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PREFACE

In 1972 I started teaching programming to graduate students in Computer
and Information Science at Syracuse University. I began with the conviction
that programs should work correctly and that programmers should be able to
explain clearly why they work correctly. This led to considerable emphasis
on structured programming and the use of assertions. Gradually my own
attitudes and ideas crystalized, programming methodology and proof
methods became a major concern of my research, and the present book
began to evolve.

The modern computer is so powerful that a casual knowledge of prog-
ramming suffices for most of its users. However, a variety of circumstances
can abruptly require a much deeper understanding: the need to structure a
program carefully to avoid being overwhelmed by its complexity, the need to
insure reliability beyond what can be achieved by debugging, or the need to
utilize computing resources efficiently. Beyond such practical considera-
tions, there is an inherent intellectual satisfaction in mastering the funda-
mental concepts of programming.

The aim of this book is to provide such mastery concept by concept. For
example, the reader is expected to understand proofs of correctness and
order-of-magnitude time requirements for simple integer algorithms—such
as log n exponentiation—before the concept of arrays is introduced. A
similarly thorough understanding of array-manipulating algorithms is
expected before the introduction of procedures.

Xi



xii PREFACE

The programming language used in this book is Algol W or, more
precisely, the subset of Algol W that represents a refinement of Algol 60.
Originally the main factor determining this choice was the level of the
language. It is sufficiently high-level to provide block structure, including
dynamic arrays, and a powerful procedure mechanism, including recursion,
call by name, and higher-order procedures. On the other hand, it is suffi-
ciently close to the machine to facilitate the estimation of time and storage
requirements. In addition, it has an unusually elegant syntactic structure
which permits clean subsetting, and an efficient and unusually error-free
implementation.

Inretrospect, the advantages of Algol W seem even more compelling. It
distinguishes clearly between the types of variables and the types of proce-
dure parameters, and, with a straightforward extension of its parameter
specification facility, it can be made completely type-safe. Its procedure
mechanism is based upon the copy rule, so that call by name is more
fundamental than call by value. My own work, both in program proving and
denotational semantics, has convinced me that these characteristics form a
sounder conceptual basis for programming than those that underlie such
languages as Pascal or Algol 68. In any event, much of what is said in this
book, particularly in Chapter 3, would be difficult or impossible to say in
such languages.

This book reflects a conviction about the importance of program prov-
ing. Ideally at least, I believe that a programmer should be able to specify the
behavior of his program precisely, and to give a rigorous argument that the
program meets its specifications. Of course, such an argument might not be a
formal proof in the sense of logic, but it must be an adequate guideline for a
formal proof. In other words, an adequately commented program should
enable a competent reader to fill in the details of a formal proof in a
straightforward manner.

This implies that the programmer should master formal proof methods,
not in order to give a formal proof of every program that he writes, but as a
firm foundation for rigorous though informal reasoning about programs.

In this connection, something needs to be said about the special prob-
lems of teaching experienced programmers to program. Such students are
unlikely to be attracted by either polemics or formalism, but they can be
motivated by a sequence of programming problems of the right level of
difficulty, given in an environment that precludes using the computer as a
crutch. Most programmers believe that they should be able to write a correct
program for, say, binary search without using the computer. Once they have
failed to do so and their errors have been pointed out, they are likely to
become receptive to formalisms and methodologies that can help.



PREFACE xiii

An even greater benefit of having students program without using the
computer is that it requires the instructor to read their programs, which is
just as important in teaching programming as in teaching English composi-
tion. Moreover this is a reciprocal benefit; in my own case reading student
programs has taught me profound lessons about programming style and the
nature of useful comments.

In the main text of this book, syntax is treated informally to provide a
reading knowledge of Algol W; the additional syntactic formalities needed
to write programs, as well as a brief description of input and output facilities,
are given in the appendices. Within the main text, sections marked with
asterisks can be skipped without endangering the understanding of later
material.

Although this is primarily a textbook, I have not hesitated to include the
results of my own research. [Reynolds 79, 81 and 78b] provide the source of
much of Chapter 2, Section 3.3, and Sections 4.2.5 to 4.2.8, respectively.
This research was partly supported by National Science Foundation Grant
MCS 75-22002, Rome Air Force Development Center Contract F30602-
77-C-0235, and the Science Research Council of Great Britain.

I'am thankful to the members of IFIP Working Group 2.3 for many
specificideas and, more importantly, for the basic outlook that underlies this
book. In addition, Tony Hoare has provided much-needed encouragement
for several years, and Edsger W. Dijkstra and David Gries have each made
numerous helpful suggestions after careful reading of a preliminary draft. I
am also indebted to Lockwood Morris, Ernie Sibert, Nancy McCracken, and
Otway Pardee, each of whom has used parts of the book in teaching at
Syracuse University, to Rod Burstall and Robin Milner, who were my
gracious hosts during a sabbatical at Edinburgh University, and to numerous
students, who have taught me much about how to program, how to write,
and even how to spell. Finally, I am deeply grateful for the encouragement
and endless patience of my wife Mary and our children Edward and
Matthew.

J.CR.






1 SIMPLE ITERATIVE PROGRAMS

1.1 COMPUTER PROGRAMS AS PATTERNS OF BEHAVIOR

1.1.1 Patterns of Human Behavior: An Analogy

A computer program is a pattern of behavior for a machine that manipulates
numbers or symbols. This implies that a clear understanding of even elemen-
tary programming requires the mastery of two quite distinct concepts:
behavior patterns and the manipulation of numbers or symbols. To separate
these concepts, we will use a perspicuous idea taken from [Dijkstra 71]: We
will begin by considering behavior patterns for humans performing everyday
acts, and momentarily ignore the actual domain of computer activity. This
will permit us to concentrate upon the aspect of programming that is usually
called “control structure”.

Consider my behavior on a particular morning. At arather gross level of
detail, I did the following:

Eat breakfast;
Put on clothes;

Leave in car

However, each of these acts can be expanded into a sequence of acts at a
more detailed level, and this expansion can be repeated. For example:

1



2 SIMPLE ITERATIVE PROGRAMS CHAP. 1
Gross Detailed More Detailed

Eat orange;

Put milk on cereal;
Put sugar on cereal;
Eat bite of cereal,

Eat breakfast; Eat cereal; 3 )
Eat bite of cereal;

Eat bite of cereal;

Eat bite of cereal;

Eat toast;

Put on heavy coat;
Put on clothes; 4 Put on galoshes;

Put on gloves;

Open garage door;

i Start car;
Leave in car 4

Get car out of garage;

Drive car down driveway

On a different day, I might have exhibited a behavior that was similar on
a gross level, but different in its details, e.g.

Gross Detailed

E .
Eat breakfast; at orange;

Eat pancakes;
Put on clothes; { Put on light coat;

Start car;
Leave in car Get car out of garage;

Drive car down driveway
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So far, we have two specific behaviors; we now want to abstract a
common pattern that describes both of them, and possibly many others.
There is no magic recipe for doing this, but two observations are obviously
pertinent. First, my behavior differs from day to day because I perceive
differences in my environment, e.g. what is on the breakfast table. (Note that
we are ignoring anything like free will—this may not be appropriate for
discussing human behavior, but hopefully it will be appropriate for machine
behavior.)

Secondly, patterns of behavior are intimately connected with the
hierarchical structure of ““levels of detail”. In particular, specific behaviors
that are similar on a gross level become more and more different as we
examine finer levels of detail.

At the most gross level, our pattern of behavior looks just like a
particular behavior:

begin

Eat breakfast;
Put on clothes;
Leave in car
end

But at the next level of detail, something new happens: What I do when I eat
breakfast depends upon how hungry I am and what is on the table, what I do
when I put on clothes depends upon the weather, and what I do when I leave
in the car depends upon whether the garage door is closed.

To describe this kind of “conditional behavior”, we must extend the
language we have been using. First we need some terminology: A statement
is a phrase that describes an action. (In English we would call it an imperative
statement.) A logical expression is a phrase that describes a test of the
environment. (The reason for using the name “logical expression” will
become apparent later.)

If L is a logical expression and § is a statement, then

if L then S

is a statement, called a conditional statement, that describes the following
action:

(1) Test whether L is true or false.
(2) If L is true then do S, otherwise do nothing.

We will also need a second kind of conditional statement: If L is a logical
expression and both §; and S, are statements, then

if L then S, else S,

is a statement that describes the following action:
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(1) Test whether L is true or false.
(2) If L is true then do Sy, otherwise do ;.

These conditional statements allow us to describe a pattern of behavior
that depends upon the environment:

begin
begin comment Eat breakfast;
if hungry and orange on table then Eat orange;
if hungry and cereal on table then Eat cereal;
if hungry and toast on table then Eat toast;
if hungry and pancakes on table then Eat pancakes
end;
begin comment Put on clothes;
if cold then Put on heavy coat else Put on light coat;
if snow then begin Put on galoshes; Put on gloves end
end;
begin comment Leave in car;
if garage door closed then Open garage door;
Start car;
Get car out of garage;
Drive car down driveway
end
end

Here, in addition to the two forms of conditional statement, we are also using
another kind of statement. If S;, S,, ... , S, are all statements, then

begin S;; S,; ... ; S, end
is a statement, called a block, that describes the following action:

(1) Do S,.
(2) Do Sz.

(n) Do Sn

The symbols begin and end can be used to group statements together,
just as parentheses are used in elementary algebra to group expressions
together. In the above example, this grouping is used to relate different
levels of detail; each elementary statement at the gross level becomes a block
of statements at the more detailed level. (Note that the entire pattern is
grouped into a block of blocks—revealing a still grosser level of detail.)

Blocks are also used to group statements within conditional statements.
For example, we wrote

if snow then begin Put on galoshes; Put on gloves end



SEC. 1.1 COMPUTER PROGRAMS AS PATTERNS OF BEHAVIOR 5

instead of
if snow then Put on galoshes; Put on gloves

to show that neither galoshes nor gloves will be put on when there is no snow.
Two other linguistic constructs have also been used. If Cis any sequence
of symbols that does not include a semicolon, then

comment C;

is a comment. Comments, which can occur anywhere in a program (except in
the middle of “words”), have no effect on the machine (or human) that
obeys the program, but are intended to help a reader to understand the
program. For example, in the behavior pattern above, comments are used at
the beginning of blocks to identify the gross structure from which the current
level of detail is descended.

Secondly, if L, and L, are logical expressions, then

L, and L,

is a logical expression that is true if (and only if) both L; and L; are true. This
is one of a number of constructions which will be used to build logical
expressions out of simpler expressions, in the same way that the conditional
and block constructions can be used to build statements out of simpler
statements.

At the next level of detail something new happens. The pattern for “Eat
cereal” might look like this:

begin comment Eat cereal;

Put milk on cereal;

Put sugar on cereal;

if cereal in bowl then Eat bite of cereal;
if cereal in bowl then Eat bite of cereal;
if cereal in bowl then Eat bite of cereal;

end

Presumably, we must have at least as many copies of “‘Eat bite of cereal” in
our pattern as the maximum number of bites in any cereal bowl.

To avoid this foolishness, we introduce another kind of statement. If L
is a logical expression and S is a statement, then

while L do S
is a statement, called a while statement, that describes the following action:

(1) Test whether L is true or false.
(2) If L is true then do S and go back to step (1), otherwise do
nothing.
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(Note that if the first test of L gives false, then S will not be performed at all.)
Now we can write ‘“Eat cereal” as

begin comment Eat cereal;

Put milk on cereal;

Put sugar on cereal;

while cereal in bowl do Eat bite of cereal
end

The while statement is our first example of an iterative statement, i.c. a
statement that can cause an action to be performed repeatedly. Such state-
ments are essential in computer programming in order to exploit the tre-
mendous disparity in speed between human program writing and mechani-
cal program execution.

However, the power of repetition brings a concomitant danger: It is all
too easy to write a while statement that never terminates, i.¢. to write while L
do S where doing S never makes L false. Perhaps

while cereal in bowl do Eat bite of cereal
is innocent, but

while car stopped do Press ignition

is a disastrous prescription for dealing with a dead battery.

The language we are using to describe behavior patterns is a kind of
pidgin Algol W whose similarity to natural English can be misleading. One
particular warning must be sounded: Here and throughout this book, only
sequential behavior is considered—two activities never occur simultane-
ously or overlap in time. Because of this, the while statement differs subtly
from the use of “while” in English. In executing while L do S, the logical
expression L is not tested during execution of the statement S. Thus,
according to

while hungry and pancakes on plate do
begin
Slice one pancake;
while slice on plate do Eat slice
end ,

I will always finish a sliced pancake, even though my appetite fails in the
midst of eating it. A more rational (though perhaps less realistic) behavior
would be specified by repeating the test of hungry in the inner while state-
ment:
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while hungry and pancakes on plate do
begin
Slice one pancake;
while hungry and slice on plate do Eat slice
end

This is as far as we will go in exploiting the analogy between human
behavior and computation; we have managed to illustrate all the control
mechanisms that will be used in this chapter. But one fundamental point
deserves further emphasis: The structure of levels of detail (or looking the
other way round, levels of abstraction) is vital for imposing a pattern on a
diversity of specific behaviors. To an observer from Mars, unfamiliar with
human motivation, specific instances of the behavior we have described
might appear to be unstructured sequences of very simple actions. But by
virtue of this fact, such an observer would find it difficult or impossible to
perceive any common pattern behind the diversity of instances.

