AUTOMATIC. COMPUTATION OF DATA SET DEFINITIONS*

John C. Reynolds

Applied Mathematics Division
Argonne National Laboratory

November 17, 1967

Thie paper, with appendixz deleted, has been submitted to IFIP CONGRESS '68.

#Work performed under the auspices of the U.S. Atomic Energy Commission,

John C. Reynolds

AUTOMATIC COMPUTATION OF DATA SET DEFINITIONS*

John C. Reynolds

ABSTRACT

Most programming systems which attempt to provide flexible and efficient
data representations require the user to specify the range of variables, param-
eters, and functions by extensive and detailed data structure declarations.
The purpose of this paper is to éuggest that much of this declarative informa-
tion is redundant, and can be inferred from tﬁe non-declarative portion of the
program, Specifically, in the context of a restricted but non-trivial program-
ming language, pure LISP, a method is given for constructing a data sef |
description of the results of a function from a program for the function andA
a data set description Qf its arguments.

A data set description is considered to be a special case of a recursive
set definition, which is a set of equations of the form

Xl + El(Xl v Xn) ...-Xn « En(Xl ‘o Xn)

where the Xi are set variables, and the Ei are expressions composed of set
constants, set variables, and set functions. The effect of the definitiom is
s - o _ t+1 _ t t
to def:ne the sequence of sets 8, ... 8 via X; = {3, x{ E5(Xy eee Xn).
0, = U X‘.:.
i i
t=0
In defining LISP data sets, the following set functions are used:

cons*(X,Y) = {z]|z = cons(x,y) for some xeX, yeY}

car, (X) = {z|z = car(x) for some xeX - atom}
cdr,(X) = {z]z = cdr(x) for some xeX - atom}

#Work performed under the auspices of the U.S. Atomic Energy Commission.

John C. Reynolds (Abstract) 2

along with the union operation and the constants NIL and atom, denoting the
singleton set containing the atom NIL and the set of all atoms, respectively.

A construction method is described which accepts the definition of a LISP
function and a recursive definition of its set of arguments and produces a re-~
cursive definition of a set containing the results of the function., A reduction
process is then described which eliminates the set functions car, and cdr,.

As an example, the construction is applied to the LISP functién
ss(xl) = if-null(xl) then cons(NIL,NIL) else ssl(car(xl), ss(cdr(xl))), vhere :
881(x2.x3) = ss2(x2,x3,x3)

ss2(xu.x5,x5) = if null(xs) then x. else cons(cons(xu,car(xs)),ss2(xu.cdr(x5).x5))

and the recursive definition of the set of arguments

X, * NIL(Jcons*(atom,xl).

After reduction, the result of the construction is

X0 * cons*(xu.xu)LJcons*(Xls.X2o)

where
Xu <« NIL
X6 * cons*(xl7.xle)
X)7 *atom
Xig * NILlJcons*(Xl7.Xla) B
which indicates that the result of ss must always be a non-empty list whose

last element is NIL and whose preceding elements are non-empty lists of atoms.

Possible extensions of the method are discussed briefly.

John C. Reynolds 1

AUTOMATIC COMPUTATION OF DATA SET DEFINITIONS*

John C. Reynolds

Introduction

Most programming systems which attempt to provide flexible and efficient
data representations require the user to specify the range of variables, param-

eters, and functions by extensive and detailed data structure declarationa.(l’2)

The purpose of this paper is to suggest that much of this declarative informa-
tion is redundant, and can be inferred from the non-declarative portion of the
program, Specifically, in the context of a restricted but non-trivial program-
ming language, pure LISP,(s? we give a method for constructing a data set
descriptioh of the results of a function from a program for the function and

a data set description of its arguments.

To begin, the concept of a data set description or definition must be
formalized., Probably the most elegant formalization is that of McCarthy.(u)
who considers a data set definition to Be a set of recursive set equations
using the operations of cartesian product and disjoint union. Our own approach
differs from McCarthy's primarily in using conventional set-theoretic union

instead of disjoint union.

Recursive Set Definitions

Thus a data set definition is considered to be a special case of a

recursive set definition, which is a set of equations of the form

X o+ Eg(X) wen X)) wed X B (X el X)) (1)

where the xi are set variables, and the Ei are expressions composed of set

constants, set variables, and set functions. The set functions appearing in

*Work performed under the auspices of the U.S. Atomic Energy Commission.

John C. Reynolds

the Ei are subject to various conditions, the most important of which is
. : C
isotonicity: If XlS; T, e X S Y, then F(X] «es X)E F(Y, «es Yk).

The effect of a recursive set definition is to define a sequence of sets
el cas Gn as the limits of X, ... X after repeated (parallel) execution of
the set definition beginning with Xl = 40 = Xn = ¢ (where ¢ denotes the empty

(-]
set), Specifically, let X; = ¢, Xt = ai(xI x;). and 8, = U x';. The

i i
t=o
requirement of isotonicity insures that Xz

= X§+l for all t.

In general, recursive set definitions have a variety of applicationsj
for example, a context-free grammar can be interpreted as a recursive defini-
tion of a set of strings over a finite alphabet using the functions of union
and concatenation. But our immediate concern is the definition of LISP data
sets, i.e., sets of S-expressions. (We assume a familiarity with the basic
concepts of LISP, as given in reference 3.)

In writing expressions denoting sets of S-expressions, we will use LISP
atoms as constants denoting singleton sets containing the mentioned atom,
e.g., NIL will denote the set whose only member is NIL., We will also use the
symbol atom to denote the set of all atoms. The ﬁrimitive LISP functions
cons, car, and cdr are generalized to define the set functions:

cons, (X,Y) = {z]|z = cons(x,y) for some xeX, yeY}
{z]|z
{z]z

car, (X) car(x) for some xsX-atom} (2)

cdr*(x)

cdr(x) for some xeX-atom} .

Two other functions will be used: union and o,, the latter being defined by
0,(X,Y) = if Y = ¢ then ¢ else X. (3)
(o, is the generalization of the LISP function o = A(x,y)x.) Each of the

functions cons,, car,, cdr,, and, o, distributes with union on each of its

John C., ﬁeyﬁolds 3

arguments, and gives the empty set if any argument is the empty set, Moreover,

cons, and o, give the empty set if and only if some argument denotes the empty

set,

Construction of a Recursive Set Definition from a LISP Function

We now show how to construct, from the definition of a LISP function and
a recursive definition of the set of all arguments for the function, a recursive
definition of a set which includes all results of the function. Obviously
"includes" will in general be "properly includes," but in a somewhat heuristic
sense, the construction will produce a data set definition which is a "good fit"
to the results of the funcfion.

