;_= 

=~~JON{ ::_...,.._'" _J DECOOER 

FC2----.._ J 

Figure 9-4. Select, Input, or Output lnstruction Decode Configurations 

EXAWLEB 

EXl'O 
11- 
IOTPOI 

EXP1 

t- 
1 

"' 

EXP2 



COMl'UTE R AUTOMATION . INC. ~ 

Only the high output (OUT) is used in this case. The signal is inverted and applied 
to the Sense Response line (SER-) by the 7438 driver. When the OUT signal is high, 
the SER- line goes low. When the OUT signal is low, the SER- line stays high. 

Example B shows positive sensing using SSI chips. Both external and internal 
sensing is again illustrated. A separate Function decoder is required to provide 
the necessary function codes. NAND gates combine the sense lines with the 
associated function codes. The outputs of the NAND gates are connected in a 
wire-ORed configuration to the SER- line. 

9. 2. 5. 2 Negative Sensing 

Example C shows negative sensing using the 74151A MSI chip. Negative sensing is 
similar to positive sensing, except that the low output (OUT-) of the chip is employed 
rather than the high output, the EN input is grounded to permanently enable 
the chip, and DAXX is used to gate the multiplexer output onto the SER- line. As 
with positive sensing, all external sense lines should be provided with pull-up 
resistors. 

Example D shows negative sensing using SSI chips. The negative-true signals are 
inverted and applied to 7438 2-input NAND gate drivers. Function code signals enable 
the appropriate driver. The outputs of the driv ers may be connected in a wire-ORed 
configuration before being applied to the SER- line. 

9. 3 DATA TRANSFER CONTROL IMPLEMENTATION (Figure 9-6) 

The efficient transfer of data between the Processor and 1/0 controller is controlled by 
the various buffer control circuits shown in figure 9-6. An Output Buffer Empty circuit 
controls the transfer of data from the Processor to the interface (examples A and B) . 
An Input Buffer Full circuit controls the transfer of data from the interface to the 
Processor (examples C and D). 

9. 3. 1 Example A 

Example A shows an Output Buffer Empty latch (OBE) comprised of two TTL 7400 
negative input OR gates. The latch is initially set upon execution of the Initialize 
instruction for the controller. The INZX signal goes high and is applied through the 
NOR gate to the set side of the latch, causing it to set. The OBE signal thus goes 
high and is applied to the Sense multiplexer from which it can be interrogated by 
Sense or Conditional Output instructions using the appropriate function code. The 
OBE signal can also cause an interrupt through implementation of interrupt logic. 
When data is transferred to the controller Output buffer, the DAXX, OUT and PLSE 
signals ge;> high, enabling the NAND gate whose output is applied to the reset side 
of the latch. The latch now resets, inhibiting response to further interrogations 
by the Processor. When the data has been transmitted, a signal should be generated 

9-9 

COMl'UTE R AUTOMATION . INC. ~ 

to indicate completion of the transfer. (Data Transmitted--DXMT). DXMT is 
applied to the same NOR gate as JNZX, causing the latch to set again and indicate 
that the buffer is ready for more data at the next Processor interrogation. 

9.3.2 Example B 

The circuit in example B does the same thing as example A. The only difference is 
a TTL 7474 D type flip-flop is used, rather than the dual NOR gate latch. INZX­ 
direct sets the flip-flop. The high OBE signal is then available for interrogation. 
When data is transferred to the Output buffer, the flip-flop is direct reset. When 
DXMT- goes true, the flip-flop is once again set to indicate the buffer is ready to 
accept more data. 

9. 3. 3 Example C 

Example C shows a latch configuration of an Input Buffer Full circuit (IBF). The 
latch is reset by INZX upon initialization of the controller. After data has been 
transferred to the Input buffer, a signal should be generated to indicate the corn­ 
pletion of the transfer (Data Received--DRCV). DRCV- sets the lateh , causing 
JBF to go high. The IBF signal is then applied to the Sense multiplexer where it 
can be interrogated by the Processor with Sense or Conditional Input instructions. 
JBF can also cause an interrupt when implemented in the interrupt logic. When 
the data is transferred to the Processor, the DAXX, IN and PLSE signals go high, 
resetting the latch. 

9.3.4 Example D 

Example D shows an lnput Buffer Full circuit using a TTL 7 4 7 4 D type flip-flop. 
The flip-flop is direct reset upon initialization. The flip-flop is set when data is 
received (DRCV goes high) . The flip-flop is then direct reset when the data is 
transferred to the Processor (DAXX, IN and PLSE go true). 

9. 4 PERIPHERAL DEVJCE INTERRUPT IMPLEMENTATION 

The design requirements for various interrupt structures compatible with the ALPHA LSI 
computers are now discussed. 

9. 4. 1 Interrupt Address Rationale 

In general, inter,rupts are vectored to a location within the first 256 words of Memory. 
The main advantage for having interrupts vectored to this area of Memory is in the 
housekeeping associated with certain interrupt instructions. An Auto 1/0 instruction, 
for instance, must have the word/byte count and address pointer redefined after it has 
been moved. An JMS instruction must have the count value redefined after it has 

9-10 



COMPUltR AUTOMATION , INC. ~ 

.. ~ 
"Zl 8~ ~- -z ni .., 
"' C: 

(£) :'l 
I 
0, 

t::I ~ 
"' >-l .., 
"' ::, a, ~~ ~!g .... z "' N ~~z .., X mx-1 
(") 
0 ::, 
q 
~ 

C 

~ .t < 

N 

"' z 
~ .. 

"' . 
~ Dl 

. 
"' ~ 
~ 

iji 

g~d 
_mJI! 
n~i 
~; 

"' 
9-11 

0 ::: 

C ~ X 
il: ~ f -! 

;( 0 
C: 
-! 
;! 
-! 

n C 
., 

"' ~ ~ 0 

:. 
:'l -< 

0 ::: 
§~6 
ö;~ 
"'ffi s~ 

COMPUTE R AUTOMATION. INC. ~ 

overflowed. If the interrtipt instructions are in the first 256 words of Memory, direct 
addressing can be used from anywhere in Memory to update the instruction parameters 
in anticipation of the next interrupt pass. 

In applications where the use of the first 256 words of Memory for interrupts makes 
programming difficult, all interrupts can be offset : 100 locations into the next 256 
words of Memory. 

The number of memory locations that are reserved for interrupts varies with each 
1/0 controller. If the 1/0 controller is intended to move data under Auto 1/0 interrupt 
control, four locations should be reserved for the Auto 1/0 instruction and two locations 
for the End-of-Block (EOB) interrupt. If a simple transfer of control is required, only 
two locations are required for a JST instruction. If externa! events are being counted, 
four locations must be reserved--two for the IMS instruction and two for the EOB interrupt. 

If multiple interrupts are developed by an interface, these interrupts are organized 
into a family. Referring to appendix A, the Real Time Clock option has a four word 
interrupt family and the 103 Data Set Controller has a 16-word family. Family size 
is strictly a function of the number of interrupts an interface develops and the num- 
ber of locations required by each interrupt instruction . 

To preserve compatibility throughout the ALPHA computer family, 1/0 controllers 
are designed to interrupt to an even numbered address. lf an 1/0 controller 
develops multiple interrupts, the base addresses of these interrupts are partitioned 
either two or four locations apart. The standard base addresses are : 0XX2 , : 0XX6, 
: 0XXA and : 0XXE. These standard base addresses leave locations : 0XX0 and : 0XX8 
availsble for special interrupts, if required. 

The Auto 1/0 instruction requires three locations while the IMS and JST instructions 
require one location each. The unused reserved locations may be used for address 
pointers. 

9. 4. 2 Single lnterrupt Implementation Using !UR- (Figure 9-7) 

This · structure features an Interrupt Enable flip-flop (INTE) , an lnterrupt Stimulus 
Store flip-flop (INTS) , an Interrupt Pending flip-flop (lPl) , priority determination 
logic, priority out disable logic and an interrupt address generator. 

The INTE flip-flop isa J-K type device which is synchronously set or reset by an 
addressed Select instruction. Function Code M (FCM) sets INTE while Function Code 
R (FCR) resets INTE. The INTS flip-flop is a D-type positive-edge triggered cir­ 
cuit. When enabled, INTS sets on the positive excursion of the externa! stimulus 
signal (EXTS). 

9-12 



cowum AUTOM ATION . INC. ~ 

An optional feature is an edge detector consisting of an Exclusive-OR gate and an 
inverter . The edge detector permits the use of either a high or low stimulus signal . 
The polarity of EXTS is defined by RPOL (Request Polarity). If EXTS is a low signal 
when active, RPOL is grounded. Likewise, if EXTS is a high signal when active, 
RPOL is left open and the pull-up resistor provides the positive-logic leve! signal. 
When both EXTS and RPOL are of the same polarity, the output of the edge detector 
will be high causing INTS to set, if enabled. Once both INTE and INTS are set, an 
interrupt request is generated. The Interrupt Pending flip-fiop is enabled when 
INTE and INTS are both set. When enabled, IP 1 sets on the negative excursion of the 
processor I/O clock (IOCL). 

Once IPl is set, the structure must have priority before an IUR interrupt request can 
be generated. If up-stream devices are not generating interrupts, PRIN- (Priority 
In, pin 83) will be low. Both PRIN and !Pl are ANDed to produce the Interrupt Request 
Pending (ME) signal. ME is used to develop the Interrupt Request (IUR-) signal and 
disable down-stream interrupts by causing PROT- (Priority Out , pin 84) to go high. 

When the Processor recognizes the interrupt request, it responds by issuing the 
lnterrupt Address Request (!AR) signal. If ME is still high (a higher priority interrupt 
may have been generated at the same time as this one , causing PRIN- to go high, 
disabling ME), !AR causes the interrupt address to be generated. 

The Interrupt Address generator develops a unique vectored interrupt address. The 
base address that is developed is : 0XX2. The lnterrupt Address Select lines (E4- 
through E256-) permit the user to displace the base address anywhere in the first 512 
words of Memory. Grounding a particular address select line adds a corresponding 
decimal value to all base addresses. For example, grounding E32- adds 32 decimal 
locations to all interrupt addresses . 

This type of address generation permits the user to redefine interrupt locations with 
a minimum of effort. In the event the user is limited by the mumber of pins available, 
specific data bus drivers can be used instead of the structure shown. 

When ME and !AR are high (ADRR), the Data bus drivers are enabled and the interrupt 
address is transferred to the Processor. The Processor directs the contents of the D 
bus to the Memory Address register. After the 1\1emory Address register is loaded, the 
PLSE signal is generated. The PLSE signal, NANDed with ADRR, will cause INTS to 
reset. 

At the end of the last cycle of the interrupt instruction, IOCL is re-enabled. With 
INTS reset and IOCL enabled, !Pl resets on the negative excursion of IOCL terminating 
the IUR interrupt request. 

The only feature of the interrupt structure not mentioned previously is the initialize 
feature. Generally, all controllers have an initialize circuit which genera tes the INZX 
signal. INZX sets or resets all control fiip-fiops to a known condition. In this esse, 
INTE and INTS are reset by INZX. INZX is typically generated in response to an 
addressed Select instruction with a function code of 4, or by the Processor generated 
System Reset signal, RST-. 

9-13 

cowum AUTOMATION . INC. ~ 

~ ;: ö 
z ::i 

"'1 ~- .. 
<t> 

"' I .... 
C/l 5· as. 
<t> 

~ .. .. 
C: 
;l. 
§' 
'O ;- 
3 
<t> a 
~ m m 

~ 0 'P ::: f i i ::, I 

c:: 
Cll 5· 
aq 

a 
:il 
I 

~ 
I 

0 o,~ 

9-14 



Cowumt AUTOM ATION . INC. ~ 

9.4.3 End-of-Block lnterrupt Implementation Using IUR (Figure 9-10) 

The interrupt structure shown in figure 9-8 develops two intert"Upts on the IUR- request 
line. 

The structure is similar to the IUR structure described in paragraph 9. 4. 2 except that 
an Echo lnterrupt fiip-flop (ECHOl) is added. The interrupt request is developed as a 
result of ORing IPl and ECHOl, and two base addresses are developed (: 0XX2 for IPl 
and: OXX6 for ECHOl). 

ECHOl is enabled by !Pl and PRIN. lf the structure has priority at the instant an ECHO 
signal is developed by the Processor (upon determining the last word/byte of a data block 
has been transferred) , ECHOl sets when ECHO is received. ECHOl is reset, if IPl is 
reset, if the structure has priority when !AR and PLSE are received . 

Note that IPl is set for the entire period of the interrupt instruction and that ECHOl 
is set only as long as required to obtain recognition from the Processor. 

9.4.4 Reentrant lnterrupt Implementation (Figure 9-8) 

Reentrant interrupt programming permits an interrupt of higher priority to interrupt 
an interrupt subroutine. Interrupts of lower priority are not recognized. Reentrant 
interrupt programming requires that the Priority Out Disable latch be implemented in 
the user' s interface hardware. When the latch is implemented, the generation of an 
interrupt sets the latch, which in turn disables the generation of PROT- to down­ 
stream devices. 

The reentrant interrupt feature disables all lower priority interrupts for the duration 
of an entire inteerupt subroutine. The reentrant interrupt circuit is shown in figure 
9-8. The circuit prevents the PROT- signal from being tranamitted to the next lower 
priority controller until the subroutine has been completed . The PROT disable latch 
is initially set when the interrupt request is acknowledged with the 1AR signal from the 
Processor. 1AR is ANDed with ME to produce Address (ADRR) which enables the 
interrupt address drivers and also sets the PROT Disable latch. PROTD- thus goes low, 
disabling the 3-input NAND gate which normally produces the PROT- signal when ME­ 
goes false (high) . Inhibiting the generation of PROT- prevents priority from being 
passed on to lower priority controllers until the latch is reset. 

The latch can be reset by issuing a Select instruction with a function code dedicated to 
resetting the latch, or by initializing the controller. When the Select instruction is 
decoded, the DEXP (combination ofDAXX, EXEC and PLSE signals) signal goes high. 
DEXP is NANDed with the appropriate function code (FCX) and is applied through a 
negative input OR gate to the reset side of the latch. The latch is thus reset and 
PROT- is passad on to lower priority devices (if PRIN- is low) · 

9-15 

AORR---------t 

Cowumt AUTOMATION. INC. ~ 

PROTO 

DEXP 

FCX 
PROTD- 

INZX--------' 

DAXX 
EXC 
PLSE 

FCM 

FCR 

PRIN 
ME- 

Figure 9-8. Reentrant lnterrupt Implementation 

9.4.5 Single Interrupt Implementation Using ILl- or IL2- (Figure 9-9) 

The structure shown in figure 9-9 consists of an Interrupt Enable (INTE) flip-flop and 
and interrupt request driver. The INTE flip-flop is used to enable the driver. When the 
external stimulus is applied, an interrupt request is generated. This structure demands 
that the external stimulus remain active until some positive action takes place to move 
data or transfer control (the issuance of the IN-, OUT- or EXEC- control signals with the 
proper device address) . 

INTERRUPT 
ENABLE 

0
,__IN_T_E _ 

INZX- 

EXTSl~------------------1 

I 
•=-0-----------B>-----J 

PROT-(84) 

ILH661 
[l)--OOR 

1~68) 

Figure 9-9. Simple 1Ll-/IL2- lnterrupt Structure 
9-16 



COWUTU AUTOMATION . INC. ~ 

.., 
~- .. 
(I) 
<0 

I .... 
Q 

9-17 

COWUTU AUTOMATION . INC. ~ 

9.4.6 End-of-Block Interrupt Implementation Using ILl and IL2 (Figure 9-12) 

The interrupt structure shown in figure 9-12 develops two interrupts which utilize 
the ILl- and IL2- request lines. Since this interrupt structure is designed to acco­ 
mmodate any ECHO signal generating instruction (the four Auto 1/0 instructions and the 
IMS instruction) , no other devices may be attached to the ILl- and IL2- request lines. 
These lines are totally dedicated to this structure . 

This structure is essentially the same as the IUR- structure described in paragraphs 
9. 4. 2 and 9. 4. 3. The most significant difference is that the request flip-flops are 
distributed directly to the ILl - and IL2- drivers. The operation of this structure is 
essentially the same as the IUR structures, except during request termination. Once 
the interrupt request is generated, the request must be recognized by the Processor. 
The Processor recognizes the highest priority interrupt first and all other requests 
in their order of priority. Since there are three higher priority interrupts above ILl 
(Power Fail, Trap, and Console) and four above IL2- (the three just mentioned and 
ILl) , the interrupt structure must be able to detect no higher priority interrupt activity 
before terminating the request. The only thing that the Power Fall, Trap, and Console 
interrupts have in common is that during the interrupt address request iilterval, they 
all cause bit 4 of the D bus to be low. If DB04- is low during IAR, the ILl request will 
not reset but will remain active since the Processor has not honored the request. When 
no higher priority exists after generating the interr upt request, INTS is reset on the 
leading edge of the PLSE signal and terminates the interrupt request. To avoid retrig­ 
gering the INTS flip-flop, the interrupt stimulus should remain in the active condition 
until an addressed I/O instruction (Select, Input or Output) causes the source of the 
stimulus to reset. 

9.5 DIRECT MEMORY ACCESS IMPLEMENTATION 

DMA controllers generally have three basie phases of operation. These phases are 
initialization, execution, and termination. This section provides a general overview of 
each of these phases . A simple overview flow chart is shown in figure 9-11. 

9 . 5 . 1 Initialization 

The initialization phase is used to transfer task parameters from an operating program to 
the DMA controller . Typically, the task parameters define operating modes, data trans­ 
fer paths, the total number of transfers to be made, the starting memory address (if 
Memory is involved) and search parameters for items such as a disk or tape unit. The 
complexity of the task parameters is directly related to the complexity of the DMA 
controller and the various tasks it can perform . Depending on the DMA controller design, 
the task parameters can be transferred from Memory to the DMA controller's registers 
either by use of normal 1/0 instructions or by means of a task control block which is 
read from Memory by the DMA controller . 

9-18 



tm ... IL1-- 

DAXX 2K IOCL EXC 

~ 
PLSE 7474 1•101 - K 

s ECHOt- 

INZX- 

~ 
i 

EXTS - RPOL 

I 
ME C 
IAR N 

PLSE I 
0804 1- ECHO "' 

INTERRUPT 
·REOUESf 

ME 
Eato1 1u-1• 

ECHO 
7474 

fnJ EOIC)- , ... 
ECH01 

IAR 
PLSE 

D8041- 

,_,_ 

Figure 9-12. End-of-Block Interrupt Implementation Using ILl- and IL2- 

~ a: 
<( 

!;; 
"' .... 
cl. 

.... .... 
I ... 
QI 

~ 
&:: 



COMPUTtR AUTOM ATION . INC. ~ 

Once the task parameters have been transferred, the DMA controller may begin data 
transfer execution. 

9.5.2 Execution (Figures 9-13 through 9-15) 

The execution phase is entered upon completion of initialization. When the associated 
peripheral logic is ready to transfer data, it generates a DMA transfer request. The 
DMA controller executes the DMA request in three stages. These stages are Maxi-Bus 
acquisition, priority auction, and data transfer. Figure 9-13 shows a typical imple­ 
mentation of the Maxi-Bus acquiaition and priority auction logic. Figure 9-14 shows 
the state counter and decoder implementation. Figure 9-15 depicts the timing for both 
a Memory Write and Memory Read operation. 

9. 5. 2. 1 Maxi- Bus Acquisition 

Maxi-Bus acquisition is initiated upon receipt of a data transfer request. The Maxi-Bus 
acquisition logic consists of three control elements: a Request Store flip-flop (RQ) , a 
Request Syne flip-flop (REQF) and a STOP- driver. 

The data transfer request is stored in the Request flop-flop. RQ remains set until the 
data transfer stage is entered. 

If no DMA operations are currently in progress (processor Stop Acknowledge signal, 
SACK-, high), the Request Syne flip-flop is asynchronously set which causes STOP­ 
to go low requesting use of the Maxi-Bus. If a DMA operation is in progress (SACK­ 
low), the Request Syne flip-flop must be set synchronously with Memory Acknowledge 
(MACK-) to assure proper bus operation. 

9. 5 . 2 . 2 Priority Auction 

Priority auction is required only if multiple DMA controllers are employed in the same 
system. Priority auction permits multiple DMA controllers to compete for use of the 
Maxi-Bus by means of the DMA priority string (DPIN- and DPOT-). DPIN- is the name 
given to the priority chain as it enters a controller and DPOT- is the name given to the 
priority chain as it leaves each controller. The DPOT- of one controller is the DPIN­ 
of the next lowest priority controller. A DMA controller has priority if its DPIN- line 
is low. The number of DMA controllers which may be used within the system is limited 
only by priority ripple time on the priority string. Nominally, 200 ns are allocated to 
priority ripple. Where more than 200 ns is required for priority ripple, each DMA 
controller must be designed to abstain from beginning a transfer operation until 
sufficient time has elapsed for priority ripple. 

Priority auction occurs at two times: after the leading edge of SACK- and, if another 
request has been received, after the data transfer (after the trailing edge of MACK-) . 
If only one DMA controller is installed in the system , or if only one DMA controller is 
allowed to be active at a time in multiple DMA configurations, then priority ripple time 
need not be allocated. 

9-21 

COMPUlt R AUTOM ATION . INC. ~ 

Within the DMA controller, priority auction is controlled by a DMA Start flip-flop 
(START). START is enabled by REQF (which indicates that a synchronized data trans­ 
fer request is pending) and is clocked by the leading edge of SACK- during initial 
Maxi- Bus aequiattion , or by the trailing edge of MACK - during sequential DMA operations. 
When set, START inhibits downstream DMA Priority (DPOT-, high) and starts the DMA 
State counter. 

When two or more DMA controller START controls are set simultaneously, the highest 
priority controller inhibits priority to the down-stream controllers. The down-stream 
controllees , upon seeing DPIN- high, reset their START flip-flop and DMA State counter 
aborting the data transfer. An aborted transfer remains pending until all higher priority 
DMA requests have been serviced. 

Priority auction terminates when the auction interval (normally 200 ns) has been timed out. 

9. 5. 2. 3 Data Transfer 

When the data transfer interval is entered, the DMA controller is free to initiate data 
transfers to or from Memory or another 1/0 controller. All data transfer timing is 
controlled by the DMA controller per paragraph 10. 2 .. 2 for memory transfers and per 
section 7 for transfers to/from another 1/0 controller. For each data transfer, the 
DMA controller must generally decrement a Word or Byte counter and increment an 
Address counter if transferring data to/from Memory. These overhead operations 
generally take place immediately after a data transfer to assure that address informa­ 
tion is stable during the next data transfer. When a data transfer is completed, the 
DMA controller enters the Priority Auction stage if more data transfers remain or 
enters the termination phase if all transfers are complete. 

The RST signal should never be used to clear the DMA Data Transfer logic since RST 
is an asynchronous signal and may occur in the middle of a memory cycle. To 
guarantee that the DMA Data Transfer logic is initiated in the proper state when 
power is firat applied, the MDIS- signal should be used as shown in figure 9-13 and 9-14. 

9. 5 . 3 Termination 

A DMA controller should provide for two types of termination: normal and abnorma!. 
A normal termination occurs when the Word counter decrements to zero with no 
errors detected. An abnorma! termination occurs if an error condition exists. Since 
DMA transfer operations can be terminated for a variety of reasons , termination flaga 
should be used to store the reason for a termination. 

When a termination condition exists (either normal or abnorma!) subsequent DMA 
transfer requests are inhibited, Maxi-Bus control is returned to the Processor, and 
an End-of-Operation (EOP) interrupt is developed by the DMA controller. In some cases, 

9-22 



ml MACIC 

Q3 

~ 
~ 
!i 
~ 
i ... 
I 

..-----------------------STATECOUNTEA-------------------------- 

03- Q 

,__sc_L_K c 74H78 

Q3 

74H7tl 

Q3 

CLR 

Q3- 

SCLK 

..... 
0 ... 
Dri-• 

WR~ -=8--soao .. - - 1K 

Q2 

FCU 
Reld 0111 
s.- 

lNCA --f::::::\__ 
WRITE- ~ ROST 

o.a.-, 
<l1 B-Wonl Coun10< 
U3 74H11 -DECW 

SClK 

Q3- 

C 74H76 

EQ3- 

EQ3 

1K .. 
EQ3- 

01 

bNIOll7 

- """'"'' 
Ql~RD-(11) 

WRITE-~ - 

.... 
"" d, 

,-, 
Addrau Coun ter 

~~- _=C";\_ ---- INCA 
SCLK-==i.::.:.:;- 

Figure 9-14. State Counter and Decoder 

(31I SACK-~SACK- 

- V l.J:::::'_ SACK 
C171MACK-~ MACIC- 

- V lJ:::::'_ MACK 

(200)ot'IN-o-b-- OPIN 

IENA19LE)• - - - 

(REOUESTI - - - 

"E0UEST 
STOIIE 

D o 
7474 

0 

RO .... 
ii ESTP- 

IK .. 
1211 PFD- 

01- 

SACK­ 
RQ 

7474 

·-- 
..... 
START 

o~~··~~"--4---------~o Q 

MACK 

7474 

02 
Q3- 

MACK­ 
SACIC 

Cl START- 
.... 
01- 
03- 

Figure 9-13. Maxi-Bus Acquisition and Priority Auction Controls 

rnw-,a ... 
"" d, 



COMl'Ulf R AUTOMATION . INC. 
~ 

COMPUTE R AUTOMATION . INC. 
~ 

~ • ~ ~ 
~ 

~ > m 8 8 e e ~ ; ~ ~ n 

~ ~ ~ ~ l ? ~ " it may be desirable to have the Processor periodically examine DMA controller status 
rather than generate a termination interrupt . 

Typically, the EOP interrupt service routine will input the termination flags and any 
other pertinent status, and determine if the complete transfer was acceptable. If the 
data transfer was not acceptable, the software may retry the transfer operation if it 
deems it necessary .. 

It is the responsibility of all DMA controllers to terminate with the current bus opera- 
tion and not request further bus operations in the event of a power failure (PFD- low). 
This is necessary to allow the Power Fail/Restart circuitry to interrupt the Processor 
so that a software power down subroutine can be executed. Normally a DMA control- 
ler will set a termination flag in the event of a power failure during active operation 
so that software will be aware of an incomplete operation. 

"%'.I 9.5.4 Basic DMA Controller Architecture ~- 
C A typical DMA controller interfaces between Memory and a high speed peripheral device . ... 
"' It must be able to emulate the Processor in terms of controlling Memory and making ~ 

I block data transfers of any length . A typical DMA controller must be able to perform .... 
u, the following operations: 
t, 
;;;:: 1. Provide initialization sequencing by programmed 1/0 or > . 

~ ~ 
0 

~ 
0 . 

~ 8 8 e e ~ E ? ~ 
DMA transfer. ..,i 0 . ~ 0 ~ n ~ ' ... . " 2 . Stop the Processor to seize control of the Maxi-Bus. 

"' ' ::, 3. Initiate a memory cycle . er, .... 4. Define either a Read or Write operation. "' ... 
..,i 

5 . Provide temporary data storage and asynchronous data 
3' transfer to/from the associated peripheral. 
5· 6. Maintain the memory address for·the current transfer and 
aQ increment the address for the next transfer. 

7. Maintain a count of the number of remaining transfers. 
8. Provide error detection . 
9. Terminate transfer operations (surrender Maxi-Bus to 

Processor) after the last transfer or upon an error tndtcation . 
10. Provide End-of-Operation interrupt or status response. 

A basic DMA controller features a Control section, a Word/Byte counter, an Address 
register/counter anda Data channel as shown in figure 9-16. 

9.5.4.1 Control Section 

The Control section consists of Initialization logic, a Mode Control register, Maxi-Bus 
acquisition controls, DMA Priority logic and a 3-bit State counter and decoder. 

The initialization logic is used to set up the DMA controller for subsequent operation. 
It generates load signals for the mode control flags, the Word counter and the Address 

9-25 9-26 



COMPUTl R AUTOMATION . INC. ~ 

>,i ~- ... 
(I) 

"' I .... 
a, 

3:: :r, 
~ 
I a, 
C 
"' 

I\ /\ /\ • ~ 

0 :r, n 
a, a, a, 

C C C "' "' "' 

v" \J 
-=n> ,... 8 0 
o, 0 0 gzs: 
a, C O - ~:r, - z :I) n :i, ~~m 
"'m"' 0 
- :I)"' ,... 

0 

'r fi· :r, ~ :r, 
n 
J: :r, 
z Sll:1.1.3W'v'll'v'd >IS'v'l. z u m ,... 

~ 
::, 
'I. 

-=s~ ~ 
:I) 

o, C 0 .! 

/\ ~~~ i 
!!!m a :I) 1P 

"' § 
& li 
m 
:I) 

0 :r, ~ :r, 

, 
\J 

no-a 
-mm 
:I)< :I) 

En~ =im m 
:I) :I) 
-< :r, ,... 

COMPUTl: R AUTOMATION. IN<. ~ 

register. Two techniques can be used to implement the Initialization logic. One 
technique involves the use of programmed 1/0 to set flags and load registers, 
An alternate technique involves the use of a sequencer and the DMA control logic to 
access a task control block in Memory. 

The Maxi-Bus acquisition controls issue the Processor STOP- signal in response to 
a DMA request . 

The DMA Priority logic permits DMA operations between multiple DMA controllers, 
During each DMA cycle, the DMA priority is auctioned so that a higher priority DMA 
controller can transfer data. 

The 3-bit State counter is used to time all operations during a data transfer. The de­ 
coder network decodes specific states of the counter to generate a Memory Start (MST-) 
signal, increment or decrement registers and gate data and address information to 
Memory. 

The Mode Control register has a minimum of 1-bit storage for the Read/Write mode 
flag, If the user wishes to implement the Byte mode, a Byte mode flag is required to 
distinguish word transfers from byte transfers. The register may be expanded to 
accommodate other user defined flags as deemed necessary . 

9. 5. 4. 2 Word/Byte Counter 

The Word/Byte counter is a 16-bit parallel-loaded binary counter, During initializa­ 
tion, the word/byte count that corresponds to the total number of words or bytes to 
be transferred is parallel loaded into the register . During execution , the Word/Byte 
counter is decremented with each DMA transfer to or from Memory . The counter also 
requires a word count equal-to-zero detection feature. This feature monitors the 
count during each transfer such that when the word count reaches zero, subsequent 
DMA requests are inhibited and termination operations are performed (typically an 
End-of-Operation interrupt) . 

9. 5. 4. 3 Ad dress Counter 

The Address counter isa 16-bit parallel-loaded binary counter. During initialization, 
the starting address of the memory area being accessed is parallel loaded into the 
low order 15 bits of the counter. The MSB of the counter is set false for Word mode 
and true for Byte mode. During execution, the Address counter is incremented for 
each transfer (after MACK- is received) . During Byte mode operations, the Select 
Least Significant Byte (SLB) flag is used as the LSB of the address count. When SLB- is 
low , the least significant byte of the transferred data word is read from or written into 
Memory. Likewise, when SLB- is high, the most significant byte of the transferred 
data word i3 used. SLB- must be high (or not used) during Word mode operation. 

9-28 



COWUTt R AUTOM ATION . INC . ~ 

9.5.4.4 Data Channel 

The Data channel is a temporary storage element that serves as a staging area for DMA 
data transfers to or from Memory. The complexity of the channel is determined 
by two factors. The first factor is DMA latency. DMA latency is defined as the time 
required, under worst case conditions, for the Processor to surrender the Maxi-Bus 
to a DMA controller. This worst case time for the NAKED MINI/LSI with the standard 
1600 ns Memory is 5. 6 µs (this is the maximum time that the Processor requires to do 
interna! housekeeping and generate a Stop Acknowledge (SACK-) signal. The second 
factor that determines Data channel complexity is the user's maximum data transfer 
rate when writing into Memory. 

Using the 5. 6 µs DMA latency as a constant, the number of buffers that would be required 
for temporary data storage in the Data channel is directly related to how many word 
transfers could be attempted prior to gaining control over Memory. For instance, if 
the user has a data transfer rate of 750 kilowords per second, 1. 3 µs would be required 
for each data transfer. With a latency of 5. 6 µs and a transfer rate of 1. 3 µs, a minimum 
of four words would be transferred and the transfer of a fifth word would have started 
before Memory was under control. Thus, five buffers would be required for a 750 
kiloword transfer rate. Furthermore, the memory capability would have to operate in 
the interleaved mode. The number of buffers required for various transfer rates are 
summarized in the following chart: 

Data Transfers Up To 

178,571 words/bytes/sec 
357,142 words/bytes/sec 
535,713 words/bytes/sec 
714,284 words/bytes/sec interleaved 
892,855 words/bytes/ sec interleaved 

1,071,426 words/bytes/sec interleaved 
1,249,997 words/bytes/sec interleaved 

Number of Buffers Required 

9.6 PRIORITY AND MEMORY BANKING PROPAGATION 

1 
2 
3 
4 
5 
6 
7 

The user can avoid the necessity of multiple buffers by use of a Hog Mode flip-flop. 
This flip-flop keeps the STOP- line active and disables down-stream priority even 
though transfer requests are not occurring at a sufficient rate to sustain "Buret" mode. 
In the Bur st mode, every memory cycle is dedicated to DMA transfers, i. e. , 16-bit 
word transfer rate of 625 kHz (single memory module). The TYPl- signal on the mother 
board permits the DMA controller to sense which Processor is installed and perform 
Hog mode transfers if necessary. TYPl- is ground when the LSl-1 is [nstalled and is 
open when the LSI-2 is installed. 

It is the users' responsibility to propagate the lnterrupt priority, DMA priority, and 
Memory Banking chains regardless of whether or not a module is associated with any of 
these chains. If s module is not associated with any of these chains, the corresponding 
chain signals (namely PRIN- and PROT- for Interrupt priority, DPIN- and DPOT- for 
DMA priority, and MBIN and MBOT for Memory Banking) must be propagated through 

9-29 

COWUTtR AUTOMATION. INC. ~ 

the module for use by down-stream modules. These signals should be jumpered together 
within the module. The ALPHA LSI motherboard input and output pins for Interrupt and 
DMA priorities, and Memory Banking, are given in the chart below. 

INPUT OUTPUT- 
MNEMONIC PIN MNEMONIC PIN 

lnterrupt Priority PRIN- 183 I PROT- 184 I 
283 284 

DMA Priority DPIN- 209 DPOT- 210 
Memory Banking MBIN 237 MBOT 238 

Modules associated with lnterrupt or DMA priority , or Memory Banking, should use 
TTL gates for unloading and driving the corresponding chain signals. It is imperative 
that the propagation delays interna! to the modules be minimized. A total of tw~ micro­ 
seconds is allowed for signal propagation through all modules in a chain. The implemen­ 
tation of expansion chassis Buffer board look-ahead propagation limits the longest signal 
propagation path to the maximum number of modules that can be installed in two chassis 
(20 half board modules). Signal propagation delays should therefore be held to less 
than 100 ns average per module. 

9. 7 1/0 BUS LOADING RULES 

For loading rules, see maxi-bus electrical characteristics, paragraph 8 · 6 · 

9.8 POWER AND GROUND SYSTEM CONCEPTS 

The power supply that is furnished with the ALPHA LSI computer produces three 
voltages: +5 Vdc, +12 Vdc and -12 Vdc. The +5 volt supply is used to provide the 
Vcc voltage for all integrated circuits in the Processor, Memory and 1/0 modules. 
The +12 and -12 volt supplies are used by the Processor and memory modules and 
are available to all 1/0 modules if needed. Typically, the + 12 and -12 volt supplies 
provide power for analog and communications type interfaces. All three regulated 
voltages share a common ground system referred to as logic ground . 

Power (+5, +12 and -12 Vdc) and logic ground are distributed from the system power 
module through the motherboard to all plug-in modules. Within a module, +5V and 
ground are distributed by means of bus bars. The power and ground pins on the 
motherboard are organized such that each bus bar can pick up a separate set of pina. 