This naturally suggests that programs should be developed by beginning
at a high level of abstraction and repeatedly refining the level of detail. This
approach, often called structured programming, top-down programming, or
programming by stepwise refinement, has received considerable emphasisin
recent years [Dijkstra 71, 72, Wirth 71b]. Although it is not a panacea, it is
an immensely powerful tool for attacking complexity, and its employment in
various guises will be a recurring theme throughout this book.

More precisely, we will say that a program is structured when it reveals a
variety of levels of detail to the reader, and we will reserve the term
top-down for the process of creating such a program by proceeding from the
abstract to the concrete. Occasionally the opposite order of attack, which
might be called bottom-up programming, is called for, particularly when the
ultimate goal of the program is ill-defined or changeable.

We are left with the question of when the repeated expansion of
patterns into more detailed patterns should stop. Since the patterns are
intended to be instructions, the pragmatic answer is to stop at a level of detail
that can be understood by the recipient of the instructions. In particular, if
the recipient is a computer then one stops when all instructions belong to the
fixed repertoire of the programming language being used.

1.1.2 Flowcharts

Flowcharts are one of the oldest methods for describing the control structure
of computer programs. Although their serious limitations have curtailed
their popularity in recent years, they are still useful for illuminating the
concepts introduced in the previous section.
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A flowchart is a collection of boxes containing statements and logical
expressions which are connected by arrows showing the order in which the
boxes are to be executed. A statement is contained in a rectangular box with
a single outgoing arrow, which points to the box to be executed next:

A logical expression is contained in a diamond-shaped or hexagonal box
with two outgoing arrows, one pointing to the box to be executed next if the
logical expression is true, and the other pointing to the box to be executed
next if the logical expression is false. The outgoing arrows are labeled true
and false to distinguish them:

Special boxes marked enter and exit are used to indicate the beginning
and end of execution:

\

K enter |
!

As an example, the flowchart in Figure 1.1 describes the pattern of
behavior for “Eat breakfast”. It is evident that flowcharts are much less
compact than the linguistic representation of behavior patterns, and that
they obscure the basic hierarchical structure of the patterns (although one
could use boxes containing smaller boxes as a kind of pictorial block). For
these reasons, we will largely avoid their use (although the closely related
concept of transition diagrams will be used in Sections 4.2.6 and 4.2.7).
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enter

\
hungry and
orange on table

! false 1

Eat orange

hungry and

i n a
cereal on table Put milk on cereal

Y
false
Put sugar on cereal
| v
’ \ :
cereal Eat bite
in bowl of cereal
false
Y T
hungry and o | Eat toast
toast on table
| false Y
’ -
==
hungry and true = S
pancakes on table /= Eat pancakes
s e f
I false Y

Figure 1.1 A Flowchart for the Behavior Pattern ‘“Eat Breakfast’".

However, it is helpful to use flowcharts to describe each of the linguistic
constructions introduced in the previous section. In Figure 1.2, each of these
constructions is defined by a simple flowchart. Indeed, one could almost say
that these constructions have been chosen to correspond to the simplest
possible ways of constructing flowcharts from individual statements and
logical expressions.
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S

if L then S Y

L true 5;
- false
if L then S; else S; y

A > =
while L do § S
begin S;; ... ; S,end —>— % —=— Sy p—

Figure 1.2 The Basic Control Constructions Defined by Flowcharts.

Exercise

1. Write some behavior patterns. Try to include several levels of detail and to use
each of the linguistic constructs discussed in this section. Translate the patterns
into flowcharts.

1.1.3 Syntax

The analogy between human and computer behavior breaks down in one
respect. In reading a program, a computer lacks the human ability to correct
certain kinds of minor errors and ambiguities. (More precisely, this ability is
lacked by the compiler—the system program that translates a programming
language into the more elementary language used by the machine. Indeed,
most compilers, including the Algol W system, fall considerably short of
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the present state-of-the-art of mechanical error correction [Morgan 70,
Graham 75].)

As a consequence, programs to be executed by a computer must adhere
to a rigid set of rules defining the syntax of the programming language being
used. The behavior patterns we have presented adhere to these rules (except
for the use of natural English for elementary statements and logical expres-
sions), but it is all too easy to write statements that violate these rules yet
remain intelligible to the human reader. For example, each of the following
statements is syntactically erroneous:

if hungry and orange on table do Eat orange
if snow then Put on galoshes; Put on gloves else
Put on light overcoat
begin Put on galoshes; Put on gloves; comment It is cold end

A further problem is ambiguity. Some statements, like puns in natural
language, can be interpreted in more than one way. For example,

if warm then if rain then Put on raincoat else Put on heavy coat
could reasonably mean either

if warm then
begin if rain then Put on raincoat else Put on heavy coat end

or

if warm then
begin if rain then Put on raincoat end
else Put on heavy coat

A human reader will use his entire understanding of context and meaning to
resolve such ambiguities, often without becoming conscious of their exis-
tence. But the computer simply follows the syntax rules, even when the
resulting interpretation would be unnatural for a human. For instance, in the
above example, the Algol W compiler would choose the first interpretation.

Because of these problems, there is a great difference between the
ability to read a programming language and the ability to write it for
computer consumption. (The first encounter with this difference is often a
traumatic experience for novice programmers.) In organizing this book, we
have tried to separate material that is directed towards these two abilities. In
the main text, syntax is treated informally to provide a reading knowledge of
Algol W. The additional information needed to write programs is provided
in the appendices: Appendix A presents a general notation for describing
the syntax of programming languages, which is used in Appendix B to
describe the portion of Algol W used in this book. Further information can
be obtained from the Algol W Reference Manual [Sites 72].
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The disparity between human and mechanical reading has other effects.
In contrast to printing or handwriting, computer input is usually restricted to
a small, fixed vocabulary of symbols that can be unnatural for the human
reader. To alleviate this constraint, we will follow the practice, almost
universal for Algol-like languages, of using a larger vocabulary for printed
programs than for computer input. In particular, we will use lower-case
letters freely, and will use boldface type for reserved words, i.e. words such
as if, then, begin. and end that have fixed meanings and special syntactic
roles. We will also use a few mathematical symbols, such as =<, that are not
available for computer input (with the IBM 360 implementation of Algol
W), and we will use a variety of formats for various kinds of comments.

1.2 VARIABLES, EXPRESSIONS, AND ASSIGNMENT

1.2.1 The State of the Computation

We now turn from human behavior patterns to real computer programs. Just
as a human acts upon and is affected by his environment, so the computer
(actually the central processing unit of the computer) acts upon and is
affected by the state of the computation. (See Figure 1.3.) As before, prog-
rams contain two fundamental kinds of phases: statements, describing
actions that change the state, and expressions (logical and other types)
describing information about the state that will influence the computation.
The main novelty is the nature of the state. The state is a collection of
variables, each of which possesses a current value. For example,

X 0
2 -7
cost 84

depicts a state containing variables named x, t2, and cost, in which x has
the current value 0, £2 has the current value —7, and cost has the current
value 84.

The basic statement for describing elementary changes in the state is the
assignment statement, which affects the state by changing the current value of
a single variable. It has the form

\Veo=28,

where V is a variable and E is an expression. The effect of an assignment
statement is first to evaluate the expression on its right to obtain an integer
(or other type of value), and then to make this integer the new current value
of the variable named on the left. The current values of all other variables
remain unchanged.
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Expressions

-

Human
Agent Statements
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Environment

Behavior
Pattern
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Statements compuiation
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Computer

Program

Figure 1.3 The Analogy between Human and Computer Behavior.

For example, after executing the three statements
x:=1l,y:=x+1;x:=x+2 ,

the current value of x is 3 and the current value of y is 2.
As aless trivial example, the following statement finds the quotient and
remainder of two positive integers:

begin
r:=x;q:= 0
while r=y do
beginr ;= r—y; q := g+1 end
end

Specifically, if before this statement is executed the current values of x and y
are integers such that x>0 and y>0, then after execution the values of x and
y will be unchanged, and the values of g and r will be integers such that
x=gXy+r and 0<r and r<y.

Consider performing this statement, starting with an initial state in
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which x has the value 7 and y has the value 3. The following table depicts the
state of the computation after each execution of an assignment statement:

x A R S M
y 3333333
r | —7 7 4 411
g | —— 00112

1.2.2 Variables and Expressions

Within a program, variables are denoted by identifiers, which are strings of
letters and possibly digits that must begin with a letter, e.g. x, 12, or cost.
(Notice the distinction between variables, which are part of the state of the
computation, and identifiers, which are phrases of a program that denote
variables. Eventually, we will introduce other ways of denoting variables,
and other uses for identifiers.) A variable that always possesses integer
values is called an integer variable.

An integer expression is a phrase that describes the computation of an
integer whose value depends upon the state of the computation. It may have
any of the following forms:

(1) An integer constant, i.e. a nonempty string of digits,
(2) An identifier denoting an integer variable,

(3) One or two integer subexpressions combined with an arithmetic
operator, i.e. +, —, X, div, rem, or abs.

(Other possible forms for integer expressions will be introduced later.) For
example:

73

X

_.xxy

(x+y) div 2
(xx3) rem (y+1)
— abs x

Most of the operators have the familiar meanings of elementary
arithmetic. but some mention should be given to the operators div and rem,
which indicate the quotient and remainder under integer division. Specifi-
cally, if x and y are integers, then x div y and x rem y are integers such that

x=(xdivy) Xy + (xremy) ,
Whenx = 0,0 < (xremy) <absy |,
Whenx <0, —absy < (xremy) <0 ,

where abs y denotes the absolute value of y.
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Some expressions with more than one operator are potentially ambigu-
ous. For example, x —y —z might conceivably mean either (x—y)—z or
x = (y —z). Such ambiguities are resolved by the syntax rules given in Appen-
dix B. By and large, these rules follow customary mathematical usage (for
example, x —y —z means (x —y) —z), but in unfamiliar cases it is a kindness to
human readers to put in extra parentheses.

We can now see the relationship between integer and logical expres-
sions. In general an expression is a phrase that describes the computation of a
value that depends upon the state of the computation; for an integer expres-
sion this value will be an integer, while for a logical expression, it will be a
logical value, i.e. either true or false. Terms such as “integer’” and “logical”’,
which denote certain sets of values, are called data types.

A logical expression may have any of the following forms:

(1) The logical constant true or the logical constant false,

(2) Anidentifier denoting a logical variable, i.e. a variable that always
possesses logical values,

(3) Two integer subexpressions combined by a relational operator, i.e.
=, #, <, <=, >, or = (or two logical expressions combined by = or
#). A logical expression of this form is called a relation,

(4) One or two logical subexpressions combined with a logical
operator, i.e. and, or, or 1 (denoting logical negation),

(5) odd(E), where E is an integer expression.
(Other possible forms will be introduced later.) For example,

true

p

x=y+1

(0=x) and (x=<y)

(p and 1 g) or (g and 1 p)
1 odd(x) ,

where p and g are logical variables and x and y are integer variables.

The relational operators have the familiar meanings of elementary
arithmetic. The meanings of the logical operators are given by the following
table:

p c_1 pandg porg 2
false false false false true
false true false true true
true false false true false

true true true true false
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The expression odd(x) has the value true if x is an odd integer and has the
value false if x is an even integer.

Again, the potential ambiguities of expressions containing several
operators are resolved by the syntax rules given in Appendix B.

The parallel treatment of the types integer and logical extends to
assignment statements. An assignment statement can have the formV:=E,
where V and E are a variable and an expression of the same data type, i.e.
where either

(1) Vis an integer variable and E is an integer expression,

or (2) Vis a logical variable and E is a logical expression.

It is important to understand the distinction between an assignment
statement such as x := y+1 and an equality relation such as x=y+1. The
former denotes an action that changes the value possessed by x, while the
latter denotes a computation that produces the value true or false without
changing the state of the computation. It is not even true that an assignment
statement will always “‘make”” the corresponding equality relation true, for
example, x := x+1 will not produce a state in which x=x+1 has the value
true. (This distinction holds for almost all programming languages, although
it is unfortunately obscured in languages such as PL/I where the same
symbol = is used both as the assignment operator and the relational operator
for equality.)

We have already seen the conditional statement if L then S; else S2,
which performs a “branch” on the value of the logical expression L. Algol W
also provides a conditional expression, which performs a similar branch
within the evaluation of an expression. If L isa logical expressionand E, and
E, are both integer expressions (or both logical expressions), then

if L then E; else E,
is an integer (or logical) conditional expression that is evaluated as follows:

(1) Evaluate L to obtain true or false.

(2) If L is true then evaluate E; to obtain the value of the conditional
expression, otherwise evaluate E; to obtain the value of the condi-
tional expression.

(There is no “one-way” conditional expression analogous to the conditional
statement if L then S.) For example. the expression

2 X (if x < y then x else y)

produces twice the minimum of x and y. (Notice the mixture of types—this is
an integer expression containing the logical expression x <y, which in turn
contains the two integer expressions x and y.)
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Exercises

1. Execute the statement for finding quotients and remainders by hand for a few
cases. What happens when
(a) x is negative?
(b) y is zero or negative?

2. Execute the following statement by hand for a few values of x:

while x>1 do
x := if odd(x) then 3xx+1 else x div 2

As far as is known, this statement will eventually terminate for any initial value
of x, but no one has been able to prove this fifty-year-old conjecture [ Terras 76,
Crandall 78].