The construction is best shown by an example. Thus consider the LISP

2 3 4 5 6 7 8 9
function: ss(xl) = if null(xl) then cons(NIL,NIL) else ssl(car(xl).ss(cdr(xl)))

where
10 11 12
ssl(xz,xs) = ss2(x2,83,x3) (%)

13 14 15 16 17 18 19 20 21
ss2(xu,x5,x6) = if null(xs) then x. else cons(cons(xu,car(xs)).ss2(xu,cdr(x5),x6))

and the recursive definition of the set of arguments of ss:

X, « NIL U cons,(atom, X;) » (5)

which defines the set of all lists of atoms., Actually ss accepts a list repre-
senting a set of atoms and produces a list of lists representing all subsets

of the set of atoms., However, the construction does not use this informationj
in a sense, its purpose is to recover a portion of this information from th;
function definition itself, (Note that each equation in the function definition

contains distinct variables; this is required by the construction method.)

John C. Reynolds

We begin by labelling each distinct expression in the function definition;
excluding the premises of conditional expressions and their subexpressions,
with an integer froﬁ 2 to n; let e, denote the expressions labelled with i.

In the example, this labelling is glven by the numerals printed above the
functlon definition; each e begins 1mmed1ately below the numeral i, and n = 21.
Now suppose that the evaluation of ss(x) for any value of x, ‘in Bl takes place
in discrete time steps t = 0,1,25+44, and let S be the set of all S-exprcssions
which can appear as the value of e; during such an evaluation at time t or
earlier. We will construct a recursive set definition whose first equation

is the given input sét definition, and whose remaining equations have the form
Xi * ei(xl e Xn)’ where Ei satisfies the condition that S?ﬂ'g 51(01 S; see St).
It then follows (by induction on t, assuming S; = ¢) that S§ SLBi for all t..
But eventually, any result of ss must appear as the value of e, (the body of
thg_definition of ss) and thus belong to S; for sufficiently large t. Thus the
set 62 contains all possible results of ss.

For 2 £ i £ n, the ith equation is constructed as follows:

(a) 1If e, is abquoted atom, theﬁ any value of e; (trivially) belongs to
the'singleton set containing the atom. Thus let Ei be e, . For example,

xu «+ NIL. . (6)

(b) 1If e, is the variable which appears as the x*? formal parameter of

the function f, then any value °fv°i must have been computed previously as the
value of the kth actual parameter in some call (function designator) of f, or,
if £ is the main function (ss), as én input argument to the evaluation. Thus
if eal ,.; eaqdére the‘kth actual parameters in all calls of f in the function

definition, then let §. be X U ...UX, U (if £ is the main function then X,
. : 1 q .

John C. Reynolds 5

else ¢). For example:

X, « XgUXy X190 « XU Xq
X1 * %g X1 * XoUXyy (7)
X10 ¢ %g Xy X UKy,

(e¢) 1If e, is cons(ej, ek). then any value of e, must be the cons of a
previously computed value of e; with a previously computed value of e, Thus
let Ei be cons*(xj, Xk). Similarly, if e, is car(ej) or cdr(ej), let Ei be

car*(xj) or cdr*(xj). For example:

X3 « cons*(xu. Xq) Xl6 + cons*(xl7. Xla)
x6 “« car*(x7) X18 - car*(xlg)

(8)
Xg - cdr*(X7) X2l « cdr*(xlg)

X5 * cons*(xls. X2°)

(@) If e, is a conditional expression of the form if <any predicate>

then °; else e, , then any value of e must be a previously computed value of

ej or e, . Thus let Ei be XjLJxk. For example

X, + XgUXg X5 * xqu X, (9)

(e) If e is a call (function designator) of a defined function f, and
the body of the definition of f is ej, then any value of eiAﬁust be a previously

computed value of ej. Thus let Ei be Xj. For example:

Xg + X1 - X0 %3

(10)

Xg %y X20 © *13

John C. Reynolds

Elimination of car, and cdr,

Although we have succeeded in deriving a recursive definition of a set
containing the results of the function ss, the meaning of this definition is
obscure, since it involves the "analytic" functions car, and cdr, as well as
the "synthetic" function cons,. Thus our next task is to develop a method
for transforming such definitions to remove car, and cdr,.

This transformation will require use of the following identities:

car,(cons,(X,Y)) = 0,(X,Y) (11a)
cdr,(cons, (X,Y)) = 0,(Y,X) (11b)
car,(atom) = car,(<any quoted atom>) = ¢ (1le)
cdr,(atom) = cdr,(<any quoted atom>) = ¢ (11d)
car,(0,(X,Y)) = g,(car,(X),Y) (1le)
cdr, (0,(X,Y)) = g (cdr, (X),Y) (11f)
0,(X,cons,(Y,2)) = 0,(0,(X,Y),2) (11g)
o,(X,atom) = o, (X,<any quoted atom>) = X (11h)
0, (X0,(¥,2)) = 0,(0,(X,Y),2) (111)

The first identity is a generalization of the LISP identity car(cons(x,y)) = x;
the occurrence of g,(X,Y) indicates that car(cons(x,y)) has no values if y has
no values (i.e., is undefined) even though it is otherwise independent of y.
The second identity is a similar generalization of cdr(cons(x,y)) = y. The
remaining identities are obvious consequences of the definitions of the
functions involved.

It is convenient to introduce the abbreviation 0, (X, Yl cee Yk) for
0.l eon. 0x(X, Yl)ou Yk). Note that o,(X, Yl ces Yk) is independent of the
order of Y ..: Yk’ and that o*(x) z X, When % denotes a set of variables

1

Y. ..o Yk}, we use 0,(X,%) to denote g (X, Y, .o Yk).

1

John C. Reynolds 7

An analytic term is defined to be any expression of the form u*(A'(Xi),ﬁ/),

where A' is a composition of zero or more car,'s and cdr,'s, Xie{xl vae xn}.

and % SE'{Xl ces X 3o A synthetic term is defined to be any expression of the
form o*(S'(Xl e Xh),ﬁ/), where ¥ SL{Xl seo Xn} and S' is any expression com-
posed of cons,, (some of) the variables Xl oo xn, atom, and quoted atoms,
except that S' must not be simply a variable.

Consider an expression of the form:

T = A(sl(xl xn) sm(xl xn)) . (12)

where A(Xl ‘e Xn) is an analytic term, and each Si(xl ‘e Xn) is a synthetic

term, T will have the form:

o4 (At (0,(S} » Vi 1), 0,(8) .WG.). oo s Oh(S!
: o (-] 1 1

.‘Vi) . (13)
k 'k

(The arguments Xl ese xn of each Si have been omitted for brevity.) This can
be transformed, by repeated application of (1le) and (11f), into

0*(0*(1\'(3:{)Oyi)’ 0*(S§. » %). cs0 U*(Si P OVi)) (l"‘)
o o 1 1 k k

and then, by identity (1l1i), into

s ees s 5§ s %&) (15)

o*(A'(Sio),"Vio, s} .‘V.l Y

10 4
and, by identities (llg) and (11h), into

94 (A'(5] s Vio U ‘9//11 v Vi, U...U wik U *vik) | (16)

where Qyi is the set of variables occurring in Si. Then by applying (l1a)

through (114), A'(Si) can be reduced until either (i) an application of (1lc)
o

or (11d) gives A'(Si) = ¢, and therefore T = ¢, or (ii) all appearances of
o .
cons, and of constants are removed, so that T becomes an analytic term, or

(iii) all appearances of car, and cdr, are removed while one or more appearances

of cons, or a constant remain, so that T becomes a synthetic term.