A typical half board module has a density of 72 integrated circuits which are organized 
in six rows of 12 chips. A typical full board module has a density of 144 IC's organized 
in 12 rows of 12 chips. Bus bars are mounted in between each row of chips and on the 
outside edges of a board. A half board module has seven bus bars while a full board 

9-30 



COMl'UTE R AUTOMATION , INC. ~ 

module has 13. Odd numbered bus bars are ground, even numbered bus bars are +5 Vdc. 

Most 14-pin chips use pin 14 for Vcc (+Vdc in this case) and pin 7 for logic ground. A 
typical 16-pin chip uses pin 16 for Vcc and pin 8 for logic ground. By alternating the 
pin 1 orientation of each row of chips, two rows o f chips can share a common +5 or 
ground bus bar. The Vcc pins of all chips in adjacent rows are routed to the nearest 
+5 bus bar mounting pad. Likewise, all ground pins in adjacent rows are routed to the 
nearest ground bus bar mounting pad . 

The bus bar is designed such that when it is installed there is a . 030 inch gap between 
the underside of the bus bar and the printed circuit board. This is to permit etched 
circuitry to pass beneath the bus bar without shorting. (Refer to figure 12-3.) 

Table 9-1 lists all power and ground pin assignments that exist in the 100 and 200 series 
connectors of a typical motherboard slot. 

Table 9-1. Power and Ground Pin Assignments 

PIN SIGNAL PIN SIGNAL 

1,2 Ground 43,44 +5 Vdc 
3,4,5,6 +12 Vdc 59,60 Ground 
7,8 -12 Vdc 73,74 +5 Vdc 
13,14 +Vdc 85,86 Ground 
27,28 Ground 

There are two ground systems in the ALPHA LSI computer. They are logic ground and 
chassis ground. It is recommended that the user avoid tying these two ground systems 
together , The chassis ground system usually has more noise than the logic ground 
system can tolerate. In the event it is necessary to tie the two systems together, they 
should be tied together st only one point in the users' system. For personnel protection, 
the chassis ground systein is tied to earth-ground via the third wire in the se line cord. 

9 . 9 FIL TERING TECHNIQUES 

lntegrated circuits introduce switching transients into the +5 Vdc power supply which 
must be filtered out. It is recommended that both high frequency and low frequency 
filtering be employed. The low frequency filter consists of a 2. 2 µF, 10%, 20 Vdc 
tantalum capacitor between +5V and ground for each row of 12 chips. The high fre­ 
quency filter consists of a . 022 µf, 25 Vdc ceramic capacitor between +SV and ground 
for every four chips in a given row of chips. Thus, a typical half board module 
would have 6 tantalum capacitors and 18 ceramic capacitors for transient filteririg. 
Where a large number of MSI devices and Fairchild 9602 one-shots are used, it is 
recommended that a .022 µF ceramic capacitor be used for each device. 

The -12 Vdc supply is used by the inhibit drivers in Memory. The inhibit drivers 
introduce approximately . 5 volts of transient noise into the -12 V de power supply. 
lf the user cannot tolerate this much noise, an inductive type filter is recommended , 

9-31 

COMl'UTt R AUTOMATION. INC. ~ 

9.10 STANDARD INTERFACE CONNECTOR 

The standard interface connector isa Viking 3VH50/1JN5 or equivalent. This eon­ 
nector features two rows of 50 contacts designated Al through A50 and Bl through 
B50. Contacts Al through A50 interface with the contact strip on the solder side 
of the PC board. Contacts B 1 through BSO interface with the component side of the 
board. The interface connector should be installed with pins Bl and Al to the left as 
viewed from the rear of the computer. 

9.11 NORMAL INTERFACE PINS 

The interface pin assignments normally used by CA! for device address and 
interrupt address jumpers are listed in table 9-2. 

Table 9-2. Normal lnterface Pins 

PIN SIGNAL PIN SIGNAi 

AOl PS4- BOl +5Vdc 
A02 PS3- B02 +5Vdc 
A03 PS2- B03 OND 
A04 PSl- B04 OND 
IAOS PSO- BOS OND 
A06 ES- B06 OND 
A07 E16- B07 OND 
IAOS E32- BOS OND 
IA09 E64- B09 OND 
AlO El28- BlO OND 
All E256- Bll OND 

9-32 



COMPUTE R AUTOMATION, INC. ~ 

Sectlon 10 

CONSOLE INTERFACE REQUIREMENTS 
10 .1 INTRODUCTION 

A Console, be it the standard ALPHA/LSI Programming Console or a user designed 
Console, is an 1/0 device with a special set of dedicated 1/0 instructions having 
special mnemonics. 

The Console is assigned Device Address 0 (DA0) and shares this device address with 
the Power Fail/Restart option, the Autoload option and the Console interrupt and Trap 
controls of the Processor. 

The Console communicates with the Processor via the Maxi-Bus and uses a special set 
of control signals (not considered part of the Maxi-Bus) to stop, step, and start the 
Processor. 

This section provides a detai!ed discussion of interface signals, transfer timing, data 
formats, etc. This section also discusses the minimum requirements of a Console and 
how to add features to the minimum· configuration Console. 

10.2 CONSOLE - PROCESSOR INTERFACE (Figure 10-1) 

The Console interfaces to the Processor via the Maxi-Bus, plus special control lines 
not generally considered to be part of the Maxi-Bus. The special lines and the 
associated functions are described below. The signals are all ground-true. 

SERV- 

IF- 

Console Service. The SERV- signal is issued by the Console 
to command the Processor to service the Console. The SERV- 
line may be considered an interrupt line with priority over all 
interrupts, but superseded by DMA operations. The Processor 
responds to SERV- by performing a Console Control word (CCW) 
input (actually, an instruction fetch from the Console instead of 
Memory). The CCW determines the required servicing. 

Instruction Fetch. The IF- signal, issued by the Processor, 
envelops the instruction fetch cycle. In response to SERV-, the 
Processor performs an instruction fetch cycle, which in this case 
is a CCW fetch instead of the usual memory read cycle. The 
Console uses IF- to differentiate the CCW input cycle from a status 
word input cycle; both use Device Address and Function Code 0. 
If SERV- is issued coincident with the leading edge of !F- 
or later, the instruction fetch cycle will cause an instruc- 
tion to be accessed from Memory and subsequently exe- 

10-1 

START- 

CINT- 

ssw- 

AL- 

ov- 

BM- 

COMl'UTER AUTOMATION. INC. ~ 

cuted before SERV- will be honored. SERV- must lead IF- by at least 
1. 6 µs to guarantee the next IF- cycle will be a CCW input_ cycle. 

Start Processor. Signal START- is issued by the Console to command 
the Proceasor to resume processing. START- must be a minimum of 
1. 6 µs wide. The Processor resumes processing on the trailing edge 
of START-. Signal SERV- must precede the trailing edge of START­ 
by at least 1. 6 µs to guarantee the Processor will immediately perform 
a CCW input instead of a memory read cycle when processing is resumed. 

Console lnterrupt. CINT- is issued by the Console to interrupt normal 
processing. Signal CINT- , once issued, must be held true until signal 
IAR- (lnterrupt Address Request) is true. 

Sense Switch. Signal SSW- issued by the Console, !racks the console 
SENSE switch. No synchronization is required. If the SENSE switch 
is set, signal SSW- is true. 

Autoload. Signal AL- is issued by the Console to command the optional 
Autoload logic to perform an autoload sequence. The autoload sequence 
is initialized on the leading edge of AL- and commences on the trailing 
edge of AL-. The AL- pulse width must be 100 ns minimum. 

Overf!ow . The OV- signal is issued by the Processor. OV- tracks the 
Overflow flip-f!op interna! to the Processor. 

Byte Mode. The BM- signal is issued by the Processor. BM- tracks 
the Byte Mode flip-flop interna! to the Processor. 

MAXI-BUS 

PROCESSOR 

IF- 
SERV- 
START- 
CINT- 
AL- 
SSW- 
OV- 
BM- 

CONSOLE 

Figure 10-1. Processor/ Console lnterface 

10-2 



COMPUT£ R AUTOMATION . INC. ~ 

10.3 CONSOLE TRANSFER TIMING 

There are four basic functions (beyond normal I/O functions) that a console ean per­ 
form. These are: establishment of the Stop mode, register entry and display, Step 
mode operation, and establishment of the Run mode. The timing requirements for 
each of these functions are discussed in the following paragraphs. 

10.3.1 Establishment of Stop Mode (Figure 10-2) 

During the Run mode, the Processor Instruction Fetch signal (IF-) is ground-true 
when the Processor is fetching an instruction from Memory and is high during the 
execution of the instruction. The Console uses the trailing edge of the IF- signal to 
synchronize the generation of a Console Service Request (SERV-). 

The Stop mode is initiated by operator activation of the console STOP switch. With 
the STOP switch active, the SERV- signal is enabled. SERV- goes true during the 
execution period of the current instruction and remains true for the next instruction 
fetch. 

COMPUT£R AUTOMATION. INC. ~ 

Upon seeing the SERV- signal active, the Processor ietches the next instruction from 
the Console rather than from Memory . When the Processor fetches the instruction 
from the Console, it addresses Device Address O and Function Code O and issues the IN­ 
control signal. The Console, upon seeing IF- low, Device Ad dress and Function Code 
0 and IN - low , places a Stop CCW word on the Data bus . 

The Processor vectors the Stop CCW word to its instruction register and executes 
the instruction. The CCW instruction algorithms cause the Processor to halt. 

INSTRUCTION N-1 

SERV- 

DATA BUS 

• PROCESSOR GENERATED SIGNAL 

INSTRUCTION N CCW INSTRUCTION 

+V L STOP SWITCH ACTIVATED 

STOP 
0 

+V CON 
IF- FETCH EXECUTE FETCH EXECUTE FETCH 

0 

+v-----------------+, 

,l,-""'"""""""'""'""'"""""""""""'""'""'"""""'""'""""""""""""'""""'--'1-C00.--..11 (PROCESSOR STOPPED) L STANDARD 1/0 
TRANSFER TIMING 
(SEE FIG. 8-31 

_ Figure 10-2. Establishment of Stop Mode 
10-3 

10. 3. 2 Register Entry and Display (Figure 10-3) 

The register entry and display sequence can be performed only when _the Processor is 
stopped. The sequence is initiated by activation of a Itegister Select switch on the 
Console. The switch activation causes both SERV- and START- (Processor Start) to 
go low, simultaneously. Approximately 1600 ns later, the Processor resumes operation 
on the trailing edge of ST ART- . 

Upon resumption of operation, the Processor recognizes that the SERV- si~al is active 
...... ..:a f' .... +.-.hnc, ............. o.v+ inc:i+,.,,,-.tinn frnm thp r.onAnlP.. ThP. Cnnsole. unon see1n1Z IF- , 
;;~;c:Addr~~-s -~~d F~-;;:~ti~~-C~d; O, ~~d IN- low, places the CCW- on the D;ta bus. 
The Processor executes the CCW instruction and transfers data between the Console 
and the target register or Memory (as defined by bits O thru 15 of the CCW). Upon 
completion of the transfer, the Processor stops', 

STOP 

SERV- 

START- 

• 1f- 

+v--------------------------------~ !STATIC CONDITION) 

REGISTER SELECT SWITCH ACTIVATED 

+V ,.__ 

DATA BUS (PROCESSOR STOPPED) 

• PROCESSOR GENERATED SIGNAL 

.icxx DATA (PROCESSOR STOPPED) 

l t STANDARD 1/0 TL .,_ __ TRANSFER TIMING 
(SEE FIG. 8-3) 

Figure 10-3. Register Entry /Display Sequence 

10.3.3 Step Mode Operation (Figure 10-4) 

The Step mode causes the Processor to fetch one instruction from Memory, execute the 
instruction and then stop. The Step mode operation can be performed only when the 
Processor is stopped and the console RUN switch is activated. Activation of the RUN 
switch causes the START- signal to go low. Approximately 1600 ns later, the Processor 
resumes operation on the trailing edge of START-. 

10-4 



COMPUTER AUTOMATION, INC. ~ 

The Processor , upon resumption of operation, fetches the next instruction from Memory 
(as defined by the current value of the P register) and executes it. The Console, upon 
seeing the trailing edge of IF-, generates SERV-. Upon completion of the execution of 
the instruction fetched from Memory, the Processor fetches a Stop CCW from the Console, 
executes the instruction, and then stops . 

INSTRUCTION FETCH 
& EXECUTION 

+V 

STOP 
0 

~1600MIN-i 
+V 

START- 
0 

RUN SWITCH 
ACTIVATED 

+V 
• IF- 

0 

+V 
SERV- 

0 

DATA BUS (PROCESSOR STOPPEDI 

• PROCESSOR GENERATED SIGNAL 

INSTRUCTION 
. FETCH 

FROM 
MEMORV 

FROM 
CONS01.E 

Figure 10-4. Step Mode Sequence 

STANDARD 1/0 
TRANSFER TIMING 
(SEE FIG. 8-31 

10. 3. 4 Establishment of Run Mode (Figure 10-5) 

The Run mode is established by deactivation of the console STOP switch and activation 
of the console RUN switch. Activation of the RUN switch causes the ST ART- signal to 
go low. Approximately 1600 ns later, the Processor resumes operation on the trailing 
edge of START-. 

10.4 CONSOLE WORD FORMATS (Figure 10-6) 

The NAKED MINI LSI uses four different word formats to convey information between 
the Console and the Processor. These word formats are as follows: 

1. Computer Status Word 
2. Console Sense Word 
3. Console Data Word 
4. Console Control Word 

10-5 

COMl'Ul£ R AUTOMATION, INC. ~ 

STOP 

START- 

• IF- 

+v------- 
STOPSWITCH L:,-_L-.. .-.1 _ 

DEACTIVATED _j ., ,-----i200MIN"-l 

0 

+V --------1] 
O RUN SWITCH ACTIVATED 

+V 

0 

• Processor Generated Stgnal 

Console Data Word 

Con sole Control Word 

PROCESSOR STOPPED PROCESSOR RUNNING 

Figure 10-5. Establishment of Run Mode 

15 8 7 4 3 2 0 

Comput• Status Word lo 0 0 0 0 0 0 
0 I o: DS DS ~1:1° 0 

0 I SIA (,5800 ). SOA (,6COOI 
2 1 SIX (,5AOOI, SOX (,6EOOI 

'-v--' 
RESERVED FOR EXPANSION INTERNAL PROCESSOR 

STATUS BITS 

15 4 3 0 

Con sole $ense Word I 0 0 0 0 0 0 0 0 0 0 0 
0 I o: DS DS ~si ISA 1,68021 

2 1 ISX (,5A011 

RESERVED FOR EXPANSION 

15 0 

16-BIT DATA WORD 

15 6 5 4 3 0 

Thul bits are mutualty 
exclusive; onty one bit 
may be •t at a time 
for proper opwation. 

Figure 10-6. Console Word Formats 

ICA 1,68041, OCA (,44041 
ICX (,5A04I, OCX 1,46041 

r.rcxx) 

10-6 



COMl'Ult R AU TOM ATION , INC . ~ 

10. 4. 1 Computer Status Word 

The Computer Status word permits the program to store volatile Sense register data 
during a power failure and to restore the Sense register data during restart operations. 
This capability is required with the standard ALPHA LSI Console since the sense data 
is stored in a volatile storage register. If non-volatile toggle switches are used, this 
capability is not required. 

The Computer Status word is transferred between the Console and the Processor when 
IF- is false, using special unconditional Input or Output instructions with a device 
äddi'css ai1'1 fu.n\;tiun eode vf G. Du.J.~i11g 01, ~rA ur !;D{ Instruction , the consote .:vpies 
the state of the SENSE switch (SSW) into bit 3 of the word and the contents of the Sense 
register (DS0 thru DS3) into bits 4 thru 7, respectively. The internal processor status 
(bits 0, 1 and 2) is generated concurrently within the Processor. Upon input, the Com­ 
puter Status word is loaded into either the A or X register. Note that the Console can 
drive only bits 3 thru 7 du ring an SIA or SIX instruction. 

During an SOA or SOX instruction, bit 3 of the Computer Status word contains the new 
state of the SENSE switch and bits 4 through 7 , respectively , contain the new state of 
DS0 thru DS3. 

10.4.2 Console Sense Word 

The Console Sense word is transferred from the Console to the Processor in response 
to an unconditional Input instruction with Device Address 0 and Function Code 1. During 
an input operation (ISA or ISX instructions), the contents of the console Sense register, 
DS0 through DS3, are copied into data bits 0 through 3 of the Maxi-Bus, respectively. 
All other bits of the word are transferred as zeroes. No Output instructions are issued 
by the Processor in conjunction with the Console Sense word. 

10. 4. 3 Console Data Word 

The Console Data word isa full unsigned (absolute) 16-bit data word that is transferred 
between the Processor and Console in response to an unconditional lnput or Output 
instruction with Device Address 0 and Function Code 4 . 

During routine input operations (ICA or ICX instructions), the Console Data word is 
input to the Processor A or X register. Likewise, during routine output operations 
(OCA or OCX instructions), the Console Data Word is transferred from the Processor 
to the Console. 

During a console service sequence , the Console Data word can be transferred to or 
from the Processor A, X, I or P registers as well as Memory. 

10. 4. 4 Console Control Word 

The Console Control word (CCW) is an instruction word rather than a data word. The 
CCW is generated by the Console during a console service sequence. The operation 
code of the CCW resides in bits 15 through 6 while bits 5 through 0 are modifiera.· 

10-7 

The NAKED MINI LSI is designed to respond to eleven different CCW codes. These 
codes are listed below: 

CCW CODE 
: lC00 
: 1C02 
: 1C03 
: 1C04 
: 1C05 
: lC0S 
: 1C09 
: lCl0 
: lCll 
: 1C20 
: 1C21 

COMPUTER AUTOMATION. INC. ~ 

FUNCTION 

Stop Processor 
. Read Osta from Memory, Increment P and Halt 
Write Data into Memory, Increment P and Halt 
Output Data from A Register and Halt 
lnput Data to A Register and Halt 
Output Data from X Register and Halt 
Input Data to X Register and Halt 
Output Data from I Register and Halt 
Input Data to I Register and Halt 
Output Data from P Register and Halt 
Input Data to P Register and Halt 

Note that bits 1 through 5 are mutually exclusive, namely, only one bit may be true at 
a time. 

10. 5 MINIMUM CONSOLE REQUIREMENTS 

A minimal user designed Console should have facilities to stop , reset and start the 
Processor as well as have system performance indicators. 

10. 5 .1 Stopping the Processor 

Stopping the Processor requires the issuance of a Console Service Request (SERV-) 
and the furnishing of a Stop Processor CCW to the Processor upon recognition of SERV-. 

The Processor will not recognize the Console Service Request until completion of the 
current instruction. Upon completion of the current instruction, the Processor recog­ 
nizes the Console Serivce Request by initiating a CCW instruction fetch from the Console 
rather than the normal instruction fetch from Memory . The CCW transfer timing is 
discussed in paragraph 10. 3. 

The users Console should be designed to furnish the CCW word during an input 
sequence with Device Address 0 and Function Code 0 ONLY when the instruction fetch 
signal (IF-) is true. Once the CCW is transferred to the Processor, the internal micro­ 
program algorithm of the Processor brings the Processor to a stopped condition. 

10. 5. 2 Resetting the System 

Resetting the system is accomplished by forcing the :system Reset signal (RST-) ground­ 
true for a minimum of 5 µs. This can be accomplished with a switch or a TTL compatible 
open-collector signal capable of driving 32 mA. It is not necessary to synchronize or 
debounce this signal. 

10-8 



COMPUTER AUTOMATION . INC. ~ 

10. 5. 3 Starting the System 

The system is started by issuance of the Start Processor signal (START-). START­ 
is a ground-true signal that must have a minimum duration of 1. 6 µs. START- should 
be driven with a 32 mA open collector TTL driver. 

10. 5. 4 Visual lndicators 

Visual indicators should be provided for ease in determining the operational status 
of the system. lndicators should be provided on the debounced STOP switch signal 
and the system RESET signal. A RUN indicator can be provided by use of a 500 µs 
retriggerable one-shot that is triggered by the Memory Start signal MST-. As long 
as the system is running, the Run one-shot will be retriggered each time Memory is 
accessed and will time out 500 µs after the last memory access following departure 
from the Run mode. The RUN indicator should light whenever the Run one-shot is set. 
The Byte Mode signal (BM-) and the Overflow signal (OV-) are available for display. 
lf these signals are applied to lamp ·drivers and indicators, an additional performance 
monitor can be obtained. 

10.6 OPTlONAL CONSOLE FEATURES 

The minimal Console discussed in the previous paragraph can be expanded to include 
several additional features which are discussed in the following paragraphs. 

10.6.1 Data Entry and Display 

The data entry and display feature provides the capability to .enter data from the Con­ 
sole into the Processor registers or Memory. Likewise, data from the Processor 
registers, Memory , or a program can be stored and displayed for operator observation . 

The data entry and display feature requires that the Console generate the Console 
Data word. Generation of the Console Data word requires a 16-bit register and 16 
32 mA open-collector drivers to drive DB00- through DB15-. The entry switches can 
be applied via the storage register to the drivers. The drivers should be enabled only 
upon receipt of an Input instruction with Device Address 0 and Function Code 4 (ICA or 
ICX). 

If the user desires to accept data from the Processor, the Console must have 16 Data 
bus receivers and a 16-bit holding register. The holding register must be clocked 
only when a Select and Present instruction with Device Address 0 and Function Code 4 
is received (OCA or OCX). 

Display indicators may be tied to the outputs of the storage register and should light 
when a corresponding bit is true. 

10-9 

COMPUTl: R AUTOMATION. INC. ~ 

1 0. 6 . 2 Register and Memory Display and Modification 

This feature permits the operator to transfer the Console Data word between the Con­ 
sole and the Processor A, X , I or P register or Memory. 

This feature requires that, in addition to other bits, the Console be able to drive 
DB00- through DB05- during a Console Control word transfer. Bits ! through 5 of the 
CCW must be mutually exclusive, i. e. only one bit may be true at a bme. 

The Console logic should be designed such that when a registe~ select signal for bits 
1 through 5 of the CCW is generated, the SERV- and START- signals are generated 
simultaneously. Furthermore, the generation of any CCW word, ot~er than _the Stop . 
Processor CCW (: lC00), must be enabled only when the Stop mode is estabhshed. 'I'hia 
is to avoid possible alteration of volatile data in a user' s program during Run mode· 

10.6.3 Sense Register Entry and Display 

The Sense register entry and display feature permits the operator t? generate a . 
Console Sense word. The generation of a Console Sense word requrres that a 4-bit 
Sense register be applied to four 32 mA open-collector data bus driver~ (DB00~ through 
DB03-). The drivers should be enabled only upon receipt af an Input mstrucbon 
having Device Address 0 and Function Code 1 . 

10.6.4 SENSE Switch Feature 

In addition ta the four sen se lines discussed above, the Processor will accept a_ SENSE 
switch stgnal (SSW-) that may be tested by program instructions. The SSW- signal 
must be ground-true when the SENSE switch is active. 

10. 6. 5 Console lnterrupt Feature 

The Console interrupt feature permits the operator to interrupt normal processing. 
Console interrupts generate signal CINT- which is sent to the Processor. The only_ 
timing restriction on CINT- is that it must remain active until the Processor recogruzes 
the CINT request (recognition is obtained when the Interrupt Address Request 
(IAR-) signal goes ground-true). 

10. 6. 6 Autoload Initiation Controls 

The Autoload initiation controls permit the operator to command the Autoload option 
to perform an autoload sequence. Autoload initiation should only be permitted when 
the system is i.n the Run Enable mode (STOP and RUN _switc~es are reset or off), 
Autoload initiation will take place whenever the AL- signal 1s forced ground-true · 
The signal must be ground-true fora minimum of 100 ns to guarantee a response from 
the Autoload option . 

10-10 



COM!'UTE R AUTOMATION, INC. ~ 

The user may use the AL- signsl to set a flip-flop which, in turn, may drive an auto­ 
load indicator. A Select instruction with a device address and function eode of 0 can 
be used to reset the flip-flop when loading is complete. 

10. 6. 7 Step Mode Feature 

The Step mode feature permits the operator to manually step through a program one 
instruction at a time. The Step mode is an extension of the Stop mode wherein, if 
the RUN switch is activated while in the Stop mode, the Processor will go into the 
Run mode, execute one instruction, recognize a console service request, process tne 
request and then stop. Step mode timing is discussed in paragraph 10. 3. 

10. 7 USER CONSOLE INTERCONNECTION (Figure 10-7) 

A user designed Console can interface to the Processor in two different ways. If the 
user has the motherboard assembly, the Console can be interfaced at connector Jl. 
If the motherboard is not employed in the users system, the Console can be interfaced 
directly to connector Pl of the Processor. (Intercabling must be limited to 18 inches.) 

Motherboard connector Jl will accept a 50-pin 3M connector (Part number 3451-0000). 
This connector is designed to accommodate a SCOTCHFLEX TM ribbon cable (3M part 
number 3365-50). A PC board transition adapter (3M part number 3456) is also 
available for the console end of the ribban cable. Note that power and ground are 
available at Jl in addition to all signals required fora Console. The pin assignments 
for connector J.1 are shown on figure 10-7. 

In systems that do not have a motherboard, ref er to paragraph 2. 3. 3 of this manual. 

10.8 OPTION CARD CONSOLE ACCOMMODATIONS 

The NAKED MINI LSI Option board provides console skeleton logic. Included in the 
logic are the following capabilities: 

1. Secondary Console Sense register. Grounding four jumper pins 
introduces corresponding logic 1 bits in the Console Sense 
register word for ISA and ISX instructions . Satisfies requirements 
of paragraph 10. 6. 3. 

2. Secondary Console SENSE switch. A ground jumper on the pin 
simulates the console SENSE switch in a set state for conditional 
jump instructions only. Satisfies requirements of 
paragraph 10.6.4. 

3. Secondary Console Interrupt switch. A momentary ground jumper 
simulates a Console interrupt. This jumper option is also available 
at the TTY interface connector. Satisfies requirements of 
paragraph 10.6.5. 

10-11 

COMl'UTt R AUTOMATION. INC. ~ 

CONSOLE CONNECTOR 
(3M 3415-0000) 

CLK­ 

IAR­ 

RST­ 

PLSE­ 

IOCL­ 

AB03- 

AB04- 

0UT­ 

SERV- 

0B14- 

OB13- 

0B12- 

0B11- 

0B10- 

0B09- 

OB08- 

0B07- 

DB06- 

0B05- 

OJ!04- 

0B03-. 

MST- 

0B01- 

DB00- 

0B02- 

Figure 10-7. Motherboard/Console Connector (Jl) Pin Assignments 

10-12 



COWUTER AU TOM ATION . INC . ~ 

4. Secondary Autoload switch. A momentary ground jumper simulates 
the console Autoload (AL-) signal and results in the execution of the auto­ 
load sequence. This jumper option is also available on the TTY 
interface connector. (Jumper is active at all times and will first reset 
the computer if pressed while the computer is running.) Satisfies 
requirement of paragraph 10. 6 . 6. 

5. Secondary Reset switch. A momentary ground jumper simulates 
the console Reset (RST-) signal. Satisfies requirements of 
paragraph 10.5.2. 

Each of the above capabilities and their implementation are described in Section 6 of 
this manual. 

Table 10-1. Console Special Signal Load/Drive Summary 

SIGNAL CPU CONSOLE 

ssw- 5,6 2 
IF- 2,6 5 
AL- 5,6 2 
BM- 2,6 5 
ov- 2,6 5 
START- 2,5,6 2 
SERV- 2,5,6 2 
CINT 5,6 2 

Device types areas follows: 

2 = 32 mA open-collector driver (7438 or equivalent) 
5 = TTL receiver (7400 or equivalent) 
6 = Pullup resistor (1 Kohm) 

10-13 



COMPUTY AUTOM ATION , INC . ~ 

Sectlon 11 

POWER SUPPLY INTERFACE REQUIREMENTS 

11 1 INTRODUCTION 

This seetion diseusses the requirements of a user furnished power supply. Among 
the items diseussed are DC power requirements, power monitor faeilities, an optional 
ac line synehronized timing souree and intereonneetion requirements. Ref er to 
figure 11-1 for a top and bottom view of the ALPHA LSI power supply. 

11.2 DC POWER REQUIREMENTS 

The user designed power supply must produee four voltages: +5Vde, +12Vde, -12Vdc, 
and +5H (hangpower). The +5 volt supply provides the Vec voltage for mast integrated 
eircuits in the processor, memory and 1/0 modules. The +12 and -12 volt supplies are 
used by the processor and memory modules and by the MOS LSI integrated eireuits. 
Certain analog and eommunieations options use +12 and -12Vdc. The +5H hangpower 
supply is used exclusively by the Processor; a detailed discussion of the +5H supply 
is provided in paragraph 11. 3. All four de voltages share a eommon ground system 
referred to as logie ground. 

11. 2 .1 Estimating DC Current Requirements 

Before a user can design a power supply, the eurrent requirements of each de supply 
must be determined. The eurrent load of mast standard modules built by Computer 
Automation, lne. are listed in table 11-1. The load eurrents listed are worst esse for 
each module. The user ean determine aetual power requirements for his system eon­ 
figuration by summing the load currents for each standard module (and multiples 
thereof) along with the load eurrents of any user designed eontrollers. 

11.2.2 Overvoltage and Reverse Voltage Protection 

It is redommended that the +5Vde power supply employ overvoltage and reverse volt­ 
age protection devices. The overvoltage device must prevent the +5V de output from 
exceeding +6. 5 volts in the event of a power supply failure or an accidental application 
of a high voltage potential from an external source. Each supply output should have 
circuitry to prevent damage to its load or the supply itself in the event that one supply 
is shorted to another or to ground. 

11-1 

COMl'UTfR AUTOMATION, INC. ~ 

"" ... 
"" .., 
"' I 
>: 
>: 

"""" ...... 
"""" 0 0 . "' I I >: 0 >< 0 

"" ... 
"" ... 
00 
I 
>: 
>: 

• --- 00 :,:: 

~ ... 
CD 
<O 
00 
0 
0 ... .... 
"' :,:: 

~ ... 
"' .... .., 
0 
0 

== ~ 
0 

~ 
~ e. 
"' 

www N w N Nw N-:JWWc.nc.n ............................. 

I I coooo I I I I I I I I I 0 I 0 ,_. 0 0 0 I 0 ,_. 0 
I I I I I I I I I I I 0 I I 
I I W""""' .,_ 00 I I I I I I I I I I -:J N N 0) N c.n I -:J t.:> N 0) 
I I 0 c.n CO c.n c.n I I I I I I I I I ... I """" I "" I I * I I I I I I I I I I I 

I I C C O 00 I I I I I I I I I 0 I 0 0 0 t1:t,, 0 t-.) I 0 0 0 c.n 
I I I I I I I I I I I I I 
I I W ""'"6...., 00 I I I I I I I I I .... I NN .... U>NO) I en c.n .. N 
I I C c.n CO c.n c.n I I I I I I I I I • I 0 0 <.n 0 I W N -:J N 
I I * I I I I I I I I I I z I z sa. sa. CD 

CD .... .., -.., 
-.., 

11-2 

+ < 
0 

1------------------------------1,.......f (') 
;1;2 ~: ~ 
~ 
h 

>-i 
~ 
CD .... .... 
I .... 



COMPUTER AUTOMATION . IN(. ~ 

Top View 

Bottom View 

Figure 11-1. ALPHA LSI Power Supply 
11-3 



COMl'IJT£ R AUTOMATION, INC. ~ 

11. 2. 3 Ripple and Noise Requirements 

The regulator and output filter design of each power supply must be adequate to limit 
ripple, noise and voltage transients to 50 mV peak-to-peak. 

11. 2. 4 Turnon/Turnoff Overshoot 

Turnon/turnoff overshoot should not exceed two percent (2%) of the nominal voltage 
output of each de power supply. 

11. 2. 5 Regulation Requirements 

Each de power supply should maintain a regulation envelope of ::_2 percent of nominal 
output voltage from O to 100 percent of full rated load over the expected range of input 
line voltage and over a temperature range of o•c to 50°C. 

The se regulation requirements must be maintained at the processor module. Remote 
sensing must be employed when voltage drops in the power supply wiring are of suf­ 
ficient magnitude to cause voltage regulation to exceed ::_2 percent when the load cur­ 
rent is varied from no load to full load. 

11. 2. 6 DC Power Storage 

The +5Vdc, +12Vdc and -12Vdc power supplies must have sufficient storage in the reg­ 
ulation to insure regulated output for at least 2ms after a power failure has been detected 
(refer to paragraph 11. 3 for details on power fail detection) . 

11. 3 POWER MONITOR FACILITIES (Figures 11-2 and 11-3) 

The Power Monitor Facilities must develop a +5H (hangpower) voltage anda ground­ 
true Power Failure Detected signal (PFD-) for the exclusive use of the Processor. 
These provisions are required whether the Processor Power Fail/Restart option is 
used or not. 

11. 3. 1 +5H (Hangpower) Regulator 

The +5H power supply must provide auxilliary +5Vdc power for use by the Processor 
to sssure proper startup and shutdown. The +5 H supply must be the first de voltage 
to come into regulation upon application or restoration of ac line power and the last 
de voltage to drop out of regulation upon loss or removal of ac line power. 

The +5H supply must provide 200 mA of de current at +5 Vdc and regulate this voltage 
to within +5 percent of nominal, Ripple and noise must be within 50 mV peak-to-peak. 
The +5H supply must be in regualtion at all times that the +5 Vdc and ::_12 Vdc supplies 
are above 10 percent of their specified values. 

11-4 

COMl'UTE R AUTOMATION. INC. ~ 

11. 3. 2 Power Fail Detector 

The Power Fail detector must sense when the nominal ac line voltage falls below its 
minimum sustaining lev el. When this minimum sustaining leve! is sensed , the Power 
Fail detector must generate a ground-true PFD- signal for use by the Processor. 

The Power Fail detector must also have a timing function that turns off the +5, +12 and 
-12Vdc regulators a minimum of 2 ms after PFD- goes low. 

When the ac line voltage rises above the minimum sustaining leve!, the Power Fail 
detector must turn on tne +5, + 12 and -12v de regulators after allowing for a charge 
buildup in the storage capacitors of each regulator. The PFD- signal must remain in 
the ground-true state for a minimum of 2 ms after the +5, +12 and -12 V de regulators 
have reached 98 percent of their nominal values. 

The PFD- signal driver must have a minimum drive capability of 20 mA de and must be 
collector-ORable. The driver may be implemented with either discrete elements or 
with an integrated circuit. The logic levels for PFD- are as follows: 

True = 0.0 to +0.45 Vdc 
False = +2, 4 to +5, 0 V de 

PARTOF 
POWER 
TRANSFO RMER 

Il- 
.. l >--- -- +5 HANG +5 H > REGULATOR 
u 1200 MAi . 

.. -= 
PROCESSOR 

~ SECUENCE CONTROL 
POWER FAil TO ALL REGULATORS , OETECTOR 

?' (DETECTS 
LINE VOLTAGE ,> AMPLITUDEI PFD- 

' 

Figure 11-2. Power Monitor Block Diagram 

11-5 



COMPUml AUTOM ATION . INC . ~ 

DOWN SEOUENCE 

+V 
PFD- 

+5 VDC, 
± 12 VDC 

98% 

+SH 

10% 

UPSEQUENCE 

10% 

m 
Time • 2 milliseconds min. from falling edge of PFO- until first regulated voltage drops out 

+5 H vo ltage level unde fined when +5 vdc and t 12 vdc are S 10% of nomina l 

Pfd- undefined when +5 H is ~ 95% of nomina l 

Time "' 2 millisteonds min. from 98% point to rising edge of PFD- 

Figure 11-3. Power Monitor Timing Requirements 

11.4 AC LINE SYNCHRONIZED TIMING SOURCE (OPTIONAL) 

The Processor Real Time Clock (RTC) option has provisions fora timing source input 
which is twice the ac line frequency. The RTC option represents only one TTL load 
to the timing source. The timing source output must be a TTL compatible logic signal 
with rise and fall times of less than 50 ns. With regard to the duty cycle of the signal, 
the only requirement is that the signal be ground-true a minimum of 100 ns. The 
Processor refers to this timing signal as TTLF- (Twice the Line Frequency). The 
logic levels for TTLF- areas follows: 

True = 0.0 to +0.45 Vdc 
False = +2.4 to +5.0 Vdc 

11.5 INTERCONNECTION REQUIREMENTS (Figures 11-4 and 11-5) 

The user furnished power supply may be interfaced to the computer system in two 
ways: at the motherboard or directly at the Processor. 