1.3 TOP-DOWN PROGRAM CONSTRUCTION

1.3.1 Computing Factorials

We have now introduced enough of our programming language to consider
the construction of a simple program. Given an integer n, we want to write a
statement whose execution will cause the computation of n!, i.e. the factorial
of n. Specifically, the statement should, while leaving the value of n
unchanged, set the variable f to the factorial of 7.

We first note the following ‘““facts’” about the factorial function which
may be useful in writing the program:

O o!=1
(A1) n!=nx(n—1)! when n>0
(1) tells us the factorial of a particular number, zero, while (II) shows how to

find the factorial of a new number if we already know some factorial. This
suggests the following line of attack:

(1) Use (I) to compute the factorial of 0.
(2) Repeatedly use (II) to compute factorials of larger numbers until
we find the factorial of the number we are interested in, i.e. n.

Suppose we use the variable f to save the last factorial we have com-
puted, and an additional variable k£ to keep track of the number such that
f=k!. Then the above plan becomes:

(1) Achieve f=k! by setting k to 0 and f to 1.

(2) Aslongas k isdifferent from n, increase k and change fin a way that
will maintain the relation f=k!.

or in Algol W:
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begin

k:=0;f:=1;

while k£n do “Increase k while maintaining f=k!”
end

This “program skeleton” is typical of the use of a while statement.
Obviously, the body of a useful while statement (i.e. the substatement
following do) should cause some change in the state of the computa-
tion—otherwise the while statement could never terminate. But, paradoxi-
cally, the key to understanding a while statement is not what its body changes
but what it leaves unchanged—in this case, the relation f= k!. Such a relation
is called an invariant of the while statement.

Our remaining task is to replace the specification “Increase k while
maintaining f= k!’ by an actual statement that will satisfy this specification.
It is evident that if f=k!, then we can use (1I) to find the factorial of the
integer that is one larger than k. If we decide to change k first, we get

begin k := k+1; “Set f to reestablish f=k!” end

Now consider the state of the computation just after the assignment
statement k := k+1. Since we have increased k by one, the relation f=k!
will no longer be true; instead we will have f=(k—1)!. But by (II),
k!=kx(k—1)!=kxf. Thus to reestablish f=k! we write f:= kXf.

The complete statement for computing the factorial of n is thus

begin
k:=0;f:=1;
while £ = n do
begin k := k+1; f:= kXfend
end

However, the argument we have made to justify the construction of this
statement is still seriously incomplete. In essence, the argument shows that f
will be the factorial of n when and if execution of the statement is finished.
However, since the statement contains a while construction, we must con-
sider the possibility that its execution might never terminate. In particular,
the fact that the body of the while statement increases the value of k does not
automatically insure that k will eventually become equal to n.

To see that the program terminates, we note that k is initially set to zero,
and is then incremented by one during each execution of the body of the
while statement. Thus the test ksn will be applied successively to the
integers k=0, 1, 2, ... . Eventually, ks<n will be false, the while statement
will terminate, and therefore the entire program will terminate—providing
n=0. In the case of the factorial function, n=0 is a reasonable restriction,
since the factorials of negative integers are not defined.
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However, termination considerations do not always work out so hap-
pily. By substituting (II) into itself, we can obtain the fact

(II) n!=nX(n—1)X(n—2)! when n>1 |,

which provides an alternative method of finding new factorials from old
ones. Using (III) instead of (II) we can develop a factorial-computing
program which increases k in steps of two:

begin
k:=0;f:=1;
while k # n do
begin k := k+2; f:= kx(k—1)Xf end
end

Except for termination, this program is just as valid as the previous one, but
it only terminates when n is an even nonnegative integer.

Overall, our construction of the factorial program is a microscopic
example of top-down programming or programming by stepwise refine-
ment. The basic idea is to progress in small, easily understood stages from an
abstract specification of the program to a concrete realization. A more
explicit description is the following rubric:

(1) Take an unwritten portion of the program whose purpose is pre-
cisely and completely specified.

2) Replace this portion by a statement which may in turn contain
P P y y
portions that are unwritten but precisely and completely specified.

(3) Prove (or at least convince yourself) that the new statement will
meet its specifications if its unwritten portions meet their specifica-
tions.

(4) Repeat the above process until the entire program is written.

This methodology dominates the whole area of modern, systematic
programming, and it has proven invaluable for the development of large
programs. But its success depends critically on the use of “precise and
complete specifications”. Most errors in complex programs can be traced to
ambiguous or inadequate specifications.

So far our specifications have been informal and a bit vague. A remedy
is provided in the next section.

1.3.2 Specification by Assertions

To provide “precise and complete specifications” for programs, we intro-
duce the concept of assertions. An assertion is simply a description of
possible states of the computation. For example, the assertion x <y describes
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the states in which the variable x has a smaller current value than the variable y.

To specify the behavior of a statement §, we give an assertion P
describing possible states before the execution of §, and a second assertion Q
describing possible states after the execution of §. More precisely, we write
the specification

{P} s{0}

to specify that, if one executes S beginning with any state described by P, and
if S terminates, then S will produce a state described by Q. For example,

{x<y} x := x+1 {x=y}

specifies that if x<y, then executing x := x+1 will produce a state in which
x<y. In the specification {P} 5 {Q}. the assertions P and Q are called the
precedent and the consequent of .

The idea of using assertions for specification in this manner is due to
C. A. R. Hoare [Hoare 69, 71a]. (In Hoare’s original notation statements,
rather than assertions, are bracketed, so that one writes P {S} O rather than
{P}s {Q}. However, we prefer the latter notation since it gives assertions the
appearance of parenthetical remarks.)

It should be emphasized that, although they must be precise, assertions
may be written in a variety of languages. Initially our assertions will be
logical expressions (which take on the value true for the states they
describe), but later we will use a variety of mathematical and logical symbol-
ism, and occasionally we will fall back on ordinary English.

Specification by assertions can be used to make top-down programming
rigorous. To illustrate, we will recapitulate our development of the factorial
program.

We want to construct a statement ‘“Compute Factorial” that meets the
specification

{nZO} “Compute factorial” {f=n1} |,

without changing the value of n. As before, we are going to achieve the
invariant f= k! and then use a while statement to repeatedly increase k while
maintaining this invariant, until k=n. With a little foresight, however, we
know that we are going to need range information about k to insure termina-
tion, and also to insure that k never takes on negative values, for which the
factorial is undefined. Since k will start at zero and increase until it is equal to
n, we expect that 0<k=n. By adding this range information, we get the
invariant

f=k! and 0<k=n

Thus we replace “Compute factorial” by
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begin

“Achieve invariant’;

while k # n do “Increase k while maintaining invariant”
end ,

which will meet its specification if the unwritten substatements meet the
specifications

{n=0} “Achieve invariant” {f=k! and 0<k=n}

and

{f=k! and 0<k<n and k-~n}
“Increase k while maintaining invariant”
{f=k! and 0<k=n}

Notice that the invariant itself does not contain the test k#n; indeed
when the while statement terminates the invariant will still be true but the
test k «n will be false, which permits us to infer f=rn!. On the other hand, just
before each execution of the body of the while statement, both the invariant
and the test will be true, so that we can include k7 in the precedent of the
body “Increase k while maintaining invariant”. The situation is clearly
illustrated by the flowchart for the while statement:

?

Only invariant —»
is known to be
true here.

true

"

“Increase k while
maintaining invariant”

false Invariant is true and k#n.

<—— [nvariant is true and k=n.

Since 0!=1, we can meet the specification of ‘““Achieve invariant”’ by
k:=0;f:=1

(Strictly speaking, we should enclose this statement sequence in begin ... end
to make it a statement, but this kind of parenthesization is a purely syntactic
concern which we can ignore in writing specifications.)

For “Increase k while maintaining invariant”, we write

begin k := k+1; “Set f to reestablish f=k!"" end

Since f=k! and 0<k=<n and kn will be true before executing k := k+1,
the assertion f=(k—1)! and 0<k<n will be true afterwards. Thus our
remaining unwritten subprogram must meet the specification
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{f=(—1)! and 0<k=<n}
“Set f to reestablish f=k!”
{f=k! and 0<k=<n} .

Since k!=k x (k—1)! when k>0, we can complete our program by replacing
“Set f to reestablish f=k!” by

fi=kxf .

In summary, by using assertions to specify each part of our program
during its development, we have demonstrated the specification

{n>0}
begin
k:=0;f:=1;
while k=n do
begin k := k+1; f:= kXxfend
end

L=

i.e.if n=0then executing the above program will, if the program terminates,
produce a state in which f=n!.

As before, however, we must still make sure that the program termi-
nates. Each execution of the body of the while statement increases k without
changing n, yet produces a state in which the invariant, and therefore k<n, is
still true. Since k cannot be increased forever without eventually growing
larger than the unchanging value of n, the while statement must terminate.

In general, a specification of the form {P} S {Q} does not specify that S
terminates. In technical terms, such a specification shows the conditional
correctness, as opposed to the total correctness, of a program. (For a specifi-
cation method which shows total correctness, see [Dijkstra 75, 76].) This
reflects the fact that, although the need for termination must be kept in mind
when constructing a program, the actual argument that the program will
terminate is separate from the argument that it will behave correctly if it does
terminate.

However, the termination argument will usually be straightforward if
the assertions are adequate. (Exercise 2 after Section 1.2.2 is an exception.)
Typically, a termination argument is said to be based on some quantity that is
always increased (or decreased) by the body of while statement, yet cannot
be increased (or decreased) indefinitely. For example, the termination of the
factorial program is based on k.

Another important property that cannot be specified in the form {P} §
{Q} is that a program leaves certain variables unchanged. For example, in
our original specificat’on of the factorial program we had to stipulate “with-
out changing the value of »’ informally. We will continue to treat such
stipulations informally until Section 3.3.
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The factorial example is typical of the use of the while statement. The
key point is that one should decide on an invariant before writing the while
statement, not afterwards. Indeed, one can give a general recipe for using the
while statement to meet the specification {P} S {Q}:

(1) Choose an invariant I and a logical expression L.
(2) Replace S by:

“Initialize’’;
while L do “Change”’;
“Finalize”

(3) Write substatements to meet the specifications

{P} “Initialize” {I} ,
{I and L} “Change” {1} ,
{I and 7 L} “Finalize” {Q} .

Here “Initialize” may be omitted if P implies . Similarly, “Final-
ize” may be omitted if I and 1 L implies Q—as in our factorial
example. “Change” may never be omitted—it must have some
effect on the state or termination cannot occur.

(4) Show termination—usually by showing that “Change” increases or
decreases some quantity in a way that cannot be repeated forever
without making 7 false (or making L false).

Exercise
1. Replace “Increase k while maintaining invariant” by
begin k := k+2; f:= kX(k—1)Xfend ,

and find out where the program construction argument breaks down. See if you
can save the situation by adding even(n) to the precedent of the program and
even(k) and even(n) to the invariant.

1.3.3 Assertions as Comments

In this section we turn our attention from program writing to program
reading. There is a vast difference between a program being executable and
being understandable—information sufficient to determine the behavior of
a computer will seldom be sufficient to reveal the general nature of that
behavior. For example, it is clear that the program developed in the previous
section will set fto 6 if nis 3. But in the absence of comments itis hardly clear
that this program will set f to the factorial of n whenever n is nonnegative.

Fortunately, the assertions used to specify parts of a program can also
be used as comments. The essential idea is to add the assertions to the
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program, as though they were extra statements, in such a way that each
specification {P} S {Q} appears as part of the program. For example, asser-
tions would be added to our factorial example as follows:

{n=0}

begin
k:=0;f:=1;
{f=k! and 0<k=<n}
while ks£n do

begin
{f=k! and 0<k=<n and kx=n}
k:=k+1;
{f=(k—1)! and 0<k=<n}
fi=kxf
{f=k! and 0<k=<n}
end
end

{f=nt} .

Unfortunately, the curly bracket convention is not part of Algol
W—instead of { P} one must write the more cumbersome form comment P;.
Throughout this book, however, we will use curly brackets for comments
that are assertions, and eventually for other kinds of comments that provide
a formal specification of program behavior. It should also be mentioned that
we are not following the syntax of Algol W logical expressions within our
assertions. It is not necessary to do so within comments but, for example, if it
were an executable part of the program, we would have torewrite 0<k<n as
(0<k) and (k<n).

Now something slightly mysterious appears. The assertions in a prog-
ram like the one above can be interpreted in either of two ways:

(1) Whenever a statement S is surrounded by assertions, i.e. {P}s{0},
it meets the specification implied by these assertions. For example,
k := k+1 meets the specification

{f=k! and 0<k=<n and kxn}
k= k+1 {f=(k—1)! and 0<k=<n} .

At the opposite extreme, the entire program meets the specifica-
tion

{n=>0} begin ... end {f=n'} .

(2) If the program is executed, beginning with any initial state which
satisfies (i.e. is described by) the initial assertion, then whenever
any assertion is “‘passed through”, it will be a true description of the
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current state of the computation. For example, if one begins with a
state in which n>0, then each time execution of k := k+1 is
completed, the current state will satisfy f= (k—1)! and 0<k=n.

This is not an accidental coincidence; we will see in Section 1.4.1 that a
correct usage of assertions can always be interpreted in both of these ways.