John C. Reynolds

Now each equation of a recursive set definition derived from a LISP

function can be written in the form
X, + si(xl xn)U Ai(Xl xn) (17)

where Si is a union of synthetic terms and Ai is a union of analytic terms,

The sets Gi defined by these equations.are preserved by transforming each
equation into

X, «8;(X) vee X IUA (X oo X IUA (S, (X) aee X)) oo S (X] ees X))y

(18)

since the additional expressions only add elements to XE which already occurred
in XE' for some t' > t. (More rigorously, it can be shown by induction on t
that each transformed XE is a subset of the untransformed ei and vice versa.)
Then, by distributing union upwards, each Ai(Sl(Xl coe XD eee S (X} oo Xn)o
can be transformed into a union of terms of the form (12), and each of these
terms can either be transformed into ¢, so that it vanishes from the union,
or into a synthetic or analytic term. Thus (18) can be converted back to the
same form (17) as the original equation.

Obviously the transformation from (17) to (18) and back to (17), which
we call a reduction, can be repeated an arbitrary number of times. Thus, for
example, a single reduction of the equations (5-10)‘derived in the preceding

section gives the equations:

X2 « XSLJXSLJcons*(Xu. Xu)

X, ngJxltJNILlJcons*(aFom. Xl) (19)

X, * XluLJxlsLJcons*(X)

13 16* %20

while leaving the remaining equations unchanged. Eight more reductions trans-

form the equations into:

John C, Reynolds

X, * NILUcons*(,a;t_o_u_l,Xi)

X, + X3U stcons*(Xu,Xu) Ucons*(xls,xzo)‘
)(3 + cons*(xu,xu)

X. « NIL

Xg + xlOU cons, (X, (14X () Ucons, (X, ,X,)

Xg + car,(X,) Uo,(atom,X,)

X, + XgUX; UNIL Ucons, (atom,X,)

Xg « x2Ucons*(xu,x4) U°°ns*(x16‘x20)

X, « cdr*(x7)lelLJNILlJcons*(g:gm,xl)

X0 +-x13Ucons*(Xls.X2o) Ucons*(xu,xu) (20)

X., + XGU o*(atom,xl)

X, x8U cons, (X, »X,,) U cons, (X)

16°%20

X3 * XU xlsU cons*(xls.xzo) Ucons*(xu,xu)

Xy * XU XHU cons*(xu.xu) Ucons*(xls.xm)

X5 * cons*(Xls.Xm)

X6 - cons*(X”.Xla)

X0 * xnU X17Uo*(a_t_gg.xl)

Xig ¢ car*(Xlg)LJo*(Xu.Xu)LJNILLJO*(XlG.X2°)LJo*(cons*(xl7.xla).Xle.xzo)
U 0*(cons*(xl7 ,Xla) .Xq)

X[g *+ X,V X21LJcons*(xu,xq)LJcons*(Xle,Xzo)lJNIL

X0 * X13U cons*(xls.xm) Ucons*(xu,xu)

X, * cdr, (X, 4) Uc*(xu.xu) UNIL U"*(Xzo'xls) U 0*(cons*(Xls,X2o).x17 ,Xla)

U o, (cons, (X, »X,,) Xy .Xla)

John C. Reynolds ' 10

At this point, however, the next reduction leaves the equations unchanged.

(Actually two new terms o*(cons*(xls.x2o).Xl7,x18) and a*(cons*(xu,xu),xl7.xla)

are added to the equation for xlg. but these terms are subsumed by previous
terms in the equation and can be dropped.) It can be shown that repetition
of the reduction process will always cbnvergé in this manner; essentially one
can define the "complexity" of synthetic and analytic terms in such a way that
a reduction never introduces terms more complex than those already present,

and there are only a finite number of possible distinct terms of a given

complexity.
Once the equations are invariant under reduction, all analytic terms may

be dropped without changing the set being defined. To prove this assertion,

O _ ,O _ t+l _ t t t t t+l _ t t
let X; = Y. = ¢, X, = S;(X] ... Xn)UAi(Xl eee X), and Y/ S;(Y) aus Y1)y
so that the full equations define the sets L) X? while the equations without

© t=0
analytic terms define the sets (MJ Y;. We show that Xz = Y; by induction omn t:
t=0

(a) When t

"
(=]
)
<
1
o]

=¢.

1, Ai(¢, «ses $) = ¢, since constants cannot appear in

analytic terms. Thus Xi = Si(¢, cees $) = Y;.

(b) When t

. t! t! t t=-1 t=1l
(c) When t 2 2, assuming X; =Y; for t' < t, then X; = si(xl coe X U

t-1 t-1

t-l, _ t-1 t-1 t-1, _ Lt
AXTTT e XU = 8 (YT Ll Y YUA (Y cee Y7 YiU

1

t-2 t-2 t-2 t-2 .
Ai(Sl(Yl vee Y) eee Sn(Yl ces Y)). The invariance of the equations

under reduction shows that the last term must be a subset of

t=2 t-2 t-2 t-2, _ t=-2 t-2 t=2 t-2
Si(Yl s 0 Yn)UAi(Yl s Yn) = Si(xl ess Xn)UAi(Xl ec e Xn)
= Xz-l = Y;‘l. But we have seen that isotonicity insures that Y;‘l SEYE.
Thus X: = Y?.

i

John C. Reynolds | 11

When the analytic terms have been eliminated, each remaining synthetic
term, since it contains only the functions coms, and o,, denotes the empty
set if and only if some variable occurring in the term denotes the empty set.
In this situation, it is possible to derive a solvable set of Boolean equations
whose solution specifies whether each Bi is empty or not. This solution can
then be used to eliminate o, from the recursive definition.

In our example, the Boolean equations show that all sets are non-empty,
so that all o, -expressions can be replaced by their first arguments., Thus we
obtain:

Xo Koe Xg * NIL Ucons, (atom,X,)

X0 Xeo Xgo Xy X1oe Xpge Xjue Xog ¢ cons*(xu,xu)Ucons*(xle.xzo)

X, « cons*(xu,xu)

3
Xu <« NIL
Xs. xn, Xl7 + atom

X15 « cons*(xls,x20)

le - cons*(Xl7,XlB)

- NILlJcons*(Xl7,X

18)

X8
X;gs Xp + NIL Ucons*(xu,xu)U cons, (X, ceXo0)

where equations with the same right side have been combined. Clearly, 616 is
the set of all non-empty lists of atoms and 92, which must include all results
of ss, is the set of all non-empty lists whose last element is NIL and whose

preceding elements are non-empty lists of atoms.