11-6 

COMl'UltR AUTOMATION. INC. ~ 

11 . 5 . 1 Motherboard Interface Requirements 

The user may interface to the motherboard at slot Fl00. The motherboard distributes 
power and ground to all plug-in modules via the Fl00 connector. The Fl00 connector 
is a 36-pin connector with two rows of 18 pins. When viewed from the rear of the com­ 
puter, pin 101 is to the right on the upper row of contacts. The odd numbered contacts 
(101 through 135) are in the upper row while the even numbered contacts are in the lower 
row. 

When interfacing to slot Fl00, the user must provide a special PC board transition 
adaptor. A detailed drawing of this adapter, showing critical dimensions, is provided 
in figure 11-4. The interface pin assignments are shown in figure 11-5. 

11. 5. 2 NAKED MINI LSI Power Connections 

The user may distribute power directly to the NAKED MINI LSI computer. The Pro­ 
cessor has two connectors, designated P 1 and P2, which must be powered. Ref er to 
table 8-2 for the appropriate power and ground pin assignments. 

CABLE INTER­ 
CONN ECT AREA 

~E-080 J ,140 

17 EQUAL SPACES 
AT ,156±,003 EQ. 2,652 
TOL. NON-ACCUMAL ATIVE 

• 50 ------ 2. 9 33 -----~ ±.005 
3,94 

CABLE STRAI N 
RELIEF AREA 

' ,62 

2,00 MAX 

,56 MIN 

Figure 11-4. U ser Power supply Transition Adapter 

11-7 



COMPUT£ R AUTOMATION . INC. ~ 

SLOT FlOO 
INTERFACE ADAPTER 

(POWER SUPPLY MUST INTERFACE 
TO ALL PINS AS SHOWNI 

-12V 

+12V 

GNO 

Figure 11-5. Motherboard Power Adapter Pin Assignments 

11-8 



COMPUTER AUTOMATION. INC. ~ 

Section 12 

INTERFACE CONTROLLER 
MECHANICAL CONSIDERATIONS 

12. 1 INTRODUCTION 

This section discusses the mechanicsl design of a printed circuit (PC) board which can 
be installed in an ALPHA LSI computer chassis. 

Either full or hslf PC boards may be used. When hslf boards are used, two half boards 
are joined together to form a full board. 

All boards use bus bars to distribute power and ground to circuits. The bus bars 
minimize the ground and power etch runs, Ieaving more space on the board for signsl 
etched circuit routing. The bus bar design permits etched circuitry to be routed be­ 
neath the bus bar with no danger of shorting. 

Fiberglass or metal stiffeners are used on all full boards to eliminate sag and provide 
improved structural integrity. 

12. 2 CHASSIS CONSTRAINTS 

The computer chassis is designed to accommodate a PC board which has a width of 15 
inches. All PC boards are installed in the horizontsl position. When instslled, the 
chassis provides four-way support for the PC board. The PC board guides support 
both sides of the board, the motherboard connectors support the front, and a board 
retainer supports the rear edge , 

The thickness of the PC board is determined by the motherboard connectors. A typicsl 
board is . 062 inch thick. The motherboard connector permits variations in thickness 
ranging from . 054 to . 071 inch. 

All components, stiffeners, bus bars, etc. are mounted on one side of the board. This 
side of a board is referred to as the "component side" while the other side is referred 
toas the "solder side". Boards are slways installed with the component side up. 

The chassis PC board guides are spaced on . 75 inch centers. The height of components 
on the component side of a board and the lead protrusion on the solder side of a board 
must be minimized to permit unimpeded airflow and easier insertion and removsl of PC 
boards. All components should be no higher than . 4 7 inch maximum. Lead protrusion 
should be held to . 062 inch maximum. 

The PC board guides are an integral part of the computer chassis which is metal. To 
prevent short circuits on a board, the user should not permit any etched circuit runs 
closer than . 200 inch from either edge of a board. 

12-1 

COMl'lrnR AUTOMATION. INC. ~ 

12.3 PRINTED CIRCUIT BOARD CONSIDERATIONS (Figures 12-1 thru 12-3) 

Figures 12-1 and 12-2 show the critical dimensions, hole patterns for bus bars, and . 
stiffener and integrated circuit layout organization for a 'full and a half board, respechvely, 

The motherboard interface dimensions are extremely critical and must be adhered to 
rigorously. 

The rear edge of the full board has room for two interface connectors. The 1. 250 inch 
dimension from each edge is the area reserv ed for the board extractors (Part No. 
40-06100-00). The . 800 inch dimension at the center is the area reserved for the board 
retainer. The remaining area slang the rear edge is connector area. The 6. 350 inches 
dimension is the maximum sllowable area that the mating connector can occupy. The 
overall length of a connector cannot exceed this dimension. 

The rear edge of a ha!f board has room for only one interface connector. A distance 
of 1. 210 inches must be reserv ed for a modified board extractor (Part No. 00-00296-00). 
This leaves 5. 080 inches of useable connector area remaining. The 5. 080 dimension is 
the inside contact dimension of the standard 100-pin interface connector . 

Hslf boards must provide for a board extractor at both rear corners although only one is 
installed depending upon which way the board is strapped toa second hslf board, 

Figure 12-3 shows the standard PC board hardware. All dimensions are provided for 
layout planning purposes. Connector data on the motherboard connector and various 
rear edge interface connectors is also provided. 

12.4 WIRE-WRAP BREADBOARD PC BOARD (Figure 12-4) 

A wire-wrap breadboard PC board (half board configuration) is available from Computer 
Automation, Inc. (Part number 13234-00). This board features 72 IC sockels with wire­ 
wrap posts, ground and power busses, and filters. The board can be useful for proto­ 
type development and checkout prior to making a forms! PC board design. 

12. 5 FILLER BOARD PC BOARD (Figure 12-5) 

A filler board PC board (hslf board configuration) is available from Computer Automation 
Inc. (Part number 10053-00). This board can be joined with a hslf board 1/0 module to 
form a full board as recommended in section 2, paragraph 2. 2. 3. The filler board does 
not pass the priority chains. Therefore, it must be the last board in the chain. 

12-2 



2 PLACES@~ 

i . , t =r ,250 
. 250 

CHAW"ER 
,18)(4~0 

2 Pl.ÅCES 

~------ PIN 101 TYP 
REF 

,500 

CHAMFER 
.03 X 45° TYP 

COMPONENT SIDE 

WHEN STIFFENEA. 
!S USED 

30°~ 
TYP 

• 030~:~ 
• PlACES 

HOLE SCHEDULE 

HOLE FINISHED REMARKS QTV SYMBOL USAGE DIMENSION 

A +004 PLATED ~ REF ~\J.fi~ t~orRJN~N~ .03~ -:001 THRU ))28 DIA MAXIMUM 

3 T(Xl..lNG l-0..ES i:..RT CF STO 
BOAAD comGuRATtON • 

8 140 ~:~~ NO 12 • STIFFENER H()__[S PART OF STO 
PLATINC, BOARD (~FIGURATION. 

1• + PIGGY BACK CARO 6 CONNECTOA. 
MTG HOLES N)N- STANDARD. 

L THIS TYPE OF FORMAT TO BE --------L ~ CIM\..flE NURfMTION j 
useo ON ALL DETA.IL FAB l=EGARDING A.ECOME~ED 
OAAWINGS ~E ~2~ S~-l~~O~· 

~ THIS AREA 10 BE FREE fJ SOLDER 80TH SIOES • 
9. SHEETS ÅS SPECIFIED BELOW (SH.. I THRU 7) COMPRISE A COMPLE TE SET OF 

DOCUMENTS FOR FABRICATION OF A PCB. 
SHEET 2 PAD MASTER. 

l 3 COMPONENT SIDE A/W • 
SCX.DER SIDE A /W. 
COMPONENT SIOE SILKSCRHN MASTER. 
SOLDER SIOE SOL.DER MASK. 

SHEET 7 GROUND PLANE (IF RBlUIREO). m CONTACT FINGER PLATING AREA. 

0 THESE DI"1ENSIONS ARE ESTABUSHEO FROM THE ARTWORK • 

6, STAMP REVISION NO.,COLOR BLACK,CHARACTER HEIGHT .090 MINIMUM. 
!i. S!LKSCREENING TO BE WHITE, CCNPONENT SIOE PER SHEET 5. 
4. ALL PLATEO THRU HOLES TO CONFORM WITH 85-20017-00, SEC. 3.5.5. 
3. FINISH,@ SCLDER PlATE REMAINOER CJ' BOARD PER 85-20017-00,SEC. 3.6.2.-5. 

@ (5~~EiR~~~ 00TH SIOES Of BOARD PER 85-20017-00, SEC. 3.8, 

© Fl>.(;ERS lO BE GOLO.Q'IER NICKEL PER 85-20017-0C, SEC. 3.6.1.3 & 3,6.IA 
2. MATERIAL: ,063 THICK COPPER-CLA0,2 510£S, GLASS EPOXY. LAMINATE GF (FR4), 

2 Ol AFTER PLATlNG. 
I. FABRtCATE PER THIS ORAWING AND C.A.I. SPE.CIFICATION 85-20C)l7-00. 

FABRl(ATION ~TES: THESE !l()TES WILL APPEAR CW ALL OETAIL FAB ORAWl'-IGS 

DETAIL j,\ 
12 PLACES 

®) THESE ARE DESIGN DIMENSIONS ONLY. 
9. PLATED THRU HCt.ES SHALL BE KEPT TO A MAXIMUM rF THREE OIFFERENT S12ES. 
8. THE STANDARDS DEP!CTED ON THIS ORAWING AR[ SUBJECT TO CHANGE UPON 

WRlTTEN APPROVAL FROM PROJECT ENGINEER A~ DRAFTING SUPERVISOR. 
7. FOR REF lO THE .ASSEMBLY CONF!GURAT\ON SEE LAYOUT NO, 69-20079-00. 
6. AREA UNDEF\ STIFFENER ( Dl>G0S 72-10048-00 & 72-20046-00) SHALL BE FREE OF COMPONENTS, 

@ ~il~S~G JI.Ao1~~;: -~~~~~E~:2C~D.~~~iRJ10EET~H FREE AREA SHALL BE: 

-~ÖN01r~ si~E~T~~2;6 ~1R~A~~il~ZEZ-r°·~tirE~~l
1~riJ~~\ ~~Ni~Ll BE 

SHALL BE CONSUL TED. 
4. ETCH SHALL BE NO CLOSER THAN .050 TO ANY EOGE,CUTOUT,HOLE,ETC. 

~ 

INTENDEO 10 MATE WITH CONNEClOR 17-49075-00 OR EQU!V, 

INTENDED TO MATE WITH CONNECTOP. !7-10035-01 OR EQUI\J. 

SHAOED AREA $HALL BE FREE CF FEEO THRU HOLES AND E.TCH. 

DESIGN INFQRMATlQN NOTES 

Figure 12-1. Full Board Design Guide _J 



HOL E SCHEO ULE 

A .03~ ! :gg-: 
NO 

PLATING 

.400 
@) 

PINBI~ REF 

\ 
1,200 
@) 

------------------- 13.200@) 

----------- 7.500@) ---------- 

-------- 5.100 (@ ------- 6 © 8 PLACES 7 
I 
I 

PLATEO 
THRU 

C 
'IOO ~ 1-----THIS TIPE Of FORMAT TO BE ____j_R'.JR COMPLETE l"f'OI\MATION ...j 
02 PLACES USED 0N ALL DETAIL FAB faEGAROING RECO.OENOEO 

.03 R TYP ORAWINGS ~E :r'rffl~SE~!,&i~~~oJ·, 
,.. 85 REF 
CHAMFER 

~.03 X 45° TYP 

8 

6.980 
@) 

_____ , ----- ------------ 

CHAMFER 
.18X45° 
2 PLACES 

5.090 
:t.005 

PI 6.n2 
±.005 

I I 
I 

I 

I I 
le- I, 

15.700(@) 
16.293 

16.886 
15.150 

@ 

@) THESE ARE DESIGN OIMENS10NS ONLY. 
9, PLATED THRU HOLES SHALL St KEPT TO A ~AXlMUM 0F THREE OIFFEAENT SIZES. 

e. ~i~rfJ~N~~ÖvA~EPJ~bt0 ~oJ~tf f~~~~ii !~t ~~T05,_~A~<;~~~ 
7. FOR REF. TO THE ASSEMBLY CONFIC,URATION.SEE LAYOUT NO. 69-200l'9-00. 
@ :rE:R~~i~Rc6~1:6~~~~S~DWG 'S 72-10048-001 72-20046·00 AN0.00-00160•00) SKALL 

@ ~"6No,~'~~ ~6~~~~R~,;t ~:~o~~ARii~.3~6~-N~fE~bf;CH FREE AREA SHALL 8E, 

.'~Ji1~56~G s~~E f~~t,~~;d Dl1Ai~w~~~t~?gi:5~~~) ~E~\~EiHAu BE: 
$HALL BE CONSULTED. 

ffi 
ETCH SHALL BE NO CLOSER THAN ,050 TO .jNY EDGE ,CUTOUT,HOLE,ETC. 
INTENDEO TO ti.4ATE WITH CONNECTOP. 17-49075-00 OR EQUIV. 
lNTENOEO TO MATE WITH CONNECTOR 17-10035-01 OR EQUIV. 
SHADEO AREA SHALL BE FREE OF FEED THRU HOLES,ETCH & COMPONENTS. 

DESIGN INFORMATION NOTES: 

[!J CO~T FINGER PLATING AREA. 
~ THESE DIMENSIONS ARE ESTABUSHED FROM THE ARTWORK. 
6- STAMP REVISION NO.~COLOR El.ACK, CHARACTEP. HEIGHT .090 MINIMUM. 
5. SILKSCP.EENING TO BE WHITE , COMPONENT SIOE PER SHEET 5. 
4. A1..1. F\.ATED THfill HOL.ES lO CONFORM WITH BS-20017-00, SEC. 3.5..5. 
3. FINISH: 

@ SOLOER PLATE REMAINDER OF BOARD PER 85-20017-00 ,SEC. 3.6.2.-5. 
@ (52\;_~EiR~:~~ BOTH SIDES 0F BOARD PER 85-200 17-00, SEC. 3.8, 

© ~"oGE~.,JP. 8E GOLO OVER NICKEL PER 85-200 17-00, SEC. 3.6.1,3 

-2. ~YF~t.=2 ~AF~~l~K~rr~t~CLAO, 2 S!DES ,GLASS EPOXY. LAMINAT£ 

I. FA8RlCME. PER THIS ORAWING AND C.A.l. SPECIFICATION &5-2CX)l7-00. 
FA8RICATION NOtf.s; lHESE NOfES Wlli. APPEAR 0N ALL FAB OETAIL OR.AWINGS 

Figure 12-2. Half Board Design Guide 



MOTHERBOARD CONNECTOR I 
(POWER SUPPLY CONNECTOR) 

BUS BAR (PIN 72-10054-XX) c:=- 156-ntf 

j14-.111 I f. ~;7;;3) ..,., 

h-:--------~~- ~ 
~ 13.093)--------.i 

86 PIN PN 17-10035-01 
136 PIN PN 17- 10035-021 

REAR EDGE CONNECTOR V ARlA TIONS 

I 
i----~. -9.08---------i-0,~·~~····· ""·-1----------6.68 -------------~-i:·~-6.12 
-------5.48 ------------iPINSl.5.10 

I 
-03 ~ .180 4.28 --------_~,:.,~1~~-4.8 

8 9 10 11 13 14 15 16 1c:=:!J;::;;;:,~=~;:==~==~=::::;;'.;==~t:=~;:==~==~==;==;;:=~~=~;:=71 
1l!OT .030 r'"' t--::--f 

T .600 
030 

.020 

030 

STIFFENER (PIN 72-10048-00) 

~ -E=:1------~0BO 
ro!~--~=---------=~--------- ,·im 

100 PIN 
PN 17-IOOOl-50PO 

13.20 

~l"' 

rE 1•1.15 ----------------==1---, 
1' ~ ,-------~· r--------,1===~-----,,===--------.1===.------,~ 
...L,____ "{_~TYP 

J, £ L J; Jp 
..jbfJ~ .. 200TYP &:HOLE 

t,.- 400TYP 120 +.OCM 
~.001 

FULL BOARD CARD EXTRACTOR (PN40-06100-00N0) 

~ , ----- ; L_ : ~ 

56PIN 
PN 17-10002-28PI 

7n -'1Jrtr 
~2.95s---- 

----------- NOTE: The half-board card ex­ 
tractor (PN00-00296-00) is the 
same aa the full-board extraclor, 
except .130 inchea ol material 
are removed from the tip of the 
extractor. 

ITTTY? 
v.089 DIA. 

MOUNTING 

rrri------------ --- - __ J iro 
36 PIN 
PN 17-10002-ISPI 

Figure 12-3. Standard PC Board Hardware 

IPJ 
_J 



COMPUTER AUTOMATION. IN(. ~ 

Figure 12-4. Wire-Wrap Breadboard PC Board 

Figure 12-5. Filler Board PC Board 

12-6 



COMl'UT£R AUTOMATION. INC. ~ 

Appendix A 

HEXADECIMAL TABLES 

Tables A-1 and A-2 are quick reference conversion tables that have been included 
for the convenience of the user. 

A-1 

COMPUTER AUTOMATION, INC. - 

Table A-1. Hexadecimal-Decimal Conversions 

This table is designed to facilitate conversion of positive hexadecimal integers in standard 
single-precision or double-precision format to decimal equivalents. The fourth and eighth 
digit positions therefore contain only values in the range : 0 through : 7. 

DECIMAL EQUIVALENTS 
DIGIT DIGIT DIGIT DIGIT DIGIT ,DIGIT DIGIT DIGIT 

HEXADECIMAL 8 7 6 5 4 3 2 1 

1 134217728 8388608 524288 32768 4096 256 16 1 

2 268435456 16777216 1048576 65536 8192 512 32 2 

3 402653184 25165814 1572864 98304 12288 768 48 3 

4 536870912 33554432 2097152 131072 16384 1024 64 4 

5 671088640 41943040 2621440 163840 20480 1280 80 5 

6 805306368 50331648 3145728 196608 24576 1536 96 6 

7 939524096 28720256 3670016 229376 28672 1792 112 7 

8 67108864 4194304 262144 2048 128 8 

9 75497472 4718592 294912 2304 144 9 

A 83886080 5242880 327680 2560 160 10 

B 92274688 5767168 360448 2816 176 11 

C 100663296 6291456 393216 3072 192 12 

D 109051904 6815744 425984 3328 208 13 

E 117440512 7340032 458752 3584 224 14 

F 125829120 7864320 491520 3840 240 15 

Hexadecimal to decimal conversion is accomplished by summing the decimal equivalents of 
the hexadecimal digits. Decimal to hexadecimal conversion involves locating the next lower 
decimal number and its hexadecimal equivalent and then taking the difference. Each dif- 
ference is treated similarly until the entire hexadecimal number is developed. 

A-2 



COWUTER AUTOMATION, INC. ~ 

Table A-2. 8-BIT ASCII Teletype Codes 

Hexadecimal Hexadecimal 
Symbol Code Symbol Code 

(! co \I A0 
A Cl Al 
B C2 " A2 
C C3 # A3 
D C4 $ A4 
E C5 i A5 
F C6 • A6 
G C7 A7 
H cs ( AS 
I C9 ) A9 
J CA • AA 
K CB + AB 
L CC AC 
M CD AD 
N CE AE 
0 CF I AF 
p D0 0 BO 
Q Dl 1 Bl 
R D2 2 B2 
s D3 3 B3 
T D4 4 B4 
u D5 5 B5 
V D6 6 B6 
w D7 7 B7 
X DS 8 B8 
y D9 9 B9 
z DA BA 
I DB BB 
\ DC < BC 
I DD BD 

t DE > BE - DF ? BF 
NULL 00 CR 8D 
BELL 87 LF 8A 

RUBOUT FF 

A-3 



COWUTfR AUTOMATION,INC. ~ 

Appendix B 

RECOMMENDED DEVICE AND 
INTERRUPT ADDRESSES 

Table B-1 and B-2 list recommended Device and lnterrupt Addresses to prevent 
possible conflict during future expansion to other 1/0 modules. 

B-1 

COMPUTfR AUTOMATION, INC. ~ 

Table B-1. Recommended Device Addresses 

DEVICE ADDRESSES (HEXADECIMAL) 
DEVICE STANDARD ACTUAL 

Refer to Table B-3 

Dual TTY /CRT (TTYl/CRTl) 
Dual TTY /CRT (TTYO/CRTO) 
Line Printer (LP) 
Card Reader (CR) 
Paper Tape Punch (PTP) 
Paper Tape Reader (PTR) 
Processor TTY* (TTY) 
Real Time Clock* (RTC) 
Magnetic Tape (Mag Tape) 

Automatic Calling Unit Mux (ACUM) 
Synchronous Modem Controller (SMC) 
Asynchronous Modem Multiplexer (AMM) 
Disc 
Cassette 
Floppy Disc 
16-Bit 1/0 (A/D System) 

Plotter 

32-Bit Relay In (RCIM) 
Punch Alternate 
16-Bit Input/Output (16-Bit 1/0) 
64-Bit Input (64-Bit In) 
64-Bit Output (64-Bit Out) 
Priority Interrupt Module (PIM) 
32-Bit Relay Out (RCOM) 
103 Data Set Controller (103 DSC) 
Memory Bank Controller 

00 
01 
02 
03 
04 
05 
06(17) 
06 
07 
08 
09 
0A 
OB. 

oc 
0D 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
1B 
lC 
1D 
1E 
1F 

" Processor mounted options. Device Address non-ålterable. 
( ) lndicates suggested alternate, 

B-2 



Table B-3. Device Address 0 Command Summary 

FUNCTION 
CODE SELECT COMMANDS SENSE COMMANDS INPUT COMMANDS OUTPUT COMMANDS 

0 Autoload off Autoload Option SIA (: 5800), SIX (: 5A00) SOA (: 6C00), SOX (: 6E00) 
Installed 

l Enable Autoload Real-Time Clock Option ISA (: 5801) SIN 0 (: 6801) 
ROM Installed ISX (: 5A01) 

2 PFE (: 4002) SIN 1 (: 6802) 

3 PFD (: 4003) SIN 2 (: 6803) 

4 OCA (: 4404) TTY /CRT /Modem Option !CA (: 5804) SIN 3 (: 6804) 
ocx (: 4604) Installed ICX (: 5A04) 

5 CIE (: 4005) SIN 4 (: 6805) 

6 CID (: 4006) SIN 5 (; 6806) 

7 TRP (: 4007) SIN 6 (: 6807) 

.... 
I ~ 

I 
rm 
~ 

e 0. 
al ::e ., 

~ 
., 
a, ... 

i 'tl ; ~ 
ö. e ... 
2? 
.5 
'tl a, 
'tl 
i:: a, e e 
0 
C) a, ~ 
.,..; 

I ~ 
~ .g .... 

< u < u 

0 .. 

0 
0 

.. 
! 
< 

0 
< 

l· ! - ---- --·: 

0 . 
,,· ..r: t·~-:.~ J -f ~ 

~ 
E . 
0 

i 
§ 
.?, 
C 
0 

i 
§ 
~ 
= t 
E 

.s 
i . 
g .., ~ ..., .., I 

~ ~ . 
= . 
~ 
i . 
~ ;; 
C 
:::: ~ •;; 

il ~~ .. 
C 

.., C 

~ C • .. 
• i;, 

1l 8 ~ 
~ ,; . 
~ : ·= MM Jo 0 .! 1,1 

E :g ~ Q, -a <>85 .., !i!~ .., 
:- 

..; . ~ 
< u < u 



COMPIJTtR AUTOMATION. INC. §!:1 
Appendix C 

INSTRUCTION SET BY CLASS 

This appendix contains the ALPHA LSI instruction set in class order. For each instruc­ 
tion, reference is made to one of the assembler syntax formats listed below . 

OP-CODE [• I@ I *@ J EXPRESSlON [coMMENTs] 

No Operator = Direct Addressing 
* = Indirect Addressing (multi-leve!) 
@ = Indexed Addressing 

*@ = lndirect Post-Indexed Addressing 
(multi-leve!) 

Figure C-1. Class 1 ~ Single-Word Memory Reference Instruction Format 

[LABEL] OP-CODE [*] EXPRESSlON 1 [, EXPRESSlON 2] [coMMENTS] 

No Operator= Direct Addressing 
* = Indirect Addressing (multi-leve!) 

EXPRESSION 1 represents an address to be 
stored in the second word of the instruction . 
EXPRESSION 2 is an optionsl absolute instruc­ 
tion count in the range O through 31 for NRM. 

Figure C-2. Class 2 - Double-Word Memory Reference lnstruction Format 

[LABELJ OP-CODE OPERAND GAM] 
AM = No Operator = Direct access 

- = PUSH (stack pointer decremented) 
+ = POP (stack pointer incremented) 
@ = Indexed (single level) 

[coMMENTs] 

Figure C-3. Class 3 - Stack lnstruction Format (LSI-2 only) 

C-1 

COMPUTER AUTOMATION. INC. ~ 

[LABEL] OP-CODE EXPRESSION [coMMENTs] 

EXPRESSION must be absolute and in the range 
: 0 through : FF. This format is also used by the 
STOP and SCM instructions. 

Figure C- 4. Class 4 - Byte Immediate lnstruction Format 

OP-CODE EXPRESSION [coMMENTs] 

EXPRESSION must represent a location within 
-63 through +64 words. 

Figure C- 5. Class 5 - Conditionsl Jump Instruction Format 

OP-CODE EXPRESSION [coMMENTs] 

EXPRESSION must be absolute and in the range 
1 through 8 (single register) or 1 through 16 
(double register). This format is slso used by 
the SIN instruction with an upper range limit 
of 6. 

Figure C-6. Class 6 - Register Shift lnstruction Format 

OP-CODE [EXPRESSION] [coMMENTs] 

EXPRESSION: there sre no expressions in the 
operand field, except for BAO and BXO instruc­ 
tions, where it must be value in the renge 0 
through 15. 

Figure C-7. Class 7 - Register Change and Control Instruction Format 

OP-CODE EXPRESSION 1 [,EXPRESSION 2] [coMMENTSJ 

Both EXPRESSlON 1 and expression 2 must be 
absolute. 
If EXPRESSION 2 is present, EXPRESSION 1 must 
be in range : 0 through : lF . 
If EXPRESSION 2 is not present, EXPRESSION 1 
must be in the range : 0 through : FF. 

Figure C- 8. Class 8 - Input/Output lnstruction Format 

C-2 



COMPUTER AUTOMATION , INC. ~ 

[Joc] EXPRESSION l~EXPRESSION 2] [coMMENTSJ 

EXPRESSION 1 must be absolute and in the range 
: 0 through : 3F • 
EXPRESSION 2 must represent a location within 
-63 through +64 words. 

Figure C- 9. Class 9 - JOC Jump-On-Condition Instruction Format 

INSTRUCTION SET BY CLASS 

lnstruction Instruction 
Mnemonic Description Skeleton in Hex Page 

MEMORY REFERENCE (Class 1) 

Arithmetic 

ADD Add to A Register 8800 4-12 
ADDB Add Byte to A 8800 4-12 
SUB Subtract from A Register 9000 4-12 
SUBB Subtract Byte from A 9000 4-12 

Logical 

AND AND to A 8000 4-12 
ANDB AND Byte with A 8000 4-12 
IOR Inclusive OR to A A000 4-12 
IORB lnclusive OR Byte with A A000 4-12 
XOR Exclusive OR to A A800 4-12 
XORB Exclusive OR Byte with A A800 4-13 

Data Transfer 

LDA Load A B000 4-13 
LDAB Load A with Byte B000 4-13 
LDX Load X E000 4-13 
LDXB Load X with Byte E000 4-13 
STA Store A 9800 4-13 
STAB Store Byte from A 9800 4-13 
STX Store X E800 4-13 
STXB Store Byte from X E800 4-13 
EMA Exchange A and Memory B800 4-13 
EMAB Exchange A and Memory Byte B800 4-13 

C-3 

COMPUTER AUTOMATION . INC. ~ 

INSTRUCTION SET BY CLASS (Cont'd) 

lnstruction 
Mnemonic Description 

Instruction 
Skeleton in Hex 

Program Transfer 

JMP 
JST 
IMS 
SCM 
SCMB 
CMS 
CMSB 

Unconditional Jump 
Jump and Store P Counter 
Increment Memory, Skip on Zero 
Scan Memory 
Scan Memory Byte 
Compare A with Memory, Skip 
Compare A with Memory Byte, Skip 

F000 
F800 
D800 
CD00 
CD00 
D000 
D000 

4-14 
4-14 
4-14 
4-14 
4-15 
4-13 
4-14 

DOUBLE WORD MEMORY REFERENCE (Class 2) 

DVD 
MPY 
NRM 

Divide 
Multiply and Add 
Normalize A and X 

1970 
1960 
1940 

4-16 
4-16 
4-17 

STACK CLASS (Class 3) (LSI-2 only) 

Arithmetic 

ADDS Add Stack Element to A 1438 4-21 
SUBS Subtract Stack Element from A 1458 4-21 

Logical 

ANDS AND Stack Element to A 141b 4-21 
IORS Inclusive OR Stack Element to A 1498 4-21 
XORS Exclusive OR Stack Element to A 14B8 4-21 

Data Transfer 

EMAS Exchange Stack Element and A 14F8 4-21 
LDAS Load Stack Element into A 14D8 4-21 
LDXS Load Stack Element into X 1698 4-21 
STAS Store A in Stack Element 1478 4-21 
STXS Store X in Stack Element 16B8 4-21 

Program Tranafer 

CMSS Compare Stack Element to A and Skip if 1658 4-22 
High or Equal 

IMSS Increment Stack Element and Skip on Zero 1678 4-22 
Result 

C-4 



COWUTBt AUTOMATION. INC. ~ COWUTBt AUTOMATION. INC. ~ 

lNSTRUCTION SET BY CLASS (Cont'd) lNSTRUCTION SET BY CLASS (Cont'd) 

lnstruction mstruction lnstruction lnatructian Mnemonic Description Skeleton in Hex ~ Mnemonic Description Skeleton in Hex Page 
JMPS Jump Unconditional to Stack Element 16D8 4-22 SHIFT CLASS (Class 6) 
JSTS Jump and Store to Stack Element 16F8 4-%2 

Stack Control Single Register 

SLAS Stack Location to A 1818 4-22 Arithmetic 

BYTE IMMEDIATE (Class 4) ARA Arithmetic Right A lODO 4-2'1 
ARX Arithmetic Right X 10A8 4-21 
ALA Arithmetic Left A 1050 .-,27 AAI Add to A Register lmmediate 0B00 4-23 ALX Arithmetic Left X 1028 4-27 AXI Add to X Register lmmediate C200 4-23 

SAi Subtract from A Register lmmediate 0D00 4-23 Logical 
SXI Subtract from X Register lmmediate C300 4-23 
CA! Campare to A lmmediate, Skip if Not Equal cooo 4-23 LRA Logical Right A 13D0 4-28 CXI Campare to X lmmediate , Skip of Not Equal ClOO 4-23 LRX Logical Right X 13A8 4-28 LAP Load A Positive lmmediate C600 4-23 LLA Logical Left A 1350 4-28 LXP Load X Positive lmmediate C400 4-23 LLX Logical Left X 1328 4-28 LAM Load A Minus Immedia te C700 4-23 
LXM Load X Minus lmmediate C500 4-23 Rotate 

CONDITIONAL JUMP (Class 5 or 9) RRA Rotate Right A with OV UDD 4-29 
RRX Rotate Right X with 0V 11A8 4-29 
RLA Rotate Left A with OV 11511 4-29 Microcod ed (Class 9) RLX Rota te Left X with OV 1118 4-29 

JOC Jump on Condition Specified 2000 4-24 Double Register 

Arithmetic (Class 5) Logical 

JAG Jump if A Greater than Zero 3180 4-25 LLL Long Logical Left lBOO 4-30 JAP Jump if A Positive 3080 4-25 LLR Long Logical Right 1B80 4-30 JAZ Jump if A Zero 2100 4-25 
JAN Jump if A Not Zero 3100 4-25 Rotate 
JAL Jump if A Less Than or Equal to Zero 2180 4-25 
JAM Jump if A Minus 2080 4-25 LRL Long Rotate Left with OV 1900 4-31 JXZ Jump if X Zero 2800 4-28 UlR Long Rotate Right with OV 1980 4-31 JXN Jump if X Not Zero 3800 4-26 

REGISTER CHANGE {Class 7) 
Control (Class 5) 

JSS Jump if SENSE lndicator ON 3400 4-26 Accumulator 
JSR Jump if SENSE lndicator OFF 2400 4-26 
JOS Jump if OV Set 2200 4.-26 ZAR Zero A Register 0110 4-31 JOR Jump if OV Reset 3200 4-26 ARP Set A Register to Positive 1 0350 4-31 

C-5 C-6 



cowumt NJTOMATION. INC. ~ 

INSTRUCTION SET BY CLASS (Cont'd) 

COWtlTER AUTOMATION. INC. ~ 

INSTRUCTION SET BY CLASS (Cont'd) 

lnstruction Instruction Instruction Instruction 

Mnemonic Description Skeleton in Hex Page Mnemonic Description Skeleton in Hex Page 

ARM Set A Register to Minus 1 0010 4-31 IAX lncrement A and put in X 0148 4-33 

CAR Complement (l's) A Register 0210 4-31 IXA Increment X and put in A 0130 4-34 

NAR Negate A Register 0310 4-31 IPX Increment P and put in X 0090 4-34 

!AR Increment A Register 0150 4-31 DAX Decrement A and put in X 00C8 4-34 

DAR Decrement A Register 00D0 4-31 DXA Decrement X and put in A 00B0 4-34 

Index Extended Multi-Register (LSI-2 only) 

ZXR Zero X Register 0108 4-32 BCA Bit Clear A 06CA 4-34 

XRP Set X Register to Positive 1 0528 4-32 BCX Bit Clear X 06C8 4-34 

XRM Set X Register to Minus 1 0008 4-32 BSA Bit Set A 068A 4-34 

CXR Complement (l's) X Register 0408 4-32 BSX Bit Set X 0688 4-34 

NXR Negate X Register 0508 4-32 EIX Execute Instruction Pointed to By X 0218 4-34 

IXR lncrement X Register 0128 4-32 
DXR Decrement X Register 00A8 4-32 Console Register 

Overflow IAH Input Console Data Register to A and Halt 1C05 4-35 
ICA Input Console Data Register to A 5804 4-35 

sov Set Overflow 1400 4-32 ICX Input Console Data Register to X 5A04 4-35 

ROV Reset Overflow 1200 4-32 IIH Input Console Data Register to I and Halt lCll 4-35 

cov Complement Overflow 1600 4-32 IMH Input Console Data Register to Memory 1C03 4-35 

SAO Sign of A to OV 1340 4-32 and Halt 

sxo Sign of X to OV 1320 4-32 IPH Input Console Data Register to P and Halt 1C21 4-35 

LAO Least Significant Bit of A to OV 13C0 4-32 ISA lnput Console Sense Register to A 5801 4-35 

LXO Least Significant Bit of X to OV 13A0 4-32 ISX Input Console Sense Register to X 5A01 4-35 

BAO Bit of A to OV 1340 4-32 IXH lnput Console Data Register to X and Halt 1C09 4-35 

BXO Bit of X to OV 1320 4-32 OAH Output A to Console Data Register and Halt 1C04 4-35 
OCA Output A to Console Data Register 4404 4-36 

Multi- Register ocx Output X to Console Data Register 4604 4-36 
OLH Output Location to Console Data Register lCl0 4-36 

ZAX Zero A and X Register 0118 4-33 and Halt 

AXP Set A and X Registers to Positive 1 0358 4-33 OMH Output Memory to Console Data Register 1C02 4-36 