Now consider the use of the while statement in a program with asser-
tions as comments. It will always have the form

{$y
while L do
begin {Ql} S {1} end

{02}

or, in terms of a flowchart,

Here I is the invariant of the while statement, O is an assertion that is
implied by / and L (i.e. it must be true for any state in which / and L are both
true), and Q is an assertion that is implied by I and 1 L. Notice that the
invariant occurs (and must be true) at two points in the program: before the
entire while statement and after each execution of the body S. These points
correspond to the two arrows leading into the test in the flowchart.

This situation is such a commonly occurring cliché that it is worth
adopting an abbreviation for it. We write

{whileinv: I}
while L do S

Specifically, we label the invariant of the while statement with the symbol
whileinv and only write it once, immediately before the while statement. We
also omit Q; and Q5 unless they are nontrivial consequences of / and L or of
land 1 L.

With this convention, the factorial program reduces to:
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{n>0}

begin

k:=0;f:=1;

{whileinv: f=k! and 0<k<n}
while k£ £n do

begin
k:=k+1;
{f=(—-1)! and 0<k=<n}
fi=kxf
end
end
{r=n}

We will eventually see that even this is an excessive level of detail. For a
simple program like this, it is sufficient to give just the initial and final
assertions and the invariant of the while statement. However, it is vital that
the given assertions should provide enough information. For instance, omis-
sion of the range information 0 <k <n would make the above program much
harder to understand.

In general, the use of assertions as comments is important because it
reveals the statics of the program. The statements of the program themselves
reveal the dynamics, i.e. the changes that occur, so that a comment like

comment increase x; x := x+1

is simply redundant. But assertions reveal what the statements often hide—
the unchanging aspects of the computation.

Exercises

1. Complete the following partially written programs for performing exponentia-
tion. The programs should not change n or x. (Assume that x°=1, even when
x=0.)

(@ {n=>0}
begin
“Achieve invariant”;
{whileinv: y=x* and O<k<n}
while k=n do
“Increase k while maintaining invariant”
end

{y=x"} .
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{n=0}
begin
“Achieve invariant”;
{whileinv: yxx*=x" and k>0}
while k%0 do
“Decrease k while maintaining invariant’
end

{y=x"} .

2. Complete the following partially written programs for performing multiplica-
tion. The programs should not change x or y. (Do not use the “built-in™
multiplication operator X.)

(a)

(b)

{y=0}
begin
‘““Achieve invariant’’;
{whileinv: z=xxk and k<y}
while k>y do
“Increase k while maintaining invariant”
end

{z=xxy} .

{y=0}
begin
“Achieve invariant’;
{whileinv: z=xxk and k>=y}
while k>y do
“Decrease k while maintaining invariant’”

end
{z=xxy} .
3. Combine the two programs in Exercise 2 to obtain a program satisfying
{true}
“Compute product”
{z=xxy}
Note that the assertion true describes the set of all possible states of a computa-
tion.
1.3.4 Integer Division

As a second example of program construction, we consider a statement that,
given two positive integers x and y, will set g and r to the quotient and
remainder of x divided by y. Specifically, the statement should satisfy the
specification

{x>0 and y>0}
“Compute quotient and remainder”
{x=gxy+rand 0<r<y}

without changing x or y.
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One way to find possible invariants is to ask how much of the final
assertion can be achieved directly. In this case, we can get x =g X y +r simply
by setting r to x and g to zero. This also gives 0=<r for free. Thus we will try

x=gXy+rand 0<r

as the invariant of a while statement that tries to achieve r<y.
This gives us the partially written program

{x=0 and y>0}
begin
r:=1x;q:=0;
{whileinv: x=g¢xy+r and 0<r}
while r=y do
“Decrease r while maintaining invariant’
end
{x=gXxy+r and o<r<y} ,

where the body of the while statement must satisfy the specification

{x=gXy+rand y<r}
“Decrease r while maintaining invariant”
{x=gxy+rand 0=<r} .

(In the precedent of this specification, we do not need to include 0<r, since it
is implied by y<r when y>0.)

With a little algebraic juggling, we can see that before the body of the
while statement is executed

x=gxy+r=(q+1)xXy+(r—y)

will hold, so that decreasing r by y and increasing g by one will maintain the
relation x= g X y +r. Moreover, since beforehand y<r, decreasing r by y will
give 0<r. Thus the statements

r:=r—y;q:=q+1

meet the specification for ‘“‘Decrease r while maintaining invariant”.
The finished program is

{x=0 and y>0}
begin
r:=x;q:=0;
{whileinv: x=g xy+r and 0=<r}
while r=y do
begin r :=r—y; q := qg+1 end
end
{x=gXxy+rand 0<r<y} .
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Termination is based on r. Since y>0, each execution of the body of the
while statement decreases r. (Notice that this argument would fail if y=0
were permitted.) Yet at the completion of each execution of the body, the
invariant shows that 0<r. Since one cannot indefinitely decrease r without
falsifying 0<r, the while statement must terminate.

So far all the programs we have constructed have set one or more oufput
variables to values that depend upon one or more input variables, without
changing the values of any input variables. For example, the above program
sets g and r to values that depend upon x and y, without changing x or y. Such
programs are said to be input-preserving.

However, consider the effect of deleting the initial assignment r := x.
The resulting program is not input-preserving; it sets ¢ and r to the quotient
and remainder of the initial value of r divided by y, while destroying the
initial value of r in the process.

A significant difficulty arises when we try to state this specification with
assertions. It is a relationship between values in different states of the
computation, but assertions can only relate values in the same state of the
computation.

Fortunately, there is a standard method for overcoming this difficulty.
One introduces an identifier, say ro, that does not occur in the program being
specified, and adds the equality r=rq to the precedent of the specification.
Then since the program clearly does not change the value of ry, this identifier
can be used in assertions throughout the program to denote the initial value
of r:

{r=0 and y>0 and r=ro}
begin
q:=0;
{whileinv: ry=gxy+r and 0=<r}
while r=y do
beginr :=r—y; q := q+1 end
end
{ro=qxy+r and 0<r<y} .

An identifier, such as ro, that occurs in the specification of a program (or
in intermediate assertions) but does not occur in the program itself is called a
ghost identifier of the specification. (Some authors, €.g. [Gries 80], call ghost
identifiers “‘logical variables”, which is a completely different usage of the
latter term than in this book.) In specifying programs that do not preserve
certain inputs, we will usually denote such inputs by ghost identifiers with the
subscript zero.

Actually, almost all of the programs in Chapter 1 will be input-
preserving. Such programs are obviously more flexible for their users, who
may need to reference input values after the program has been executed.
Moreover, the cost of preserving simple inputs such as integers or logical
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values is minor. This cost will escalate, however, when we consider array
inputs in Chapter 2.

Exercises

1. In the program constructed in the above section, the relationship x=gxy+r
would be preserved by a while-statement body of the form 7 := r—(aXy); q :=
g+ a, where o might be any integer. Show that a=1 is the only choice of a that
gives a correct program.

2. Complete the following partially written program for computing square roots.
You may use multiplication by two but not by other numbers. (This is a reason-
able restriction, since multiplication by two can be implemented by shifting on a
computer with binary arithmetic.) The program should preserve the value of x.

{x=0}
begin
‘“Achieve invariant”;
{whileinv: x—y?+r and r=0 and y>0}
while r=2xy+1 do
“Decrease r while maintaining invariant™
end
{y=x<(y+1??} .

(The algebraic juggling will involve the identity (y+1)2=y?+2xy+1.)

3. From the program developed in the previous exercise, delete the initial assign-
ment which preserves the input. Use a ghost identifier to specify the resulting
program.

1.3.5 Fast Exponentiation

So far the heart of all the programs we have constructed has been a while
statement whose body increases or decreases some variable by a constant
amount. We now want to explore some more sophisticated computational
behavior.

Consider the problem of computing x" for n=0. In Exercise 1 after
Section 1.3.3, we have already seen two solutions to this problem, but now
we will construct a much faster program to meet the same specification. We
begin with the solution to the second part of Exercise 1:

{n=0}
begin
k:=n;y:=1;
{whileinv: y X xk =x" and k=0}
while k>0 do
begin k := k—1; y := yXx end
end
{y=x"}
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In contrast to our factorial program, or to the first part of Exercise 1, the
variable k in this program is repeatedly decreased rather than increased, and
serves to keep track of the number of multiplications remaining to be done,
rather than the number of multiplications already done.

To try to improve this program, we look for a more general invariant
that will still imply the goal y =x" when k=0. One possibility is to introduce
an additional variable z, and use y x zk=x" instead of y X xk=x". The new
invariant is almost as easy to achieve as the old one (if we also set z to x), but
it gives us the extra freedom of changing z in the body of the while statement.
We will see that this extra freedom allows us to write a much faster program.

At this stage our program is

{n=0}
begin
k:=nmy:=1Lz:=x
{whileinv; y x z=x" and k=0}
while k0 do
“Decrease k while maintaining invariant”
end
{y=x"} ,
where the body of the while statement must satisfy the specification

{yxzk =x" and k>0}
“Decrease k while maintaining invariant”
{yxzk=x" and k>0} .

Since zk=zXxzk~1 when k>0, the precedent here implies
xnzyXZkz(yxZ)ka*l
Thus decreasing k by one and multiplying y by z preserves the relation

yx zk=xn. Also, if k>0 beforehand, then decreasing k by one will give k=0.
Thus we can replace “Decrease k while maintaining invariant” by

k:=k-1l;y:=yXz . (So)

But this replacement takes no advantage of our more general invariant,
and gives a program that is essentially the same as the second part of
Exercise 1. We can do better by taking advantage of the freedom to change
z, and using the exponential law

x2Xm=(x X x)" when m=0

Thus if k is even before executing “Decrease k while maintaining invariant”,
we will have

xnzyXZkzyx(ZxZ)kdivz
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so that dividing k by two and squaring z will maintain y X zk=x". Also, if k>0
(or even just k=0) beforehand, then dividing k£ by two will give k=0
afterwards.

This suggests a version of “Decrease k while maintaining invariant”,

k:=kdiv2;z:=2zXz , (Sqiv)

that is potentially much faster than S_ (since repeated division by two will
obviously make k decrease much more rapidly than repeated subtraction of
one). But unfortunately the version Sg;, only works when k is even.

There are at least two ways around this dilemma. The obvious solution
is to branch on whether k& is odd or even, doing S4;, when it iseven and falling
back on the slower S- when it is odd:

if odd(k) then

begin k := k—1;y := yXz end
else

begin k := k div 2; z := zXz end

(Sbranch)

A more subtle approach [Dijkstra 72] is to always do Sy, but to
precede it by a statement that will make k even:

‘“Make k even while maintaining invariant’’;
{yxzk=x" and k=0 and even(k)}
k:=kdiv2;z:=zXz

Then S_ provides an obvious method for fulfilling “Make k even while
maintaining invariant’: If k is odd do 5_. otherwise do nothing. This leads to
the following version of “Decrease k while maintaining invariant’:

if odd(k) then begin k := k—1; y := yXz end;
{yxzk=x" and k>0 and even(k)} (Siakeeved)
k:=kdiv2;z:=zXz

Thus we have three possible versions, S_, Syranch, and Smakeevens OF
“Decrease k while maintaining invariant”. For each version, termination is
based on k. (The reader should check that Sy anen and Spakeeven actually
satisfy their specification and decrease k. Note that these statements would
not always decrease k if their precedent permitted k=0.)

Next, we consider the execution speed of the three ways of computing
x". In all three cases, the program consists of a sequence of initialization
statements followed by a single while statement. Thus the execution time will
be smaller or equal to a+ g - /, where « is the maximum time required for
the initialization statements, 8 is the maximum time required for the body of
the while statement, and / is the number of times the while statement body is
executed. Notice that the bounds « and 8 only exist because:
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(1) Neither the initialization statements nor the while-statement body
contain while statements (or other iterative constructs).

(2) All the assignment statements and tests require a constant amount
of time, or at least an amount of time that is bounded by some
constant. (With slight exceptions which are irrelevant here, all the
basic operations of the portion of Algol W used in this book have
this property. In effect, the language is sufficiently “low-level” that
there are no hidden iterations.)

When S_ is used, k begins with the value n and is decreased by one each
time the while-statement body is executed, until it is equal to zero. Thus/=n.

When Spakeeven 1S Used, each execution of the while-statement body will
reduce k to no more than half its previous value. Since initially k =n =2log21,
the successive values of k will be bounded by

n

n=2log2n Z=7log> rrfl4

2 4

n

—"logs n—2
— =208

Let |log, n] denote the largest integer that is smaller or equal to log, n. Then
it will take at most |log, n| iterations to reduce k to no more than

Qlogy n —|logy n]

which is less than two. Then since k is an integer, it must be zero or one,
so that at most one more iteration will complete the algorithm. Thus

I<|log, n|+1=<log, n+1.

The situation is slightly more complicated for Syanch. By considering
even and odd k separately, it is easy to see that at most two iterations will be
enough to reduce k to no more than half its previous value. Then the above
argument shows that /<2 - log; n+1.

In summary, the time required by each of our programs to compute x" is
bounded by

a+f -n (S_)
a+B ° (10g2 n+1) (Suul!\c\'\'cn)
a+B i (2 : lOgZ n+1) . (Shr;mch)

Of course, the constants « and 8 are different in each case. Nevertheless,
since the function log, n grows more slowly than n, it is clear that for
sufficiently large n using either Spakeeven OF Sbranch Will be faster than using
S_. Indeed, for any multiplier m, there will be sufficiently large n such that
using Smakeeven O Sbranch Will be m times as fast as using S_.