John C. Reynolds 12

Possible Extensions

The method described here for computing data set definitions will achieve
practical utility only with considerable extension, particularly of the pro-
gramming languagé facilities which can be handled, The following is a list
of such potential extensions, in order of increasing estimated difficulty:
(1) It seems straightforward to extend the method to a language with a
variety of cons-functions which create different kinds of list elements or
"records," as well as a variety of car-functions for accessing the fields of
these records. The relevance to languages such as ref. 1 is obvious, (2) The
method should be extended to allow functionél arguments and free parameters,
(3) Some account should be taken of the premisses in conditional expressions.
Premisses which are primitive predicates are probably tractable; recursively
defined predicates may not be. (4) Integers and arrays should be treated.
(5) Assignment statements and statement sequences with branches of control
should be treated., (6) Assignment of list element fields (e.g., rep;aca and
replacd in LISP) should be considered.

Another direction for possible extension lies in computing data set
information beyond the usual what—can-poinf-to-what type of specificationm.
Thus it might be possible to determine that a particular cons never creates
a list element which will remain active beyond the exit of some function;
this type of information is useful in allocating storage to avoid unnecessary
garbage collection or storage fragmentation.(S) Or, when list elements are
being created contiguously in a block of storage, it may be possible to
determine that a particular cons always cfeates an element which is a fixed

distance from its car or cdr, so that implicit pointers can be used.

John C. Reynolds

ACKNOWLEDGEMENTS

The author wishes to thank Dr. M, Donald MacLaren of Argonne National
Laboratory for several helpful criticisms and for suggesting more concise

proofs for some of the theorems.,

REFERENCES

1, Wirth, N., and Hoare, C. A. R., "A Contribution to the Development

of ALGOL," Comm. ACM, 9, p. 413 (June, 1966).

2. "IBM System/360 Operating System, PL/I Language Specifications,"”

Form C28-6571-3, IBM Corporation (July, 1966).

3., McCarthy, J., "Recursive Functions of Symbolic Expressions and Their

Computation by Machine, Part I," Comm, ACM, 3, P. 184 (April, 1960). .

4, McCarthy, J., "A Basis for a Mathematical Theory of Computation,"

Computer Programming and Formal Systems, Ed. P. Braffort and

D. Hirschberg, North-Holland, Amsterdam (1963), pp. 33-70.

5. Wirth, N. Private communication.

13

John C. Reynolds 14

APPENDIX
This appendix gives a more rigorous and general- treatment of the
material covered in the body of the paper, and gives proofs for a number
of implicit and ‘explicit assumptions made there, It is divided into two
sections dealing with recursive set definitions in general, and with

their specific application to the description of LISP data sets.

I, GENERAL THEORY OF RECURSIVE SET DEFINITIONS

Throughout this appendix U is used to denote a fixed denumerable
set of objects (unspecified in Section I, but taken to be the set of all
S-expressions in II), P to denote the set of all subsets of U, and Q to
‘denote the set of all finite subsets of U, Several notational conven-
tions are used in order to discuss n-tuples of objects and of sets of
objects easily, If X denotes such an n-tuple, then xi or (X)i will denote
the ith component of X, If F denotes a function whose result is an
n-tuple, then F, = A(X)(F(X))i. The union and intersection of n-tuples
of set; are defined by (XUY)i E XiUYi and ()(!'\Y):.L =X N .. Inclusion

of one n-tuple of sets in another is defined by
n -
xCy= \ (x,SY,).
j=1 1 i

The symbol ¢ will denote any n-tuple whose components are all the empty
set, as well as the empty set itself, Various set-theoretic identities

which obviously extend to n-tuples will be assumed without proof.

John C, Reynolds

Definitions

P(myn) = {F|F: P" » P* and F(X) = Um F(YNX)}; Fn) = &ln,n)
YeQ

A function in % (m,n) is called finitely generated, It can be shown that

‘union énd intersection, identity, and various projection functions are
finitely generated, and that compositions of finitely generated functions
are finitely generated, (We use a notion of functional composition which
allows functional expressions to have several arguments, implying that the
(n-tuple) values of these arguments are to be concatenated,)

If Fe %(n), we define

Cs

6(F)

e
It

Fhe).
o .
Both the n-tuplé 6(F) and its component sets are said to be recursively
defined by [,
Theorem 1

If X, YeP", Fe %(m,n), and XS Y, then F(X) S F(Y) (Isotonicity),

Proof: If XY, then F(X) = |J_FzNx = |J_ Fa@nxnn.
ZeQ ZeQ

But each ZMNX is finite and therefore is a member of Qm. Thus

U, renxnns U_rann = ro.
ZeQ ZeQ

The requirement of isotonicity is sufficienf-to prove many of the
results given below, but the stronger requirement of finite generatiom is

needed for some results, such as Theorem 2, and simplifies the proof of

others,

15

John C, Reynolds 16

Lemma 1
If Fe%(n), then, for all i, F (¢)C “1(4').
Proof: By induction, since F°(¢) = ¢_C_F (¢) and F (¢)§Fi+l(¢) implies

*(e) = FEHENSEE) = .

Lemma 2
If Pe %(m) and Ge %(m,n), then G(6(F)) = U G(Fi(¢)).
i=o
Proof: By isotonicity we have G(Fi(¢))-§G(9(P)) for each i, so that

U G(Pi(¢)) < G(8(F)). On the other hand,
%o

acee = \J_ernern = U ecxn |J o,
YeQ YeQ i=o

But since the F (¢) are a nested sequence and Y is finite, there exists an

integer k(Y) such that Y U F (¢)C k(¥)

i=o

(¢). Thus

sen < U e Pn = |J ertaon.

YeQ i=o

Theorem 2

If Fe %(n) then F(6(F)) = 6(F),

Proof: F(e(F)) = |J F(FH (o) = U Fi) = a(m),

iz=o i=o

Lemma 3

If XeP", Fe%F(n), and F(X)< X, then 6(F)=X.
Proof: By induction F (¢) < X, since Fo(¢) = ¢EX and Fl(o)g X implies

Ftle) = FER N SF) S x.