AXM Set A and X Registers to Minus 1 0018 4-33 and Halt 

TAX Transfer A to X 0048 4-33 OPH Output P to Console Data Register and Halt 1C20 4-36 

TXA Transfer X to Z 0030 4-33 OXH Output X to Console Data Register and Halt 1C08 4-35 

EAX Exchange A and X 0428 4-33 
ANA AND of A and X to A 0070 4-33 Processor 

ANX AND of A and X to X 0068 4-33 
NRA NOR of A and X to A 0610 4-33 NOP No operation 0000 4-36 

NRX NOR of A and X to X 0608 4-33 HLT Halt 0800 4-36 

CAX Complement A (l's) and put in X 0208 4-33 STOP Halt with Operand 0800 4-36 

CXA Complement X (l's) and put in A 0410 4-33 WAIT Wait for Interrupts F600 4-37 

NAX Negate A and put in X 0308 4-33 
NXA Negate X and put in A 0510 4-33 

C-7 C-8 



COMl'U'IER MJlOMA TION , INC. ~ 

INSTRUCTION SET BY CLASS (Cont'd) 

Instruction 
Mnemonic Description 

Mode Control 

SBM Set Byte Operand Mode 
SWM Set Word Operand Mode 

Status 

SIN Status lnhibit 
SIA Status lnput to A 
SIX Status lnput to X 
SOA Status Output from A 
sox Status Output from X 

Interrupts 

EIN Enable lnterrupts 
DIN Disable lnterrupts 
CIE Console lnterrupt Enable 
CID Console lnterrupt Disable 
PFE Power Fail lnterrupt Enable 
PFD Power Fail lnterrupt Disable 
TRP Trap 

INPUT/OUTPUT (Class 8) 

Control 

SEL 
SEA 
SEX 
SEN 
SSN 

Select 
Selecl and Present A 
Selecl and Present X 
Sense and Skip on Response 
Sense and Skip on No Response 

Unconditional Word 

INA lnput Word to A 
INAM lnpul Word lo A Mssked 
INX lnput Word lo X 
INXM lnput Word to X Masked 
OTA Output A 
OTX Output X 
OTZ Output Zero's 

lnstruction 
Skeleton in Hex ~ 

0E00 4-37 
0F00 4-37 

6800 4-37 
5800 4-38 
5A00 4-38 
6C00 4-38 
6E00 4-38 

0A00 4-38 
ocoo 4-38 
4005 4-38 
4006 4-38 
4002 4-38 
4003 4-38 
4007 4-39 

4000 4-40 
4400 4-40 
4600 4-40 
4900 4-40 
4800 4-40 

5800 4-41 
5COO 4-41 
5A00 4-41 
5E00 4-41 
6C00 4-41 
6E00 4-41 
6800 4-41 

C-9 

COMl'U'IER MJlOMATION. INC. ~ 

!NST!WCT!ON SET BY rr.Ass rr.nnt'n) 

lnstruction lnstruction 
Mnemonic Description Skeleton in. Hex Page 

Conditional Word 

RDA Read Word to A 5900 4-41 
RDAM Read Word to A Masked 5D00 4-41 
RDX Read Word to X 5B00 4-41 
RDXM Read Word to X Masked 5F00 4-42 
WRA Write A 6D00 4-42 
WRX Write X 6F00 4-42 
WRZ Write Zero's 6900 4-42 

Unconditional Byte 

IBA lnput Byte to A 7800 4-42 
IBAM lnput Byte to A Masked 7C00 4-42 
IBX lnput Byte to X 7A00 4-43 
IBXM lnput Byte to X Masked 7E00 4-43 

Conditional Byte 

RBA Read Byte to A 7900 4-43 
RBAM Read Byte to A Masked 7D00 4-43 
RBX Read Byte to X 7B00 4-43 
RBXM Read Byte to X Masked 7F00 4-43 

Block 

BIN Input Block to Memory 7100 4-44 
BOT Output Block from Memory 7500 4-45 

Automatic 

AIN Automatic Input Word to Memory 5000 4-47 
AOT Automatic Output Word from Memory 6000 4-47 
AIB Automatic Input Byte to Memory 5400 4-47 
AOB Automatic Output Byte from Memory 6400 4-4'1 

C-10 



COWUTER AUTOM ATION , INC . ~ 

Appendix D 

INSTRUCTION SET IN ALPHABETICAL ORDER 

This appendix contains the ALPHA LSI instruction set in alphabetical order by instr_uction 
mnemonic. Those instructions which contain variable fields have been appe~ded w1th an 
asterisk (*). Those applying to LSI-2 only have been prefixed with an asterisk, 

lnstruction lnstruction 
Mnemonic Skeleton in Hex Descri 2tion Page 

AAl 0B00* Add to A Immediate; Direct 4-23 

ADD 8800* Add to A; Direct, Scratchpad 4-12 

ADD 8900* Add to A; Indirect, AP in Scratchpad 4-12 

ADD 8A00* Add to A; Direct, Relative to P Forward 4-12 

ADD 8B00* Add to A; Indirect, AP Relative to P Forward 4-12 

ADD 8C00* Add to A; Direct , lndexed 4-12 

ADD 8D00* Add to A; Indirect , Indexed , AP in Scratchpad 4-12 

ADD 8E00* Add to A; Direct, Relative to P Backward 4-12 

ADD 8F00* Add to A; Indirect, AP Relative to P Backward 4-12 

ADDB 8800* Add Byte; Direct , Scratchpad 4-12 

ADDB 8900* Add Byte; Indirect, AP in Scratchpad 4-12 

ADDB 8A00* Add Byte 0; Direct , Relative to P Forward 4-12 

ADDB 8B00* Add Byte; Indirect, AP Rela~ive to P Forward 4-12 

ADDB 8C00* Add Byte; Direct, Indexed 4-12 

ADDB 8D00* Add Byte; Indirect , Indexed, AP in Scratchpad 4-12 

ADDB 8E00* Add Byte 1; Direct, Relative to P Forward 4-12 

ADDB 8F00* Add Byte; Indirect, AP Relative to P Backward 4-12 

D-1 

COWUTER AUTOMATION, INC. ~ 

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 

lnstruction 
Mnemonic 

*ADDS 

*ADDS 

*ADDS 

*ADDS 

AIB 

AIN 

ALA 

ALX 

ANA 

AND 

AND 

AND 

AND 

AND 

AND 

AND 

AND 

ANDB 

ANDB 

ANDB 

ANDB 

ANDB 

ANDB 

lnstruction 
Skeleton in Hex Descri2tion 

1438 Add Stack Element to A; Direct 

1439 

143A 

143B 

5400* 

5000* 

1050* 

1028* 

0070 

8000* 

8100* 

8200* 

8300* 

8400* 

8500* 

8600* 

8700* 

8000* 

8100* 

8200* 

8300* 

8400* 

8500* 

Add Stack Eleement to A; lndexed 

Add Stack Element to A; Auto-Postincrement 

Add Stack Element to A; Auto-Predecrement 

Automatic Input Byte to Memory 

Automatic lnput Word to Memory 

Arithmetic Shift A Left 

Arithmetic Shift X Left 

AND of A and X to A 

AND to A; Direct , Scratchpad 

AND to A; Indirect, AP in Scratchpad 

AND to A; Direct, Relative to P Forward 

AND to A; Indirect, AP Relative to P Forward 

AND to A; Direct, lndexed 

AND to A; Indirect, Indexed, AP in Scratchpad 

AND to A; Direct, Relative to P Backward 

AND to A; lndirect , AP Relative to P Backward 

AND Byte to A; Direct, Scratchpad 

AND Byte to A; lndirect, AP in Scratchpad 

AND Byte 0 to A; Direct, Relative to P Forward 

4-21 

4-21 

4-21 

4-21 

4-47 

4-47 

4-27 

4-27 

4-33 

4-12 

4-12 

4-12 

4-12 

4-12 

4-12 

4-12 

4-12 

4-12 

4-12 

4-12 

AND Byte to A; Indirect, AP Relative to P Forward 4-12 

AND Byte to A; Direct, lndexed 

AND Byte to A; Indirect, Indexed, AP in 
Scratchpad D-2 

4-12 

4-12 



COMPUTER AUTOMATION . INC. ~ COWUTE R AUTOMATION . INC. ~ 

INSTRUCTION SET IN ALPHABBTICAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 

Instruction Instruction Instruction Instruction 
Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page 

ANDB 8600 AND Byte 1 to A; Direct, Relative to P Forward 4-12 *BSX 0688 Bit Set X 4-34 

ANDB 8700* AND Byte to A; Indirect, AP Relative to P 4-12 BXO 1320* Bit of X to Overflow 4-32 
Backward 

CA! coee- Compare to A Immediate , Skip if Unequal 4-23 
*ANDS 1418 AND Stack Element to A; Direct 4-21 

CAR 0210 Complement A (l's) 4-31 
*ANDS 1419 AND Stack Element to A; Indexed 4-21 

CAX 0208 Complement A (l's) and Put in X 4-33 
*ANDS 141A AND Stack Element to A; Auto-Postincrement 4-Zl 

CID 4006 Console Interrupt Disable 4-38 
*ANDS 141B AND Stack Element to A; Auto-Predecrement 4-21 

CIE 4005 Console Interrupt Enable 4-38 
ANX 0068 ANDofAandXtoX 4-33 

CMS D000* Compare Memory to A and Skip if High or Equal; 4-13 
AOB 6400* Automatic Output Byte from Memory 4-47 Direct, Scratchpad 

AOT 6000* Automatic Output Word from Memory 4-47 CMS Dl00* Compare Memory to A and Skip if High or Equal; 4-13 
Indirect, AP in Scrstchpad 

ARA l0D0* Arithmetic Shift A Right 4-27 
CMS D200* Compare Memory to A and Skip if High or Equal; 4-13 

ARM 0010 Set A to Minus 1 4-31 Direct, Relative to P Forward 

ARP 0350 Set A to Plus l 4-31 CMS D300* Compare Memory to A and Skip if High or Equal; 4-13 
Indirect, AP Relative to P Forward 

ARX 10A8* Arithmetic Shift X Right 4-27 
CMS D400* Compare Memory to A and Skip if High or Equal; 4-13 

AXI C200* Add to X Immediate 4-23 Direct, Indexed 

AXM 0018 Set A and X to Minus 1 4-33 CMS DS00* Compare Memory to A and Skip if High or Equal; 4-13 
Indirect , Indexed, AP in Scratchpad 

AXP 0358 Set A and X to Plus 1 4-33 
CMS D600* Compare Memory to A and Skip if High or Equal; 4-13 

BAO 1340* Bit of A to Overflow 4-32 Direct, Relative to P Backward 

*BCA 06CA Bit Clear A 4-34 CMS D700* Compare Memory to A and Skip if High or Equal; 4-13 
Indirect, Relative to P Backward 

*BCX 06C8 Bit Clear X 4-34 

CMSB D000* Compare Byte and Skip if High or Eaual; Direct, 4-t4 
BIN 7100* Block Input to Memory 4-44 Scratchpad 

BOT 7500* Block Output from Memory 4--45 CMSB Dl00* Compare Byte and Skip if High or Equal; Indirect, 4-14 
AP in Scratchpad 

*BSA 068A Bit Set A 4-34 

D-3 D-4 



Cowumt AUTOM ATION . INC. ~ COMPUTIR AUTOMATION. INC. ~ 

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUCTION SET IN ALPI:IABETICAL ORDER (Cont'd) 

Instruction Instruction Instruction Instruction 
Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page 

CMSB D200* Compare Byte 0 and Skip if High or Equal; 4-14 DXA 00B0 Decrement X and Put in A 4-34 
Direct, Relative to P Forward 

DXR 00A8 Decrement X 4-32 
CMSB D300* Compare Byte and Skip if High or Equal; Indirect, 4- 14 

AP Relative to P Forward EAX 0428 Exchange A and X 4-33 

CMSB D400* Compare Byte and Skip if High or Equal; Direct, 4-14 EIN 0A00 Enable Interrupts 4-38 
Indexed 

*EIX 0218 Execute Instrtiction Pointed to by X 4-34 
CMSB D500* Compare Byte and Skip if High or Equal; Indirect, 4-14 

Indexed, AP in Scratchpad EMA B800* Exchange Memory and A; Direct, Scratchpad 4-13 

CMSB D600* Compare Byte 1 and Skip If High or Equal; Direct , 4- 14 EMA B900* Exchange Memory and A; Indirect , AP in 4-13 
Relative to P Forward Scratchpad 

CMSB D700* Compare Byte and Skip if High or Equal; Indirect, 4- 14 EMA BA00* Exchange Memory and A; Direct , Relative to P 4-13 
AP Relative to P Backward Forward 

*CMSS 1658 Compare Stack Element to A and Skip if High 4-22 EMA BB00* Exchange Memory and A; Indirect, AP Relative 4-13 
or Equal; Direct to P Forward 

*CMSS 1659 Compare Stack Element to A and Skip if High 4-22 EMA BC00* Exchange Memory and A; Direct , Indexed 4-13 
or Equal; Indexed 

EMA BD00* Exchange Memory and A; Indirect, Indexed, AP in 4-13 
*CMSS 165A Compare Stack Element to A and Skip if High 4-22 Scratchpad 

or Equal; Auto-Postincrement 
EMA BE00* Exchange Memory and A; Direct , Relative to P 4-13 

*CMSS 165B Compare Stack Element to A and Skip if High 4-22 Backward 
or Equal; Auto- Predecrement 

EMA BF00* Exchange Memory and A; Indirect, AP Relative to 4-13 
cov 1600 Complement Overflow 4-32 P Backward 

CXA 0410 Complement X (l's) and Put in A 4-33 EMAB B800* Exchange Memory Byte and A; Direct, Scratchpad 4-13 

CXI Cl00* Compare to X lmmediate, Skip if Unequal 4-23· EMAB B900* Exchange Memory Byte and A; Indirect, AP in 4-13 
Scratchpad 

CXR 0408 Complement X (l's) 4-32 
EMAB BA00* Exchange Memory Byte 0 and A; Direct, Relative 4-13 

DAR 00D0 Decrement A 4-31 to P Forward 

DAX 00C8 Decrement A and Put in X 4-34 EMAB BB00* Exchange Memory Byte and A; Indirect, AP 4-13 
Relative to P Forward 

DIN ocoo Disable Interrupts 4-38 
EMAB BC00* Exchange Memory Byte and A; Direct , Indexed 4-13 

DVD 1970* Divide 4-16 

D-5 D-6 



Cowumt AIJTOMATION, INC. ~ COMPUllR AUTOMATION. INC. ~ 

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 
INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 

lnstruction Instruction 
Instruction Instruction Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page 

IMS D900* Increment Memory and Skip on Zero Result; 4-14 EMAB BD00* Exchange Memory Byte and A; lndirect, Indexed, 4-13 Indirect, AP in Scratchpad AP in Scratchpad 
IMS DA00* Increment Memory and Skip on Zero Result; 4-14 EMAB BE00* Exchange Memory Byte 1 and A; Direct, Relative 4-13 Direct, Relative to P Forward to P Forward 
IMS DB00* Increment Memory and Skip on Zero result; 4-14 EMAB BF00* Exchange Memory Byte and A; lndirect, AP 4- 13 

Indirect, AP Relative to P Forward Relative to P Backward 
IMS DC00* Increment Memory and Skip on Zero Result; 4-14 *EMAS 14F8 Exchange Stack Element and A; Direct 4- 21 Direct, Indexed 

*EMAS 14F9 Exchange Stack Element and A; Indexed 4- 21 IMS DD00* Increment Memory and Skip on Zero Result; 4-14 
Indirect, Indexed, AP in Scratchpad 

*EMAS 14FA Exchange Stack Element and A; Auto- 4- 21 
Postincrement IMS DE00* Increment Memory and Skip on Zero Result; 4-14 

Direct, Relative to P Backward 
*EMAS 14FB Exchange Stack Element and A; Auto- 4- 21 

Predecrement IMS DF00* Increment Memory and Skip on Zero Result; 4-14 
Indirect, AP Relative to P Backward 

HLT 0800 Halt 4- 36 
*IMSS 1678 Increment Stack Element and Skip on Zero; Dµ-ect 4-22 

IAH 1C05 Input Console Data Register to A and Halt 4- 35 
*IMSS 1679 Increment Stack Element and Skip on Zero; 4-22 IAR 0150 Increment A 4- 31 Indexed 

IAX 0148 Increment A and Put in X 4- 33 *IMSS 167A Increment Stack Element and Skip on Zero; 4-22 
Auto-Postincrement IBA 7800* Input Byte to A (Unconditionally) 4-42 

*IMSS 167B Increment Stack Element and Skip on Zero; Auto- 4-22 IBAM 7C00* Input Byte to A, Masked (Unconditionally) 4-42 Predecrement 

IBX 7A00* Input Byte to X (Unconditionally) 4-43 INA 5800* Input Word to A (Unconditionally) 4-41 

IBXM 7E00* Input Byte to X, Masked (Unconditionally) 4-43 INAM 5C00* Input Word to A, Masked (Unconditionally) 4-41 

ICA 5804 Input Console Data Register to A 4- 35 INX 5A00* Input Word to X (Unconditionally) 4-41 

ICX 5A04 Input Console Data Register to X 4-35 INXM 5E00* Input Word to X, Masked (Unconditionally) 4-41 

IIH lCll Input Console Data Register to I and Halt 4-35 IOR A000* Inclusive OR to A; Direct , Scratchpad 4-12 

IMH 1C03 lnput Console Data Register to Memory and Halt 4- 35 IOR Al00* lnclusive OR to A; lndirect, AP in Scratchpad 4-12 

IMS D800* Increment Memory and Skip on Zero Result; . 4-14 IOR A200* Inclusive OR to A; Direct, Relative to P Forward 4-12 
Direct, Scratchpad 

D-8 D-7 



COMl'UTER AUTOMATION . INC. ~ 

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 

Instruction 
Mnemonic 

Instruction 
Skeleton in Hex 

IOR A300* 

Description 

Inclusive OR to A; Indirect, AP Relative to P 
Forward 

IOR 

IOR 

A400* 

A500* 

Inclusive OR to A; Direct, Indexed 

Inclusive OR to A; Indirect, Indexed, AP in 
Scratchpad 

IOR 

IOR 

A600* 

A700* 

Inclusive OR to A; Direct, Relative to P Backward 4- 12 

Inclusive OR to A; Indirect, AP Relative to P 
Backward 

IORB 

IORB 

A000* 

Al00* 

Inclusive OR Byte to A; Direct, Scratchpad 

Inclusive OR Byte to A; Indirect, AP in 
Scratchpad 

IORB A200* 

4-12 

4-12 

4-12 

4-12 

4-12 

4-12 

lnclusive OR Byte 0 to A; Direct, Relative 4-12 
to P Forward 

IORB A300* Inclusive OR Byte to A; Indirect, AP Relative 4-12 
to P Forward 

IORB 

IORB 

A400* 

A500* 

IORB A600* 

Inclusive OR Byte to A; -Direct, Indexed 4-12 

Inclusive OR Byte to A; Indirect, Indexed, 4-12 
AP in Scratchpad 

Inclusive OR Byte 0 to A; Direct, Relative to P 4-12 
Forward 

IORB A700* 

*IORS 

*IORS 

*IORS 

1478 

1479 

147A 

Inclusive OR Byte to A; Indirect, AP Relative to 4-12 
P Backward 

Inclusive OR Stack Element to A; Direct 4-21 

Inclusive OR Stack Element to A; Indexed 

Inclusive OR Stack Element to A; Auto­ 
Postincrement 

*IORS 147B Inclusive _OR Stack Element to A; Auto­ 
Predecrement 

D-9 

4-21 

4-21 

4-21 

Instruction 
Mnemonic 

IPH 

IPX 

ISA 

ISX 

IXA 

IXH 

IXR 

JAG 

JAL 

JAM 

JAN 

JAP 

JAZ 

JMP 

JMP 

COMl'UTER AUTOMATION . INC. ~ 

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 

Instruction 
Skeleton in Hex Description 

1C21 Input Console Data Register to P and Halt 

0090 

5801 

5A01 

0130 

1C09 

0128 

3180* 
31C0* 

2180* 
21C0* 

2080* 
20C0* 

3100* 
3140* 

3080* 
30C0* 

2100* 
2140* 

F000* 

Fl00* 

F200* 

Increment P and Put in X 

Input Console Data Switches to A 

Input Console Data Switches to X 

Increment X and Put in A 

Input Console Data Register to X and Halt 

Increment X 

Jump if A Po~tive and Not Equal to Zero 
( A>0) 
Forward Jump 
Backward Jump 

Jump if A Negative or Equal to Zero ( A :s 0) 
Forward Jump 
Backward Jump 

Jump if A Negative ( A<0) 
Forward Jump 
Backwa.rd Jump 

Jump if A Not Zero (Aj!0) 
Forward Jump 
Backward Jump 

Jump if A Positive or Equal to' Zero (Al:O) 
Forward Jump 
Backward Jump 

Jump if A Zero (A=0) 
Forward Jump 
Backward Jump 

Jump Unconditionally; Direct, Scratchpad 

Jump Unconditionally; Indirect, AP in 
Scratchpad 

Jump Unconditionally; Direct Relative to P 
Forward 

0-10: 

Page 

4-35 

4-34 

4-35 

4-35 

4-34 

4-35 

4-32 

4-25 

4-25 

4-25 

4-25 

4-25 

4-25 

4-14 

4-14 

4-14 



COWUTER AUTOMATION. INC. ~ COWUTER AUTOMATION. INC. ~ 

INSTRUCTION SET IN ALPHABETICAL ORDER (~ont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 
lnstruction lnstruction Instruction Instruction Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page 

JMP F300* Jump Unconditionally; Indirect AP Relative 4-14 JST F900* Jump and Store; lndirect, AP in Scratchpad 4-14 to P Forward 

JST FAOO* Jump and Store; Direct, Relative to P Forward 4-14 JMP F400* Jump Unconditionally; Direct, lndexed 4-14 

JST FBOO* Jump and Store; Indirect, AP Relative to P 4-14 JMP F500* Jump Unconditionally; Indirect, Indexed , AP 4-14 Forward in Scratchpad 
JST FCOO* Jump and Store; Direct, lndexed 4-14 JMP F600* Jump Unconditionally, Direct, Relative to P 4-14 

Backward JST FDOO* Jump and Store; Indirect, lndexed, AP in 4-14 
Scratchpad JMP F700* Jump Unconditionally; Indirect, AP Relative 4-14 

to P Backward JST FEOO* Jump and Store; Direct, Relative to P Backward 4-14 

*JMPS 16D8 Jump to Stack Element Unconditional; Direct 4-22 JST FFOO* Jump and Store; Indirect , AP Relative to P 4-14 
Backward *JMPS 16D9 Jump to Stack Element Unconditional; lndexed 4-22 

*JSTS 16F8 Jump and Store to Stack Element; Direct 4-22 *JMPS 16DA Jump to Stack Element Unconditional; Auto- 4-22 
Postincrement *JSTS 16F9 Jump and Store to'Slack Element; lndexed 4-22 

*JMPS 16DB Jump to Stack Element Unconditional; Auto- 4-22 *JSTS 16FA Jump and Store to Stack Element; Auto- 4-22 Predecrement Postincrement 

JOC 2000 Jump on Condition Specified 4-24 *JSTS 16FB Jump and Store to Stack Element; Auto- 4-22 
Predecrement JOR Jump if Overnow Reset (OV=O) 4-26 

3200* Forward Jump JXN Jump if X Non-Zero (Xj!O) 4-26 3240* Backward Jump 3800* Forward Jump 
3840* Backward Jump JOS Jump if Overnow Set (OV=l) 4-26 

2200• Forward Jump JXZ Jump if X Equal to Zero (X=O) 4-26 2240* Backward Jump 2800* Forward Jump 
2840* Backward Jump JSR Jump if Sense Switch Off (SS=O) 4-26. 

2400* Forward Jump LAM C700* Load A Ml!lus Immediate 4-23 2440* Backward Jump 
LAO 13CO LSB of A to 0V 4-32 JSS Jump if Sense Switch 0n (SS=l) 4-26 

3400* Forward Jump LAP C600* Load A Positive lmmediate 4-23 3440* Backward Jump 
LDA B000* Load A; Direct, Scratchpad 4-13 JST F800* Jump and Store; Direct, Scratchpad 4-14 

LDA B100* Load A; Indirect, AP in Scratchpad 4-13 

D-11 D-12 



COWUIIR AU10MAll0N. INC. ~ COWUIIR MIT0MATION. INC. ~ 

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd~ INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd} 

lnstruction lnstruction lrurtruction 1nstruction 

Mnemonic Skeleton in Hex Description .!!i!. 
Mnemonic Skeleton in Hex Description Page 

LDA B200* Load A; Direct, Relative to P Forward 4-13 LDX E300* Load X, lndirect, AP Relative to P Forward 4-13 

LDA B300* Load A; lndirect, AP Relative to P Forward 4-13 LDX E400* Load X; Direct, lndexed 4-13 

LDA B400* Load A; Direct, lndexed 4-13 LDX E500* Load X; lndirect, lndexed, AP in Scratchpad 4-13 

LDA B500* Load A; lndirect, lndexed, AP in Scratchpad 4-13 LDX E600* Load X; Direct, Relative to P Backward 4-13 

LDA B600* Load A; Direct, Relative to P Backward 4-13 LDX E700* Load X; lndirect; AP Relative to P Backward 4-13 

LDA B700* Load A; lndirect, AP Relative to P Backward 4-13 LDXB E000* Load X Byte; Direct, Scratchpad 4-13 

LDAB B000* Load A Byte; Direct, Scratchpad 4-13 LDXB ElOO* Load X Byte; lndirect, AP in Scratchpad 4-13 

LDAB B100* Load A Byte; lndirect; AP in Scratchpad 4-13 LDXB E200* Load X Byte 0; Direct, Relative to P Forward 4-13 

LDAB B200* Load A Byte 0; Direct, Relative to P Forward 4-13 LDXB E300* Load X Byte; lndirect, AP Relative to P Forward 4-13 

LDAB B300* Load A Byte; lndirect, AP Relative to P 4-13 LDXB E400* Load X Byte; Direct, lndexed 4-13 

Forward LDXB E500* Load X Byte; lndirect, lndexed, AP in 4-13 

LDAB B400* Load A Byte; Direct, lndexed 4-13 Scratchpad 

LDAB B500* Load A Byte; lndirect, lndexed, AP in 4-13 LDXB E600* Load X Byte l; Direct, Relative to P Forward 4-13 

Scratchpad LDXB E700* Load X ·Byte; lndirect, AP Relative to P 4-13 

LDAB B600* Load A Byte 1; Direct, Relative to P Forward 4-13 Backward 

LDAB B700* Load A Byte; lndirect, AP Relative to P 4-13 *LDXS 1698 Load Stack Element into X; Direct 4-21 

Backward *LDXS 1699 Load Stack Element into X; lndexed 4-21 

*LDAS 1408 Load Stack Element into A; Direct -4-21 *LDXS 169A Load Stack Element into X; Auto-Postincrement 4-21 

*LDAS 14D9 Load Stack Element into A; lndexed 4-21 *LDXS 169B Load Stack Element into X; Auto-Predecrement 4-21 

*LDAS 14DA Load Stack Element into A; Auto-Postincrement 4-21 LLA 1350* Logical Shitt A Lett 4-28 

*LDAS 14DB Load Stack Element into A; Auto- Predecrement 4-21 LLL lB00* Long Logical Lett Shift 4-30 

LDX E000* Load X; Direct, Scratchpad 4-13 LLR 1B80* Long Logical Right Shift 4-30 

LDX El00* Load X; lndirect, AP in Scratchpad 4-13 LLX 1328* Logical Shift X Lett 4-28 

LDX E200• Load X; Direct, Relative to P Forward '4-13 LRA 13D0* Logical Shift A Right 4-28 

D-13 D-14 



COMPUTBI AIJ10MATION, INC. 
~ 

COMPUTBI AUTOMATION , INC. ~ 

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 

Instruction Instruction 
Mnemonic Skeleton in Hex Description Page 

Instruction Instruction 
Mnemonic Skeleton in Hex Description !!i! 

LRL 1900* Long Rotate Left 4-31 OTX 6E00* Output X Register (Unconditionally) 4-41 

LRR 1980* Long Rotate Right 4-31 OTZ 6800* Output Zero (Unconditionally) 4-41 

LRX 13A8* Logical Shift X Right 4-28 OXH 1C08 Output X to Console Data Register 4-35 

LXM C500* Load X Minus Immediate 4-23 
(Unconditionally) 

LXO 13A0 LSB of X to OV 4-32 
PFD 4003 Power Fall lnterrupt Diaable 4-38 

LXP C400* Load X Positive lmmediate 4-23 PFE 4002 Power Fail lnterrupt Enable 4-38 

MPY 1960* Multiply and Add 4-16 RBA 7900* Read Byte to A Register 4-CB 

NAR 0310 Negate A Register 4-31 
RBAM 7D00* ttead Byte to A Register, Ma.sked 4-43 

NAX 0308 Negate A and Put in X 4-33 RBX 7B00* Read Byte to X Register 4-4.3 

NOP 0000 No Operation 4-36 
RBXM 7F00* Read Byte to X Register, Masked 4-43 

NRA 0610 NOR of A and X to A 4-33 
RDA 5900* Read Word to A Register 4-11 

NRM 1940* Normalize A and X 4-17 
RDAM 5D0O• Read Word to A Register, Masked 4-4.1 

NRX 0608 NORofAandXtoX 4-33 
RDX 5B00* Read Word to X Register 4-41 

NXA 0510 Negate X and Put in A 4-33 
RDXM SFOO* Read Wo.rd to X Regiater, MaBked 4-4'l 

NXR 0508 Negate X Register 4-32 RLA 1150* Rotate A Left with OV 4-19 

OAH 1C04 Output A to Console Data Register and Halt 4-35 
RLX 1128* Rotate X Lett with OV 4-29 

OCA 4404 Output A to Console Data Register 4-36 
ROV 1200 Reset Overftow 4-12 

ocx 4604 Output X to Console Data Register 4-36 
RRA llD0* Rotate A Right with OV 4-29 

OLH lCl0 Output Location to Console Data Register 4-36 
RRX llAS* Rotate X Right with 0V 4-29 

and Halt SAi ODOO* Subtract from A lmmediate 4-Z3 

OMH 1C02 Output Memory to Console Data Register 4-31 
and Halt 

SAO 1340 Sign of A to OV 4-32 

OPH 1C20 Output P to Console Data Register and Halt 4-36 
SBII OEOO Set Byte Mode 4-37 

OTA 6C00* Output A Register (Unconditionally) 4-41 
SCM CDOO• Scan Memory; lndireet, lndned, AP in 4-'1 

Scratchplld 
D-15 D-16· 



COMPU1Bt NJTOM ATION , INC . §]!ll COMl'IJTER AUTOM ATION , INC. §]!ll 
INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUC.TION SET IN ALPHABETICAL ORDER (Cont'd) 

Instruction Instruction Instruction Instruction 
Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page 

SCMB CD00* Scan Memory Byte; Indirect, Indexed, AP 4-15 STA 9E00* Store A; Direct, Relative to P Backward 4-13 
in Scratchpad 

STA 9F00* Store A; Indirect , AP Relative to P Backward 4-13 
SEA 4400* Select and Present A 4-40 

STAB 9800* Store A Byte; Direct, Scratchpad 4-13 
SEL 4000* Select Function 4-40 

STAB 9900* Store A Byte; Indirect, AP in Scratchpad 4~13 
SEN 4900* Sense and Skip on Response 4-40 

STAB 9A00* Store A Byte 0; Direct, Relative to P Forward 4-13 
SEX 4600* Select and Present X 4-40 

STAB 9B00* Store A Byte; lndirect , AP Relative to P 4-13 
SIA 5800 Status Input to A 4-38 Forward 

SIN 6800 Status Inhibit 4-37 STAB 9C00* Store A Byte; Direct, Indexed 4-13 

SIX 5A00 Status Input to X 4-38 STAB 9D00* Store A Byte; Indirect, Indexed, AP in 4-13 
Scratchpad 

*SLAS 1618 Stack Element Address to A; Direct 4-22 
STAB 9E00• Store A Byte l; Direct, Relative to P Forward 4-13 

*SLAS 1619 Stack Element Address to A; Indexed 4-22 
STAB 9F00* Store A Byte; Indirect, AP Relative to P 4-13 

*SLAS 161A Stack Element Address to A; Autci-Postincrement 4-22 Backward 

*SLAS 1618 Stack Element Address to A; Auto-Predecrement 4-22 *STAS 1478 Store A in Stack Element; Direct 4-21 

SOA 6C00 Status Output from A 4-38 *STAS 1479 Store A in Stack Element; Indexed 4-21 

sox 6E00 Status Output from X 4-38 *STAS 147A Store A in Stack Element; Auto-Postincrement 4-21 

sov 1400 Set Overflow 4-32 *STAS 147B Store A in Stack Element; Auto-Predecrement 4-21 

SSN 4800* Sense and Skip and No Response 4-40 STOP 0800* Halt with Operand 4-36 

STA 9800* Store A; Direct , Scratchpad 4-13 STX E800* Store X; Direct, Scratchpad 4-13 

STA 9900* Store A; lndirect, AP in Scratchpad 4-13 STX E900* Store X; Indirect, AP in Scratchpad 4-13 

STA 9A00* Store A; Direct, Relative to P Forward 4-13 STX EA00* Store X; Direct, Relative to P Forward 4-13 

STA 9B00* Store A; lndirect , AP Relative to P Forward 4-13 STX EB00* Store X; Indirect, AP Relative to P Forward 4-13 

STA 9C00* Store A; Direct, Indexed 4-13 STX EC00* Store X; Direct, Indexed 4-13 

STA 9D00* Store A; Indirect, Indexed, AP in Scratchpad 4-13 STX ED00* Store X; Indirect , Indexed, AP in Scratchpad 4-13 

D-17 D-18 



COMPUTER AUTOM ATION . INC. ~ C0WUTER AUTOM ATION . INC. ~ 

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 

Instruction Instruction Instruction Instruction 
Mnemonic Skeleton in Hex Description Page Mnemonic Skeleton in Hex Description Page 

STX EE00* Store X; Direct , Relative to P Backward 4-13 SUB 9600* Subtract from A; Direct, Relative to P Backward 4-12 

STX EF00* Store X; Indirect; AP Relative to P Backward 
, 

SUB 9700* Subtract from A; Indirect, AP Relative to P 4-12 4-13 
Backward 

STXB E800* Store X Byte; Direct, Scratchpad 4-13 
SUBB 9000* Subtract Byte; Direct, Scratchpad 4-12 

STXB E900* Store X Byte; Indirect, AP in Scratchpad 4-13 
SUBB 9100* Subtract Byte; Indirect , AP in Scratchpad 4-12 

STXB EA00* Store X Byte 0; Direct, Relative to P Forward 4-13 
SUBB 9200* Subtract Byte 0; Direct, Relative to P Forward 4-12 

STXB EB00* Store X Byte; Indirect, AP Relative to P 4-13 
Forward SUBB 9300* Subtract Byte; Indirect, AP Relative to P 4-12 

Forward 
STXB EC00* Store X Byte; Direct, Indexed 4-13 

SUBB 9400* Subtract Byte; Direct, lndexed 4-12 

STXB ED00* Store X Byte; Indirect, Indexed, AP in 4-13 
Scratchpad SUBB 9500* Subtract Byte; Indirect, lndexed, AP il" 4-12 

Scratchpad 
STXB EE00* Store X Byte l; Direct, Relative to P Forward 4-13 

SUBB 9600* Subtract Byte 1; Direct, Relative to P Forward 4-12 

STXB EF00* Store X Byte; Indirect, AP Relative to P 4-13 
Backward SUBB 9700* Subtract Byte; Indirect , AP Relative to P 4-12 

Backward 
*STXS 16B8 Store X in Stack Element; Direct 4-21 

*SUBS 1458 Subtract Stack Element from A; Direct 4-21 
*STXS 16B9 Store X in Stack Element; Indexed 4-21 

*SUBS 1459 Subtract Stack Element from A; Indexed 4-21 

*STXS 16BA Store X in Stack Element; Auto-Postincrement 4-21 
*SUBS 145A Subtract Stack Element from A; Auto- 4-21 

*STXS 16BB Store X in Stack Element; Auto-Predecrement 4-21 Postincrement 

SUB 9000* Subtract from A; Direct, Scratchpad 4-12 *SUBS 145B Subtract Stack Element from A; Auto- 4-21 
Predecrement 

SUB 9100* Subtract from A; Indirect, AP in Scratchpad 4-12 
SWM 0F00 Set Word Mode 4-37 

SUB 9200* Subtract from A; Direct, Relative to P Forward 4-12 
SXI C300* Subtract from X Immediate 4-23 

SUB 9300* Subtract from A; Indirect, AP Relative to P 4-12 
Forward sxo 1320 Sign of X to OV 4-S2 

SUB 9400* Subtract from A; Direct , lndexed 4-12 TAX 0048 Transfer A to X 4-33 

SUB 9500* Subtract from A; Indirect, Indexed, AP in 4-12 TRP 4007 Trap 4-39 

Scratchpad 
TXA 0030 Transfer X to A 4-33 

D-19 D-20 



Cowumt AUTOM ATION . INC . 
~ 7 

!NSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 

Instruction Instruction Instruction 
Mnemonic Skeleton in Hex Description Page Mnemonic 

WAIT F600 Wait for Interrupts 4-37 XORB 

WRA 6D00* Write from A 4-42 
*XORS 

WRX 6F00* Write from X 4-42 
*XORS 

WRZ 6900* Write Zeros 4-42 
*XORS 

XOR A800* Exclusive OR to A; Direct , Scratchpad 4-12 

XOR A900* Exclusive OR to A; Indirect , AP in Scratchpad 4-12 *XORS 

XOR AA00* Exclusive OR to A; Direct, Relative to P Forward 4-12 
XRM 

XOR AB00* Exclusive OR to A; AP Relative to P Forward, 4-12 
Indirect XRP 

XOR AC00* Exclusive OR to A; Direct , lndexed 4-12 ZAR 

XOR AD00* Exclusive OR to A; lndirect , lndexed , AP in 4-12 ZAX 
Scratchpad 

ZXR 
XOR AE00* Exclusive OR to A; Direct, Relative to P 4-12 

Backward 

XOR AF00* Exclusive OR to A; Indirect, AP Relative to 4-12 
P Backward 

XORB A800* Exclusive OR Byte; Direct, Scratchpad 4-13 

XORB A900* Exclusive OR Byte; lndirect, AP in Scratchpad 4-13 

XORB AA00* Exclusive OR Byte 0; Direct, Relative to P 4-13 
Forward 

XORB AB00* Exclusive OR Byte; Indirect, AP Relative to P 4-13 
Forward 

XORB AC00* Exclusive OR Byte; Direct, Indexed 4-13 

XORB AD00* Exclusive OR Byte; lndirect, lndexed, AP in 4-13 
Scratchpad 

XORB AE00* Exclusive OR Byte l; Direct, Relative to P , 4-13 
Forward 

D-21 

COWUTEII AUTOMATION. INC. ~ 

INSTRUCTION SET IN ALPHABETICAL ORDER (Cont'd) 

Instruction 
Skeleton in Hex Description 

AF00* Exclusive OR Byte; Indirect, AP Relative to P 
Backward 

14B8 Exclusive OR Stack Element to A; Direct 

14B9 Exclusive OR Stack Element to A; Indexed 

14BA Exclusive OR Stack Element to A; Auto­ 
Postincrement 

14BB 

0008 

0528 

0110 

0118 

0108 

Exclusive OR Stack Element to A; Auto­ 
Predecrement 

Set X to Minus 1 

Set X to Plus 1 

Zero A Register 

Zero A and X Registers 

Zero X Register 

4-13 

4-21 

4-21 

4-21 

4-21 

4-32 

4-32 

4-31 

4-33 

4-32 

D-22 



COMl'UTE R AUTOMATION, INC. 