This kind of asymptotic behavior can be clarified by introducing the
concept of order of magnitude. In general, a numerical function f(n) is said to
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be of order g(n) if there is a constant ¢ such that, for all sufficiently large n,
f(n) <c - g(n). In particular,

a+B -n ) Ifn
a+B - (log, n+1) Lis of order < log n
a+B (2 - log, n+1)J [ log n

Note that we need not state the base of the logarithm explicitly, since
choosing another base would only lead to a different value of the constant c.
In other words, for any bases b and &' a function of order log,, n is also of
order log, n.

(Strictly speaking, any function, such as a+pB - (log, n+1), that is of
order log n is also of order n, but the latter fact provides less information
than the former. The real point is that the program using Sakeeven OF Shranch
requires time of order log 1, while the program using S_ requires time that is
not of the order of any function which grows less rapidly than n.)

In many computing applications, the size of the computation is so large
that order-of-magnitude considerations completely dominate the question
of efficiency. Exponentiation is a marginal case, since one usually computes
x" for only moderate sized values of n, but more vivid examples will appear
in later chapters.

Finally, we must compare Sy ,nch and Spaeeven. Here, since the execu-
tion times are the same order of magnitude, the choice is less clearcut. The
use Of Sy, ancn has the disadvantage of redundant testing: When k is odd, it will
be decreased by one and then tested again to see whether it is odd, despite
the fact that it must be even. On the other hand, S,,,ceven has the disadvan-
tage that the last execution of k := k div 2; z := z X z is always unnecessary,
since k will already be zero. The time lost is not significant, but the final value
of z can be much larger than x", and this can cause overflow problems. (See
Section 1.6.1.)

It is natural to ask whether one can construct an exponentiation prog-
ram which avoids the disadvantages of either Sy ncn OF Smakeeven: We Will
return to this question in Section 4.2.5.

Exercises
1. What is wrong with the following expansion of “Decrease k while maintaining
invariant”?

if odd(k) then begin k := k—1; y := yXz end;
while 7 odd(k) do
begin k := k div 2; z := zXz end

2. Forany positive integer n, let £ be the number of bits in the binary representation
of n, and let n be the number of such bits that are 1. For example, when
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n=13=1101;,,,,, £ =4 and 7 =3. Show that the number of multiplications used
to compute x” is §+7 —1 when the program with Sy, is used, and £ +m when
the program with S, . ccven 1S used.

3. Complete the following partially written program for multiplication in such a
way that it will require a time of order log y. Within the program, you may use
multiplication and division by two, but not by other numbers. (As noted earlier,
this is a natural restriction, since multiplication and division by two can be
implemented by shifting on a computer with binary arithmetic.) The program
should preserve x and y.

{y=0}
begin
“Achieve invariant”;
{whileinv: z+wxk=xxy and k=0}
while k20 do
“Decrease k while maintaining invariant”
end
{z=xxy} .

4. Complete the following partially written program for division in such a way that
it will require a time of order log (x div y). Again, you may use multiplication and
division by two, but not by other numbers. The program should preserve x and y.

{x=0 and y>0}
begin
“Achieve first invariant”;
{whileinv: z=yx2" and n=>0 and x>0}
while z=<x do

“Increase z while maintaining invariant”;
“Achieve second invariant”;
{whileinv: x=gXz+r and 0<r<z and z=yx2" and n=0}
while n>£0 do

“Decrease n while maintaining invariant”
end
{x=gxy+r and 0<r<y} .

5. Complete the following partially written program for computing square roots
in such a way that it will require a time of order log x. The program should
preserve x.

{x=0}
begin
“Achieve first invariant”;
{whileinv: z=2" and n=0 and x=0}
while z Xz<x do

“Increase z while maintaining invariant”;
‘“Achieve second invariant”;
{whileinv: y2<x<(y+2z)? and z=2" and n>0}
while n0 do

“Decrease n while maintaining invariant”
end

{P=x<@y+1)?} .
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1.3.6 Fibonacci Numbers
So far our programs have all had the form
“Initialize”’; while L do “Change”

The following example suggests that the situation does not always work out
so simply.

We want to write a statement that, when given a nonnegative integer n,
will set fto the nth Fibonacci number. Specifically, we want a statement that
will satisfy the specification

{n=0} “Compute Fibonacci” {f=fib(n)} ,
where fib is the function that satisfies

fib(0)=0
fib(1)=1
fib(n)=fib(n — 1)+ fib(n —2)

We will use the same basic plan of attack as with the factorial function,
but now we must keep track of two “adjacent” Fibonacci numbers. To doso,
we will use three variables f, g, and k satisfying the relationship

f=fib(k) and g=fib(k—1)

Since we intend to increase k until it is equal to n, we add the appropriate
range information k=<n to the invariant.
At this stage our program has the form

{n=0}
begin
“Achieve invariant’’;
{whileinv: f=fib(k) and g=fib(k —1) and k<n}
while k £n do

“Increase k while maintaining invariant”
end

{f=fib(m)}

Now consider the expansion of the while statement body. If we change k
first, we have

{f=fib(k) and g=fib(k—1) and k<n}
k:=k+1;

{f=fib(k —1) and g=fib(k—2) and k<n}
“Change f and g to reestablish invariant”
{f=fib(k) and g=fib(k—1) and k=n} .

To complete this program, it is evident that we must make the new value of f
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be the sum of the old values of fand g, and make the new value of g be the old
value of f.

But now we encounter a small dilemma: If we set f first, we will lose the
old value of fand will be unable to set g, but if we set g first, we will lose the
old value of g and be unable to set f. The simplest way out is to use an
additional ‘“‘temporary” variable ¢ to save the information that will be
needed. Then “Change f and g to reestablish invariant” can be replaced by

t:=frgg:=ff:=1 ,
or equally well by
t:=f f:=f+tg.g:=1t

Another problem occurs when we consider *Achieve invariant”. The
obvious replacement is

k:=1,g:=0;f:=1

k]

which will achieve f=fib(k) and g=fib(k—1). But this initialization will not
achieve k<n when n=0—reflecting the fact that the while statement will
run on forever when n=0.

This is slightly surprising. Usually, when a function is well-defined for
zero, a reasonable program which works for all larger values will also work
for zero. But there are exceptions, and the Fibonacci numbers are one of
them. The most obvious solution is to use the program we have designed
when n=1, and to handle n =0 separately:

{n=0}
if n=0 then f := O else
begin
{n=1}
k:i=1,g:=0;f:=1;
{whileinv: f=fib(k) and g =fib(k —1) and k<n}
while k£n do
begin k := k+1;¢t:= f+g;g:=f; f:=tend
end

{r=fibin)} .

Exercises

1. A more elegant solution to the problem discussed above arises from the fact that
the function fib can be consistently extended to —1. In particular, we can define
fib(—=1)=1, and still have fib(n)=fib(n—1)+fib(n —2). Show that this extension
permits one to write a program satisfying

{n>0} “Compute Fibonacci” {f=fib(n)}

without including a special branch for n=0.
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2. The greatest common divisor ged(a, b) of two integers is the largest integer that
divides both @ and b. (This definition is meaningless when a and b are both zero,
but by convention gcd(0, 0)=0.) It is easily shown that

ged(a, b)=gcd(b, a rem b)
ged(a, 0)=a when a=0

Use these properties to construct a program (Euclid’s algorithm) that will
compute the greatest common divisor of any two nonnegative integers.

1.4 ASSERTIONS AND PROGRAM PROVING

In this section we will investigate the underlying nature of assertions, and
show that they can be used to construct formal proofs that programs meet
their specifications.

1.4.1 Assertions with Flowcharts

The nature of assertions is easily seen in the context of flowcharts, where
they were originally introduced by R. W. Floyd [Floyd 67a], and indepen-
dently by P. Naur [Naur 66]. In a flowchart, each assertion is attached to an
arrow, and is meant to be a true description of the state of the computation
whenever the arrow is traversed in moving from one box to another. (When
several arrows join to lead to the same box or all lead to exit boxes, they must
have the same assertion attached.) This is illustrated in Figure 1.4, where
assertions are attached to a flowchart for the factorial-computing program.

Floyd’s discovery was that, if adequate assertions are attached to a
flowchart, then the correctness of the entire flowchart can be inferred from
the correctness of its individual parts. By the correctness of the individual
parts we mean that, for each box in the flowchart, the following verification
conditions must hold:

(1) If the box contains a statement S and has assertions P and Q
attached to its incoming and outgoing arrows,

L
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k:= k+1 L fi= kxf

f=(k—1)! and 0<k=n
f=k! and O=k=n and kn

Figure 1.4 Flowchart with Assertions for Factorial-Computing Program.

then, for any state in which P is true, executing S must change that
state into a state in which Q is true. In other words, S must meet the
specification {P} S {Q}.

(2) If the box contains a logical expression L, has an assertion P
attached to its incoming arrow, and has assertions Q; and O,
attached to its outgoing arrows marked true and false,
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then Q, must be true for any state in which both P and L are true
and Q, must be true for any state in which P is true and L is false. In
other words, P and L must imply Q;, and Pand 1 L must imply Q>.

Now consider executing a flowchart in which every box satisfies these
verification conditions (as is the case in Figure 1.4). If, at any time during this
execution, the current state satisfies the assertion attached to the arrow that
is being traversed, then the verification condition for the next box insures
that, after execution of the statement or test in that box, the new state will
satisfy the assertion attached to the new arrow being traversed. It is evident
(by induction on the number of boxes that are executed) that this situation
will continue throughout further execution. Thus the flowchart is “correct”
in the following sense:

If every box of a flowchart satisfies the verification conditions, and
if execution of the flowchart begins with an initial state that satisfies the
assertion attached to enter, then as each arrow is traversed, the current
state will satisfy the attached assertion, and when and if the program
terminates, the final state will satisfy the assertion attached to exit.

In effect, the assertions attached to enter and exit are the precedent
(n=0 in Figure 1.4) and consequent (f=n! in Figure 1.4) of the entire
program, and the intermediate assertions provide enough information so
that a reader can check (by using the verification conditions) that the
program meets its specification.

Essentially, Floyd’s discovery explains the ‘““mysterious coincidence” of
Section 1.3.3, since the use of assertions as comments is tantamount to
attaching them to arrows in a flowchart.

Again, the qualification “when and if the program terminates” should
be noticed. As with our earlier informal arguments, the use of assertions
does not insure termination, but only shows conditional correctness.
Nevertheless, it is usually easy to show termination separately if the asser-
tions include enough range information about the relevant variables.

One other point deserves emphasis. Each arrow in a flowchart is both an
outgoing arrow from one box and an incoming arrow to another box, so that
the attached assertion must satisfy two verification conditions. The verifica-
tion condition for the preceding box prevents the assertion from being too
strong, i.e. from being an incorrect description of the current state. On the
other hand, the verification condition for the succeeding box prevents the
assertion from being too weak, i.e. from being an inadequate description of
the current state.

For example, consider the circled assertion in the following portion of
Figure 1.4:
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| «#—~— f—k!and 0<k=<n and kx%n

k:=k+1

”..—\ﬂi f=(k—1)! and 0<k<n }

fi=kxf

| «t—— f=k! and O<k=<n

The verification condition for k := k+1 prevents us from strengthening this
assertion to the point of incorrectness—for instance, we could not add the
condition ks#n. On the other hand, the verification condition for f := kX f
prevents us from weakening this assertion to the point of inadequacy—for
instance, we could not remove the condition k<n.

Here the notions of strengthening and weakening assertions involve
implication. The following four statements are different ways of expressing
the same relationship between two assertions P and Q:

(1) P is stronger than Q.

(2) Q is weaker than P.

(3) P implies Q.

(4) Every state described by P is also described by Q.

If Pimplies Q and also Q implies P, then P and Q are said to be equivalent.
The assertion true is weaker than any assertion, since it describes every state.
At the opposite extreme, the assertion false is stronger than any assertion,
since it describes no state.

The adequacy of assertions can be described in another way. Let Pbe an
assertion attached to some arrow in a flowchart, and imagine the following
process:

(1) Execution of the flowchart begins with an initial state satisfying the
assertion attached to enter.

(2) Execution is halted temporarily at some instant when the computa-
tion is traversing the arrow to which P is attached.
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(3) A “demon” is permitted to make an arbitrary alteration in the
current state of the computation, provided the altered state still
satisfies the assertion P.

(4) Execution is resumed and permitted to continue to completion.

If there is nothing the demon can do that will lead to an incorrect final result,
then the assertion P is adequate. If, in addition, there is nothing the demon
can do that will lead to nontermination (although his actions might increase
the number of steps to be executed), then P is also adequate for showing
termination.

1.4.2 Inference Rules for Specifications

So far, we have relied upon our intuition to make sure that our programs
actually satisfied their specifications. This is often sufficient, but it is hardly
foolproof. Intuition can easily go wrong when one is dealing with a complex
or subtle programming situation, and it can also go wrong if the exact
meaning of the programming language is misunderstood. In these cases one
needs a more rigorous method of proving that a program meets its specifica-
tion.

The development of such methods has been a significant area of
research in the last decade. It is a major (and controversial) thesis of this
book that this development has progressed to the point where the serious
programmer should be expected to prove his programs in the same sense
that a mathematician is expected to prove his theorems.