John C, Reynolds ‘ ' 17

Lemma 4
If F, GePln) and, for all i, F*(4) S a(Fi(4)), then 8(F) S 8(a).
Proof: By induction Fi(¢)—c;-Gi(¢), since F°(¢) = ¢ = c°(¢) and Fi(¢)-c—:Gi(¢)

o).

implies Fi*2(4) S a(ri(9)) Sa(ci4)) = ¢

Theorem 3

If F, Ge%(n), F(X) SG(X) for all XeP", and G(8(F)) = 6(F), then
6(F) = 6(G).
Proof: If F(X)< G(X) then Pi+l(¢) = F(Fi(¢))§.G(Fi(¢)). and by Lemma 4,

6(F) <6(G). On the other hand, G(8(F)) &6(F), so by Lemma 3, 6(G) < o(F).

Theorem 4

If F, Ge%(n), H = A(X)(F(X)UG(X)), G(¢) = ¢, and G(F(X)) <H(X)
for all XEPn, then 6(F) = 6(H).
Proof: Since Pi+1(¢)§H(Fi(¢)). Lemma 4 gives 8(F) < 8(H), dn the other hand,
by induction H(F1(4)) < 8(F), since H(4) = F(¢) S 6(F) and H(F1(4))< 6(F)
implies H(FETH(9)) = F*24)Ue(r*(4)) S F*2(0)Un(F (4)) So(F). Then

by Lemma 2, H(8(F)) S 6(F), and by Lemma 3, 6(H)S=0(F),

Theorem 5
If He %(2n,n), F = A(X)H(X,X) and either G = A(X)H(X,F(X)) or
G = A(X)H(X,8(F)), then 8(F) = 6(G),
Proof: G(6(F)) = H(8(F),F(8(F))) or H(8(F),0(F)) = H(6(F),6(F)) = F(8(F)) = 6(F),
so by Lemma 3, 8(G) S6(F). On the other hand, ritley) = uertee), PN S

H(ri(e), Fi*tlee)) or H(FE(4), 6(F)) = &(F'(4)), so by Lemma 4, 8(F) S 6(c).

John C, Reynolds 18

Lemma 5

If Fe #(n), Ge F(m,n), He Z#(m), G(¢)

¢, and GoH = FoG, then
G(6(H)) = 6(F).

Proof: Using Lemma 2,

ctom)) = {J euicon = U o) = am.
i=o i=o

Theorem 6

If De%(n,m) HeF(n+m,n), I is the identity function on Pn+m. m: PPT0 5 PP
is the projection function which selects the first n components of an n+m=-tuple,
F = A(X)H(X,D(X)), and G = A(X)I(H(X),D(m(X))), then 8(F) = 7(8(G)).

n+m

Proof: Let p: P + P" be the projection function which selects the last m

components of an n+m-tuple. Then G = A(X)I(H (w(X),p(X)),D(n(X))), and by
Theorem 5, 6(G) = 6(G'), where G' = A(X)I(H(m(X),p(G(X))),D(n(X))).

Since the identity function I merely concatenates its arguments,
p(G(X)) = D(n(X)), and thus G' = A(X)I(H(w(X),D(m(X))),D(m(X))). But
7(G'(X)) = H(w(X),D(n(X))) = F(w(X)), i.e,,moG' = Fom, Thus since n(¢$) = ¢,

Lemma S5 gives w(8(G')) = 8(F).,

Theorem 7

If De%(m), He Z(n+m,n), I is the identity function on PP w PP 4 P

(p: Pn+m -+ Pm) is the projection function which selects the first n (last m)

components of an n+m-tuple, F = A(X)H(X,8(D)), and G = A(X)I(H(X),D(p(X))),

then 6(F) = w(6(G)).,

John C, Reynolds

Proof: We have G = A(X)I(H(w(x),p(X)),D(p(X))). By Theorem 5, 6(G) = 6(G'),
where G' = A(X)I(H(w(X),p(8(G))),D(p(X))).

Since the identity function merely concatenates its arguments,

p(G(X))
p(6(G))

D(p(X)), i.e., poG = Dop, Then since 0(¢) = ¢, Lemma 5 gives

8(D), and thus G' = A(X)I(H(w(X),86(D)),D(p(X))). But then
7(G'(X)) = H(n(X),0(D)) = F(n(X)), i,e., mG' = For, Thus since n(¢) = ¢,

Lemma 5 gives w(6(G')) = 6(F).,

Transformations of Recursive Set Definitions

In the informal presentation in the body of this paper, a recursive

set definition was described as a set of equations of the form
Xl * El(xl LN xn) oes xn h En(xl L xn)ﬂ

We now view these equations as defining a function Fe%@{n) such that
Fi(X) = Ei(Xl eso Xn); then F in turn defines the sets (B(F))l ces (e(r))n.
From this viewpoint, Theorems 3 to 7 justify transformations of recursive
set equations which preserve the sets being defined. The consequences of
Theorems 3 and 4,which are applicable when the §; are unions of termsywill
be examined in Section II, At this point we consider the remaining theorems,

Theorem 5 justifies the substitution of the defining equations into
one another, In each of the Ei’ some (or all) occurrences of the variable
components Xj may be replaced by the corresponding Ej. For the defining

: ' e
equations have the form X, « Ei(Xl ore Xoo Xy ees Xn) where the first n
arguments denote variable occurrences to be left unchanged vhile the
second n arguments denote variable occurrences to be replaced, If HeZ(2n,n)
s ' y - !] ° °
is defined by H.(X,Y) = £3(X; <0 Xy ¥ .o Y), then the original equations
define the function F = A(X)H(X,X) while the transformed equations define

the function G = A(X)H(X,F(X)). By Theorem 5, 6(F) = 6(G),

19

John C. Reynolds . 20

Theorem 6 justifies the introduction of auxiliary equations., Suppose
that the subexpressions Ny s+ N, appear in the defining equations, i.e.,
that these equations have the form

xl + El(xl e xn’nl(xl [LN) xn) LN nm(xl s0s xn))

Xn * En(xl e Xn.ni(xl see xn) (XN} nm(xl (X X xn))

Then these equations may be transformed into the n+m equatioms:

Xl - El(X1 ves xn+m) Xn+l + nl(x1 ces Xn)
xn * En(xl se xn+m) Xn+m « nm(xl te xn)

For let He @(n+m,n) be defined by Hi(x) = ;i(xl cos xn+m) and De%ﬁ(n,m)‘be
defined by Di(X) = ni(Xl oo Xn). Then the original equations define the
function F = A(X)H(X,D(X)) while the transformed equations define the
function G = A(X)I(H(X),D(n(X))). By Theorem 6, n(8(G)) = 6(F), i.e., 8(C)
and 6(F) have the same first n components,

Theorem 7 deals with the case where an n-tuple of sets is defined
by a set of equations

Xl * El(Xl see Xn Tl cee Tm) e Xn * En(Xl see Xi 'I'l cee Tm)

containing free parameters Tl eee To denoting m sets defined by a second
set of equations:

Yl ha nl(Yl se e Ym) L N} Ym ha nm(Yl LA N] Ym)