Appendix E 
INSTRUCTION SET IN NUMERICAL ORDER 

This appendix contains the ALPHA LSI instruction set in machine code in numerical order. 
For each instruction, reference is made to one of the machine code formats listed below. 
Instructions with variable fields (D, K, etc,) are followed by asterisks (*). Those 
instructions which apply to LSI-2 only are prefixed with an asterisk. 

D = Address Field (0 to 255) 
I = Direct/lndirect Address Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

M = Address Mode Code I 1 I OPCODE I M I I I D I Y = Effective Address 

M I Word Mode (Word Operand) Byte Mode (Byte Operand) - - 
00 0 Y = (D), Words : 00-: FF Y = (D), Bytes : 00-: FF 
01 0 Y = (D) + (P) + 1 Y = (D) + (P) 1, Byte 0 
10 0 Y = (D) + (X) y = (D) + (X) 
11 0 Y = (P) - (D) Y= {D)+ (P)+l,Bytel 
00 1 AP = (D). AP = (AP) , Y = (AP) AP= (D), Y = (AP) 
01 1 AP = (D) + (P) + 1, AP = (AP) , Y + (AP) AP= (D) + (P) + 1, Y=(AP) 
10 1 AP= (D), AP = (AP) , Y = (AP) + (X) AP = (D), Y = (AP) + (X) 
11 1 AP= (P) - (D), AP= (AP), Y = (AP) AP= (P) - (D), Y = (AP) 

Figure E-1. Single-Word Memory Reference Instruction Machine Code Format 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 I O I 1 I 1 I O I O I 1 I O I OPCODE I K 

I ADDRESS 

Op Code = 100 for NRM O through 15 
= 101 for NRM 16 through 31 
= 110 for MPY 
= 111 for DVD 

I = lndirect Addressing 
1 = Indirect Address 
0 = Direct Address 

K = Instruction Count 

Figure E-2. Double-Word Memory Reference Instruction Machine Code Format· 

E-1 

COMPUTER AUTOMATION, INC. ~ 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O . I 1 I 1 I O I O I O I OP CODE I D 

D = 8- Bit lmmediate Operand 

Figure E-3. Byte Immediate Instruction Machine CodeForrnat 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

D FIELD 

Bits 

12 

7-11 

6 

0-5 

Field Definition 

G 

Conditions 

R 

D Field 

Test Group Indicator: 

G = 1 for AND Group 
G = 0 for OR Group 

Microcode of Test Conditions: 

Bit AND Group OR Group 

7 A Positive A Negative 
8 AF 0 A = 0 
9 OV Reset OV Set (Resets OV 
10 Sense lndicator Sense Indicator 

on off 
11 X;, 0 X= o 

Jump Direction: 

R = 0 for Forward Jump 
R = 1 for Backward Jump 

Jump Distance (-63 to +64) 

Figure E-4. Conditional Jump lnstruction Machine Code Format 

E-2 



COMPUTER AUTOMATION , INC. ~ 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 O 

!ololol1lol oPCODE K 

K = Shift Control Count, Shift Will Move 1 + K Bit Positions. 
Op Code = Shift Control Code Which Selects Source, Type of Shift, 

snd Locstion of Results 

Figure E-5. Single-Register Shift lnstruction Machine Code Format 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

lololol1l1I oe coor K 

Op Code = Shift Control Code Which Selects the Type of Long Shift to be Executed 
K = Shift Count. Shift Will Move 1 + K Bit Positions 

Figure E-6. Double-Register Shift lnstruction Machine Code Format 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Op Code = The Register Change Control Code which specifies the Source, Operation, 
and Location of Results 

Figure E-7. Register Change lnstruction Machine Code Format 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

H oP CODE 0P COOE, Hor SC 

H = Halt ID lndicator 
se = Sin lnstruction Count - 1 

Figure E-8. Control lnstruction Machine Code Format 

E-3 

COMPUTE R AUTOMATION . INC. ~ 

15 14 13 12 11 10 9 876543210 

1° I 1 I OP CODE 

Function Code = Specifies which device function or register 
Device Address = The device's assigned address 

Op Code = Operation Code Specifying One of the 1/0 lnstructions 

Figure E-9. lnput/Output lnstruction Machine Code Format 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

P+1 

0 DEVICE 
ADDRESS 

FUNCTION 
CODE 

BYTE/WORD COUNTER, WC 12'5 COMPLEMENTI 

P+2 0 ADDRESS POINTER. AP !START LOCATION -11 

Opcode; 01 = lnput, 10 = Output 
B = 0: Word Transfer 
B = 1: Byte Transfer 
Byte/Word Counter = Number of Executions Until Skip or Echo 
Byte/Word Address Pointer = Memory Location of 1/0 Transaction 

Figure E-10. Automatic lnput/Output lnstruction Machine Code Format 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 oP CDDE DE VICE 
ADDRESS 

FUNCTION 
CODE 

0 BASE ADDRESS -1 

Figure E-11. Block lnput/Output lnstruction Machine Code Format 

E-4 



COWUTER AUTOMATION, INC. ~ 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 0 1 0P CODE 1 1 0 AM 

0 STACK POINTER ADDRESS ISPAI 

AM = Addressing Mode 

00 = Direct Access to Stack 
01 = lndexed Access to Stack 
10 = Auto-increment Access to Stack (POP) 
11 = Auto-decrement Access to Stack (PUSH) 

Figure E-12. Stack Instruction Machine Code Format 

INSTRUCTION SET IN NUMERICAL ORDER 

Instruction lnstruction Machine 
Skeleton in Hex Mnemonic Description Code Format Page 

0000 NOP No Operation 7 4-36 

0008 XRM X Register to Minus One 7 4-32 

0010 ARM A Register to Minus One 7 4-31 

0018 AXM A and X Registers to Minus One 7 4-33 

0030 TXA Transfer X to A 7 4-33 

0048 TAX Transfer A to X 7 4-33 

0068 ANX AND of A and X to X 7 4-33 

0070 ANA ANDofAandXtoA 7 4-33 

0090 IPX Increment P to X 7 4-34 

00A8 DXR Decrement X Register 7 4-32 

00B0 DXA Decrement X to A 7 4-34 

00C8 DAX Decrement A to X 7 4-34 

E-5 

COMl'UTI: R AUTOMATION, INC. ~ 

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd) 

Instruction Instruction Machine 
Skeleton in Hex Mnemonic Description Code Format Page 

00D0 DAR Decrement A Register 7 4-31 

0108 ZXR Zero X Register 7 4-32 

0110 ZAR Zero A Register 7 4-31 

0118 ZAX Zero A and X Registers 7 4-33 

0128 IXR Increment X Register 7 4-32 

0130 IXA lncrement X to A 7 4-34 

0148 !AX lncrement A to X 7 4-41 

0150 IAR Increment A Register 7 4-31 

0208 CAX Complement of A to X 7 4-33 

0210 CAR Complement A Register 7 4-31 

0218 *EIX Execute lnstruction Pointed to By X 7 4-34 

0308 NAX Negate A to X 7 4-33 

0310 NAR Negate A Register 7 4-31 

0350 ARP A Register to Plus One 7 4-31 

0358 AXP A and X Registers to Plus One 7 4-33 

0408 CXR Complement X Register 7 4-32 

0410 CXA Complement of X to A 7 4-33 

0428 EAX Exchange A and X 7 4-33 

0508 NXR Negate X Regster 7 4-32 

0510 NXA Negate X to A 7 4-33 

0528 XRP X Register to Plus One 7 4-32 

0608 NRX NOR of A and X to X 7 4-33 

E-6 



Cowumt AU TOMA TION . INC . ~ COWUTf R AU TOM ATION . INC . ~ 

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd) INSTRUCTION SET IN NUMERICAL ORDER (Cont'd) 

Instruction Instruction Machine Instruction Instruction Machine 
Skeleton in Hex Mnemonic Descri2tion Code Format Page Skeleton in Hex Mnemonic Descri2tion Code Format Page 

0610 NRA NOR of A and X to A 7 4-33 1320 sxo Sign of X to Overflow 5 4-32 

0688 *BSX Bit Set X 7 4-34 1328 LLX* Logical Shift X Left 5 4-28 

068A *BSA Bit Set A 7 4-34 1340 BAO* Bit of A to Overflow 5 4-32 

06C8 *BCX Bit Clear X 7 4-34 1340 SAO Sign of A to Overflow 5 4-32 

06CA *BCA Bit Clear A 7 4-34 1350. LLA* Logical Shift A Left 5 4-28 

0800 HLT Halt 8 4-36 13A0 LXO LSB of X to Overflow 5 4-32 

0800 STOP* Halt with Operand 8 4-36 13A8 LRX* Logical Shift X Right 5 4-28 

0A00 EIN Enable Interrupts 8 4-38 13C0 LAO LSB of A to Over.flow 5 4-32 

0800 AAI* Add to A Immediate 3 4-23 13D0 LRA* Logical Shift A Right 5 4-28 

ocoo DIN Disable lnterrupts 8 4-38 1400 sov Set Overflow 5 4-32 

0D00 SAi* Subtract from A lmmediate 3 4-23 1418 *ANDS AND Stack Element to A 12 4-21 

0E00 SBM Set Byte Mode 8 4-37 1438 *ADDS Add Stack Element to A 12 4-21 

0F00 SWM Set Word Mode 8 4-37 14S8 *SUBS Subtract Stack Element from A 12 4-21 

1028 ALX* Arithmetic Shift X Left 5 4-27 1478 *STAS Store A in Stack Element 12 4-21 

0150 ALA* Arithmetic Shift A Left 5 4-27 1498 *IORS lnclusive OR Stack Element to A 12 4-21 

10A8* ARX* Arithmetic Shift X Right 5 4-27 1488 *XORS Exclusive OR Stack Element to A 12 4-21 

l0D0 ARA* Arithmetic Shift A Right 5 4-27 14D8 *LDAS Load Stack Element into A 12 4-21 

1128 RLX* Rotste X Left with Overflow 5 4-29. 14F8 *EMAS Exchange Stack Element and A 12 4-21 

1150 RLA* Rotate A Left with Overflow 5 4-29 1600 cov Complement Overflow 5 4-22 

11A8 RRX* Rotate X Right with Overflow 5 4-29 1618 *SLAS Stack Element Address to A 12 4-22 

11D0 RRA* Rotate A Right with Overflow 5 4-29 1658 *CMSS Compare Stack Element to A and Skip 12 4-22 
if High or Equal 

1200 ROV Reset Overflow 5 4-32 
1678 *IMSS Increment Stack Element and Skip 12 4-22 

1320 BXO* Bit of X to Overflow 5 4-32 on Zero Result 

E-7 E-8 



COMl'U TER AUTOMATION. INC. ~ COMl'UTE R AUTOMATION, INC. ~ 

lNSTRUCTION SET IN NUMERICAL ORDER (Cont'd) lNSTRUCTION SET IN NUMERICAL ORDER (Cont'd) 

Instruction lnstruction Machine Instruction Instruction Machine 
Skeleton in Hex Mnemonic Description Code Format Page Skeleton in Hex Mnemonic Description Code Format Page 

1698 *LDXS Load Stack Element into X 12 4-21 1C20 OPH Output P to Console Data Register 9 4-36 
and Halt 

16B8 *STXS Store X in Stack Element 12 4-21 
1C21 lPH lnput Console Data Register to P 9 4-35 

16D8 *JMPS Jump to Stack Element Unconditional 12 4-22 and Halt 

16F8 *JSTS Jump to Stack Element and Store 12 4-22 2080-3F80 Fwd JOC* Jump on Condition 4 4-24 
20C0-3FC0 Bkwd 

1900 LRL* Long Rotate Left 6 4-31 
2080 Fwd JAM* Jump if A Minus 4 4-25 

1940 NRM Normalize A and X 2 4-17 20C0 Bkwd 

1960 MPY Multiply and Add 2 4-16 2100 Fwd JAZ* Jump if A Zero 4 4-25 
2140 Bkwd 

1970 DVD Divide 2 4-16 
2180 Fwd JAL* Jump if A Less Than One 4 4-25 

1980 LRR* Long Rotate Right 6 4-31 21C0 Bkwd 

lB00 LLL* Long Logical Shift Left 6 4-30 2200 Fwd JOS* Jump if Overflow Set 4 4-26 
2240 Bkwd 

1B80 LLR* Long Logical Shift Right 6 4-30 
2400 Fwd JSR* Jump if Sense Switch Reset 4 4-26 

1C02 OMH Output Console Data Register to 9 4-36 2440 Bkwd 
Memory and Halt 

2800 Fwd JXZ* Jump if X Zero 4 4-26 
1C03 IMH lnput Console Data Register to 9 4-35 2840 Bkwd 

Memory and Halt 
3080 Fwd JAP* Jump if A Positive 4 4-25 

1C04 OAH Output A to Console Data Register 9 4-35 30C0 Bkwd 
and Halt 

3100 Fwd JAN* Jump if A Not Zero 4 4-25 
1C05 !AH Input Console Data Register to A 9 4-35 3140 Bkwd 

and Halt 
3180 Fwd JAG* ,lump if A Greater Than Zero 4 4-25 

1C08 OXH Output X to Console Data Register 9 4-35· 31C0 Bkwd 
and Halt 

3200 Fwd JOR* Jump if Overflow Reset 4 4-26 
1C09 lXH Input Console Data Register to X 9 4-35 3240 Bkwd 

and Halt 
3400 Fwd JSS* Jump if Sense Switch Set 4 4-26 

lCl0 OLH Output Location to Console Data 9 4-36 3440 Bkwd 
Register and Halt 

3800 Fwd JXN* Jump if X Not Zero 4 4-26 
lCll IIH Input Console Data Register to l 9 4-35 3840 Bkwd 

and Halt 

E-9 E-10 



COMl'UTE R AUTOMATION . INC. ~ COMl'UTE R AUTOMATION. INC. ~ 

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd) INSTRUCTION SET IN NUMERICAL ORDER (Cont'd) 

Instruction Instruction Machine Instruction Instruction Machine 
Skeleton in Hex Mnemonic Description Code Format Page Skeleton in Hex Mnemonic Description Code Format Page 

4000 SEL* Select Function 9 4-40 5B00 RDX* Read Word to X Register 9 4-41 

4002 PFE Power Fail Enable 9 4-38 5C00 INAM* Input to A Register Masked 9 4-41 

4003 PFD Power Fail Disable 9 4-38 5D00 RDAM* Read Word to A Register Masked 9 4-41 

4005 CIE Console Interrupt Enable 9 4-38 5E00 INXM* Input to X Register Masked 9 4-41 

4006 CID Console lnterrupt Disable 9 4-38 5F00 RDXM* Read Word to X Register Masked 10 4-42 

4007 TRP Trap 9 4-39 6000 AOT* Automatic Output Word from Memory 10 4-47 

4400 SEA* Select and Present A 9 4-40 6400 AOB* Automatic Output Byte from Memory 10 4-47 

4404 OCA Output A to Console Register 9 4-36 6800 OTZ* Output Zero 9 4-41 

4600 SEX* Select and Present X 9 4-40 6800 SIN* Status lnhibit 8 4-37 

4604 ocx Output X to Console Register 9 4-36 6900 WRZ* Write Zero 9 4-42 

4800 SSN* Sense and Skip On No Response 9 4-40 6C00 OTA* Output A Register 9 4-41 

4900 SEN* Sense and Skip On Response 9 4-40 6C00 SOA Status Output from A 9 4-38 

5000 AIN* Automatic Input Word to Memory 10 4-47 6D00 WRA* Write from A Register 9 4-42 

5400 AIB* Automatic Input Byte to Memory 10 4-47 6E00 OTX* Output X Register 3 4-41 

5800 INA* Input to A Register 9 4-41 6E00 sox Status Output from X 9 4-38 

5800 SIA Status Input to A 9 4-38 6F00 WRX* Write from X Register 3 4-42 

5801 ISA Input Sense Register to A 9 4-35 7100 BIN* Block In 11 4-44 

5804 !CA Input Console Register to A 9 4-35 7500 BOT* Block Out 11 4-45 

5900 RDA* Read Word to A Register 9 4-41 7800 IBA* lnput Byte to A Register 9 4-42 

5A00 INX* Input to X Register 9 4-41 7900 RBA* Read Byte to A Register 9 4-43 

5A00 SIX Status Input to X 9 4-38 7A00 IBX* Input Byte to X Register 9 4-43 

5A01 ISX Input Sense Register to X 9 4-35 7B00 RBX* Read Byte to X Register 9 4-43 

5A04 ICX Input Console Register to X 9 4-35 7C00 IBAM* Input Byte to A Register Masked 9 4-42 

E-11 E-12 



COMl'UTt R AUTOMATION. INC. ~ COMl'UTE R AUTOMATION. INC. ~ 

INSTRUCTION SET IN NUMERICAL ORDER (Cont'd) INSTRUCTION SET IN NUMERICAL ORDER (Cont'd) 

Instruction Instruction Machine Instruction Instruction Machine 
Skeleton in Hex Mnemonic Description Code Format Page Skeleton in Hex Mnemonic Description Code Format Page· 

7000 RBAM* Read Byte to A_ Register Masked 9 4-43 C400 LXP* Load X Positive lmmediate 3 4-23 

7E00 IBXM* Input Byte to X Register Masked 9 4-43 C500 I.XM* Load X Minus Immediate 3 4-23 

7F00 RBXM* Read Byte to X Register Masked 9 4-43 C600 LAP* Load A Positive Immediate 3 4-23 

8000 AND" AND to A 1 4-12 C700 LAM* Load A Minus Immediate 3 4-23 

8000 ANDB* AND Byte to A 1 4-12 CD00 SCM* Scan Memory 1 4-14 

8800 ADD" Add to A 1 4-12 CD00 SCMB" Scan Memory Byte 1 4-15 

8800 ADDB* Add Byte to A 1 4-12 D000 CMS" Compare and Skip if High or Equal 1 4-22 

9000 SUB" Subtract from A 1 4-12 D0O0 CMSB" Compare Byte and Skip if High or Equal 1 4-14 

9000 SUBB* Subtract Byte from A 1 4-12 D800 IMS* Increment Memory and Skip on Zero 1 4-14 
Result 

9800 STA" Store A 1 4-13 
E000 LDX* Load X 1 4-13 

9800 STAB* Store A Byte 1 4-13 
E000 LDXB* Load X Byte 1 4-13 

A000 IOR* Inclusive OR to A 1 4-12 
E800 STX* Store X 1 4-13 

A000 IORB" Inclusive OR Byte to A l 4-12 
E800 STXB" Store X Byte 1 4-13 

A800 XOR* Exclusive OR to A 4-12 
FO00 JMP* Jump Unconditional 1 4-14 

A800 XORB* Exclusive OR Byte to A 1 4-13 
F600 WAIT Wait for Interrupts 1 4-37 

B000 LDA" Load A 1 4-13 
F800 JST* Jump and Store 1 4-14 

B000 LDAB* Load A Byte 1 4-13 

B800 EMA* Exchange Memory and A 1 4-13 

B800 EMAB* Exchange Memory Byte and A 1 4-13 

cooo CA!* Compare to A Immediate 3 4-23 

Cl00 CXI* Compare to X Immediate 3 4-23 

C200 AXI* Add to X Immediate 3 4-23 

C300 SXI* Subtract from X Immediate 3 · 4-23 

E-13 E-14 



COMPUTE R AUTOM ATION , IN< . 1:3:!:1 
Appendix F 

ALPHA LSI EXECUTION TIMES 

F.1 GENERAL 

This appendix. defines the execution time of each instruction in the ALPHA LSI instruc­ 
tion set , Two Processors and a variety of Memories, with varying access times , are 
offered with the ALPHA LSI . The variation in memory access time makes a tabulation 
of execution times difficult. For this reason time calculation algorithms are provided. 
These algorithms are useful with any memory access time by making the appropriate 
memory parameter substitution. 

F.2 MEMORY PARAMETERS 

Currently , four Memories are offered in the ALPHA LSI family; three of these are core 
Memories, while the fourth isa semiconductor Memory. Table F-1 lists the parameters 
of these Memories. All times listed are in nanoseconds . 

Table F-1. LSI _Family Memory Parameters 
Memory 
T-- Conttiruration C RA RO WA WO M M' ROI WOI 

Core 980 Add on 4K, Sk HO HO 100 180 800 800 400 220 420 

Core 1200 Add on 16K 1200 400 100 200 1000 600 400 300 500 

Core 1600 Add on or inte,cral 4K, 8K 1600 450 1150 250 1350 800 400 

se 1200 Addon 2K, 4K, 8K 1200 500 700 200 1000 600 400 
lnlep-al 2K • 4K 

Parameters in nanosecondM ar": 

C = Cycle Time 
RA = Read ACNH 
RO = Read Overhead 
WA =- Write Acceaa 
WO = Wrtte Overhead 
M = LSl-1 Effective Read AcceH 
M' = LSl-1 Effect1ve Write Access 
ROI = Interleaved Effective Read OVerhead 
WOI = lnterleaved F.ffectivr Wrlte Overhead 

F-1 

COMPUTER AUTOMATION, INC. 1:3:!:1 
F.3 LSl-1 EXECUTION TIME ALGORITHMS 

The LSI-1 execution time algorithms are listed in table F-2. The algorithms are parti­ 
tioned by class and subclass. Numerous instructions have two times listed with the 
reason for the dual listing given in parenthesis . All numeric values are in microsec­ 
onds. The value of A (address calculation time) is derived from the ·ust of addressing 
modes at the beginning of the table. The variables m and m' are derived from table 
F-1 and are in nanoseconds , 

The letter i stands for indirect address levels. Where indirect addressing is used, the 
value (3. 2 + m)i must be added for each level of indirect addressing that is employed. 

The letter n denotes a shift. The value 1. 6n or 3. 2n must be added to the basic execu­ 
tion time of shift instructions for each bit shifted . 

The letter w is used by the SCM and Block 1/0 instructions. The parenthetical expres­ 
sion which precedes the w is the time calculation on a per word basis. 

Table F-2. LSI-1 Execution Time Algorithms 

MEMORY REFERENCE CLASS 

A = Address Calculation Time for Memory Reference Instructions: 

DIRECT SCRATCHPAD 
DIRECT RELATIVE 
DIRECT INDEXED 
INDIRECT SCRATCHPAD 
INDIRECT REALTIVE 
INDIRECT INDEXED 

ARITHMETIC 
ADD 
SUB 

LOGICAL 
AND 
IOR 
XOR 

DATA TRANSFER 
LDA 
LDX 
STA 
STX 
BMA 

1.6 + m 
1.6 + m 
3.2 + m 
(3. 2 + m) i 
1. 6 + (3. 2 + m) i 
l.6+(3.2+m)i 

6.4+m+A 
6.4+m+A 

6.4+m+A 
6.4+m+A 
6.4+m+A 

4.8+m+A 
4.8+m+A 
4.8+m'+A 
4.8+m' +A 
8.0+m+m'+A 

F-2 



COMPUTE R AUTOM ATION , INC. ~ 

Table F-2 . LSI-1 Execu tion T im e A lgorithm s (Con t'd ) 

PROGRAM TRAN SFER 
JMP 
JST (Non-Interrupt) 
JST (lnterrupt) 
IMS 
SCM 
CMS 

4.8 + A 
8.0+m'+A 
6.4+m'+A 
9,6+m+m'+A 

(12 . 8 + m + A) w 
12.8+m+A 

DOUBLE WORD MEMORY REFERENCE CLASS 

DVD 
MPY 
NRM (count expires) 
NRM (count does not expire) 

118.4+3m+(3.2+m)i 
110,4 + 3m + (3,2 + m) i 
17 .6 + 3m + m' + 9.6n + (3.2 + m) i 
20.8 + 3m + m' + 9.6n + (3.2 + m) i 

BYTE IMMEDIATE CLASS 

AAI 
AXI 
SAI 
SXI 
CAI 
CXI 
LAP 
LXP 
LAM 
LXM 

4.8 + m 
4.8 + m 
4.8 + m 

·4.8+m 
6.4 + m 
6.4 + m 
4.8 + m 
4.8 + m 
4.8 + m 
4.8 + m 

CONDITIONAL JUMP CLASS 

MICROCODED 
(JOC) 
ALL Double Register Tests 
ALL Others 

14.4 + m 
6.4 + m 

ARITHMETIC 
JAG 
JAP 
JAZ 
JAN 
JAL 
JAM 
JXZ 
JXN 

6.4+m 

F-3 

COMPUTER AUTOMATION, INC. ~ 

Table F-2. LSI-1 Execution Time Algorithms (Cont'd) 

CONTROL 
JSS 
JSR 
JOS 
JOR 

}•-••m 
SHIFT CLASS 

ARITHMETIC SHIFTS 
ARA 
ARX 
ALA 
ALX 

LOGICAL SHIFTS 
LRA 
LRX 
LLA 
LLX 

ROTATE SHIFTS 
RRA 
RRX 
RLA 
RLX 

}3-2'mH.6n 

} 3.2 • m • 1.6n 

}•-••m•t.8n 
DOUBLE REGISTER LOGICAL SHIFTS 

LLL }3.2+m+3,2n 
LLR 

DOUBLE REGISTER ROTATE SHIFTS } 
~ 3.2+m+3.2n 

REGISTER CHANGE CLASS 

A REGISTER CHANGE 
ZAR 
ARP 
ARM 
CAR 
NAR 
lAR 
DAR 

} •-••m 

F-4 



COMPUTER AUTOMATION, INC. ~ 

Table F-2. LSI-1 Executive Time Algorithms (Cont'd) 

X REGISTER CHANGE 
ZXR 

l XRP 
XRM 
CXR 4.8 + m 
NXR 
IXR 
DXR 

OVERFLOW REGISTER CHANGE 
sov 4.8 + m 
ROV 4.8 + m 
cov 4.8 + m 
SAO 6.4 + m 
sxo 6.4 + m 
LAO 6.4 + m 
LXO 6.4 + m 
BAO 6 .4 + m + 1.6n 
BXO 6.4 + m + 1.6n 

MULTI-REGISTER CHANGE 
ZAX 6.4 + m 
AXP 6.4 + m 
AXM 6.4 + m 
TAX 4.8 + m 
TXA 4.8 + m 
EAX 8.0 + m 
ANA 4.8 + m 
ANX 4.8 + m 
NRA 6.4 + m 
NRX 6.4 + m 
CAX 4.8 + m 
CXA 4.8 + m 
NAX 4.8 + m 
NXA 4.8 + m 
!AX 4.8 + m 
IXA 4.8 + m 
IPX 4.8 + m 
DAX 4.8 + m 
DXA 4.8 + m 

CONSOLE REGISTER 
!CA 

} ICX 
ISA 
ISX 5.6 + m 

OCA 
ocx 

F-5 

COMPUTER AUTOMATION. INC. ~ 

Table F-2. LSI-1 Executive Time Algorithms (Cont'd) 

PROCESSOR CONTROLS 
NOP 
HLT (STOP) 

MODE CONTROLS 
SBM 

. SWM 

STATUS CONTROLS 
SIN 
SIA 
SIX 
SOA 
sax 

INTERRUPT CONTROLS 
EIN 
DIN 
CIE 
CID 
PFE 
PFD 
TRP 

CONTROL CLASS 

} 4.8 + m 

} 4.8 + m 

} 5.6 + m 

4.8 + m 
6.4 + m 
5.6 + m 
5.6 + m 
5.6 + m 
5.6 + m 
5.6 + m 

INPUT /OUTPUT GLASS 

CONTROL 
SEL 
SEA 
SEX 
SEN 
SSN 

UNCONDITIONAL WORD 
INA 
INAM 
INX 
INXM 
OTA 
OTX 
OTZ 

5.6 + m 
5.6 + m 
5.6 + m 
7.2 + m 
7 .2 + m 

5.6 + m 
7.2 + m 
5.6 + m 
7.2 + m 
5.6 + m 
5.6 + m 
5.6 + m 

F-6 



COMl'UT£R AUTOMATION, IN(. ~ 

Table F-2. LSI-1 Execution Time Algorithms (Cont'd) 

CONDITIONAL WORD 
RDA 
RDAM 
RDX 
RDXM 
WRA 
WRX 
WRZ 

UNCONDITIONAL BYTE 
IBA 
IBAM 
IBX 
IBXM 

CONDITIONAL BYTE 
RBA 
RBAM 
RBX 
RBXM 

BLOCK 
BIN 
BOT 

AUTOMATIC 
AIN 
AIN (Under lnterrupts) 
AOT 
AOT (Under lnterrupts) 
AIB 
AIB (Under Interrupts) 
AOB 
AOB (under lnterrupts) 

7.2 + m 
10.4+m 
7.2 + m 

10.4 + m 
7.2 + m 
7.2 + m 
7.2 + m 

7.2 + m 
8.8 + m 
7.2 + m 
8.8 + m 

10.4+m 
12. O + m 
10.4 + m 
12.0+m 

11. 2 + 2m + (7. 2 + m) w 
11. 2 + 2m + (7. 2 + m) w 

23.2 + 2m + 3m' 
20.0 + 2m + 3m' 
23.2+3m+2m' 
20.0 + 3m + 2m' 
23.2 + 2m + 3m' 
20.0 + 2m + 3m' 
23.2 + 3m + 2m' 
20.0 + 3m + 2m' 

F-7 

COMPUTER AUTOMATION. INC. ~ 

F. 4 LSI-2 EXECUTION TIME ALGORITHMS 

The LSI-2 execution time algorithms are listed in table F-3. The algorithms are parti­ 
tioned by clsss and subclass as in table F-2. 

The Memory Reference instruction address calculation times precede the instruction 
execution algorithms. Note that four different sets of sddress calculations are provided. 
The list of Memory Reference instructions have algorithms which list A 1 , A 2 , A 3 , 

or A 4 • The appropriate address calculation variable should be used as indicated. 

The Stack instruction address calculation times precede the Stack instruction execution 
algorithms. Note that three different sets of ad dress calculations are provided. The 
list of Stack instructions have algorithms which list S 1 , S 2 , or S 3 . The appropriate 
address calculation variable should be used as indicated. 

All Memories may be interleaved to achieve higher transfer rates. Core 1600 and 
SC1200 may be interleaved 100 percent to achieve twice the data transfer rate of a 
single memory module. Core 1200 and Core 980 may be interleaved to achieve a 
maximum transfer rate of 171 and 163 percent, respectively, of a single memory 
module. lnterleaving is always effective for DMA operation. 

Overlapping is effective for LSI-2 as indicated by the execution time equations. Terms 
of the form n/RO or m/WO mean that the larger of the two times indicated are to be used. 
When overlapping is achieved by alternate memory accesses in different memory modules, 
the overhead times are masked and the effective RO and WO become zero except for Core 
980 and Core 1200 which have an overhead time even when interleaved. 

As in table F-2, numerous instructions have several times listed to define variations 
of an instruction. The symbols i, n, and W are described in paragraph F. 3. 

F-8 



COMPUTER AUTOMATION, INC. ~ 

Table F-3. LSI-2 Execution Time Algorithms 

MEMORY REFERENCE CLASS 

PROCESSOR 
MODE ADDRESSING MODE A1 A2 

direct scratchpad RA + 700/RO RA + 800/RO 
direct relative forward RA + 700/RO RA + 800/RO 
direct relative backward RA + 850/RO RA + 950/RO 

WORD direct indexed RA + 700/RO RA + 800/RO 
indirect scratchpad 2RA + 700/RO + 400/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 500/RO + (RA + 400/RO) (i-1) 
indirect relative forward 2RA + 700/RO + 400/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 500/RO + (RA + 400/RO) (i-1) 
indirect relative backward 2RA + 700/RO + 400/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 500/RO + (RA + 400/RO) (i-1) 
indirect relative indexed 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 800/RP + (RA + 400/RO) (i-1) 

direct scratchpad RA + 1000/RO RA + 1100/RO 
direct relative RA + 700/RO RA + 800/RO 
direct indexed RA + 1000/RO RA + 1100/RO 

BYTE indirect scratchpad 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 800/RO + (RA + 400/RO) (i-1) 
indirect relative forward 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 800/RO + (RA + 400/RO) (i-1) 
indirect relative backward 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 800/RO + (RA + 400/RO) (i-1) 
indirect indexed 2RA + 700/RO + 900/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 1000/RO + (RA + 400/RO) (i-1) 

PROCESSOR 
MODE ADDRESSlNG MODE A3 A4 

direct scratchpad RA + 1000/RO RA + 1300/RO 
direct relative forward RA + 1000/RO RA + 1300/RO 
direct relative backward RA + 1150/RO RA + 1450/RO 

WORD direct indexed RA + 1000/RO RA + 1300/RO 
indirect scratchpad 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 1000/RO + (RA + 4-00/RO) (i-1) 
indirect relative forward 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 1000/RO + (RA + 400/RO) (i-1) 
indirect relative backward 2RA + 700/RO + 700/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 1000/RO + (RA + 400/RO) (i-1) 
indirect relative indexed 2RA + 700 .RO + 1200/RO + (RA + 4ot/RO) (i-1) 2RA + 700/RO + 1500/RO + (RA + 400/RO) (i-1) 

direct scratchpad RA + 1300/RO RA + 1600/RO 
direct relative RA + 1000/RO RA + 1300/RO 
direct indexed RA + 1300/RO RA + 1600/RO 

BYTE indirect scratchpad 2RA + 700/RO + 1000/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 1300/RO + (RA + 400/RO) (i-1) 
indirect relative forward 2RA + 700/RO + 1000/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 1300/RO + (RA + 400/RO) (i-1) 
indirect relative backward 2RA + 700/RO + 1000/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 1300/RO + (RA + 400/RO) (i-1) 
indirect indexed 2RA + 704!/RO + 1200/RO + (RA + 400/RO) (i-1) 2RA + 700/RO + 1500/RO + (RA + 400/RO) (i-1) 

A1 is used with ADD, SUB, AND, IOR, XOR, EMA, LDA, LDX, CMS and lMS. 