However, one should carefully distinguish between the mathemati-
cian’s concept of proof and the logician’s concept of formal proof. A formal
proof is a sequence of statements each of whichisinferred from a subset of its
predecessors according to a fixed and explicit set of rules of inference. In
contrast, a mathematician’s proof can be regarded as an adequate collection
of hints for producing a formal proof. Specifically, a clear mathematical
proof is one which provides just enough information to permit a well-trained
reader to construct a formal proof without any trial-and-error. For example,
the mathematician might write g Xy +r=(q+1) X y+(r—y) without further
detail, confident that his reader understands the rules of arithmetic well
enough to see how they could be used to infer this equation.

In a similar sense, an adequately commented program should provide
just enough information to permit a well-trained reader, without trial-and-
error, to construct a formal proof that the program meets its specification.
This is the fundamental reason for studying formal methods for proving
programs. One does not need to give a formal proof of an obviously correct
program, but one needs a thorough understanding of formal proof methods
to know when correctness is obvious.
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In the first two chapters of this book, we will construct formal proofs
using rules for inferring conditional-correctness specifications which were
originally devised by C. A. R. Hoare [Hoare 69]. (A more elaborate formal
system, capable of dealing with procedures, will be introduced in Section
3.3.) These inference rules represent a translation of Floyd’s discovery about
flowcharts into a form that is applicable to programs in an Algol-like lan-
guage. Roughly speaking, for each way in which a statement can be con-
structed from simpler statements, there is a rule for inferring a specification
of the constructed statement from specifications of its component state-
ments.

Each inference rule consists of a sequence of zero or more specifica-
tions, called premisses, which are separated by a long bar from a single
specification called the conclusion:

F
: Premisses
&
%} Conclusion

within these specifications upper case letters, called metavariables, will
occur in place of various types of phrases such as assertions, statements,
variables, or expressions. An instance of an inference rule is obtained by
replacing each metavariable by a phrase of the appropriate type, with the
restriction that all occurrences of the same metavariable must be replaced by
the same phrase. (A few rules will be prefaced by further restrictions on the
permissible replacements.)

The meaning of an inference rule is that, for any instance, if the
premisses are true specifications then the conclusion is a true specification.
Thus in writing proofs, once the premisses of an instance have been proved,
one may infer the conclusion of the instance.

We begin by developing a rule for the assignment statement. Suppose
we have an assignment statement X := E, and that we wish an assertion P to
be true after the assignment statement is finished. (Here X, E, and P are
metavariables denoting an arbitrary variable identifier, expression, and
assertion respectively.) What has to be true before the assignment statement
begins? If we regard P as asserting that X has some property, then
beforehand E must have the same property. To assert this, we can simply
write down P and then replace each occurrence of X in P by E. More
precisely, we must substitute E for X in P. (Eventually, when we encounter
the phenomenon of identifier collisions in Section 2.2.6, we will adopt a more
complex definition of substitution.)

Let us write P| x—£ to stand for the result of substituting E for X in P.
Then the following inference rule describes assignment:
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Simple Assignment:

{Plx—»E}X5=E{P} .

Although this rule is ““justified”” by the previous paragraph, the justification
is only informal. Strictly speaking, one should regard the rule asa definition
of the meaning of the assignment statement.

To obtain an instance of the assignment rule, we must replace the
metavariables P, X, and E by a particular assertion, variable, and expres-
sion, and then carry out the indicated substitution. For example, suppose we
replace Pby y<4, X by y, and E by y X y. Then the substitution y<4| y—yXy
gives y X y<4, so that we get the instance

{yxy<a}y:= yxy{y<4}

Similarly, if we replace P by yXy<4, X by y, and E by y—z, we get the
instance

{y-2)x(y=2)<4}y := y—z {yxy<4}
Like the assignment rule itself, these instances contain no premisses. Thus,
without proving anything beforehand, we may infer their conclusions.
Next, consider a compound statement of the form Sy; S,. Suppose that
whenever P is true executing S; will make Q true, and whenever Q is true
executing S, will make R true. Then whenever P is true executing S1; S, will
make R true. Thus we have the rule

Statement Compounding:

{P} 5. {0}
{0} 5; {R}

{P} Sy; S, {R} .

For example, if we make the replacements

P: (y—2)X(y—2z)<4 Sipyi=y-—z
Q: yxy<4 Sy :=yxy
R: y<4

we obtain the instance

{(y—z)x(y—z)<4} y:i=y—z {yxy<a}
{yxy<da}y:= yxy{y<4}

{(y-2)x(y—2)<4}y := y—z;y 1= yxy {y<4} .

Here the two premisses are the specifications that we proved by using the
rule for simple assignment. Thus we may infer the conclusion.
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Next suppose that Pimplies Q (i.e. that Q is true in any computational
state for which P is true), and that whenever Q is true executing S will make
R true. Obviously, whenever P is true executing S will make R true. Thus we
have

Strengthening Precedent:
If P implies Q then

{0} s {R}
{P} s {R} .

For example, since —2<y—z<2 implies (y —z) X (y —z)<4,
P: —2<y—:z<2 S:yi=y—z;y:=yXy
0: (y—z)x(y—z)<4 R: y<4

is a permissible replacement. Since the premiss of the resulting instance was
inferred by the rule for statement compounding, we may infer the conclusion

{-2<y-z<2}y:=y-z;y:=yXy {y<4} .

On the other hand, suppose that whenever P is true executing S will
make Q true, and that Q implies R. Obviously, whenever P is true executing
S will make R true. Thus:

Weakening Consequent:
If Q implies R then

{r} s {0}
{P} s{R} .

For example, y <4 implies y<3. This permits an obvious replacement that
produces an instance whose premiss was proven in the previous paragraph.
Thus we may infer the conclusion

{—2<y-z<2}y:=y-z;y:=yxy {y=3} .

At first sight, the last two rules seem too obvious to be worth mention-
ing. But although they are obvious, they are vital, since they are the essential
mechanism that allows static mathematical facts to be used in proving
program correctness. Notice that the specification

{y-2)x(y—2)<4}y = y-z;y := yxy {y<4}

is purely concerned with programming; it depends upon the nature of the
assignment statement and the operator “;”, but has nothing to do with the
fact that the values involved are a particular kind of mathematical entity

called integers. On the other hand,
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—2<y-z<2 implies (y—z)X(y—2)<4 ,
y<4 implies y<3

are purely mathematical facts which have nothing to do with programming,
but which describe the nature of integers. (For example, the second fact
holds for integers but not for real numbers.) In order to combine these two
kinds of knowledge we must use the rules for strengthening precedents or
weakening consequents.

It is evident that the explicit application of the rules for statement
compounding, strengthening precedents, and weakening consequents
involves a good deal of mechanical detail. Fortunately, there is a simple way
of “automating” this detail.

Consider the following sequence of assertions and statements:

{-2<y-z<2}
{(y-2)x(y—2)<4}
yi=y-z;
{yxy<4}
y:i=yXy

{y<4}

{y=3}

Such a sequence is called a tableau. In general, a tableau is a sequence of
intermixed assertions and statements that begins and ends with assertions.
A tableau is valid if:

(1) Whenever a triple of the form {P} S {Q}, where S is a statement or
sequence of statements, occurs in the tableau, the triple is a true
specification, and

(2) Whenever a pair of the form {P} {Q} occurs in the tableau, the
assertion P implies the assertion Q.

Thus, for example, the tableau given above is valid.

Now suppose a subsequence of the form {P} S; {Q} S, {R} occurs in a
valid tableau. Then { P} S; {Q} and {0} s, {R} are true specifications, so that
the rule for statement compounding can be used to infer {P}S;; S, {R}. Thus
the tableau will remain valid if the intermediate assertion Q is deleted.
Similarly, a subsequence of the form {P} {0} S {R} can be reduced to
{P} S{R} by the rule for strengthening precedents, and a subsequence of the
form {P} S {0} {R} can be reduced to {P} s {R} by the rule for weakening
consequents. Finally, a subsequence of the form {P}{0} {R} can be reduced
to {P} {R} since, if P implies Q and Q implies R, then P implies R.

The repetition of this argument shows that a tableau will remain valid if
all its intermediate assertions are deleted. But a valid tableau without
intermediate assertions is simply a true specification. Thus any valid tableau
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constitutes a proof of the specification obtained by deleting its intermediate
assertions. For example, since the tableau given above is valid, it is a proof of
the specification

{-2<y-z<2}y:=y-z;y:=yxy {y=<3} .

As a second example, we give a tableau which describes part of a real
program: the body of the while statement in the Fibonacci number example
of Section 1.3.6:

1. {f=fib(k) and g=fib(k—1) and k<n and k »n}
{f+g=fib(k+1) and f=fib(k+1-1) and k+1=n}

k:=k+1;

{f+g=fib(k) and f=fib(k —1) and k<n}
t:=f+g;

{t=fib(k) and f=fib(k —1) and k<n}
g:=Ff

{t=fib(k) and g=fib(k—1) and k<n}
fi=t

{f=fib(k) and g=fib(k—1) and k<n} .

Each specification in this tableau may be inferred from the assignment rule,
and the implication that validates the pair of adjacent assertions is a conse-
quence of elementary properties of the integers and the Fibonacci equation
fib(n)=fib(n —1) +fib(n —2). Thus the tableau is valid, so that we may infer
that the body of the while statement satisfies the specification

{f=fib(k) and g=fib(k—1) and k<n and k#~n}
k:=k+l;t:=f+g;g:=f; f:=t
{f=fib(k) and g=fib(k—1) and k<n}

At this point it is natural to ask how, given a specification to be proved
about a sequence of statements, one can determine the intermediate asser-
tions needed for a valid tableau. In general there is no answer (which is why
adequately commented programs must contain certain intermediate asser-
tions). However, an answer can be given for the simple case where the
statements in the tableau are all assignment statements.

The rule for simple assignment has no premisses, and the consequent of
its conclusion is a single metavariable. Thus, when inferring a specification
about an assignment statement, one is free to choose an arbitrary conse-
quent. Hence, a tableau for a sequence of assignment statements can be
constructed by working backwards, i.e. by generating the intermediate
assertions in reverse order.

Suppose we wish to prove

{P} X, := Ei; X, := Ey; ...; X, := E, {0} .
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Let Q, be O, Q0,1 be Q,,| Xp—En» Qn—2 b€ Q,,_ll X, —1—En_1» and so forth.
Then each specification in the tableau

{P} {Qo} X1 := E;; {Qi} Xz 1= En; ... 5 {Q.-1} X. := E, {0}

will be inferable from the assignment rule, so that the tableau will be valid if
P implies Q.

Of course it is possible that P may not imply Qg, but it can be shown that
in that case the specification one is trying to prove is false.

The reader may verify that the tableau for the Fibonacci while-
statement body can be constructed by this method of working backwards.

Exercises

1. Use the method of working backwards to construct a valid tableau, different
from that given in the above section, for the specification

{~2<y-z<2}y:=y-zy:= yxy {y=3} .

2. For the while-statement body in the Fibonacci program one can use

k:=k+1;f:=f+g;8:=f—-¢

Show that this alternative meets the same specification as was proved in the
above section for the original while-statement body.

3. In the solution of Exercise 2 after Section 1.3.4, the while statement body can be
either

begin y := y+1; r := r—2xXy+1 end
or
begin r := r—2xy—1;y := y+1 end

Show that both of these statements meet the appropriate specification. More
generally, show that these two statements are equivalent by showing that for any
consequent P, repeated application of the assignment rule will produce equival-
ent precedents for the two statements.

1.4.3 WMore Inference Rules

We now introduce some more rules of inference, which will permit us to
prove the correctness of the rest of the Fibonacci example.

Consider a while statement of the form while L do S, and suppose that S
satisfies the specification {{ and L} S{I}. (I obviously stands for “invariant”.)
If I is true before execution of the while statement begins, then (by induction
on the number of executions of S) I will be true every time an execution of §
is completed, so that I and 1 L will be true if the while statement ever finishes
its execution. Thus we have the inference rule
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while Statement:

{1and L} s {1}

{1} while L do S {I and 1 L}

This rule illustrates that knowledge of the invariant is the key to reason-
ing about the while statement. Once / is known to be the invariant of while L
do S, it is evident that one must prove {I and L} S {I} about the body, and
then infer {I} while L do S {I/ and 7 L}.