Then the equations may be combined into the n+m equations

x1 * El(xl e xn+m) . xn+l « nl(xn+

Xn * ;n(xl s xn+m) xn+m * nm(xn+l e xn+m)‘

1°°*° xn+m)

John C, Reynolds

For let He #(n+m,n) be defined by Hi(X) = Ei(xl ces xn+m) and De % (m) be

defined by Di(Y) z ni(Yl .o Ym). Then the original equations define the

function F = A(X)H(X,08(D)) while the transformed equations define the

function G = X(X)I(H(X),D(p(X)}). By Theorem 7, n(6(G)) = 6(F), i.e., 6(G)

and 8(F) have ‘the same first n components.
Definitions
An important class of finitely generated functions is obtained by

extending functions of objects to functions of sets of objects in a

standard manner,
If £f: D+ U, where D g_Un, then f,: P® + P is defined by

£,(X) = {yly = f(_x) for some xeDM(X; X .4 xxn)} |

A function F: P® + P is called partially pivotal if there exists a set
of variable componentso\/= {Xg; oo Xi,} such that F(X) = ¢ if and only if
Xiln eos Xy = ¢. The members of ¥ are called the pivots of F(X)., If

V= {x; «oo Xn}, then F is called pivotal.

Theorem 8
If £: D + U, where D S U", then:

(a) For X) e X ,Y:€P,

f*(xl [N N] xi-l'inYi.xi+l LN N

Xn)

= f*(Xl 200 Xn)Uf*(Xl see xi-l Yi xi"’l eoe Xn)
(b) £,(X) = ¢ vwhen X; = ¢ for any i.
(c) f e #(n,1)

(d) If D = Un,.~~i.e., f is complete, then f, is pivotal,

21

John C. Reynolds 22

Proof: (a) Since Dﬂ(Xlx ese xX. x(x UY) XX1+1 see xxn) = Dn(xlx ese xXh)U

DN (XX oo XX XY XK X oo xX). (b) Since DM(X;X «es XX) = ¢ if any

X; = ¢. (c) Since (using (a))

f*(xl see xn) = f*<U (Ylnxl) XXE U (Y ﬂx
Y,€Q

Y eQ

£,(X)

U veo U 200,050 e 0z = U g0,
YlFQ YneQ : . YeQ

(d) since UN(Xx ... xX) is empty if and only if any X, = ¢.

. Theorem 9
I1f Fe%(n) is defined by equations of the form

K,
F (X) = jgl FHCINTE ®

vwhere each Eij is an expression composed of constants denoting non-empty
sets, (some of) the variables xl e Xn, and pivotal functions, then it is
possible to compute whether or not each component of 6(F) is empty.

Proof: It can be shown (by inductiom on length or depth of expressions)

that each E ., defines a partially pivotal function whose pivots are the

component varlables which actually occur in Eij' Let Hijk and N? be arrays
of truth values defined by
= 3 m

Hijk = X, appears in Eij' and ANi = (rm(¢))i £ ¢

Then
A K,
o m+l i A
N, = faJ'.se, and. N, o= V A A i kVN)

-3=1 k=1

John C, Reynolds

Obviously N‘z may be computed for successive values of m, and if an m, is
motl Mo m . .
reached such that Ni = Ni for all i, then Ni will remain constant for
m

allm 2 m and Nio' will describe the non-emptiness of (G(F))i.

But since Fm+l(¢)2fm(¢), either N?ﬂ' = N'; or N';H' = true, so that
each step from m to m+l either leaves all the Nmi unchanged or increases the
number of NII which are true., .Thus the computation will terminate at some

<
mo-n.

Definitions

For any n, we define a: U" + U to be the function-such that o(x) = Xy
This in turn defines the pivotal function o.: P" + P such that

0,.(X) =_:L_§X2ﬂ ese ﬂxn=¢3he_n¢gls_exl.

(The value of n will usually be evident from the context in which g, is used.)
If Y denotes a set of component variables {xil ees xik} then we will write
0,(Y,Y) to denote °*(Y’xil cee Xik). |

The following properties of o, are obvious:
(a) 0,0, (Y V)W) = 0, (v, Y UY)).
(b) If F: P+ P satisfies F(¢) = ¢ then 0, (F(Y),}) = F(o (Y,).
(e) If Fy ou0 Fpt P” + P are partially pivotal functions then o(Y, Fi(X) «ae

Fi (X)) = o*(Y,ol/lU ces UoVk), where .CVi is the set of pivoés of Fi(X). '

Theorem 10

If Fe%(n) is defined by equations which satisfy the hypotheses of
Theorem 9, then it is possible to derive equations which define a function
Ge Z(n) such that 8(6) = 6(F), which also satisfy the hypotheses of Theorem 9,

and which does not contain any -occurrences of ¢,.

John C. Reynolds 24

Proof: By applying property (c) we may transform the equations defining
F so that all non-initial arguments of o, are component variables. The
equations will then have the form

K

i
Fi(X) = L=Jl Eij(xl XX} X 9 X

) n®* 1 **° xn)
)

where the second n arguments denote occurrences of component variables as
non-initial arguments of g, and the first n arguments denote the remaining

occurrences, By Theorem 5, 6(F) = 8(G) where G is defined by

K.
1
6y(X) = ;;{ Ey5(X) e Xpo (B(ED); wen (BCED)).

By Theorem 9, the truth values N, (e(F))i # ¢ can be computed, and each
occurrence of (S(P))i. which will be a non-initial argument of o,, can then
be replaced by U if Ni is true or ¢ if Ni is false. Then, since the Eij
are composed entirely of pivotal functions, each Eij containing any occur-
rences of ¢ can be eliminated from the definition of G. Each remaining

occurrence of o, will have the form o*(nm(x), U ... U), and can be replaced

by n_(X).

II, APPLICATIONS TO LISP

We now take U to be the set of all S-expressions, and show how to
construct, from the definition of a LISP function, equations which
recursively define a set including all possible results of the LISP func-

tion, We begin by defining the concept of a LISP function definition precisely.

John C, Reynolds 25

Definitions
Given a finite set Y of variables and a finite set SV of function

names in which each member fie % has a fixed degree di’ a LISP expression

in &% and & is defined as follows: Any quoted atom is an expression,

Any member»of ¥ is an exprgssionf If’ul, Gy eos are expressions, then

cons(u1u2), car(ul), cdr(al), if atom(al) then a, else a,, if null(al)

then e, else a,, if eq(nl,az) then a, else a,, and, for each fie:F,

fi(al coe °di) are all expressions. In each case a. is called the e

immediate subexpression of the expression being defined.

A LISP definition of the functions & = {fy «s. g} is a sequence
of equations of the form:

fl(xll oo e xldl) = El L N fﬂl(xml ®0o0® xmdm) = Em

where each §. is a LISP expression in ‘Vi = {xil ose xidi'} and &% . (Note
that different variables are used in each eqﬁation.)