A2 is used with STA, STX and JST. 

A3 is used by JMP only. 

A4 is used by SCM only. 

ARITHMETIC 
ADD 
SUB 

LOGICAL 
AND 
IOR 
XOR 

A1 + RA + (400/RO) 

F-9 



COMPUTE R AUTOMATION , IN(. ~ 

Table F-3. LSI-2 Execution Time Algorithms (Conttd) 

DATA TRANSFER 
LDA 
LDX 
STA 
STX 
EMA 

PROGRAM TRANSFER 
JMP 
JST (Non-Interrupt) 
JST (lnterrupt) 
IMS 

SCM 
CMS 

A1 + RA + 400/RO 
A1 + RA + 400/RO 
A2 + WA + 250/RO 
A2 + WA + 250/RO 
A1 + RA + 500/RO* + WA + 550/WO 

A3 
A2 + WA + 550/WO 
A2 + WA + 700/WO 
A1 + RA + (500/RO) * + WA 

+ 700/RO 1 O in line no skip 
or + 1450/RO = O in line skip 
or + 850/RO 1 0 interrupt no echo 
or + 1600/RO = 0 interrupt echo 
A4 + RA + 550/RO + (RA + 1600/RO) (w-1) 
A1 + RA 

+ 550/RO for A < Y 
or + 850/RO for A = Y 
or +1150/RO for A > Y 

DOUBLE WORD MEMORY REFERENCE CLASS 

DVD 

MPY 

NRM 

2RA + 1000/RO + (RA + 400/RO) i 
+ (2950 + 450n) /RO 

2RA + 1000/RO + (RA + 400/RO) i 
+ (3100** + 600n) /RO 

2RA + 1000/RO + (RA + 400/RO) i 
+ (1400 + 600n)/RO + WA + 1750/WO 

STACK CLASS 

ADDRESSING MODE S1 S2 S3 

direct access 3RA + 2 (400/RO) + 550/RO s, + 100 S1 + 300 

indexed access 3RA + 2(400/RO) + 850/RO S1 + 100 S1 + 300 

auto-postincrement 3RA + 2 (400/RO) + 500/RO* s, + 100 S1 + 300 
or auto-predecrement + WA + 400/WO 

*not effected by interleave 

S1 is used with ADDS, SUBS, ANDS, IORS, XORS, EMAS, LDAS, LDXS, 
CMSS and IMSS. 

S2 is used with STAS, STXS, and JSTS, 
8J is used by JMPS and SLAS. 

F-10 

ARITHMETIC 
ADDS 
SUBS 

LOGICAL 
ANDS 
IORS 
XORS 

DATA TRANSFER 
LDAS 
LDXS 
STAS 
STXS 
EMAS 

PROGRAM TRANSFER 
JMPS 
JSTS 
IMSS 

COMl'UTE R AUTOMATION . INC. ~ 

CMSS 

S1 + RA + 400/RO 

S1 + RA + 400/RO 
S1 + RA + 400/RO 
S2 + WA + 250/RO 
S2 + WA + 250/RO 
S1 + RA + 500/RO* + WA + 550/WO 

S3 
S2 + WA + 550/WO 
S1 + RA + 500/RO* + WA 

+ 700/RO 1 O in Iine , no skip 
or + 1450/RO = 0 in line, skip 
or + 850/RO 1 0 interrupt, no echo 
or + 1600/RO = interrupt, echo 
S, + RA 

+ 550/RO A<Y 
or+ 850/RO A = Y 
or + 1150/RO A > Y 

STACK CONTROL 
SLAS 

BYTE IMMEDIATE CLASS 

AAI 
AXl 
SAi 
SXI CAI} 
CXI 
LAP 
LXP 
LAM 
LXM 

RA + 1000/RO 
RA + 700/RO 
RA + 1000/RO 
RA + 700/RO 

{
RA + 1000/RO skip 
RA + 850/RO no skip 
RA + 700/RO 
RA + 700/RO 
RA + 700/RO 
RA + 700/RO 

* Not Affected By lnterleave 
** +300 for Negative Multiplier 

F-11 



COMPUT ER AUTOMATION , INC. ~ 

Table F-3. LSI-2 Execution Time Algorithms (Cont'd) 

CONDITIONAL JUMP CLASS 

MICROCODED 
JOC 

ARITHMETIC 
JAG 
JAL 
JAM 
JAP 
JAZ 
JXN 
JXZ 

CONTROL 
JOR 
JOS 
JSR 
JSS 

RA + 700/RO = No Jump 

RA + 1000/RO = Jump 

SHIFT CLASS 

ARITHMETIC SHIFTS 
ALA 
ALX 
ARA 
ARX 

LOGICAL SHIFTS 
LLA 
LLX 
LRA 
LRX 

ROTA TE SHIFTS 

RLA 
RLX 
RRA 
RRX 

RA + 1150 + 150n/RO 

F-12 ----------------~ 

COMPUTER AUTOMATION, INC. ~ 

Table F-3. LSI-2 Execution Time Algorithms (Cont'd) 

DOUBLE REGISTER LOGICAL SHIFTS 
LLL 
LLR 

DOUBLE REGISTER ROTATE SHIFTS 
LRL 
LRR 

RA + 2350 + 150n/RO 

REGISTER CHANGE CLASS 

A REGISTER CHANGE 
ZAR 
ARP 
ARM 
CAR 
NAR 
!AR 
DAR 

X REGISTER CHANGE 
ZXR 
XRP 
XRM 
CXR 
NXR 
IXR 
DXR 

OVERFLOW REGISTER CHANGE 
sov 
ROV 
cov 
SAO 
sxo 
LAO 
LXO 
BAO 
BXO 

RA + 1000/RO 

RA + 1000/RO 

} 
} 

RA + 850/RO 

RA + 1300 + 150n/RO 
n is number of bits away from O to 15 

F-13 



COMPUTI:R AUTOMATION, INC. ~ 

Table F-3. LSl-2 Execution Time Algorithms (Cont'd) 

REGISTER CHANGE CLASS (Cont'd) 

MULTI-REGISTER CHANGE 
ZAX 
AXP 
AXM 
TAX 
TXA 
EAX 
ANA 
ANX 
NRA 
NRX 
CAX 
CXA 
NAX 
NXA 
!AX 
IXA 
IPX 
DAX 
DXA 
BCA 
BCX 
BSA 
BSX 
EIX 

RA + 1300/RO 
RA + 1300/RO 
RA + 1300/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1300/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1300/RO 
RA + 1300/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1000/RO 
RA + 1000/RO 

} RA • 1300/RO 

RA + 500/RO + normal time of instruction 
executed 

CONSOLE REGISTER 
!CA 
ICX 
ISA 
ISX 
OCA 
ocx 

} RA + 1600/RO 

CONTROL CLASS 

PROCESSOR CONTROLS 
HLT (STOP) 
NOP 

MODE CONTROLS 
SBM 
SWM 

} 
} 

RA + 1150/RO 

RA + 1000/RO 

F-14 

COMl'UTE R AUTOM ATION , INC. ~ 

Table F-3, LSl-2 Execution Time Algorithms (Cont'd) 

STATUS CONTROLS 

} SIA 
SIX 
SIN 
SOA 
sax 

INTERRUPT CONTROLS 

} CID 
CIE 
DIN } EIN 
PFE } PFE 
TRP 

RA + 1600/RO 

RA + 1600/RO 

RA + 850/RO 

RA + 1600/RO 

INPUT /OUTPUT CLASS 

CONTROL 
SEN 

SEA 
SEL 
SEX 
SSN 

UNCONDITIONAL WORD 
INA 
INAM 
INX 
INXM 
OTA 
OTX 
OTZ 

CONDITIONAL WORD 
RDA 
RDAM 
RDX 
RDXM 
WRA 
WRX 
WRZ 

UNCONDITIONAL BYTE 
IBA 
lBAM 
IBX 
IBXM 

RA + 1550/RO no skip 
RA + 1900/RO skip 
RA + 1600/RO 
RA + 1600/RO 
RA + 1600/RO 
RA + 1900/RO no skip 
RA + 1700/RO skip 

RA + 1600/RO 

RA + 2050/RO successful 

RA + 2000/RO unsuccessful repeat period 

} RA + 1600/RO 

F-15 



COMPUTER AUTOMATION , INC. ~ 

Table F-3. LSI-2 Execution Time Algorithms (Cont'd) 

CONDITIONAL BYTE 
RBA 
RBAM 
RBX 
RBXM 

BLOCK 
BIN 

BOT 

' H RA + 2050/RO successful 

RA + 2000/RO unsuccessful repeat period 

2RA + 400/RO + 1550/RO + WA + 850/WO 
+ (WA + 2000/WO) (W-1) 

3RA + 2 (400/RO) + 1300/RO + 
+ (RA + 2050/RO) (W-1) 

NOTE 
Time given assuming device sen se response is present. If not present, 
BIN and BOT retest for ready every 850 ns. 

AUTOMATIC 
AIN/AIB 

AOT/AOB 

3RA + 3WA + 400/RO + 800/RO 
+ 500/RO* + 550/WO + 1700/WO 

+ 550/WO if inline, 
or + 400/WO if interrupt 

4RA + 2WA + 400/RO + 800/RO 
+ 500/RO* + 2 (550/WO) 

+ 1750/RO inline, 
or + 1600/RO if interrupt 

* Not Affected By Interleave 
** (1050/WO) if WC = 0 

F-16 

COMl'UTER AUTOMATION. INC. ~ 

F.5 ALPHA LSl FAMILY INSTRUCTION EXECUTJON TIMES 

The execution times ·Of the ALPHA LSI instruction set is listed in table F-7. The 
Memory Reference instruction address calculation times for the LSI- J and LSI-2 
are listed in tables F-4 and F-5, respectively. The LSI-2 Stack Instruction Address 
calculation times are listed in table F-6. 

F. 6 MAXIMUM 1/0 TRANSFER RATES 

The maximum 1/0 transfer rates for the LSI-1 and LSI-2 computers are listed in 
table F-8. 

Table F-4. LSI-1 Memory Reference Instruction Address Calculation Times 

DIRECT SCRATCHPAD 
DIRECT RELATIVE 
DIRECT INDEXED 
INDIRECT SCRATCHPAD 
INDIRECT RELATIVE 
INDIRECT INDEXED 

2.2 
2.2 
3.8 
3. Si 
1. 6 + 3. Si 
1.6 + 3.8i 

F-17 



COMPUT£R AUTOMATION, INC. 

Table F-5. LSI-2 Memory Reference Instruction Address Calculation Times 7 
MEMORY PROCESSOR ADDRESSING A1 A2 A3 A4 
TYPE MODE MODE 

direct ecratchpad 1.6 1.6 1.6 1. 75 
direct relative forward 1.6 1.6 1.6 1. 75 
dlrect relative backward 1.6 1.8 1.6 I. 9 

WORD direct indexed 1.6 1.6 1.6 1. 75 
lndirect scratchpad 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3. 2 + 1.6 (i-1) 
indirect relative forward 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.2 + 1.6 (1-1) 3. 2 + 1.6 (i-1) 
lndirect relative backward 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 
indirect indexed 3.2 + 1.6 (i-1) 3.2+1.6(i-l) 3.2 + 1.6 (i-1) 3.35 + 1.6 (i-1) 

CORE 1600 - 
direct scratchpad 1.6 1.6 1.75 2.05 
direct relative 1.6 1.6 1.6 1.75 
direct indexed I. 6 1.6 I. 75 2.05 

BYTE indirect scratchpad 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.35 + 1.6 (i-1) 
indirect relative forward 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.35 + 1.6 (i-1) 
indirect relative backward 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3.35 + 1.6 (i-1) 
indirect indexed 3.2 + 1.6 (i-1) 3.2 + 1.6 (i-1) 3. 2 + 1.6 (i-1) 3.55 + 1.6 (i-1) 

direct scratchpad I. 2 1.2 1.4 1. 7 
direct relative forward I. 2 1.2 1.4 I. 7 
direct relative backward 1.25 1.35 I. 55 1.85 

WORD direct indexed 1.2 L2 1.4 1. 7 
indirect scratchpad 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.& + 1.2 (i-1) 
indirect relative forward 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.6 + I. 2 (i-1) 
indirect relative backward 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.& + 1.2 (i-1) 
indirect indexed 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.6 + 1.2 (i-1) 2.9 + 1.2 (i-1) 

CORE 1200 
direct scratchpad 1.4 1. 5 1. 7 2.0 
direct relative 1.2 1.2 1.4 I. 7 
direct lndexed 1.4 1.5 I. 7 2.0 

BYTE indirect scratchpad 2.4 + 1.2 (i-1) 2.4 + I. 2 (i-1) 2.6 + 1. 2 (i-1) 2.9 + 1.2 (i-1) 
indirect relative forward 2.4+1.2(1-1) 2.4 + 1.2 (i-1) 2.6 + 1.2 (i-1) 2.9 + 1.2 (i-1) 
indirect relative backward 2.4+1.2(i-1) 2.4 + 1.2 (1-1) 2.6 + 1.2 (i-1) 2.9 + 1.2 (i-1) 
indirect indexed 2.5 + 1.2 (i-1) 2.6 + 1.2 (i-1) 2.8+1.2 (i-1) 3.l+l.2(i-1) 

direct scratchpad 1.08 1.18 1. 38 1.68 
direct relative forward 1.08 1.18 1. 38 1.68 
direct relative backward 1.23 1.33 I. 53 ·1.83 
direct indexed 1.08 1.18 1.38 1.68 

WORD indirect scratchpad 2.06 •· .98 (i-1) 2.06 + .98 (i-1) 2.16 + .98 (i-1) 2.46 + .98 (i-1) 
indirect relative forward 2.06 •· . 98 (i-1) 2.06 + .98 (i-1) 2.16 + .98 (i-1) 2.46 + .98 (i-1) 
indirect relative backward 2.06 •· . 98 (i-1) 2.06 + .98 (i-1) 2.li + .H (i-1) 2.46 + .98 (i-1) 
indirect indexed 2.16 •- .98 (i-1) 2.26 + .91 (i-1) 2.<M + .H (i-1) 2.76 + .98 (i-1) 

CORE 980 
direct scratchpad 1.38 1.+8 l.'8 1.98 
direct relative 1.08 1.18 1.38 1.68 
direct indexed 1.38 1.48 1.68 1.98 

BYTE indirect scratchpad 2.1' + .98 (i-1) 2.26 + .98 (i-1) 2.46 + .98 (i-1) 2.76 + .98 (i-1) 
indirect relative forward 2.11 + .98 (i-1) 2.2'8 + .M (i-1) 2.46 + .98 (i-1) 2. 76 + . 98 (i- I) 
indirect relative backward 2.16 + .M (i-1) 2.26 + .H (i-1) 2.46 + .98 (i-1) 2.76 + .98 (i-1) 
indirect indexed 2.36 + .98 (i-1) 2.46 + .98 (i-1) 2.66 + .98 (i-1) 2.96 + .98 (i-1) 

direct scratchpad 1.2 1.3 1. 5 1.8 
direct relative forward 1.2 1.3 1. 5 ,1.8 
direct relative bsckward 1.35 1.45 1.65 1.95 
direct indexed 1.2 1.3 1.5 1.8 

WORD indirect scratchpad 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.7 + 1.2 (i-1) 
indirect relative forward 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.4 + 1.2 (1-1) 2.7+1.2(i-1) 
indirect relative bsckward 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.4 + 1.2 (i-1) 2.7+1.2(i-1) 
indirect indexed 2.4 + 1.2 (i-1) 2.5 + 1.2 (i-1) 2.7 + 1.2 (i-10 3.0 + 1.2 (i-1) 

SC1200 
direct scratchpad 1.5 1.6 1.8 2.1 
direct relative 1.2 1.3 I. 5 1.8 
direct indexed 1.5 1.6 1.8 2.1 

BYTE indirect scratchpad 2.4 + 1.2 (i-1) 2.5 + 1.2 (i-1) 2. 7 + 1.2 (i-1) 3.0+1.2(i-l) 
indirect relative forward 2.4 + 1.2 (i-1) 2.5 + 1.2 (i-1) 2.7 + 1.2 (i-1) 3.0 + 1.2 (i-1) 
indirect relative backward 2.4 + 1.2 (i-1) 2.5+1.2(1-1) 2.7 + 1.2 (i-1) 3.0+1.2(1-1) 
indirect indexed 2.6 + 1.2 (i-1) 2.7+1.2 (i-1) 2.9 + 1.2 (i-1) 3.2+1.2(1-1) 

A1 is used with ADD, SUB, AND, IOR, XOR, EMA, LDA, LDX, CMS and IMS. 

A2 is used with STA, STX and JST . 

A:3 is used by JMP ~ly. 

A4 is used by SCM only. 
F-18 



COMPUTE R AUTOMATION , INC . ~ 

Table F-6. Stack Instruction Ad dress Calculation Times 

MEMORY ADDRESSING 
TYPE MODE S1 S2 S3 

direct access 4.8 4.9 5. 1 
CORE indexed access 4.8 4.9 5.1 
1600 auto-postincrement 6.4 6.5 6.7 

or auto-predecrement 

direct access 3.6 3.7 3.9 
CORE indexed access 3.65 3.75 3.95 
1200 au to-postincrement 4.8 4.9 5.1 

or auto-predecrement 

direct access 2.94 3.04 3.24 
CORE indexed access 3.19 3.29 3.49 
980 auto-postincrement 3.92 4.02 4.22 

or auto-predecrement 

direct access 3.6 3.7 3.9 
se indexed access 3.75 3.85 4.05 
1200 auto-postincrement 4.8 4.9 5.1 

or auto-prcdecrement 

S1 is used with ADDS. SUBS, ANDS, IORS, XORS, EMAS, LDAS, LDXS, DMSS 
and IMSS. 

S2 is uscd with ST AS, STXS, and JSTS. 

S3 is used by JMPS and SLAS. 

NOTE 

Times given in tables F-5, F-6 and under "LSI-2" in tabl c F-7 
apply to the LSI-2/20. LSJ-2/10 times are twice thosc giv~n 
for the 2/20 with a Cl600 memory, regardlcss of the mcmory 
used with the 2/10. 

F-19 



Table F-7. ALPHA LSI Family Instruction Execution Times 

LSl-1 LSI-2 
C1600 

MNEMONIC Cl200 
C980 C1600 Cl200 C980 SC1200 
SC1200 

MEMORY REFERENCE 

Arithmetic 
ADD A + 7 
ADDB 
SUB A + 7 
SUBB 

Logic, 
AND A+7 
ANDB 
IOR A + 7 A1 + 1.6 A1 + 1.2 A1 + 0.98 A1 + 1.2 
IOllB 
XOlt A + 7 
XOltB 

Data Transfer 
"!j LDA A + 5.4 

I 
I,,) LDAB 
0 LDX A + 5.4 

LDXB 

} 8 STA A + 5.2 
STAB ~ 
STX A + 5.2 A2+ 1.6 A2+ 1.2 A2+ 0,98 A2+ 1.2 c! 
STXB ~ 

;ig 
EMA A+9 A1 + 3. 2 A1 + 2.4 A1 + 1.96 A1 + 2.4 ! EMAB A1 + 3.2 A1 + 2.4 A1 + 1.96 A1 + 2.4 a 

Program Transfer ~ 
~ CMS A + 13.4 A1 + 1.6 A1 + (1.2 or 1.55) A1 + (0.98 or 1.53) A1 + (1.2 or 1.65) ö CMSB A1 + 1.6 A1 + (1.2 or 1.55) A1 + (0.98 or 1.53) A1 + (1.2 or 1.65) ~ 

IMSN A + 10.6 A1 + (3.0 or 3.3) A1 + (2.2 or 2.85) A1 + (1.86 or 2.61) A1 + (2.1 or 2.85) z IMSI A1 + (3. 0 or 3. 45) A1 + (2. 25 or 3. O) A1 + (2. 01 or 2. 76) A1 + (2.25 or 3.0) !"' 
JMP A + 4.8 A3 A3 A3 A3 
JSTN A + 8.4 A2 + 1.6 A2+ 1.2 A2 + 0.98 A2+ 1.2 

~ 

JSTI A + 6.8 A2+ 1.6 A2+ 1.2 ½ + 0.98 A2+ 1.2 
SCM A + 13.4 A4 + (1.6 + 2.05W) A4 + (1.2 + 2.0W) A4 + (0. 98 + 1. 98W) A4+ (1.2 + 2.lW) 
SCMB A4 + (1. 6 + 2. 05W) A4 + (1.2 + 2.0W) A4+ (,098 + 1.98W) A4+ (1.2 + 2.lW) 

DOUBLE WORD MEMORY REFERENCE 

DVD 3.8i + 120.2 13.35 12.74 12.44 12.9 
MPY 3.8i + 112.2 15.75 15.1 14.84 15.3 _J NRMl 3.8i + 19.8 + 9.6n 7 .05 + .&n 6.35 + .6n 6.07 + .6n 6.55 + .6n 
NRM2 3.8i + 23 + 9.6n 



Table F-7. ALPHA LSI Family Instruction Set Execution Times 

MNEMONIC C1600 Cl200 
LSl-2 

C980 SC1200 

STACK 
Arithmetic 

ADDS 
SUBS 

Logic 
ANDS 
IORS 
XORS 

s, + 1. 6 S1 + 1. 2 S1 + 0.98 

Data Transfer 
LDAS 
LDXS 
STAS S + 1.6 
STXS 
EMAS S + 3.2 

S + 1.2 

S + 2.4 

Program Transfer 
CMSS S1 + 1.6 
IMSS S1 + (3. 0 or 3. 3) 
JMPS S3 
JSTS S2 + 1.6 

Stack Control 
SLAS 

S1 + (1.2 or 1.55) 
S1 + (2.2 or 2.85) 
S3 
S2 + 1.2 

S + 0.98 s + 1.2 

S- + 1.96 s + 2.4 ! 
:ID 

S1 + (0.98 or 1.53) S1 + (1. 2 or 1. 65) ~ 
S1 + (1.86or 2.61) S1 + (2.1 or 2.85) i 
S3 83 a S2 + 0.98 S2 + 1.2 

z 
!" 

S3 83 

~ 



Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd) 

I LSJ-1 LSl-2 
ClllUU 

MNEMONIC C1200 
CII0 C1600 C1208 C980 SC1208 
SC1200 

BYTE JIIIIIDIATB 

AAI 5.4 1.6 1.4 1.38 1.5 
AXI 5.4 1.6 1.2 1.08 1.2 
SAi 5.4 1.6 1.4 1.38 1.5 
SXI 5.4 1.1 1.2 1.08 1.2 
CAI T 1.1 1.25 or 1.4 1.23 or 1.38 1.15 ar 1.5 
CXI ' 1.1 1.25 or 1.4 1.23 or 1.38 1.ISar 1.5 
I.AP 5.4 1.1 1.2 1.08 1.2 
LXP 1.4 1.1 1.i 1.08 1.1 
LAM 5.4 1.1 1.2 1.08 1.1 
LXII 5.4 1.1 1.1 1.08 1.2 

CONDITIOlfAL .JUIIP 

ltimocoded 
JOCl 15 

"!j JOC2 T I ~ ~ Arithmetic 
JAG T 

I JAP T 
JAZ T 
JAN T 
JAL T 1.1 1.lar 1,4 1.08 or 1.38 1.2 ar 1.5 
JAII T 

I JXZ T 
ID T 

Coatrol 
JOR T 
JOS T 
JSR T ~ 
JSS T 

SIIIFT 

IPJ lincle Rectater 
Aritbmetic Shifta 

ALA } ALX 3.8 + 1.la 1.1 + .15n ARA 1.55 + .15n 1.53 + .15n 1.15+ .Ha _J ARX 



Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd) 

LSl-1 I.SI-2 
C1600 

MNEMONIC C1200 
C980 Cl600 Cl200 C980 SC1200 
SC1200 

SHIFTS (Cont'd) 

' Logical Shifts 
LLA 
LLX 
LRA 
LRX 

> 3.8 + 1.6n 1.6+.15n 1.55 + .15n 1.53 + .15n 1.65 + .15n 
, Rotate Shifts 

RLA 
RLX 
RRA 
RRX ., 

Double Register 

1-lj 
Logical 

} I LLL 
N LLR 3.8 + 3.2n 2.8 + .15n 2.75 + .15n 2.73+.15n 2.85 + .15n c,.:, LRL 

LRR 8 
REGISTER CHANGE ~ 

~ Accumulator ,., 
ARM ! ARP a CAR ~ DAR ~ IAR 

~ NAR 
ZAR z 

> 5.4 1.6 1.4 1.38 1.5 !" 
Index 

ZXR 

IPJ XRP 
XRM 
CXR 
NXR 
IXR 
DXR 



Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd) 
LSI-1 LSI-2 
Cl600 

MNEMONIC Cl200 
C980 Cl600 Cl200 C980 SC1200 
SC1200 

REGISTER CHANGE 

Overflow 
sov } ROV 5.4 1.6 1.25 1.23 1.35 
COV 
SAO } sxo 7 1. 75 1. 7 1.68 1.8 
LAO 
LXO 
BAO ) 5.4 + 1.6n 1. 75 + 15n l.7+1.5n 1.68 + 15n 1.8 + 15n 
BXO 

Multi-Register 
ZAX 
AXP 7 1. 75 1. 7 1.68 1.8 
AXM 
TAX 5.4 1.6 1.4 1.38 1.5 

1-rj TXA 5.4 1.6 1.4 1.38 1.5 
I EAX 8.6 1. 75 1. 7 1.68 1.8 is:> 

""' ANA 5.4 } ANX 5.4 
NRA 7.0 I NRX 7.0 1.6 1.4 1.38 1.5 
CAX 5.4 
CXA 5.4 
NAX 5.4 1. 75 1. 7 1.68 1.8 
NXA 5.4 1. 75 1. 7 1.68 1.8 ! IAX } IXA i IPX 5.4 1. 6 1.4 1.38 1.5 
DAX a DXA 
BCA } BCX 1. 75 1. 7 1.68 1.8 

~ BSA 
BSX 
EIX 1.6 1.2 0.98 1.2 

IPJ Console Register 
!CA } ICX 
ISA 6.2 2.05 2 1.98 2.1 
ISX _J OCA 
ocx 



Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd) 

LSl-1 LSl-2 
Cl600 

MNEMONIC Cl200 
C980 Cl600 Cl200 C980 SC1200 
SC1200 

11.EGISTEII. CHANGE (Cont'd) 

IAH 
IIH 
IMH 
IPH 
IXH lndefinite OAH 
OLH 
OMH 
OPH 
OXH 

CONTROL 

Procea90r 
NOP } HLT 5.4 1.6 1.55 1.53 1.65 

trj 
STOP 

I WAIT lndefinite lndefinite lndefinite lndefinite lndefini te 
t-:> 
(.11 Mode Control 

SBM 5.4 1.6 1.4 1.38 1.5 

I SWM 5.4 1.6 1.4 1.38 1.5 

Status 
SIA } SIN ,. 
SIX 6.2 2.05 2 1.98 2.1 

~ SOA i sox 

lnterrupts a EIN 5.4 1.6 1.25 1.23 1.35 
DIN 7 1.6 1.25 1.23 1.35 
CIE } ~ CID 
PFE 6.2 2.05 2 1.98 2.1 
PFD 

~ 

TRP 

INPUT /OUTPUT 

Control 
SEN 7.8 2 or 2.35 1. 95 or 2. 3 1.93 or 2. 28 2.05 or 2.4 
SSN 7.8 2 .15 or 2 .35 2.lor2.3 2.08 or 2.28 2.2 or 2.4 
SEL } SEA 6.2 2.05 2 1.98 2.1 
SEX 



Table F-7. ALPHA LSI Family Instruction Execution Times (Cont'd) 

LSl-1 LSI-2 
Cl600 

MNEMONIC Cl200 
C980 Cl600 Cl200 C980 SC1200 
SC1200 

INPUT /OUTPUT (Cont' d) 

Unconditional Word 
INA 6.2 
INAM 7.8 
INX 6.2 
INXM 7.8 2.05 2 1.98 2.1 
OTA } OTX 6.2 
OTZ 

Condltlonal Word 
RDA 7.8 
RDAM 11 
RDX 7.8 
RDAM 11 2 .45 or 2.5 2.4 or 2.45 2.38 or 2.43 2.5 or 2.55 

1-rj WRA } I WRX 7.8 
N WRJ 0) 

Unconditional Byte 

} I IBA 7.8 
IBAM 9.4 2.05 2 l.H 2.1 
IBX 7.8 
IBXM 9.4 

Conditonal Byte 

} I RBA 11 
RBAM 12.6 2.45 or 2.5 2.4 or 2.45 2. 31 or 2.43 2,5or2.55 
RBX 11 
RBXM 12.6 

Block 
BIN 12.4+7.6W 5 + 2.25W 4.2 + 2.2W 3.94 + 2.18W 4,3 + 2.2W ~ 
BOT 12.4+7.8W 4.15 + 2.5W 4.1 + 2.45W 3.84 + 2.43W 4.2 + 2.55W 

Automatic IPJ AIB 25.6 } AIBI 22.4 9.95 7.9 6.98 8 
AIN 25.6 
AINI 22.4 
AOB 25.8 18.2 8.15 7.23 8.35 _J AOBI 22.6 10.85 8 7.08 8.2 
AOT 25.8 10.2 8.15 7.23 8.35 
AOTl 22.6 10.05 8 7.08 8.2 



COMPUTE R AUTOMATION . INC. ~ 

Table F-8. ALPHA LSI Family Maximum Data Transfer Rates 

LSl-1 LSl-2 
C1600 

1/0 MODE C1200 I 
CH0 CllOO C1200 C980 SC1200 
SC1200 

DMA (Non lnterleaved) same ae LSl-2 625,000 w/a 833,333 w/a 1,020,000 w/a 833,333 w/a 

DMA (lnterleaved) same aa LSl-2 1, 250..000. w /a l,,&09,000 w/s 1,686,666 w/s 1,666,66& w/s 

Block In 131,579 W/8 444,444 w/a 454,545 w/a 458,711 w/a 454,545 w/• 

Block Ou 131,579 w/• 400,000 w/a 408,163 W/8 411,522 w/a 392,156 w/a 

Proerammed In (Cond) Word 34,247 w/s 112,369 w/a 130,718 w/s 136,040 w/s 124,223 w/a 
Byte 34,247 b/s 112,359 b/a 125,896 b/s 130,718 b/s 119,760 b/s 

Programmed Out (Cond) Word 34,247 w/a 112,994 w/s 131,511 w/1 135,135 w/s 126,582 w/s 
Byte 34,247 b/a 112,994 b/a 126,!Ml2 b/a 129,870 b/a 122,222 b/s 

Programmed In (Memory) 24,631 w/b/a 71,942 w/b/s 85,108 w/b/a 92,678 w/b/s 82,987 w/b/s 

Programmed Out (Memory) 24,631 w/b/a 72,727 w/b/s 82,440 w/b/s 90,570 w/b/s 80,645 w/b/s 

DMC In 26,738 w /bl• 63,091 w/b/a 74,627 w/b/s 82,101 w/b/s 73,529 w/b/s 

DMC Out 26,738 w/b/s 62,111 w/b/s 73,260 w/b/s 81,766 w/b/s 71,684 w/b/s 

w/s = words per aeconda 
b/s = bytes per seconds 
w/b/a = words or bytes per aeconds 

NOTE 

Rates given under "LSI-2" apply to the LSl-2/20. For LSl-2/10 
transfer rates in 1/0 modes other than DMA, divide r ate given 
in C1600 column by 2, regardless of mcmory used with the 2/10. 
In DMA mode, maximum transfer rates are the same in both 
models. 

F '27 



COMl'Ult R AUTOMATION. INC. ~ 

Appendix G 

SOFTWARE SUMMARY 

G.l INTRODUCTION 

This appendix contains short usage summaries of the standard system support 
software offered by Computer Automation, Inc. 

Table G-1. Assembler Directives 

ABS 
Asterisk (*) 
BAC 
CALL 
DATA 
END 
ENDC 
ENT 
EQU 
EXTR 
IFF 
IFT 
MACH 
NAM 
ORG 
Period (.) 
REF 
REL 
RES 
RTN 
SAVE 
SET 
STOP 
TEXT 
TITL 
Up Arrow <f) 
WAIT 

Define Absolute Assembly 
Comment Line 
Byte Address Constant 
Subroutine Cell 
Data Definition (: Hex, 0 Octal , 'ASCII', Address) 
End of Assembly 
End of Conditional Assembly 
Subroutine Entry 
Equate Symbol 
Externa! Reference - Scratchpad 
Conditional Assembly if False 
Conditional Assembly if True 
Set Machine Assembly Mode 
Externa! Name Definition 
Define Origin 
Page Eject without Title 
Externa! Reference - Pointer 
Define Relocatable Assembly 
Reserve Storage 
Subroutine Return 
Save Presently Existing Symbol Table 
Set Symbol Redefinable 
Stop 
'ASCII Message' 
Page Eject with Title 
Pause 
Wait for Interrupt 

G-1 

G. 2 BOOTSTRAP 

To Enter: 

Set P =: nFF8 
Set WRITE mode 
Enter Data} 
D M Once per word epress 

To Display: 

Set P = :nFF8 
Set READ mode 
Depress M (Once per word) 

Loc TTY HSPT 

:nFF8 403B 4033 
:nFF9 7939 7931 
:nFFA 1357 1357 
:nFFB 7939 7931 
:nFFC 9C00 9C00 
:nFFD 0128 0128 
:nFFE 3145 3145 
:nFFF 0800 0800 

G.3 SOFTWARE OPERATION SUMMARY 

G.3.1 Autoload 

RESET 
Enter option control value in Console Sense Register: 

TTY HSPT 

COMl'UTE R AUTOMATION. INC. ~ 

MT Cassette Disk 
: 0 : 1 : 2 : 3 : 4 
: 8 : 9 :A :B :C 

To relocate (Load Rel), set X = load address 
For Load and Go, set SENSE Switch 
Ready Device 
AUTO 

G-2 



COMPUTER AUTOMATION. IN(. ~ -----. .------------------- COMPUTE R AUTOMATION. INC. ~ 

G.3.2 Binary Loader (BLD) 

Load BLD 
Set P = first location of BLD 
To relocate, set X = load address; en ter : 8 into Sense register 
Ready tape in reader (TTY or HSPT) 
RUN 

G. 3. 3 Binary Dump/Verify (BDP /VER) 

Load BDP /VER 
Set P = first location of BDP /VER 
Set A = Initial location 
Set X = Last location 
Enter option control value in Console Sense register: 

~ 
lnclude EOF Suppress EOF 
TTY HSPT TTY HSPT e 

Punch Abs : 0 : 1 : 2 :3 
Rel : 8 : 9 :A :B 

Verify Abs : 4 :5 :6 : 7 
Rel :C :D :E :F 

For transfer ad dress, set SENSE switch 
RUN 
Jf Halt (I = : 0802), set A = transfer address, RUN 

G-3 

G. 3. 4 Object Loader (LAMBDA) 

Load LAMBDA 
Set P = first location of LAMBDA 
Set A = Relocation Bias or zero 
Set X = Base Page Bias or zero 
Enter option control value in Console Sense register: 

Defined and Defined Undefined 
~ols Undefined Only Only Neither 

e TTY LP TTYI LP TTY I LP 
Library :0 : 1 : 2 I : 3 :4 I : 5 :6 
Unconditional :8 : 9 :A I :B :C I :D :E 

Ready tape in reader (TTY or HSPT) 
RUN 

G. 3. 5 BET A-4 Assembler 

Load BETA-4 
Set P = : 0100 
RUN 
Enter option control number in Console Sense Register: 

Device 

TTY 
Complete 
Listin 

Error 
Only 

Line Printer 
Complete Er ror 
Listin Only 

TTY :0 : 1 : 2 : 3 
HSP :4 
To repeat ass , a : 
To flag out-of-range memory reference instructions, set SENSE switch. 
Ready source in reader (TTY or HSPT) 
RUN 

G.3.6 BETA-8 Assembler 

Load BETA-8 
Set P = : 0100 
RUN 

Select Options 

~ SI= LO= BO= SD= P#= Enter 
B BATCH Error Error Error Error 
L Error Error Librarv Error Error 
X Er ror Error Onlv N/A Error Error 
0 Punch EOF No Listimr No Binarv No Save 1 
1 Keyboard TTY TTY Memorv 1 
2 TTY D.P. Error Unit 0 2 
3 HSPT Cent. HS Unit 1 1 
4 Card Rdr. Cent. TTY Unit 2 1 
5 Card Rdr. Cent. TTY Unit 3 l 

G-4 



COWUTER AUTOMATION. INC. ~ 

G. 3 . 7 OMEGA Conversational Assembler 

Load OMEGA 
Set P = : 0100 
RUN 
Command Summary (€! = space): 

>AF. 
>An. 