Next consider a conditional statement of the form if L then 3. else S;,
and suppose that S; and S, satisfy the specifications {P and L} S; {Q} and
{Pand 1 L}S, {Q} If Pis true before the conditional statement begins, then
either P and L will be true before S is executed, or P and 1 L will be true
before S, is executed. Either way, when the conditional statement is finished
Q will be true, so that we have

Two-way Conditional Statement:

{Pand L} s, {0}
{Pand 1 L} S, {0}

{P} if L then 3, else S, {Q}

A similar line of reasoning justifies
One-way Conditional Statement:
If (P and 71 L) implies Q then
{P and L} S {Q}

{P} if L then S {Q}

These additional rules are sufficient to complete the proof of the
Fibonacci program. We begin with the specification of the while-statement
body that was established by Tableau 1 in the previous section:

{f=fib(k) and g=fib(k—1) and k<n and k=n}

k:=k+1;t:= f+g;g:=f,f:=t

{f=fib(k) and g=fib(k—1) and k<n} .
Then, if we take I'to be “f= fib(k) and g = fib(k —1) and k<n’’ (the invariant)
and use the rule for the while statement, we get

{f=fib(k) and g=fib(k—1) and k<n}

while k £ n do

begin k := k+1;¢t:= f+g;g:=f; f:= tend
{f=fib(k) and g=fib(k—1) and k<n and 1 k=~n} .
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From this specification, one can develop a tableau for the entire second
part of the main conditional statement by working backwards through the
initial assignment statements:

2. {n=0and 1 n=0}

{n=1}
{1=fib( ) and 0=fib(1—1) and 1<n}

lka=gllg

{1=fib(k) and 0=fib(k—1) and k<n}

g:=0;

{1=fib(k) and g=fib(k—1) and k<n}

f:=1;

{f=fib(k) and g=fib(k—1) and k=<n} from

while k #n do Tableau 1
begin k := k+1;t:= f+g; g:=f, f:=t end 'S’t’;lt‘;:::;;t

{f=fib(k) and g=fib(k—1) and k<n and 1 k#n} | rue

{f=fib(n)}

A more trivial tableau handles the first part of the main conditional state-
ment:

3. {n>0and n=0}
{n=0}
{o=fib(m)}
f=0
{f=fib(n)}
Finally, from the specifications for the two parts of the main conditional

statement, an application of the rule for the two-way conditional proves that
the entire program meets its specification:

4. {n=>0} ]

if n=0 then f := 0 else from
begin Tableaus
k:i=1,g:=0;f:=1; ' lzayarv(:o%way
while kn do conditional

begin k := k+1;t:= f+g;g:= f; f:= tend | statement

end rule

{f=fib(m)}

The formal proof is completely conveyed by the tableaus numbered 1 to
4, along with marginal comments showing how steps in one tableau are
inferred from the results of other tableaus. Each step in the proofis either an
instance of some inference rule or an implication that is a consequence of the
static mathematical nature of the data used by the program. At present, we
have not formalized the proofs of these implications since only the familiar
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mathematics of integer arithmetic is involved. This situation will change,
however, when arrays are introduced in Chapter 2.

The final inference of the proof is a conditional-correctness specifica-
tion of the Fibonacci program. Thus the proof does not, by itself, insure that
the program terminates, nor does it show the obvious but essential property
that the program preserves the value of n.

Although our presentation has demonstrated that our proof is correct,
i.e. that it is built out of instances of the rules of inference, it has not said
much about how such proofs can be found. In fact, when a program is
constructed from the top down, it is simplest to construct its proof in a similar
manner, so that the tableaus are generated in the reverse of the order in
which they are to be read.

In the present example, the overall specification to be proved com-
pletely determines tableau (4), whose body is a single two-way conditional
statement. The need to apply the rule for the two-way conditional statement
in turn determines tableaus (2) and (3), except for their intermediate asser-
tions. Since (3) contains only assignment statements, it can be completed by
working backwards, as discussed in the previous section.

On the other hand, (2) is less trivial to complete since it contains a while
statement. However, knowledge of the invariant of this statement deter-
mines the instance of the rule for the while statement that must be used,
which in turn determines the precedent and consequent of the while state-
ment in (2) and the specification to be proved in (1). Then the rest of (2) and
all of (1) can be filled in by working backwards through assignment state-
ments.

Beyond the program itself and its overall specification, the one item of
information needed to construct the formal proof is the invariant of the while
statement. This pinpoints the invariant as the one intermediate assertion
that should appear as a comment in the program.

In conclusion, we give three more inference rules which will be occa-
sionally useful. The first describes a feature of Algol W which has not been
discussed previously, the empty statement. In any context that permits a
statement one can place an empty sequence of characters (i.e. a sequence of
blanks or even nothing at all). The effect of executing such a statement is to
leave the state of the computation unchanged. For example,

if L then S else if L then S

if L then else S has the same } .o o 7 then §

L meaning as 2
begin 3;; ; S,; end ARG begin S;; S, end
The empty statement is succinctly characterized by the following rule of
inference:
Empty Statement:

{P} {P}
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Finally, two rules give methods for combining different specifications
about the same statement:

Specification Conjunction:

{P} s{0:}
{P,} S {05}

{P, and P,} S {Q, and Q,} .

Specification Disjunction:

1P} ${0:}
P} s{0;}

{P; or P,} S{Q; or Q,}

Additional inference rules for new language features will be given in
Sections 1.5.1, 2.3.2, and 2.4.2. With these additions, the rules are sufficient
to deal with the programs in Chapters 1 and 2. However, the rules cannot
encompass certain aspects of the procedure mechanism introduced in Chap-
ter 3. In Section 3.3 we will resolve these difficulties by developing a system
of inference based upon a more complex notion of specification.

Exercise

1. Give formal proofs that some of the programs in this chapter meet their specifi-
cation. The fast exponentiation program in Section 1.3.5 and the programs in
Exercises 3 to S after that section are excellent candidates.

Be careful not to let the mathematics of the data creep into applications of
the inference rules. In applying the while-statement rule, for example, if L is to
be replaced by r>y, then 71 L becomes 71 r=y rather than r<y. Strictly speaking,
“7 r=y implies r<y” is a mathematical fact about the integers.

Also be careful not to get implications backwards. This is a surprisingly
common error in first attempts at formal proof, perhaps because many (though
hardly all) of the implications used in such proofs are actually equivalences.

1.5 DECLARATIONS AND BINDING

1.5.1 Local Variables and Simple Variable Declarations

In the program for computing Fibonacci numbers, the body of the while
statement meets the following specification:

{f=fib(k) nd g=fib(k—1) and k<n and k  n}
k:i=ktl;t:= ftg;g:=fifi=1t
{f=fib(k) and g=fib(k—1) and k<n} .
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Moreover this specification, along with the requirements that & be increased
and n not be changed, is a complete description of the properties of the
while-statement body needed to make the overall program correct.

Neither the precedent nor the consequent of this specification contain
any occurrence of the integer variable t. This indicates that ¢ has two
important properties:

(1) The value possessed by ¢ when the statement begins execution has
no significant effect on its execution.

(2) The value possessed by ¢ when the statement completes execution
has no significant effect on the rest of the program.

When a variable possesses both of these properties with respect to a state-
ment, it is said to be a local variable of the statement.

The importance of this concept is twofold. If the statement to which a
variable is local is indicated explicitly in a program, then the identifier
denoting the variable can be used for other purposes outside of that state-
ment, and the storage used to hold the value of the variable can be used for
other purposes when the statement is not being executed.

In Algol W, the fact that a variable is local to a statement can be
indicated by declaring the variable, i.e. by mentioning the identifier denoting
the variable in a simple variable declaration at the beginning of the state-
ment. For example, the fact that ¢ is a local integer variable of the above
statement can be indicated by using the declaration integer ¢ as follows:

begin integer f;
k:=k+1;t:=f+g,g:=f,f:=1t
end

In general, a declaration describes the meaning that will be attached to
one or more identifiers in a particular block that is called the scope of the
declaration. (The definition of the scope of a declaration will be modified
slightly in Section 2.1.) The declarations whose scope is a given block appear
as a sequence at the beginning of that block. Thus the general form of a block
is

begin Dy; ... ; D,;; S5 ... 3 S, end

where D, to D,, are zero or more declarations and §; to S, are one or more
statements. (Notice that all declarations in the block precede the first state-
ment. Also notice that any statement can be made into the scope of a
declaration by enclosing it in “statement brackets”, e.g. begin D; S end.)

Eventually we will introduce a variety of declarations for giving differ-
ent kinds of meaning to identifiers. Our present concern, however, is only
with simple variable declarations, which indicate that identifiers denote
variables. Specifically, if /.. ... , I, are distinct identifiers then
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integer /,, ... , I,
or
logical 7, ... , I,

is a simple variable declaration indicating that /.. ... , I, denote distinct
integer or logical variables. These variables will belong to the state of the
computation during execution of the scope of the declaration.

Notice that the scope of a simple variable declaration such as integer ¢
plays two roles. One role, which is common to all kinds of declarations (as
well as other kinds of binding mechanisms) is that of a static scope, which is
the program region in which the identifier ¢ denotes a certain variable;
outside this region ¢ can be used for other purposes. The second role, which is
specific to variable and array declarations, is that of a dynamic scope, which
is the statement during whose execution the variable denoted by ¢ belongs to
the state of the computation.

The importance of the second role is that almost all implementations of
Algol-like languages allocate storage for the value of a variable only during
execution of the scope of its declaration, and use the same storage for other
purposes at other times. As a consequence, when execution of the scope of
integer ¢ begins the value of ¢ will be unpredictable, and when execution is
completed the value of ¢ will be lost. However, if ¢ is local to the scope of its
declaration then properties (1) and (2) given above insure that this behavior
will not affect program correctness.

If we look at the outer block of the Fibonacci program (the second
substatement of the conditional statement) we see that the variables k and g
occur in neither the precedent {n=1} nor the consequent {f=fib(n)}. Thus
these variables are local and can be declared in the outer block. When all
local variables are declared, the program has the form

{n>0}
if n=0 then f := 0 else
begin integer k, g;
{n?l}
k:=1g:=0; f:=1;
{whileinv: f=fib(k) and g=fib(k—1) and k<n}
while k% n do
begin integer ¢;
k:i=k+1,t:=ftg;g:=f,f:=1t
end
end

{r=fib(m)} .

As is evident from the surrounding assertions, the variables n and f are
not local to the program and therefore cannot be declared in it. This is due to
the fact that the program is not complete—to actually run it on the computer
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one must precede it by statements that will produce a value of n and follow it
by statements that will use the value of f.

A complete program is a statement that is sufficiently self-contained to
describe an entire computation to be performed by the computer. In Algol
W, as in most Algol-like languages, every identifier used in a complete
program must be declared—the only exception is a small set of implicitly
declared identifiers (such as odd) whose meanings are “built into” the
language. Although this requirement can occasionally be tedious for the
program writer, it is a considerable convenience for the reader, and also
provides a helpful safeguard against accidental misspellings of identifiers.

Although it would be permissible to declare every identifier in the
outermost block of a complete program, it is good programming style to
place each declaration as “far in” as possible, i.e. to indicate explicitly for
each variable the statement to which it is local. While this practice is slightly
pedantic for small programs, it is vital for large programs, which may contain
hundreds of declarations, since it minimizes the number of identifiers the
reader (or writer) must consider at any particular point in the program. A
secondary benefit is the minimization of storage requirements; this consid-
eration is usually unimportant for the simple variables considered in this
chapter, but it can be vital for the efficient treatment of large arrays, as will
be illustrated in Section 3.2.2.

As with previous language features, there is a rule of inference for
proving specifications of statements containing declarations:

Declarations:

If D is a simple variable (or array) declaration of identifiers
1,...,1,,andif I, ... , I, do not occur (free) in P or Q then

{p} s{0}
{P} begin D; S end {Q} .

Note that the requirement that Iy, ... , I, do not occurin P or Q is tantamount
to saying that these identifiers denote local variables of S.

Exercise

1. Examine the illustrative programs and exercises given so far. Determine which
variables are local, and where and how they should be declared.

1.5.2 Binding and Alpha Conversion

Declarations are our first encounter with the phenomenon of binding, which
will reoccur with several other constructions in Algol W and also in the
language we use for assertions and specifications. In the statement
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begin integer i;
k:=k+1;t:=f+g;g:=f, f:=t
end ,

for example, the occurrences of ¢ are all bound by the occurrence in the
declaration integer t. As a consequence, the meaning of this statement does
not depend upon the particular choice of the identifier ¢. Indeed, we could
replace the occurrences of ¢ by any identifier other than k, f, or g without
changing the meaning of the statement.

This kind of invariance under changes of bound identifiers, which is
called alpha convertibilty, insures that the user of any phrase of a program
can safely ignore the particular identifiers that are bound in the phrase.
Although it is hardly important for the tiny programs in this book, it is vital
for large programs which can contain hundreds of bound identifiers.

Indeed, alpha convertibility is the fundamental property of identifier
binding in a well-designed language. This is an intentionally controversial
assertion; although alpha convertibility holds for Algol 60 and most of its
descendents, including PL/I and (fortunately) Algol W, it does not hold for
such popular languages as LISP, SNOBOL, or APL. However, its failure in
these languages, which only occurs in rather complex situations involving
procedures, is a rich source of programming error.

(The term ‘“‘alpha convertibility”” comes from the study of a simple
logical language called the lambda calculus, in which binding and substitu-
tion play major roles.)

In general, binding is caused by certain identifier occurrences called
binding occurrences, or more briefly, binders. For each binder, there is an
enclosing phrase called its scope, which is the extent of the program over
which the binder has an effect.

In declarations, the binders are the occurrences of the identifiers being
declared, e.g. Iy, ..., I, in integer I, ..., I, and their scope is the scope of the
declaration itself, which is the immediately enclosing block (subject to a
minor exception which will be discussed in Section 2.1).

Binders and their scopes can be used to define the concepts of free and
bound identifier occurrences. Consider an occurrence of an identifier / in a
phrase S. If S does not contain any binder of I whose scope contains this
occurrence of I, then this occurrence is said to be free in S.

On the other hand, suppose S contains one or more binders of / whose
scope contains the occurrence of I. Then one of these binders—call it
B—will be innermost, i.e. its scope will not include the scope of any of the
others. (It is a syntactic error to have two binders of the same identifier with
the same scope.) In this case the occurrence of / is said to be bound by Bin S.
More loosely, we will sometimes say that the occurrence is bound by the
declaration (or other phrase such as specifier, formal parameter list, or
quantifier) that contains the binder B.
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For example, in the statement

- Y,
begin integer x;
an

x:=Q;

begin integer(;;
A

y:=x+1;

Ly Q.
egin integer X;
— 4
x 1= yX2;

| S

end
end
end

the single free identifier occurrence is circled, and bound occurrences are
connected by arrows to the binders that bind them. It is evident that the same
identifier, e.g. y, can have both free and bound occurrences in the same
phrase. Moreover, the same occurrence can be bound in a phrase and free in
asubphrase,e.g. the last occurrence of y is bound in the statement above, but
free in the innermost block.