The semantics of a LISP definition are described in reference 3,
Actually the class of definitions described here is more limited than in
3 (the use of free parameters and functional arguments is prohibited),

but the basic mechanisms of recursive functions are included.

Construction

Given a LISP definition o of functions & = {f; oo fpl and a

dl-tuple T of sets of S-expressions, let Gys eosy O be an enumeration of
all expressions in d?: i.e,, the ai*s and all their subexpressions, in

which a, = Ei for 1 £ i £ m., Assuming that the evaluation of fl occurs in

John C, Reynolds 26

4

discrete time steps t = 0, 1, 2, .ss , let SE be the set of all S-expressions
which can occur, at time t or eariier, as the value of as during the evalua-
tion of f, applied to any 4,~-tuple of arguments (a,, oo, adl)eT. (We assume
Sz = ¢.) We give the construction from /8~ of equations.which define a func-
tion F: P*T91 & P® guch that st+l'S;rxst,T). For 1 £ i S n:
(a) If a; is a quoted atom, let Fi(S,T) = 0 (where a; becomes a
- constant denoting the singleton set whose member is the quoted atom).,
“ (b) 1If a, is the variable xjk’ then any value of a, must have appeared
earlier during the evaluation as the‘kth argument in a call of fj' Therefore
it must be a previously computed value of the kth immediate subexpression
of some expression beginning with fj' or, if j = 1, it may be a member of Tk°
Thus if {aal veo uaq} is the set of all expfessions which occur in «J as the
kth immediate subexpression of any expression beginning with f.,, let
Fy(8,T) = S5 U .o U SaqU (if § = 1 then T, else ¢).
(c) If . is cons(&jak) (or car(aj) or cdr(aj)), then any value of

a; must be the cons (or car or cdr) of‘previously computed values of aj and

@« Thus let Pi(S,T) = cons*(Sj Sk) (or car*(Sj) or cdr*(Sj)).
(d) 1If e is if <any predicate> then oy else a,, then any value of

a; must be a previously computed value of uj or a, . Thus let Fi(S,T) = Sj U sk?
(e) If ui>is an expression beginning with fj' then any value of a;

must be a previously computed value of Ej = aj. Thus let Fi(S,T) = Sje

Theorem 11

If F: Pn+dl + P" is the function defined by equations constructed

from a LISP definition of {fl ves fm}. then (B(A(X)P(X,T)))l includes all

John C, Reynolds 27

results obtained by evaluating fl applied to any dl-tuple of arguments
(a; oo adl)eT.
Proof: Let G = A(X)F(X,T). Then S° = ¢, and 5% C6(q) implies s™1 < r(st,T)C
F(6(G), T) = G(8(G)) = 8(G), so that st < 6(c) for all t. But any result of
fl must eventually appear as the value of El énd thus belong to Si for
sufficiently large t.

Thus our construction produces a recursive definition of a set
including the results of fl in which the sets T1 teo Tdk of the possible
arguments of f, appear as free parameters., But if the sets Tl P le can
also be described by recursive definitions, then, as a consequence of
Theorem 7, these definitions can be combined into a single parameterless
definition,

The result of the construction is a set of equations containing
expressions composed of constants, component variables, and the functioms
cons,, car,, cdr,, and U. The constants may be quoted atoms; we also
allow the constant atom denoting the set of all atoms, We now proceed to
develop an algorithm for transforming this set of equations to eliminate
car, and cdr,. The algorithm will achieve this goal at the expense of

introducing the function o, which can then be eliminated through Theorem 10,

Definitions
We define the following subsets of 3% (n,1):
2/(n) = {Fe% (n,1)|F(X) = X, for some 1 £ i £ n)
J(n,o) =7 (n) U {Feﬁ(n,l).lf‘(x) = some quoted atom or F(X) = atom}
J (n,8+1) =f(n,@) U {FeFi(n,)|F(X) = cons,(F'(X),F'(X))

for some F', F'e J (n,d)}

John C., Reynolds ‘ : 28

A(n,0) =7 (n)
Q(n,d+1) = @ (n,d) U {FeX (n,1)|F(X) = car (F'(X)) or F(X) = edr,(F'(X))
for some F'eA(n,d)}
Then if ﬁ, denotes any subset of % (n,l1), we define:
2(}) = {FeX(n,1)|F(X) = 0 (F'(X),%) for some ¥ & {X; oo xn} and
F'e} }K-
ﬂ(},m) = {(FeX(n,m)| for 1 £ i & n, F,(X) = Jk:.-jl Fij(x)vwhere Pije}}
Lemma 6
(a) If GeA(1,d) and G¢(L(1,0), then G(¢) = G(atom) = ¢.
(b) If Fez{(n,d) then F is partially pivoi:al.
(¢) car,(cons,(X,Y)) = 0,(Y), cdr,(cons,(X,Y)) = g,(Y,X).
Proof: (a) Since G is a composition of one or more car,'s and cdr,'s,
and the domain of car and of cdr is the set of non-atomic S-expressions.
(b) Since cons is a complete function, cons, is pivotal, and any expression
composed of pivotal functions is partially pivotal, (c) Since cons is

complete, coms,(X,Y) = U U {cons(x,y)}, and since car(cons(x,y)) = x,
xeX yeY

car,(cons,(X,Y)) = U U (x} = 0,(X,Y). The cdr case is similar.
xeX yeY
Lemma 7
1f Fer(d (n,dp)), Ge@(1,d,), and H = GoF, then either H(X) = ¢
for all XeP", or Hei(of (n,dp) U A(n,dy)) where 4 = max(d,d).
Proof: Let dgin < d_ be the least value of d such that Ge2(1l,d)., We prove

G
the theorem by induction on dr:;m

John C, Reynolds

(a) 1If dzin = 0, then ce/ (1), But the only member of 7 (1) is
the identity function on P, Thus H = Pe}:(ef(n,dr)) EZ(J(n,DH)).