>B. 

>CinLnOn. 
>CIO. 

>DF. 
>Dn. 
>Dntlm. 

>Eh. 

>I. 

>LF. 
>Ln. 
>Lntlm. 

>PLTi!l@F. 
>PLmtlm. 
>Pmtlm. 
>PTmtlm. 

>Qn. 

>Rn. 

>Sn. 
>Sntlm. 

>T. 
>Tn. 
>XA. 
>XE. 
>XA2. or XE2. 
>XLA. or XLE. 

Add keyboard lines to buffer after last line . 
Add keyboard lines to buffer after line n. 

Clear the buffer . 

Connect devices . 
Punch EOF. 

Delete the last buffer line . 
Delete buffer line n. 
Delete buffer lines n through m. 

Set end of buffer to h (hexadecimal) and intialize OMEGA. 

Initialize OMEGA. 

List the last buffer line . 
List buffer line n . 
List buffer lines n through m. 

Punch the buffer with leader and trailer . 
Punch buffer lines n through m with leader. 
Punch buffer lines n through m. 
Punch buffer lines n through m with trailer. 

Set ADD function terminator character to n. 

Read source to line n and add to buffer . 

Read source to line n-1, add to buffer, and skip line n. 
Read source to line n-1, add to buffer and skip lines n 
through m. 

Reset tape line count to zero. 
Reset tape line count to n. 

Assemble. 
Assemble with ERROR only listing. 
Assemble starting with Pass 2. 
Suppress EOF for current assembly. 

Device Selection 

lnput: (I) 

0 = none 
1 = Teletype Keyboard 
2 = Teletype Paper Tape 
3 = High Speed Paper Tape 
4 = Card Reader 
5 = Memory (assemble) 

Object: (0) 

0 = none 
1 = Teletype Paper Tape 
2 = Error 
3 = High Speed Paper Tape 

List: (L) 

0 = none 
1 = Teletype 
2 = Data Products Printer 
3 = Centronics Printer 

G-5 

Cowumt AUTOMATION. INC. ~ 

G. 3. 8 Source Tape Preparation Program 

Load STP 
Set P = first location of STP 
RUN 

Command Summary (<i!= space): 

> AF. 
> An. 

> B. 

> CTT. 
> CRT. 
> CRP. 
> CTP. 

> DF. 
> Dn. 
> Dniin. 

> Eh. 

> I. 

> LF. 
> Ln. 
> Lntm. 

> PLT<i!lW 
> PLtntlm. 
> Ptntm. 
> PTtntm. 

> Qn. 

> Rn. 

> Sn. 
> Sntm. 

> T. 
> Tn. 

Add keyboard lines to buffer after last line. 
Add keyboard lines to buffer after line n. 

Clear the buffer. 

Connect teletype reader and teletype punch. 
Connect high speed reader and teletype punch. 
Connect high speed reader and high speed punch. 
Connect teletype reader and high speed punch. 

Delete the last buffer line . 
Delete buffer line n. 
Delete buffer lines n through m. 

Set end of buffer to h (hexadecimal) . 

lnitialize STP (clear buffer and set T to zero). 

List the last buffer line. 
List buffer line n. 
List buffer lines n through m. 

Punch the buffer with leader and trailer. 
Punch buffer lines n through m with leader. 
Punch buffer lines n through m . 
Punch buffer lines n through m with trailer. 

Set ADD function termination character to n. 

Read tape to line n and add to buffer . 

Read tape to line n-1 , add to buffer , and skip line n. 
Read tape to line n-1, add to buffer, and skip lines n 
through m. 

Reset tape line count to zero. 
Reset tape line count to n. 

G-6 



COMPUTE R AUTOMATION. INC. ~ 

G.3.9 Debug (DBG) 

Debug is a 'binary relocatable' program and, as such, may be loaded any place in 
memory. Transferring to the first location in Debug (enter start location of Debug 
into the P register and depress RUN) will initialize Debug to accept any of the Debug 
commands summarized below. 

Command Summary (@= space): 

>A. 
>Av. 

>Ba. 
>Ba,b. 
> Batlb. 
> Batlb ,c. 

> Calit>!ro. 

>Falit>©v. 

>Ia. 

>Ja. 

> Latlb. 

>Ma. 

>O. 
>Ov. 

> Patlb. 

>Rn. 
>Rnv. 

> Salit>©v. 
> Satlb©v©m. 

>T. 
>Tn. 

>X. 
>Xv. 

Display pseudo A register . 
Set pseudo A register to value v. 

Continue breakpoint to location a. 
Continue breakpoint to location (a or b) . 
Breakpoint from location a to b. 
Breakpoint from location a to location (bor c). 

Copy locations a through b at c and following. 

Fill locations a through b with value v. 

Inspect location a . 

Jump to location a. 

List contents of locations a through b. 

Modify memory starting at location a. 

Display pseudo O register . 
Set pseudo O register to value v. 

Print locations a through b. 

Display relocation register Rn . 
Set relocation register Rn to value v. 

Search locationa a through b for value v. 
Search for value v using mask word m. 

Enable console interrupt (TRAP). 
Enable console interrupt and enable interrupts 

Display pseudo X register. 
Set pseudo X register to value v. 

G-7 

COMPUTU AUTOMATION , INC. ~ 

G.3.10 Concordance (CONC) 

l.oad CONC 
Set P = : xlOO zero 
RUN 

Select Options: 

SI= 

R Repeat listing 
B BATCH 
1 Keyboard 
2 TTY 
3 HSR 
4 CR 
5 Unit 0 
6 Unit 1 
7 Unit 2 
8 Unit 3 

LO= 

L List 
1 TTY 
2 D.P. 
3 Cent. 

G-8 



Cowumt AUTOM ATION . INC. ~ 

G . 3. 11 OS Command Summary (DOS , MTOS and COS) 

1. 

2. 

3. 

COMMAND 

/ASsign 

/BAtch 

/BEgin 

RESPONSE 

unit=device [, unit=device ... J 
device 

address [, parameters ... J 
4. /CAncel 

5. /COmment 

6. /DAte 
*date 

[mm/dd/yy] 

7. /EXec program-name [, parameters ... J 
8. /JOb 

*date, time 

9. /LOad program-name 

10. /Ust 
*date, time 
*lu pu 

11. /NJob 
*JOB/NJOB time, current time 

12. /REsume 
*time 

[Parameters ... J 
13. /STatus 

*program-name, base page limits, memory limits , flag, time 
P register, A register , X register , CPU Status 

14. /Tlme 
*time 

[hh:mm: ss J 
15. /TYpe 

G-9 



COMPUT£ R AUTOMATION . INC. ~ 

Computer Handbook 
91-20400-00A2 
Supplement 1 
November, 197 4 

ERRATA SHEET 

Page 1-3, Section 1. 4 .1 

Fifth paragraph under "significant characteristics" should read: 

Computer cycle time is 1.6 microseconds for LSI-1, 300 nanoseconds for LSl-2/10 and 
150 nanoseconds for LSI-2/20. 

Page 9-24, Figure 9-14 

Figure 9-14, "State Counter and Decoder", is changed as shown in the rev i sed figure 9-14 
(attached). Previously MST- was pulled up only by the pullup resistor in the processor 
during DMA. MST- is now driven high by the active pullup of the DM8097 before 
disengaging the bus. This is done to prevcnt false memory cycles bccause of the slow 
rise time of MST-. 

Page 9-25, Figure 9-15 

The signal MST- was shown incorrectly in Figure 9-15 "DMA Transfer Timing". It is 
changed as shown in revised figure 9-15 (attached). 

Page F-18 

At the top of table F-5, add the following: 

See note , page F-19 

Page F-19 

Add the following not o: 

NOTE 

'I'imos givt•n i11 tnb l os F 5, F-11 and under "LSI-:'." in tnbl e F-7 
:1pply to t ho LSI :'./:!Il. LSI 2/10 t irnr-s ar c tw ico thosc g ivun 
for t lu- 2/20 w i t h a Cl(iOO momor-y . rcg·ardl<'SS ofI lu: 11H•mu1·y 
usud w i t h I lie :!./ 10. 

S-1 



COMPUTE R AUTOMATION . INC. ~ 

Page F-27 

Add the following note at the bottom of table F-8: 

NOTE 

Rates given under "LSl-2" apply to the LSI-2/20. For LSl-2/10 
transfer rates in 1/0 modes othcr than DMA, di vide rate given 
in C1600 column by 2, regardless of memory used with the 2/10. 
In DMA mode, maximum transfer rates ar o the same in both 
models. 

S 2 



Computer Handbook 
90-20400-00A2 
Supplement 2 
May 1975 

ADDENDUM 

JUMBO CHASSIS AND JUMBO POWER SUPPLY 

This addendum covers the optional Jumbo Chassis and Jumbo Power Supply for the LSI 
Computer family. The following paragraphs are added to Section 2 of the Computer 
Handbook: 

2.2.6.2 Jumbo Chassis 

The dimensions of the Jumbo Chassis are identical to those of the standard LSI chassis 
(see figure 2-1 in the Computer Handbook). The Jumbo Chassis operates with a separ­ 
ately mounted power supply rather than with an integrated supply as does the standard 
LSI chassis. The extra space allows the chassis to accommodate a larger motherboard 
and thereby handle eight, instead of four, full-card or joined half-card I/0 or 
memory modules. When the Jumbo Chassis is used as an expansion chassis, nine full­ 
card or joined half-card I/0 or memory modules can be accommodated. As an expansion 
chassis, the Jumbo Chassis can be used exactly as a standard chassis, as described in 
paragraph 2.2.6 of the Computer Handbock. 

The Jumbo motherboard (figure 1) has nine pairs of connectors numbered similarly ta 
the standard motherboard (figure 2-3 in the Computer Handbock). The connector pairs 

E,<pansion 
03 

r~ A:~ ---=-=---=c=,oo ===i=====i=='._____''==1~--- . r =~--~-~-~~_.___________, ClOO --- 
• . . I 

__ J 

r~:!~ ----- - --~200- --· U7 IN ~.: Kl00 ---=--=-::] r \_ - - - -~- -:: ---- r-- -=---=-===i===-----=::f~-------- 

.,J,T_ _ Intf'rr~pt 
Prlority,.h.iin 

DPO'I'- DMA Pdority 
Cha1n 

Figure 1. Jumbo Chassis Motherboard 
(viewed from rear of Jumbo Chassis) 

J4 l 

" [ 
,H, [ 

" [ 
" [ 
"' [ 

S2-l 



are identified as A, B, C, D, E, F, H, J and K with each connector identified as the 
100 or 200 side of the pair. A full-board processor plugs into the top connectors 
(Al00-A200) as in the standard motherboard. 

Integration information presented in paragraphs 2.2.1 through 2.2.6.1 of the Computer 
Handbook is valid for the Jumbo Chassis. The routing (wiring) scheme employed for 
the priority chains (DMA, memory banking, and interrupt) in the Jumbo Chassis is 
identical to that used in the standard LSI chassis, except that the motherboard in 
the Jumbo Chassis is equipped with more slots. Figure 1 illustrates the routing of 
priority chains and gives the associated signal rnnemonics and corresponding pin 
numbers. 

Connectors Jl, J2 and J3 are the same as shown for the standard LSI motherboard 
(figure 2-3 in the Computer Handbook). Power supply connector Fl00 is not present on 
the Jumbo motherboard. Power and power supply logic signals PFD- and 'l"I'LF- are 
received from the power supply through a cable connected to 12 single-pin connectors 
and one 12-pin connector (Jl0) on the side of the motherboard (figure 1). Pin assign­ 
ments of the power connectors areas follows: 

J4 Gnd JlO-A -12V Jl0-1"' Jll Gnd 
JS Gnd Jl0-B +sv Jl0-2 Jl2 +12V 
J6 +sv Jl0-C PFD- Jl0-3 

"'Gnd 
Jl3 Gnd 

J7 +sv Jl0-D TTLF- Jl0-4 Jl4 Gnd 
J8 Gnd JlO-E +5VH Jl0-5 Jl5 +sv 
J9 -12V JlO-F +12V Jl0-6 ~ Jl6 +sv 

2.2.9 Jumbo Power Supply 

The Jumbo Power Supply mounts in a standard 19-inch rack. It is approximately 5-1/4 
inches high and 18 inches deep. Its de outputs (maximum) are +5V, 36A; +5VH, 0.2A; 
+12V, 5.6A; and -12V, 10.7A. 

The power supply interconnects with the Jumbo Chassis by means of connectors on the 
rear panel of the power supply that receive power cables from the Jumbo Chassis (see 
figure 2). 

Jumbo 
Chassis 

Power 
Supply 

0 Fuse 
0 AC Switch 

Rear View 

Figure 2. Jumbo Chassis and Power Supply 

S2-2 



One cable (to 6-contact connector Jl02) carries the ac voltage used to power the fans 
in the Jumbo Chassis. The other cable (to 37-contact connector JlOl) carries the de 
voltages required by the Jumbo Chassis. Both cables are 5-1/2 feet long. 

A fan mounted on the left side of the power supply (as viewed from the front) provides 
cooling airflow through the power supply enclosure. The power supply is equipped 
with a 6-foot ac line cord. 

2.2.9.l Power Line Conversion 

The ac power application information in paragraph 2.2.7 of the Computer Handbook is 
valid for the Jumbo Power Supply. 

Strapping at the terminal board of the power transformer of the Jumbo Power Supply 
can be reconfigured to permit the power supply to be operated from a power line 
voltage range other than the line voltage range ordered at purchase. Strapping 
procedures are given below which effect power line conversion. One of four voltage 
ranges may be selected by employing the appropriate strapping procedure. For an 
operating range of 90 to 121 volts, perform steps 1, 2, 3, 4, Sa, 6, and 7. For an 
operating range of 103.5 to 139.7 volts, perform steps 1, 2, 3, 4, 5b, 6, and 7. For 
an operating range of 180 to 242 volts, perform steps 1, 2, 3, 4, Se, 6, and 7. For 
an operating range of 207 to 279.4 volts, perform steps 1, 2, 3, 4, 5d, 6, and 7. 

Step 1 

Step 2 

Turn power off and remove the line cord from the ac power source. 

Remove the cover of the power supply by removing the 18 screws which 
secure it. The cover is configured as an inverted "U" to form the 
top and two sides of the power supply; the 18 screws are located at 
the lower sides, at the top rear edge, and at the side and top edges 
of the front panel. 

Step 3 Locate the power transformer and its terminal board. The transformer 
is located directly behind the front panel of the power supply at 
approximately the center of the panel. The terminal board is attached 
to the side of the transformer (see figure 3). 

0 ,-- 
1 

, I 
'L 
0 

0 
-1 

I 
I 

__ J 
0 

(CCNEI< REM<NEDJ 

Figure 3. Power Transformer Terminal Board (TB101) 

Step 4 Remove the two jumper wires (which are equipped with slip-on con­ 
nectors) from the terminals of the terminal board. 

Step 5 a Establishing a 90- to 121-volt Operating Range 

Step 5 a 1 Attach one of the jumper wires to terminals 2 and 5; attach the 
remaining jumper wire to terminals 3 and 6. 

S2-3 



----------- ComputerAutamallon ~ 

Step 5 a 2 Attach the white wire (which is also equipped with a slip-on con­ 
nector) to terminal 2, if it is not already attached to terminal 2. 

Step 5 a 3 Replace the fuse in the fuse holder at the rear of the power supply 
with a fuse rated at 15 amperes, 250 volts (Buss MDA 15), if a fuse 
of this rating is not already in the fuse holder. The replacement 
fuse is not supplied. 

Step 5 a 4 Proceed to step 6 below. 

Step 5 b Establishing a 103.5- to 139.7-volt Operating Range 

Step 5 b 1 Attach one of the jumper wires to terminals 1 and 4; attach the 
remaining jumper wire to terminals 3 and 6. 

Step 5 b 2 Attach the white wire (which is also equipped with a slip-on con­ 
nector) to terminal 1, if it is not already attached to terminal 1. 

Step 5 b 3 Replace the fuse in the fuse holder at the rear of the power supply 
with a fuse rated at 15 amperes, 250 volts (Buss MDA 15), if a fuse 
of this rating is not already in the fuse holder. The replacement 
fuse is not supplied. 

Step 5 b 4 Proceed to step 6 below. 

Step 5 c Establishing a 180- to 242-volt Operating Range 

Step 5 c 1 Attach one of the jumper wires to terminals 3 and 5. (The rema1n1ng 
jumper wire is not needed; however, it should be saved as a spare. 
If it is necessary at some later time to convert to the 90- to 121- 
volt or 103.5- to 139.7-volt operating range, the spare jumper wire 
will be needed. It is suggested that the ends of the spare jumper 
wire be attached to the two upright lugs of terminal 1 for convenient 
storage.) 

Step 5 c 2 Attach the white wire (which is also equipped with a slip-on con­ 
nector) to terminal 2, if it is not already attached to terminal 2. 

Step 5 c 3 Replace the fuse in the fuse holder at the rear of the power supply 
with a fuse rated at 8 amperes, 250 volts (Buss MDA 8), if a fuse of 
this rating is not already in the fuse holder. The replacement fuse 
is not supplied. 

Step 5 c 4 Proceed to step 6 below. 

Step 5 d Establishing a 207- to 279.4-volt Operating Range 

Step 5 d 1 ·Attach one of the jumper wires to terminals 3 and 4. (The remaining 
jumper wire is not needed; however, it should be saved as a spare. 
If it is necessary at some later time to convert to the 90- to 121- 
volt or 103.5- to 139.7-volt operating range, the spare jumper wire 
will be needed. It is suggested that the ends of the spare jumper 
wire be attached to the two upright lugs of terminal 1 for convenient 
storage.) 

S2-4 



Step 5 d 2 Attach the white wire (which is also equipped with a slip-en con­ 
nector) to terminal l, if it is not already attached to terminal l. 

Step 5 d 3 Replace the fuse in the fuse holder at the rear of the power supply 
with a fuse rated at 8 amperes, 250 volts (Buss MDA 8), if a fuse of 
this rating is not already in the fuse holder. The replacement fuse 
is not supplied. 

Step 5 d 4 Proceed to step 6 below. 

Step 6 Install the cover of the power supply. 

Step 7 Connect the line cord to the appropriate source of power, then turn 
power on. 

S2-5 



Computer Handbook 
90-20400-00A2 
Supplement 3 
May, 1975 

ADDENDUM 

MegaByter LSI-2/60 

The MegaByter LSI-2/60 isa high-speed processor with an enhanced, widc-ranging 
instruction set that includes features optimized for real-time, communications, and bu sin ess 
applications. 

The software, input/output and mechanical interfaces of the LSI-2/60 are upward compatible 
with LSI-2/20 and LSI-2/10 computers. The LSl-2/60's instructions perform complex 
functions that normally require subroutines in other computers. The result is shorter 
programs which take less memory and operate faster. 

The LSl-2/60 is described here :i..1 reference to specific paragraphs of the Computer Hand­ 
book, 20400, that have changed or expanded as a result of the extended instruction set 
associated with the LSl-2/60. The information presented below, which describes additional 
instructions and modifications to instructions already existing in the Computer Handbook, 
is relevant only to the LSl-2/ 60. Note that the instruction set as currently presented 
in the Computer Handbook remains valid for the LSl-2/20 and LSl-2/10 computers. 

4. 2. 3 Arithmetic Memory Reference Instructions 

The instructions ADX, ADXB, SBX and SBXB are two-word instructions that include a 
memory reference address operand. The operand may be multilevel indirect for word 
mode only. For byte mode, the operand is always a byte address. Note the instruction 
codes for word mode are the same as for byte mode. To operate on bytes, the byte mode 
flag must be set. Operation of these instructions is sim ilar to the standard memory 
reference instructions. The format of these instructions is shown below: 

[ LABEL] OPCODF. [*],OPERAND 
No Operator = Direct Actdressing 
* = lndirect Addressing (multi- lev el) 

[ coMMENTs] I 

ADX 

ADXB 

SBX 

SBXB 

ADD TO X. Adds contents of effective memory location to contents of 
X register. OV is set if arithmetic overflow occurs. 

ADD TO X BYTE. Adds contents of effective byte location to contents 
of X register. OV is set if arithmetic over-flow occurs. 

SUBTRACT FROM X. Subtracts contents of effective memory location 
from contents of X register. OV is set if arithmetic overflow occurs. 

SUBTRACT FROM X BYTE. Subtracts contents of effective byte location 
from contents of X register. OV is set if arithmetic overflow. occurs. 

S3-1 



4. 2. 5 Data Transfer Memory Reference Instructions 

The instructions EMX and EMXB are two-word instructions that include a memory ref erence 
address operand. The operand may be multilevel indirect for word mode only. For byte 
mode, the operand is always a byte address. Note the instruction codes for word mode 
are the same as for byte mode. To operate on bytes, the byte mode flag must be set. 
The se instructions operate similar to the standard memory reference instructions. The 
format of these instructions is shown below: 

[ LABEL] OPCODE [ * JoPERAND 
No Operator = Direct Addressing 
* = Indirect Addressing (multi-level) 

[coMMENTs] 

EMX 

EMXB 

EXCHANGE MEMORY AND X. Simultaneously stores contents of X register 
in effective memory location and loads contents of effective memory location 
inta X register. 

EXCHANGE MEMOR 'i AND X BYTE. Simultaneously stores contents of LS 
byte of X register in effective byte location and loads contents of effective 
byte location inta LS byte of X register. MS byte of X register is reset to 
zero. 

A bit in memory is addressed by two operands. The first operand is the word address 
of the word containing the bit to be operated on. The second operand is the bit position 
in the word. The word address (defined by the second word of the instruction) may 
be optionally indirect. The bit position within the word is contained in the operand 2 
field of the OP code and has the limits zero through fifteen corresponding to the bit positions 
0 through 15. Addressing is word mode only (not affected by byte mode flag) and multilevel 
indirection is allowed. The format of these instructions is shown below: 

[ LABEL] OPCODE [ * JoPERAND 1, OPERAND2 
No Operator = Direct Addressing 
* = lndirect Addressing (multi-level) 

[ COMMENTs] 

MSB MEMORY SET BIT. Sets addressed bit in memory to 1 and copies old content 
of addressed bit into OV flag. 

MRB MEMORY RESET BtT. Sets addressed bit in memory to O and copies old content 
of addressed bit into OV flag. 

MCB MEMORY COMPLEMENT BIT. Complements a~rlressed bit in memory and 
copies old content of addressed bit into OV nag , 

MTB MEMORY TEST BIT. Copies content of addressed bit in memory into OV flag. 

S3-2 



4. 2. 6 Program Transfer ,Memory Reference Instructions 

The format of the program transfer memorv reference instructions described below is 
as follows: 

[LABEL] OPCODE [ *l@l*@]OPERAND 

No Operator = Direct Addressing 
* = Indirect Addressing (multi-level) 
@ = Indexed Addressing 

*@ = lndirect Postindexed Addressing (multi-level) 

[coMMENTS] 

JST JUMP AND STORE. The J::;T instruction is a one-word instruction which 
has been redefined such that it will allow one instruction to be executed 
after the jump is taken before any interrupt is serviced. This allows reentrant 
coding of subroutines by inhibiting interrupts long enough to save the contents 
of the P register. The effect of this feature adds the execr+ion time of the 
next instruction to interrupt latency which, in previous irn pi ementations, 
was only the execution time of the JST instruction itself. T'hi s instruction 
operates in word mode only and is independent of the byte mode flag. Indirect 
(*), indexed (@), and indirect postindexed (*@) addressing are allowed. 

DMS DECREMENT MEMORY AND SKIP. The DMS instruction isa two-word instruc­ 
tion. Indirect (*), indexed (@), and indirect postindexed (*@) addressing are: 
allowed. If indexing is defined (index bit, IR06, is on), the X register will be 
added to the final memory address to perform post indexing. When executed, 
the contents of the memory location are decremented by one. If the instruction 
was used as an interrupt instruction and the location was decremented to 
minus one, then an echo is generated to the interrupting device. If the in­ 
struction was used as an inline instruction and the location was decremented 
to minus one, a one-place skip occurs. This instruction operates in word 
mode only and is independent of the byte mode flag. 

4. 4 STACK INSTRUCTIONS 

The stack instructions permit the user to establish an unlimited number of simultaneous 
stacks. A stack can start at any address and fills memory from that position toward lower 
memor y (decreasing addresses). The stack instructions themselves provide stack boundary 
limit testing for overflow . 

Stack instructions occupy two consecutive words in memory and operate in word mode 
only, independent of processor status. The first word contains the instruction, while 
the second word contains the optionally multilevel indirect addr ess of the stack pointer. 

Four stack instructions (described below) facilitate interrupt processing and subroutine 
calls: 

JSKR Jump and Stack Registers 
JSKS Jump and Stack Status 
RTNR Return Registers 
RTNS Return Status 

These additional instructions do not permit indirect addressing of the stack pointer. 

S3-3 



The format of all stack instr uettons , except JSKR, JSKS, RTNR, and RTNS, is as follows: 

[ LABEL] OPCODE [*]oPERAND[,AM] • [coMMENTs] 

AM = No Operator = Direct Access 
- = PUSH (stack pointer decremented prior to access) 
+ = POP (stack pointer incremented after access) 
@ = Indexed Addressing 
* = lndirect Addressing (multi-level) 

4. 4. 1 . 5 Multilevel Indirect Addressing 

Multilevel indirect addressing of the stack pointer may be used with all stack instructions, 
except JSKR, JSKS , RTNR, and RTNS . If, for example, a subroutine has been called 
by a JSKS or JSKR, then parameters may be accessed irtdirectly through the stack using 
the value of P that was placed on the stack. If the pop mode of addressing is used (Auto 
Increment), then after the parameter has been accessed , the P value on the stack is incre­ 
mented so that a return can be made without having to modify the P value directly. See 
the following example. 

Main 
Program 

y 
Y+2 
Y+3 
Y+4 

JSKS 
DATA 
DATA 

l 
SUB 
A 
B 

Subroutine 

l 
SUB DATA STKPT 

LDAS *STKPT ,+ 

i 
LDAS *STKPT ,+ 

l STKPT 
RTNS STKPT 

P in the stack is equal to Y +2 before the subroutine executes and is equal to Y +4 at the 
time that the RTNS returns to the next mainline instruction. 

4. 4. 5 Program Transfer Stack Instructions 

The format of the JSKR, JSKS, RTNR, and RTNS instructions is as follows: 

Stack 

FULL 
FULL 
FULL 

p - 

STACK 

[LABEL] OPCODE OPERAND[, CNT] [ COMMENTS] 

CNT = Temporary Cell Count 

S3-4 



JSKR JUMP AND STACK REGISTERS. The JSKR instruction will stack information 
on any stack in memory in the order X, A, STATUS , and P, as shown in 
figure 1. The overflow and byte mode flags will be unconditionally reset. 
The stack address pointer is updated after the stack operation. 

The first word of the instruction contains an OP code and the second word 
contains an address pointer . This address pointer points to a location in 
memory containing the location of the stack pointer address. After all elements 
are stacked, a jump to the stack pointer addr-ess plus one is taken. See 
illustration below. 

Main 
Program 

l 
JSKR 

l 
JSKS 

RTNR 

RTNS 

su 3 

Subroutine 

SUB DATA 

RTNR 

STKPT 

STKPT 

If this instruction is used as an interrupt instruction, after all elements have 
been stacked and before the jump, the interrupt flag is unconditionally turned 
off. 

JUMP AND STACK STATUS. The JSKS instruction is identical to the JSKR 
instruction, except that only STATUS and P are stacked. 

RETURN REGISTERS,. The RTNR instruction will fetch information from a 
stack in memory in the order P, STATUS , A, and X, as shown in figure 1. 
The stack address pointer will be updated after the stack fetch operation. 

lnterrupts will be enabled and the OV and byte mode flags will be loaded 
with the value of the corresponding bits contained in the status word. Even 
though the status word contains SREG and SEN SE switch information, it 
is not presented to the console for storage; therefore, the SREG and SEN SE 
switches will not be affected. 

The first word of the instruction contains an OP code and the second word 
contains an address pointer called the stack pointer address. The stack 
pointer address contains the address of the stack address pointer. 

RETURN STATUS . The RTNS instruction is identical to the RTNR instruction, 
except that only STATUS and P are fetched. 

When either the JSKR or JSKS instruction is used, one or more temporary cells may be 
stored on the stack ahead of the regular stacked information (see the illustration below) . 
The optional count field of the instruction is available for the user to specify the req u i red 
number of ternporary cells. To specify the number of tempor-ary cells, enter the nu nber 
in the CNT field of the instruction format shown above. For JSKR as many as four 

S3-5 



,1 Full ' 
SAP Points Here Full 

Empty 

Empty 

Empty Increasing 

Empty Memory Addrcsses 

Empty 

Empty 

' 

I 

Empty 

Stack Address Pointer 

Stack Before A JSKR or 
After a RTNR 

,J 

Full 
Full 

X 

A lncreasing 

Status Memory Addresses 

SAP Points Here p 

Empty 

Empty 

t 

Empty 

Stack Address Pointer 

Stack after a JSKR or before a RTNR 

Figure 1. Operation of JSKR and RTNR Instructions 

S3-6 



temporary cells may be used. For JSKS as many as six temporary cells may be used. 
The corresponding RTNS or RTNR instructions must have the same count field. These 
temporary cells are stored ahead of the register storage such that the following order 
applies in storage from high to low memory: Temporary Cells, X, A, STATUS , P for 
JSKR and Temporary Cells, STATUS, P for JSKS. Temporary cells that are created 
within the stack by the temporary cell count are not disturbed by the JSKR, RTNR, JSKS, 
and RTNS instructions. 

FULL 
FULL 

TEMP CELL 1 
TEMP CELL 2 

X 
A 

STATUS 
p ~ 

EMPTY 
; / ,-.,, 

EMPTY 
EMPTY 

STACK POINTER - 

OR 

FULL 
FULL 

TEMP CELL 1 
TEMP CELL 2 
TEMP CELL 3 

STATUS 
- 

p ,.___ 
EMPTY ~ ,,.. ~ .... 
EMPTY 
EMPTY 

STACK POINTER ,..._ 

FOR JSKR FOR JSKS 

One use of temporary cells is described in the following situation. A JSKR instruction 
is executed to stack the contents of the A and X registers onto a stack. However, reloading 
of the A and X registers with their former contents upon return to the called routine is 
not desired. Therefore, an RTNS instruction with a temporary cell count of 2 specified 
is executed to accomplish the return to the called routine. The former contents of the 
A and X registers which are stored in the stack are not restored to the A and X registers, 
the current (new) contents of the A and X registers are not disturbed, and the value of the 
stack address pointer now points to the stack address immediately following the location at 
which the original value of X was pushed onto the stack by the JSKR instruction. 

In another situation, if a JSKS instruction with two temporary cells specified is executed 
to call a subroutine, the subroutine output values are placed in the temporary cells. 
An RTNR instruction may be executed to accomplish the return to the calling routine, 
where the values in the two temporary locations in the stackare restored to the A and 
X registers. 

NOTE 

RTNR and RTNS may be located directly ahead of a subroutine 
entry point so that they can share the same stack pointer address 
cell used by a JSKR or JSKS call to the subroutine . 

4. 4. 7 Stack Overflow Protection 

The stack overflow protection feature has been added to all stack instructions that push 
information onto a stack. To use this feature, the stack address pointer must reside immed­ 
iately below the last available stack cell as shown. 

S3-7 



SAP+N 

SAP+N-1 

SAP+2 

SAP+l 

SAP 

First Stack Cell 

r,-!J ,,~ 

Last Stack Cell 

Stack Address Pointer 

Increasing Mcmory 

Addresses 

Stack Overflow Feature 

A stack overflow is the result of attempting to push data onto a stack where the Stack 
Address Pointer is decremented to the address of the stack pointer plus one. One empty 
cell is always left to allow for saving P should a JSKR or JSKS subsequently overflow. 
There is no protection from popping from an empty stack. 

4. 4. 7 .1 All Push Mode (Auto Decrement) Stack Instructions Except JSKR and JSKS 

When a stack instruction would cause the stack address pointer to reach the value of 
the address of the stack address pointer plus one, the stack and stack address pointer 
are not altered, the stacking operation is aborted, and a stack overflow trap is generated. 
The overflow trap causes an interrupt to location : 8 in memory. Note that this interrupt 
is outside of EIN/DIN control. If a JST is used as the interrupt instruction, the address 
of the aborted stack instruction is stored in the memory cell defined by the JST. 

Note that the aborted instruction is not executed, but may be executed proper ly once 
the stack overflow condition has been corrected (e. g. , by a recovery routine which remove 
elements from the stack to some other temporary location) . 

4. 4. 7. 2 Jump and Stack Status or Jump and Stack Registers 

When a JSKR or JSKS instruction would cause an overflow (all required variables will 
not fit on the stack and still leave ene or more vacant cells), the current location in memory 
that is normally stacked as the program counter (P) is placed into the stack at SAP+l. 
The stack address pointer is not affected by a JSKR or JSKS if an overflow occurs. After 
P has been sav ed, the stack overflow trap causes an interrupt to location : 8 as for other 
stack instructions that overflow. Note that a JST at the inter rupt location will store the 
value of P associated with the actual location of the JSKR or JSKS, while the value of 
P saved in the stack is associated with a mainline program. In this way, if a JSKR or 
JSKS used as an interrupt instruction causes an overflow, both the mainline return address 
and the location of the off ending instruction are available for a recovery routine. The 
aborted instruction is not executed, but may be executed proper ly once the stack overflow 
condition has been cleared. 

The following three examples show how the CPU responds to stack overflow. The first 
examplc shows an inline stack instruction (excluding JSKR and JSKS) overflow situation 
and the socond shows an irrli nc JSKR (note that JSKS operates in the same way) 

S3-8 



instruction overflow. In each case, the instruction has attempteC1 to push some information 
onto a stack, the trap has occurred to location : 8 and the JST has been executed to 
the Stack Error Recovery routine, SER. Notice that the stack pointer has not been 
affected, and the address stored in the return location of the SER routine points back 
to the offending stack instruction. Notice also that for the JSKR instruction, the address 
of the JSKR instruction is also pushed onto the stack at location SAP+l. The third example 
shows a JSKR (note that JSKS operates in the same way) interrupt instruction overflow. 
In this case, an interrupt has been generated to the JSKR, the JSKR has then attempted 
to push information onto the stack, the trap has occurred to location : 8, and the JST 
has been executed to the Stack Error Recovery routine, SER. Notice that in this example 
the mainline return location for the original interrupt has becn pushed onto the stack 
at location SAP+l and that the address of the JSKR instruction is stored in the return 
location of the SER routine. Note also that the stack pointer has not been affected. 