(b) If dzin > 0, assuming the theorem to be true for all
Geaz(l,d'éin-l): We have F(X) = o*(F'(X),‘V) where F'ed(n,df,). (i) Suppose
F'\eJ(n,O). By Lemma 6a and property (b) of o, H(X) = 6(0,(F'(X),Y)) =
04(G(F'(X)),Y). If F'(X) = X, then GoF' = A(X)G(xi)ea(n,dgin) Ed(n,dﬂ);
and HQZ(@(,n,dH)). If F'(X) is atom or a quoted atom, then by Lemma 6a,

G(F'(X)) = H(X) = ¢. (ii) If F'¢d(n,0), then F'(X)

cons(Fl(X) .F2(X))

where Fl,F2ec}(n,dF-l). Since d‘gm > 0, either G(X) = G,(car,(X)) or

6(X) = Gl(cdr*(x)) where Glea.(l,d:m-l). ' Using Lemma 6 and the properties
of o,, we get: - '

car car

29

HX) = 6 (or (0,(cons,(F)(X),F,(X)),¥))) = G (o,(or (cons,(F, (X))
cdr, cdr,
F,(X))),%))
= 6 (0,(0,(Fy (X)y Fy o 1(XD), YD) = 6 (0 (F) (XY U gD,

where I is the set of component variables occurring in F2 o l(X)' Since

G,e d(l.dzin-l) and o, (F (X), 7 U)et(of (n ,dF-l)), the induction

lor?2
hypothesis gives either H(X) = ¢ or HeI(of (n,max(dr-l,dgm-l))

U atn max(a-1,d5"-1))) S 2o (n,d,) UQ(mady).

Theorem 12

If Fen(z(qf(k,dF)-U(k)),m)_énd GeR(E((myd))n), then there exist

functions SF,Gen(z(J(k’dﬁ)' J(k)),n) and AF'GeQ(Z(Q(k',dH)),n) where

d, = max(dF.dG) such that G(F(X)) = SF,G(X)UAF,G(X)'

John C,. Reynolds 30

Proof: Let G' be any member of t(CL(m,dG)). Since any function in CZ(m,dG)
will depend upon a single component variable, G'(X) can be written as

G'(X) = U*(G"(XP(O)).XP(l) XX xp(q))

where G"eCl(l,dG). Since G" is a composition of car,'s and cdr,'s, Theorem 8a

gives C"(XUY) = G"(X)UG"(Y), so that

K
m
G'(F(X)) = 6" (U F (X) oue (U F_.(X))
j=1 =1 ™
“peo) KPU) Kp(q)
= 0,(;:i G (Pp(o)j(X)), 5 Fp(l)j(x) cos ;;{ rp(q)j(x))

where each Fijez(e!(k,dp)-§7(k))SE!KJ(k,dF)). Then Theorem 8a applied to

o, gives:

K K
. p(0) p(q) |
G'(F(X)) = ,LJ cos .LJ 046" (F 0y (X))’Fp(l)jl(X) oo Foeadd (X)).
i=1 it o q

Since the Fij are partially pivotal, each term in this union can be written
as c*(G"(Fp(o)j (X)),¥) where ¥ is the set of all pivots of

o]

Fp(l)jl(x)."' Fp(q)jq(x). By Lemma 7, either G"(Fp(O)jo

(X)) = ¢, or
c"crp(o)jo(x>) = 0, (H'(X),%) vhere uveef(k,dH)Lch(k,aH) =

(f (k,d,) -7 (k) Ua(k,dn)b(since J(k) S Qk,dy)). In the first case
the entire term vanishes from the union, since 0,(¢,%) = ¢. In the
second case, since 0, (0, (H'(X), %), ¥) = 0, (H'(X), U ¥), the term can be
written as H(X), where HeZ(ef (kyd,)-&(k))UL(QR (kydy)), and the unien has

L
the form G'(F(X)) = (J H,(X).
j=1 7

John C. Reynolds 3l

K

i .
Now since GeQ(Z(Cl(m,dG)), n), we have Gi(F(X)) = U Gij(F(x)),
3=1

where each Gijet(Cl(m,dG)). Thus:

. 1
G, (F(X)) = UJL M Hysq0 (X,

[
I

where for each term, either Hijj,et(eg(k,dﬂ)-;7(k)) or Hijj.et(CZ(k,dH)).
By defining SF G i(x) as the union of the terms of the first type, and
"

A .(X) as the union of the remaining terms, we obtain functions S
F,G,1 F,G
and AF G satisfying the theorem,
?
It should be noted that the proofs of this theorem and Lemma 7
not only establish.the existence of SF G and AF G but also define a method
. 1]]

for constructing the defining equations of SF G and AF G from the defining
9]

equations of F and G.

Reduction Algorithm

Given (equations defining) the functions FeR(Z(f (n,d) - Z(n)),yn)
and GeR(Z(QA(n,d)),n), the following algorithm produces (equations defining)

the function SeR(I(¢f (n,d)-7(n)),n) called the reduction of F and G.

(1) Set F(O) =F, G(O) =G, 1i=0,

(i+l) _ (1) (i+1) _ (1)
(2) SetF =’V Sr(i)c(i) and G =G 'UA

(DD
(3) 1e D) o p(8) 4pq UL o (1) @)

, then terminate with § = F " °,

otherwise increase i by one and go to step 2.

(Here the union of functions FUG is defined by A(X)(F(X) Ue(x)).)

John C. Reynolds 32

Theorem 13

The reduction algorithm terminates and produces a result such that
8(s) = e(rUe).
Proof: (a) Theorem 12 implies that at all stages of the algorithm F(l),

sF(i)G(l)en(z(J(n d)-2(n)),n) and ¢‘&?, A (1)g(1) HEQmsD)4n). Ths

each F(i+l) (or G(i+l)) is produced from F(l) (or G(l)) by adding terms
from Z(gf(n,d)-&7(n)) (or £(Q@Q(n,d))) to each of its components. But the
original functions F and G must bé defined by expressioﬁs constructed from
a finite vocabulary, the algorithm never introduces any new vocabulary, and
for a fixed finite vocabulary the total number of terms in I(d (n,d)=-J(n))
and I(A(n,d)) is finite, Thus eventually every term being added to a
component of F or G wiil already be present in that component, and the
algorithm will terminate. |
(b) At each execution .of step 2, F(i+l)L}G(i+1) = r(i)LJG(i)L}G(i)QF(i)Ez
r(i)u G(i). If P = e(r(i)UG(i)). then G(i)oF(i)(P) E:_G(i)o(F(i)U G(i))(P) =
cp)y, so that (FIDUE)y py = (¢ P yeP))(p) = P. By Theorenm 3,
G(F(i+l)L)G(i+l)) = e(F(i)L}G(i)), and by induction, G(F(i)lJG(i)) =
6(F UG) for all i, A
(c) When the algorithm terminates, P(i+l)LJG(i+l) = F(i)LJG(i)LJG(i)oP(i) =
F(i)L)G(i), so that G(i)(F(i)(X))S;E‘i)(x)lJG(i)(X) for all XeP". The definition
of A(Z(A(n,d)),n) implies that G(i)(¢) = ¢, Thus by Theorem U4, B(F(i)L}G(i)) =
o(r{1) = e(s), |
In summary, by introducing éuxiliary equations, any recursive definition
involving cons*, car,, cdr,, 0,, and U can be transformed into a definition of a
function FUG, where F and G are acceptable to the reductlon algorithm. The
result of this algorithm meets the conditions of Theorem 10, which can then be

used to eliminate 0, and obtain a definition involving only cons, and U.