Examples of Stack Overflow 

Example I. Inline Stack Instruction (excluding 
JSKR and JSKS) Overflow 

Main 
Program 

l 
Stack A.fter Trap Occurs 

p 
P+l 

STAS STKPT ,- 

1 ~(trap occurs) 

[ FULL 
EMPTY 
SAP+2 

SAP+2 
SAP+l 
SAP 

Stack Location Definition 
STKPT DATA SAP 

Trap Interr-upt Location 

: 8 JST SER 

r: tack Error Recovery Routine 

SER [contents = P] 

l 
RTN SER 

S3-9 



Example Il. Inline JSKR or JSKS Instruction Overflow 

Main 
Program 

l 
p 

P+l 
JSKR SUB 

t \__(!rap occurs) 

Trap lnterrupt Location 

Stack After Trap Occurs 

SAP+4 
SAP+3 
SAP+2 
SAP+l 
SAP 

FULL ..... FULL 
EMPTY 

Contents = P 
- SAP+3 

Stack Error Recovery Routine 

: 8 JST SER SER [ Contents = P] 

l 
RTN SER 

Example III. Interrupt JSKR or JSKS Instruction Overflow 

Main 
Program 

M 

M+l 

Interrupt Vector Location 
Y JSKR SUB 

Interrupt _/ I 
(trap occurs) 

Trap lnterrupt Location Stack Error Recovery Routine 

: 8 JST SER SER 

Stack After Trap Occurs 

SAP+4 
SAP+3 
SAP+2 
SAP+l 
SAP 

,---+ FULL 
EMPTY 

Contents = M+l 
- SAP+3 

[ Contents = Y] 

l 
RTN SER 

S3-10 



4. 8 REGISTER CHANGE INSTRUCTIONS 

The following new instructions added to section 4. 8 are one-word instructions . 

4. 8. 2 A Register Change Instructions 

The format of these instructions is shown below: 

[ LABEL] OPCODE BIT NO. [ COMMENTS] 

A bit in A is addressed by a parameter in the operand field (BIT NO.) of the instruction 
and has the limits zero through fifteen corresponding to bit positions 0 through 15. 

ASB A SET BIT. Sets addressed bit in A register to 1 and copies old content 
of addressed bit into OV . 

ARB A RESET BIT. Sets addressed bit in A register to O and copies old content 
of addressed bit inta OV . 

ACB A COMPLEMENT BIT. Complements addressed bit in A register and copies 
old content of addressed bit inta OV. 

ATB A TEST BIT. Copies content of addressed bit in A register inta OV. 

4. 8. 3 X Register Change Instructions 

The format of these instructions is shown below: 

OPCODE BIT NO. [coMMENTS] I 

A bit in X is addressed by a parameter in the operand field (BIT NO.) of the instruction 
and has the limits zero throughfifteen corresponding to bit positions O through 15. 

XSB X SET BIT. Sets addressed bit in X register to 1 and copies old content 
of addressed bit inta OV. 

XRB X RESET BIT. Sets addressed bit in X register to O and copies old content 
of addressed bit inta OV. 

XCB X COMPLEMENT BIT. Complements addressed bit in X register and conics 
old content of addressed bit inta OV. 

XTB X TEST BIT. Copies content of addressed bit in X register inta OV. 

S3-11 



4. 8. 5 Multi-Register Change Instructions 

The format of these instructions is shown below: 

[ LABEL] OPCODE [ COMMENTS] 

AXA ADD X TO A. Adds contents of A and X registers and stores result in A regis­ 
ter. OV flag is set if arithmetic overflow occurs. 

AAX ADD A TO X. Adds contents of A and X registers and stores result in X regis­ 
ter. OV flag is set if arithmetic overflow occurs. 

SXA SUBTRACT X FROM A. Subtracts contents of X register from contents of 
A register and stores result in A register. OV flag is set if arithmetic overflow 
occurs. 

SAX SUBTRACT A FROM X. Subtracts contents of A register from contents of 
X register and stores result in X register. OV flag is set if arithmetic overflow 
occurs. 

XXA EXCLUSIVE OR X TOA. Performs exclusive OR on contents of A and X regis­ 
ters and stores result in A register. 

XAX EXCLUSIVE OR A TO X. Performs exclusive OR on contents of A and X regis­ 
ters and stores result in X register. 

4. 8. 6 Extended Multi- Register Change Instructions 

The format of the following instruction is shown below: 

[ LABEL] OPCODE [ COMMENTS] 

XNX EXECUTE INDEXED. Execute indexed is a one-word instruction that fetches 
the next location in memory, adds the contents of X to it, and then executes 
this new instruction. When the new instruction is completed, the instruction 
that was fete hed is skipped , If the new instruction modifies the program 
location counter or is referencing memory, the reference is in relation to 
the address following the XNX instruction. See the following example: 

GO 

LDX 
XNX 
INA 

DAFC 

: 00 

Load X with a device address and function code 
Execute indexed the instruction at GO 
Input Data 

S3-12 



4 . 9. 2 Processor Control Instructions 

The format of the following instruction is shown below: 

[LABEL] OPCODE [ COMMENTS] 

WFI WAIT FOR INTERRUPTS. The WFI instruction is a one-word instruction 
that causes the processor to stop and wait for an interrupt. While the processor 
is waiting for an interrupt, it is off all buses, allowing for minimum DMA 
and interrupt latency . If, while the processor is waiting for an interrupt, 
enough time elapses before an interrupt occurs, the run indicator will go 
out; however, the processor is still waiting for an interrupt and when one 
occurs, execution will resume. The processor will respond to any interrupt 
that is enabled, including the console. Note: do not execute a WFI instruction 
when interrupts are disabled or when the wait instruction is within the range 
of an active SIN instruction. In either of these cases, the processor will 
lock up and respond only to the console or reset. After an interrupt is 
serviced, r esumptiou of inline execution be gins with the instruction following 
the WFI instruction. 

4 .10. 6 Cyclic Redundancy Check Instruction 

The format of the following instruction is shown below: 

[LABEL] OPCODE [*]OPERAND 1, OPERAND2 [ COMMENTs] 

No Operator = Direct Addressing 
* = Indirect Addressing (multi-level) 

CRC CYCLIC REDUNDANCY CHECK. The CRC instruction is a two-word instruction 
that computes an accumulated cyclic redundancy check character that resides 
in memory. The first word contains an OP code and the number of bits in 
the character in A (operand 2). The second word contains an optionally multi­ 
level indirect pointer (operand 1) which points to a two-word buffer. The 
first word of the buffer contains the 16-bit polynomial or mask for a specific 
CRC type. The second word of the buffer contains the accumulated cyclic 
redundancy check character. 

The polynomial is generated such that each bit position in the polynomial 
word corresponds to a power of X in the checking polynomial. The highest 
power of X in the checking polynomial is always assumed to be a "1" bit; 
therefore, it can be considered to the right of the bit-zero position of the 
polynomial word. The next to the highest power of X is always in bit position 
zero. The remainder of the polynomial is coded from right to left, starting 
with the highest power of X and proceeding to the lowest. Some examples 
follow: 

S3-13 



For a CRC 16 and the checking polynomial of 

x16 + x15 + x2 + 1 

the polynornial word is 

1010,0000,0000,0001 or :A00l 

For a CRC 12 and the checking polynomial of 

x12 + xll + x3 + x2 + x + 1 

the polynomial word is 

oooo,1111,0000,0001 or: 0F0l 

For an LRCg and the checking polynomial of 

x8 + 1 
the polynomial word is 

0000,0000,1000,oooo or: ooso 

The second word contains the accumulated CRC/LRC character. The 
A register contains the character operated on by the instruction. The 
number of bits in the character in A may range from I to 16. The character 
must be right justified. Bit positions to the left of the defined character 
length are ignored. The A, X, and OV registers are unaffected by this 
instruction. Since the CRC instruction points to its own buffer, different 
occurrences of the CRC instruction can use different buffer s , allowing 
concurrent computation of CRC for any number of character strings or line 
disciplines. 

4 .10. 7 Text Manipulation lnstructions 

The instructions ADDT, SUBT, 'MOVT, and CMST operate on strings of characters or 
bytes as opposed to single characters or bytes. The format of the text manipulation 
instructions is shown below: 

[ LABEL] OPCODE [*]OPERANDl{*]OPERAND 2 
No Operator = Direct Addressing 
* = Indirect Addressing (one-level) 

[ COMMENTS] i 

I 

S3-14 



ComputerAutomation ~ 

The ADDT, SUBT, MOVT, and CMST instructions are three-word instructions that 
require two memory r efer-ence address parameters. The first parameter follows the OP 
code and is the address of the source string. The second parameter follows thc first 
parameter and is the address of the destination string. Both parameters may be indirect, 
but indirection is allowed for one level only. The effective address of each operand is 
always a byte address. The formats of the four modes of addressing are as follows: 

1. Direct/Direct Addressing 

15 14 13 12 11 10 9 8 7 5 4 3 2 1 0 

OP Code I 0 jo 
Byte Address of Source String 

Byte Address of Destination String 

2. Direct/Indirect Addressing 

15 2 1 0 

OP Code I o I l 

Byte Address of Source String 

Address of Byte Address of Destination String 

3. Indireet/Direct Ad dressing 

15 

6 

2 I 0 

OP Code I I I 0 

Address of Byte Address of Source String 

Byte Address of Destination String 

S3-15 



4. Indirect/lndirect Addressing 

15 2 1 0 

OP Code j 1 I 1 

Address of Byte Address of Source String 

Address of Byte Address of Destination String 

The following is a description of the two types of strings processed, numeric strings 
and byte strings. 

Numeric String Formats 

The ADDT and SUBT instructions operate on numeric strings only. A numeric string 
is a string of 8-bit bytes in which each byte consists of a numeric code zone and a 4-bit 
digit. The digit representation ,.; typically the ASCII digit code; however, any zone 
code may be used (e. g., EBCDIC). 

During the operation of an ADDT or SUBT instruction, the numeric code zone of the source 
string is ignored and the numeric code zone of the destination string is used only to rezone 
the result. No checking is performed to ascertain the validity of numeric digits; therefore, 
special characters and nonnumeric digits must be removed from the string. 

The address parameters always point to the sign character which is always the first charac­ 
ter of each string. For a positive string, the sign byte is set to zero; for a negative string, 
the sign byte is set to : FF . 

A numeric string is organized such that the sign character and the most significant digits 
(MSD's) of the ASCII number are in low memory addresses and the least significant digits 
(LSD's) are in high memory addresses (see illustration below). 

ALPHA I SCRT 

Increasing Address 
MSD LSD 

s IGN I DN I DN -1 I n N - 2 I : i'-: L...-1 n_4 __,__I _D_3 _.___n 2__,___n_1 __,_j _. _n o___.,JI 
Y-1 Y ·Y+l 

Low Order Memory 
Y+N 

High Order Memory 

Where Y is the effective byte address of string ALPHA, the sign is : 00 
for plus, : FF for minus and SCRT is a scratch byte attached to the destination 
string. 

The numeric destination string is always preceded by a scratch (SCRT) byte. The scratch 
byte is used by the ADDT and SUBT instructions as a scratch cell and must always 
precede the sign byte (see illustration above). The scratch cell must always be zero 
when the instruction is begun. Upon cornpletion of the instruction, it is left equal to 
zero. 

S3-16 



The ASCII string length is entered in the low-order five bits of the X register. The length 
as entered in the X register is the number of characters in the string including the sign 
character. The A register must be entered as zero. T'hi s instruction is interruptable 
during execution; therefore, if an interrupt occurs, A, X, the scratch byte, and OV 
must be preserved and/ or reestablished before the instruction is resumed. 

Upon completion of the instruction, the X register will be unchanged and the A register 
will contain a result indicator. If the A register is greater than zero, the result is positive 
and non-zero. If the A register is equal to zero, the result is zero. If the A register 
is less than zero, the result is rtegative. The OV flag will be cleared if no arithmetic 
overflow occurs. If an arithmetic overflow occurs, the OV flag will be set. The scratch 
cell of the destination string will remain zero at the completion of the operation. If the 
X register is input as a zero or one, a NOP will be performed. 

If an interrupt occurs during the execution of the instruction, the A and X registers 
contain information needed to resume the instruction when the interrupt processing is 
completed. Depending on where in the algorithm the instruction was interrupted, the 
A and X registers will contain the following information: during the add or subtract 
cycle, the A register contains a correction factor in the upper four mast significant bits 
(: A for subtract and : 6 for add) anda result indicator in bit O (1 for non-zero, 0 for zero), 
and the X register contains the number of digits left to process; if, during the subtract 
correction cycle, the result is to be negative, the A register will contain a correction 
factor as described above (: A) and the number of digits left to process in the lower 
five bits, and the X register will contain zero. OV, in any case, is the carry-in bit from 
the previous operation. Note that the interrupt processing should not disturb the scratch 
byte or the strings being operated upon. 

Byte String Formats 

A byte string is a string of 8-bit fields or bytes of data. Bytes may contain any 8-bit 
data field (e. g., two BCD characters, ASCII characters, data constants, etc.). The string 
length is contained in the lower eight bits of the X register. The A register must be set 
to zero before either the MOVT or CMST instruction is entered. If the X register is zero, 
a NOP is performed. Note that these instructions are interruptable during execution; 
therefore, if an interrupt occurs, both the A and X registers must be preserved and re­ 
established before the instr uction is resumed. If the instruction has been interrupted 
during execution, the A and X registers will contain the following information: the A 
register will contain the number of characters processed and the X register will contain 
the number of characters left to process. OV is unaffected by these operations. 

ADDT 

SUBT 

MOVT 

ADD TEXT. Two numeric strings are arithmetically added together with 
the resultant numeric string replacing the destination numeric string. 

SUBTRACT TEXT. The source numeric string is subtracted from the destina­ 
tion numeric string with the resultant numeric string replacing the destination 
numeric string. 

MOVE A TEXT STRING. A byte string is moved from the source string to 
the destination strlng. The string is moved character-by-character in 
increasing addresses for each buffer. If the address of the source string 
(ADDRl) is greater than or equal to the address of the destination string 
(ADDR2), then the strings may overlap with no loss of data. If ADDRl is 
less than ADDR2, then (ADDR2-ADDR1) characters will be repeated L/ (ADDR2- 
ADDR1) times, where Lis equal to the string length. OV is unaffectcd by 
this operation. The A and X registers will remain unchanged by this operation 

S3-17 



CMST COMPARE TEXT STRINGS AND SKIP. The source string is compared to the 
destination string. If both strings are equal, a two-place skip occurs and 
the A and X registers will remain unchanged. If the source string is less 
than the destination string, a one-place skip occurs. If the source string 
is greater than the destination string, the next inline instruction will be 
executed. If the strings mismatch, the X register contains the number of 
characters left to compare and the A register contains the character position 
in the string that miscompared. To compare the remainder of the strings, 
the A register must be incremented anda jump executed back to the CMST 
instruction without altering the X register. Note that this instruction performs 
a logical compare , compari;ng magnitudes only. If two numeric strings 
are to be compared, the SUBT instruction should be used. The CMST instruc­ 
tion compares 8-bit characters one at a time starting from low memory 
addresses. OV is unaff ected by this operation . 

S3-18 



Appendix C 

INSTRUCTION SET BY CLASS 

Instruction 
Mnemonic Description 

Instruction 
Skeleton in Hex 

MEMORY REFERENCE INSTRUCTIONS 

ADX Add to X : 4300 
ADXB Add to X Byte : 4300 
SBX Subtract from X : 4320 
SBXB Subtract from X Byte : 4320 
EMX Exchange Memory and X : 4340 
EMXB Exchange Memory and X Byte : 4340 
MSB Memory Set Bit : 4B00 
MRB Memory Reset Bit : 4B20 
MCB Memory Complement Bit : 4B40 
MTB Memory Test Bit : 4B60 
JST Jump and Store : F800 
DMS Decrement Memory and Skip : 4310 

Decrement Memory and Skip Indexed : 4350 

STACK INSTRUCTIONS 

JSKR 
JSKS 
RTNR 
RTNS 

Jump and Stack Registers 
Jump and Stack Status 
Return Registers 
Return Status 

REGISTER CHANGE INSTRUCTIONS 

ASB A Set Bit 
ARB A Reset Bit 
ACB A Complement Bit 
XSB X Set Bit 
XRB X Reset Bit 
XCB X Complement Bit 
ATB A Test Bit 
XTB X Test Bit 
AXA Add X to A 
AAX Add A to X 
SXA Subtract X from A 
SAX Subtract A from X 

S3-19 

: 4203 
: 4241 
: 6A03 
: 6A41 

:6Bl0 
: 6B30 
: 6B50 
: 6B00 
: 6B20 
: 6B40 
: 6B70 
: 6B60 
: 0050 
: 0028 
: 0088 
: 0170 



Instruction 
Mnemonic 

XXA 
XAX 
XNX 

Description 

Exclusive OR X to A 
Exclusive OR A to X 
Execute Indexed 

PROCESSOR CONTROL INSTRUCTIONS 

WFI Wait for Interrupts 

CYCLIC REDUNDANCY CHECK INSTRUCTION 

CRC Cyclic Redundancy Check 

TEXT MANIPULATION INSTRUCTIONS 

ADDT 
SUBT 
MOVT 
CMST 

Add Text 
Subtract Text 
Move a Text String 
Compare Text Strings and Skip 

Instruction 
Skeleton in Hex 

: OOFO 
: 0168 
: 0430 

:01D0 

: 4D00 

: 4708 
: 4718 
: 4788 
: 4798 

S3-20 



Table F-3. LSI-2/60 Execution Time Algorithms 

AAX RA + 1000/RO 

ADDT I. 1. Direct/Direct 
12,550 + 6RA + 2WA + 850/RO + 400/RO + 850/RO 
+ [10,680 + 2RA + WA] x N 

2. Direct/Indirect or Indirect/Direct 
12,550 + 7RA + 2WA + 850/RO + 400/RO + 400/RO + 850/RO 
+ [10,680 + 2RA + WA] x N 

3. Indirect/lndirect 
12,550 +. 8RA + 2WA + 850/RO + 400/RO + 400/RO + 400/RO + 850/RO 
+ [10,680+2RA+WA] xN 
where N is the number of digits. 

Il . Maximum Interrupt Latency 

1. Direct/Direct 
19,780 + 8RA + 3WA + 850/RO + 400/RO + 850/WO 

2. lndirect/Direct or Direct/Indirect 
19,780 + 9RA + 3WA + 850/RO + 400/RO + 400/RO + 850/WO 

ADX 

ADXB 

ACB 

3. Indirect/lndirect 
19,780 + lORA + 3WA + 850/RO + 400/RO + 400/RO + 400/RO + 850/WO 

3RA + 700/RO + 700/RO + 850/RO 
Add (RA + 400/RO) for each indirect 

3RA + 700/RO + 850/RO + 850/RO 
Add (RA + 400/RO) for each indirect 

3850 + RA + 300 x N 
where N is the bit position number plus 1 

ARB 3850 + RA + 300 x N 
where N is the bit position number plus 1 

ASB 3850 + RA + 300 x N 
where N is the bit position number plus 1 

ATB 2200 + RA + 150 x N 
where N is the bit position number plus 1 

AXA RA + 1000/RO 

S3-21 



Table F-3. LSI-2/60 Execution Time Algorithms (Cont'd) 

CMST I. 1. Direct/Direct 
5500 + 3RA + 850/RO + 400/RO + [1600 + 2RA + 1000/RO] x N 

2 . Direct/ lndirect or Indirect/Direct 
5500 + 4RA + 850/RO + 400/RO + 400/RO + [1600 + 2RA + 1000/RO] x N 

3. Indirect/Indirect 
5500 + 5RA + 850/RO + 400/RO + 400/RO + 400/RO 
+ [1600 + 2RA + 1000/RO] x N 
where N is the number of bytes. 

Il. Maximum lnterrtipt Latency 

1. Direct/Direct 
4800 + 5RA + 850/RO + 1000/RO + 400/RO 

2. Direct/lndirect or Indirect/Direct 
4800 + 6RA + 850/RO + 1000/RO + 400/RO + 400/RO 

3. Indirect/ Indirect 
4800 + 7RA + 850/RO + 1000/RO + 400/RO + 400/RO + 400/RO 

CRC 700 + 4RA + WA + 550/RO + 400/RO + 700/RO + 550/RO + 450 x N 
where N is the number of bits in the character 
Add (RA + 400/RO) for each level of indirect 

DMS I. Inline 

1. Result not minus one 
2200 + 3RA + 700/RO + 550/RO + [RA + 400/RO] x N 

2 . Result minus one 
3250 + 3RA + 700/RO + 550/RO + [RA + 400/ROJ x N 

Il. Interrupt 

1. Result not minus one 
1450 + 3RA + 700/RO + 550/RO + [RA + 400/RO] x N 

2 . Result minus one 
2100 + 3RA + 700/RO + 550/RO + [RA + 400/RO] x N 
where N is the number of indirect cycles 
For DMS Indexed use: 850/RO instead of 550/RO 

EMX 3RA + WA + 700/RO + 700/RO + 500/RO + 550/WO 
Add (RA + 400/RO) for each level of Indirect 

S3-22 



EMXB 

Table F-3. LSI-2/60 Execution Time Algorithms (Cont'd) 

3RA + WA + 700/RO + 850/RO + 500/RO + 550/WO 
Add (RA + 400/RO) for each level of Indirect 

JSKR Inline 
7850 + 4RA + 5WA + 550/RO + 700/RO + 350/WO + 650/WO 
+ 650/WO + 650/WO + 400/RO 

Interrupt 
8000 + 4RA + 5WA + 550/RO + 400/RO + 350/WO + 650/WO 
+ 650/WO + 650/WO + 400/RO 

JSKS Inline 
7850 + 4RA + 3WA + 550/RO + 700/RO + 350/WO + 650/WO + 400/RO 

Interrupt 
8000 + 4RA + 3WA + 500/RO + 400/RO + 350/WO + 650/WO + 400/RO 

JST As specified in Computer Handbook. 

MCB 2450 + 3RA + WA + 550/RO + 400/RO + 550/WO + 300 x N 
where N is the bit position number plus 1 
Add (RA + 400/RO) for each level of Indirect 

MOVT I. 1. Direct/Direct 
4300 + 3RA + 850/RO + 400/RO + [RA + WA + 1000/RO + 1300/WO] x N 

2. Direct/Indirect or Indirect/Direct 
4300 + 4RA + 850/RO + 400/RO + 400/RO 
+ [RA + WA + 1000/RO + 1300/WO] x N 

3. Indirect/Indirect 
4300 + 5RA + 850/RO + 400/RO + 400/RO + 400/RO 
+ [RA + WA + 1000/RO + 1300/WO] x N 
where N is the number of bytes 

Il . Maximum Interrupt Latency 

1. Direct/Direct 
3650 + 4RA + WA + 850/RO + 400/RO + 1000/RO 

2. lndirect/Direct or Direct/Indirect 
3650 + 5RA + WA + 850/RO + 400/RO + 400/RO + 1000/RO 

3. Indirect/Indirect 
3650 + 6RA + WA + 850/RO + 400/RO + 400/RO + 400/RO + 1000/RO 

S3-23 



Table F-3. LSI-2/60 Execution Time Algorithms (Cont'd) 

MRB 2450 + 3RA + WA + 550/RO + 400/RO + 550/WO + 300 x N 
where N is the bit position number plus 1 
Add (RA + 400/RO) for each level of Indrrect 

MSB 2450 + 3RA + WA + 550/RO + 400/RO + 550/WO + 300 x N 
where N is the bit position number plus 1 
Add (RA + 400/RO) for each level of Indirect 

MTB 1300 + 3RA + WA + 550/RO + 400/RO + 550/WO + 300 x N 
where N is the bit position number plus 1 
Add (RA + 400/RO) for each leve! of lndirect 

RTNR 

RTNS 

SAX 

SBX 

SBXB 

7RA + WA + 550/RO + 400/RO + 500/RO + 250/WO + 2X850/RO + 2X700/RO 

5RA + WA + 550/RO + 400/RO + 500/RO + 250/WO + 700/RO + 1400/RO 

RA + 1000/RO 

3RA + 700/RO + 700/RO + 850/RO 
Add (RA + 400/RO) for each level of Indirect 

3RA + 700/RO + 850/RO + 850/RO 
Add (RA + 400/RO) for each level of Indirect 

SUBT I. 1. Direct/Direct 
12,050 + 6RA + 2WA + 850/RO + 400/RO + 850/RO 
+ [10,380 + 2RA + WA] x N 

2. Direct/Indirect or Indirect/Direct 
12,050 + 7RA + 2WA + 850/RO + 2 X 400/RO + 850/RO 
+ [10,380 + 2RA + WA] x N 

3. Indirect/Indirect 
12,050 + 8RA +, 2WA + 850/RO + 3 X 400/RO + 850/RO 
+ [10,380 + 2RA + WA] x N 
where N is the number of digits 

Il. Maximum Interrupt Latency 

1. Direct/Direct 
18,980 + 8RA + 3WA + 850/RO + 400/RO + 850/RO 

2. Direct/Indirect or Indirect/Direct 
18,980 + 9RA + 3WA + 2 X 850/RO + 2 X 400/RO 

3. Indirect/Indirect 
18,980 + l0RA + 3WA + 2 X 850/RO + 3 X 400/RO 

S3-24 



Table F-3. LSI-2/60 Execution Time Algorithms (Cont'd) 

SXA RA + 1000/RO 

WFI RA + 550/RO first execution 
300 interrupt sampling period 

XAX RA + 1000/RO 

XCB 3550 + RA + 300 x N 
where N is the bit position number plus 1 

XNX 1650 + RA + 400/RO + Instruction Execution time as listed in this spec. or 
the Computer Handbook 

XRB 3550 + RA + 300 x N 
where N is the bit position number plus 1 

XSB 3550 + RA + 300 x N 
where N is the bit position number plus 1 

XTB 1900 + RA + 150 x N 
where N is the bit position number plus 1 

XXA RA + 1000/RO 

Changes to Existing Instructions 

All Stack Add RA + 300/RO for each leve! of indirect 

Push Instr. Use 400/RO + 850/RO in place of 2 (400/RO) 

INAM, INXM} 
IBA, IBAM Use RA + 1750/RO instead of RA + 1600/RO 
IBX, IBXM 

RA = Read Access 
RO= Read Overhead 
WA = Write Access 
WO = Write Overhead 

S3-25 



Table F-7. LSl-2/ 60 Instruction Execution Times 

lnstruction C1600 C1200 C980 SC1200 

MEMORY REFERENCE 

ADX } 4.8 3.65 SBX 3.39 3.75 

For each Ievel of 
indirection, add: 1.6 1. 2 0.98 1.2 

ADXB } 4.8 3.7 3.54 3.9 SBXB 
For each level of 
indirection, add: 1.6 1.2 0.98 1. 2 

EMX 6.4 4.8 4.12 4.8 

For each level of 
indirection, add: 1. 6 1. 2 0.98 1.2 

EMXB 6.4 4.85 4.27 4.95 

For each level of 
indirection, add: 1.6 1. 2 0.98 1.2 

MSB } MRB 7.7+0.3N 6.45+0.3N 5.77+0.3N 6. 55+0. 3N 
MCB 

For each level of 
indirection, add: 1.6 1.2 0.98 1. 2 

MTB 6.55+0.3N 5.3+0.3N 4.62+0.3N 5.4+0.3N 

For each level of 
indirection, add: 1.6 1.2 0.98 1. 2 

where N is the bit position number plus 1 

JST (As specified in Computer Handbook) 

DMS 
Inline 

Result not minus one 5.85+1.6N 5 .0+1. 2N 4.64+0.98N 5. l+l. 2N 
Result minus one 6. 9+1.6N 6.05+1 .. 2N 5.69+0.98N 6.15+1. 2N 

lnterrupt 
Result not minus one 5. l+l. 6N 4.25+1. 2N 3.89+0.98N 4. 35+1.2N 
Result minus one 5.75+1.6N 4. 9+1. 2N 4.54+0.98N 5 .0+1. 2N 

For DMS indexed use, add: ------- 0.05 0.25 0.15 

where N is the number of indirect cycles 

S3-27 



ColllpullrAulDm °' 
Table F-7. LSl-2/60 Instruction Execution Times (cont'd) 

Instruction C1600 C1200 C980 SC1200 

STACK 

JSKR • 
Inline 19.75 16.85 15.37 16.95 
Intenrupt 19.9 17.0 15.42 17.1 

JSKS 
Inline 16.55 14.45 13.41 14.55 
lnterrupt 16.7 14.6 13.46 14.7 

RTNR 12.8 9.7 8.54 9.9 

RTNS 9.85 7.8 6.78 7.9 

REGISTER CHANGE 

ASB 
ARB 
XCB 

XSB 
XRB 
XCB 

ATB 

XTB 

} 
} 

4.3+0.3N 

4.0+0.3N 

2 .65+0.15N 

2.35+0.15N 

4.25+0.3N 

3.95+0.3N 

2.6+0.15N 

2.3+0.15N 

4.23+0.3N 

3.93+0.3N 

2. 58+0 .15N 

2.28+0.15N 

where N is the bit position number plus 1 

AXA 
AAX 
SXA 
SAX 
XXA 
XAX 

1. 6 1.4 1.38 

4.35+0.3N 

4.05+0.3N 

2.7+0.15N 

2.4+0.15N 

1. 5 

XNX 3. 25+* 2. 85+* 2. 63+* 2. 85+* 
*=instruction execution time as listed in this spec or the Computer Handbook 

PROCESSOR CONTROL 

WFI first execution 

interrupt sampling 
period 

1. 6 

0.30 

1. 2 

0.30 

0.98 

0.30 

1. 2 

0.30 

S3-28 



Table F-7. LSl-2/60 Instruction Execution Times (cont'd) 

Instruction C1600 C1200 C980 SC1200 

CYCLIC REDUNDANCY CHECK 

CRC 7. 35+0. 45N 

For each level of 
indirection, add: 1.6 

5.7+0.45N 

1.2 

4.9+0.45N 

0.98 

5.7+0.45N 

1. 2 

where N is the number of bits in the character 

TEXT MANIPULATION 

ADDT 
Direct/Direct 

Direct/lndirect } 
or 

Indirect/Direct 

Indirect/Indirect 

Direct/lndirect } or 
Indirect/Direct 

Indirect/ Indirect 

SUBT 
Direct/Direct 

Direct/ Indirect } or 
Indirect/Direct 

Indirect/ Indirect 

19.2+11.83N 17.85+11.68N 17.49+11.62N 18.3+11.88N 

20.8+11.83N 19.05+1~.68N 18.47+11.62N 19.55+11.88N 

22.4+11.83N 20.25+11.68N 19.45+11.62N 20.75+11.88N 

where N is the number of digits 

Maximum Interrupt Latency 
Direct/Direct 27. 78 

29.38 

30.98 

26.23 

27.43 

28.63 

25.66 

26.64 

28.07 

26.93 

28.13 

29.33 

18.7+11.53N 17.35+11.38N 16.99+11.32N 17.85+11.58N 

20.3+11.53N 18.55+11.38N 17.97+11.32N 19.05+11.58N 

21.9+11.53N 19.75+11.38N 18.95+11.32N 20.25+11.58N 

where N is the number of digits 

Maximum Interrupt Latency 
Direct/Direct 26.78 25.28 24.86 25.98 

Direct/ Indirect } or 28.38 26.48 25.84 27.18 
lndirect/Direct 

Indirect/ lndirect 29.98 27.68 26.82 28.33 

S3-29 



Table F-7. LSl-2/60 Instruction Execution Times (cont'd) 

Instruction C1600 C1200 C980 SC1200 

TEXT MANIPULATION (cont'd) 

MOVT 
Direct/Direct 7 .95+3.2N 7.15+2.9N 6.89+2.86N 7 .35+3N 

Direct/ Indirect } or 9.55+3.2N 8.35+2.9N 7.87+2.86N 8.55+3N 
Indirect/Direct 

Indirect/ Indirect 11.15+3. 2N 9.55+2.9N 8.85+2.86N 9.75+3N 

where N is the number of bytes 

Maximum lnterrupt Latency 
Direct/ Direct 9.15 8.1 7.8 8.4 

Direct/ Indirect } or 10.75 9.3 8.78 9.6 
Indirect/Direct 

Indirect/ Indirect 12.35 10.5 9.76 10.8 

CMST 
Direct/ Direct 9.15+3.65N 8.35+3.4N 8.09+3.36N 8.55+3.6N 

Direct/ Indirect } or 10. 75+3. 65N 9.55+3.4N 9.07+3.36N 9.75+3.6N 
Indirect/Direct 

Indirect/ Indirect 12.35+3.65N 10.75+3.4N 10.05+3.36N 10.95+3.6N 

where N is the number of bytes 

Maximum Interrupt Latency 
Direct/ Direct 10.5 9.45 9.15 9.85 

Direct/ Indirect } or 12.1 10.65 10.13 11.05 
Indirect/ Direct 

lndirect/ lndirect 13.7 11.85 11.11 12.25 

Changes to Existing lnstructions 

All Stack Instructions 
For each level of 
indirection, add: 1.6 1. 2 0.98 1. 2 

S3-30 



Table F-7. LSI-2/60 Instruction Execution Times (cont'd) 

Instruction C1600 C1200 C980 SC1200 

Changes to Existing lnstructions (cont'd) 

Push Instructions 
Add: 

INAM, INXM, IBA, IBAM, 
IBX, IBXM lnstructions 

Add: 

0.05 0.25 0.15 

0.15 0.15 0.15 0.15 

S3-31 



r---------------------------STATECOUNTER----------------------------, 
+5 

ml MACK 

03 

v 
~ z 
0 
~ 
~ e 
::> 
c:t 
c:: 
"" .... 
:::> 
A. 
~ 
8 

10 MHZ 
osc 
iFCLKI 

01- 
START- 

FCi...K 

Select 
0 Bus 
Dr.ve-s 

WRI~~ B-SOBD 

Read Data 
Strobe 

INCA ~ 
WR ITE- ~ ROST 

s 01 
03- o 

SACK SCLK 74H76 C 
DPIN 

03 K 
01- 

CLR 
(22)MDIS- 

1K 

C 74H76 

R 

o 

ä 

03 

03- 

Decrement 
Word Counter o,B- us 74H11 OECW 

SCLK 

SCLK 

+5 

1K 

s 
02 

FCU< C 74H76 

03- K ä 

1K 

+5 

E03 

E03- oi- 
74HOO 

Memory 
Start 

OM3097 

Read 
Control 

03 ~ RD-I18I 
WR ITE- --L.::/' ,.,, 

tnc-ement 
Address Counter 

02-B-- 
03 74H11 INCA 

SCLK 

Figure 9-14. State Counter and Decoder 



FCLK 

STO?- 

SACK- 

SCLK 

o, 

02 

03 

E03 

ESTP- 

S080 

OBXX- 

OECW 

MST- 

MACK- ------------ 

INCA 

nnnnnr,n 
___JUUULJL.ILJ 

________ _Jn _ 
A wr.te Cvcte 

,-- 
~ 

"" .nnnnrin .. nnnnrinnnru 7 
STO?-Y- ,-- 

s:...CK- 

SCLI< 

o, 

02 

OJ 

CQ3 

EST?- ------- -;'° 

ASXX- maruH111vmrw~,,,.,,.... ==-=--=--=--=--=----=--=--=---=--=--=---=-_.,..::-::~:::;~ _. ;;7i!71TIT/1fiJ!if 

\ 
DECW __,1fl V --------\\-- 

nmmm"TTTTTmm'Tirr'Trrrrl..n=- ,.,.,- -- .... - --------~\lr--- 
DBXX- ~-@o~-, -~o/~;~;g 
MACK- 

t- 

-----! 

AD- 

MST- 

INCA 

ROST 

Figure 9-15. DMA Transfer Tfrninz b 