Now suppose S is a phrase containing the scope of a binder B of an
identifier I, and let I' be some other identifier that does not occur at all in the
scope of B. Let S’ be obtained from S by replacing every occurrence of I
bound by Bin S (including Bitself) by I'. Then §' is called an alpha variant of
S, and the process of converting S to S’ is called alpha conversion, or
sometimes renaming. The principle of alpha convertibility is that alpha
conversion always preserves meaning.

For example, S might be the while statement in the Fibonacci program,

while k£ n do
begin integer ¢,
k:=k+1;t:=f+g,g:=f, f:=1
end ,

whose body is the scope of a binder of £. Since n does not occur in this scope,
we can alpha convert § into

while k% n do
begin integer n;
=k+1l;n:=f+g,g:=f,f:=n
end
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On the other hand, since f occurs in the scope of the binder of ¢, the result of
replacing ¢ by f,

while k £ n do
begin integer f;
k:=k+1;f:=f+g;g:=f,f:=f
end ,

is not an alpha variant of §; the change of the bound identifier from ¢ to f
causes the original occurrences of f in S to change from free to bound
occurrences and thereby changes the meaning.

Since alpha conversion preserves meaning, it can be used in proving
program specifications, i.e. from a specification one can infer an alpha
variant of that specification. This is sometimes necessary in applications of
the rule for declarations given in the previous section. For example, one
cannot use that rule directly to infer

{x=0} begin integer x; x := 1 end {x=0} ,

since the declared variable occurs in the precedent and consequent. But one
can use the rule to infer

{x=0} begin integer y;y := 1 end {x=0} ;

and then alpha-convert this specification to replace y by x.

1.6 NUMBER REPRESENTATIONS

1.6.1 Integers

So far, we have assumed that the range of possible values of an integer
variable is the entire set of integers. In fact, in a real computer this range
must be limited to some finite subset of the integers. In this section we will
explore the consequences of this limitation and then go on to consider the
representation of numbers that are not restricted to be integers. We will
consider general methods of number representation as well as the specific
representations provided by the implementation of Algol W.

The memory (or storage) of a computer is composed of a large number
of elementary memory elements, each of which can be in any of several
states. The number r of possible states of a single memory element is called
the radix of the computer; in practice, it is always either two (for a binary
computer) or ten (for a decimal computer).

A variable is implemented by a group of memory elements called a
word. The number w of elements in the word is called its word length, and is
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the same for all variables of the same type. (The term “word” is actually used
in a variety of ways in the computer literature. The concept used here is
sometimes called a logical word, in contrast to a physical word, which is a
group of memory elements that can be read or changed simultaneously.)

Now suppose a variable is to range over a set S of possible values. Then
each member of $ must be represented by one or more configurations of the
states of the memory elements in a word, so that the size of S cannot exceed
r#, the number of state configurations. Clearly § must be finite.

Thus the range of a so-called integer variable can only be some finite
subset of the integers. Normally it is a set of consecutive integers, i.e. the set
of integers i such that minint<i<maxint, where minint and maxint are the
smallest and largest representable integers, and maxint—minint+1 is the
total number of representable integers, which must be no larger than r*.
When only non-negative integers are needed, the obvious choice is
minint=0 and maxint=r"—1.

When negative integers must be included, the choice of representation
is less clearcut. For simplicity, one would like to have minint= — maxint, so
that the set of representable integers is symmetric about zero. But then the
number of representable integers will be 2 X maxint+1, which is odd, while
the number of possible representations r* is even, at least when the radix is
two or ten. Thus one must either waste a possible representation (usually by
providing two representations for zero) or choose an asymmetric represen-
tation in which minint is slightly different than —maxint.

In the implementation of Algol W for the IBM 360 or 370, an asym-
metric representation is used for integer variables. Specifically,

r=2

w=232
maxint=231—1=2147483647
minint= —231= — 2147483648

Roughly speaking, an integer is representable if its magnitude is less
than about two billion. This choice of representation is actually a property of
the computer, rather than the programming language, since the representa-
tion is used by the computer circuitry which performs the elementary opera-
tions of integer arithmetic.

Obviously, it is possible for an integer operation to yield a non-
representable result when applied to representable arguments. Such an
occurrence is called an overflow. In Algol W, the occurrence of any over-
flow, or a division by zero, will terminate computation and produce an error
message. (Actually, the language provides an exceptional condition facility,
not discussed in this book, which permits one to alter this response to
overflows.)
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1.6.2 Programming for an ldealized Computer

The finite range of number representations is one of several limitations that
distinguish real computers from idealized machines which would be far
easier to program. Another obvious limitation is the finite total size of the
computer memory. In dealing with such limitations, it is best to begin by
programming for an idealized computer, taking the limitations into account
in only a qualitative way.

For example, one deals with the limitations of finite-range integer
arithmetic by pretending that all integers are representable, yet taking care
to avoid numbers with unnecessarily large magnitudes. (This is the advan-
tage Of Spranch OVET Smakeeven discussed in Section 1.3.5.) The resulting
program will be satisfactory if the integer range of the computer is normally
adequate for the problem at hand, and if one can tolerate an occasional
failure of the computer to produce an answer (which is usually much less
serious than producing a wrong answer).

Sometimes, however, the integer range of the computer will be intrinsi-
cally inadequate to carry out the desired computation. In this situation, one
must translate the abstract program for the idealized computer into a con-
crete program for the real machine, in which large integers are represented
by arrays (or lists) of machine-representable integers. This is basically an
instance of data representation structuring, discussed in Chapter 5, but the
specific problem of programming basic arithmetic operations for multiple-
word integer representations is a specialized topic.

A similar situation arises from the limited amount of memory available
in a real computer. One begins by programming for an idealized machine
with infinite memory, while taking care to avoid unnecessary storage usage.
Occasionally, the amount of memory available will be intrinsically inadequ-
ate for the problem, and it will be necessary to translate the program into one
for the real computer by using techniques such as overlays or virtual memory
management, which permit the substitution of secondary memory (e.g. disks
or tapes) for primary memory.

However, the limitations of the real computer require special attention
in certain kinds of real-time programming (for example, process control),
where failure to calculate an answer—usually within a specified time
limit—can be as disastrous as a wrong answer. Even here, one should begin
by programming for an idealized computer, but then one must deduce safe
bounds on the time, storage, and arithmetic range required by the program,
and show that these bounds do not exceed the capacity of the machine to be
used.

The deduction of such bounds is quite different from proving that a
program is correct. (An extension of correctness proofs that takes overflow
into account has been provided by [Hoare 69], but it leads to extraordinary
complex proofs.) Some of the flavor of such deductions is given by the
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discussion of the speed of fast exponentiation in Section 1.3.5, and by similar
discussions of searching and sorting algorithms in Sections 2.2.10and 3.2. A
more thorough introduction to this methodology, which is part of the
research area called “Analysis of Algorithms”, is given in [Aho 74].

In summary, the main point is the value of the idealized machine as a
tool for subdividing the programming task. The most severe limitation in
real computing is the finiteness of the programmer’s mind, which can only
encompass simple problems without some kind of subdivision or structuring.
A second point is the importance of an environment (the combination of
language implementation and machine) in which overflows, storage exhaus-
tion, and other actions where the real computer deviates from the ideal are
always detected as errors—this point will reoccur with subscript errors in
Chapter 2.

*1.6.3 Fixed-Point Representation of Real Numbers

Unfortunately, not all numbers are integers. When we need a variable to
range over the real numbers, we must face the problem of approximation as
well as the problem of limited range. Suppose that we wish a variable to
range over the real interval from minreal to maxreal. Since we can only
represent a finite subset of the uncountably many numbers in this interval, it
is hopeless to try to represent every number that might occur in an exact
calculation, and the best we can hope for is that every number in the interval
will be near to some representable number.

A fixed-point representation for an interval of real numbers is one in
which the representable numbers are equally spaced. If the spacing is o', then
the representable numbers will be

minreal, minreal+o, ... , maxreal—o, maxreal

(For simplicity, we assume that maxreal —minreal is an exact multiple of ¢.)
Then the number of representable numbers is (maxreal —minreal)/o +1,
which must be no greater than 7, where r is the radix of the computer and w
is the word length of the real variable. In essence, fixing the word length
imposes an upper bound on the ratio between the interval size and the
spacing.

Any nontrivial calculation involving real numbers will obviously be
approximate. In general, when x is approximated by x, the absolute error of
the approximation is the quantity £, = | X —x'l ,i.e. the absolute value of the
difference between x and x .

Now let rnd(x) denote the representable number nearest to x (or one of
the nearest representable numbers, if x is halfway between two represent-
able numbers). Then, even when x is precisely known, its best representable
approximation is rnd(x), which has an absolute roundoff error &} nd satisfying
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gind= | x— rnd(_r)| = o /2 whenever minreal<x=<maxreal. (The superscript
rnd is meant to distinguish roundoff from other sources of error, such as will
be considered in Section 1.6.5.)

In other words, there is a constant bound on the absolute roundoff error
over the entire range of x. This fact is characteristic of a fixed-point represen-
tation.

Real variables with a fixed-point representation are not provided in
Algol W; indeed, in most areas of computation, the use of fixed-point
representation has been supplanted by floating-point representation, which
is described in the next section. When necessary, a fixed-point real variable x
with spacing o can be represented by an integer variable xn such that
x=xn-o. (For example, dollars with a spacing of .01 can be represented by
an integer variable giving cents.) The use of this kind of representation, and
the problem of choosing appropriate spacings for each variable, is called
scaling.

*1.6.4 Floating-Point Representation of Real Numbers

Suppose an approximate real number denoting a distance is known to have
an absolute error of no more than a hundred feet. If the distance is several
million miles, this is an extraordinary accuracy which should be sufficient for
any reasonable purpose, but if the distance is a few inches, the approxima-
tion is unusably crude. In certain kinds of calculations, where the gross
magnitude of a quantity x is unknown or variable, the absolute error g, is an
inadequate measure of accuracy. A better measure is the relative error:

Px=

x—x ‘ e,

which is the ratio between the absolute error and the magnitude of the
quantity being approximated.

In this situation, a fixed-point representation will be inappropriate,
since its relative roundoff error will grow in inverse proportion to the
magnitude of x. What is needed is a representation in which the spacing
decreases as x decreases, in such a way as to provide a constant bound on the
relative roundoff error.

This requirement is met by floating-point representation, in which a real
number is represented as the product of another real number with a very
limited range times an integral power of a fixed integer R>1 called the base.
Specifically, let f be a fixed-point real variable with range —1<f<1 and
spacing o (note the exclusion of the extreme values f=+1), and let e be an
integer variable with range minexp <e<maxexp. Then the pair of values
(e, f) is a floating-point representation of the number x=f - Re.
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The pairs (e, f), {(¢+1, f/R), (e+2, f/R?), ... all represent the same
number. To remove this multiplicity, we impose the normalization require-
ment that |f| =1/R. However, since this requirement excludes any rep-
resentation for zero, a special representation is introduced for zero.

An illustration (for an unrealistically large o and small range of e) is
given in Figure 1.5. The general situation is that, for each value of e between
minexp and maxexp, the pairs

(e, R, (e, R"1+a), ... , (e, 1-0),(¢e+1, R™})

represent a sequence of equally spaced numbers from R¢~! to R¢ inclusive,
with a spacing of o + R¢. (We will neglect the fact that the last number will be
missing when e =maxexp.) There is a similar sequence from —R¢ to —R¢~ 1.

Now suppose x is a real number such that R"""'“P‘lslxl < Riraxexps
Then there will be an e such that Re-1< | x| <Ré¢, and thus there will be a
representable number rnd(x) no further than o - R®/2 from x. In other
words, the absolute roundoff error will satisfy e/"9<g - R¢/2. But
|x| =Re~1, Thus the relative roundoff error will satisfy

e ! o - Re¢/2
-

=
|x| Re1 Re1

md —

Px

=g+ R/2

which provides a constant bound on the relative roundoff error over the
range Rminexp—1< le < Rmaxexp

However, this bound does not hold in the center interval
— Rminexp=1< y < Rminexp=1_In the worst case, when rmd(x)=0, we have
pymd=| (x—md(x))/x| =1.

This analysis suggests that one should use a floating-point
representation when trying to control the relative error, but a fixed-point
representation when trying to control the absolute error. But in fact, a
floating-point representation is a ‘‘reasonable’ substitute for a fixed-point
representation. Suppose x ranges over the interval —R¢=x=R¢, where
minexp +logg(1l/0) —1<e<maxexp. Then the largest spacing anywhere in
the interval is o - Re, and the absolute error must satisfy e <o - Re¢/2.
(The lower limit on e insures that the spaces surrounding zero do not exceed
o - R¢; one could reduce this limit to minexp by permitting f to be unnormal-
ized when e=minexp.) But this is as good as one could achieve for the
interval — R®<x < R¢ with a fixed-point representation with the same word
length as f. In effect, the price of using a floating-point representation to
replace a fixed-point representation is simply the memory space for the
variable e.

The IBM 360 and 370 provide two forms of floating-point representa-
tion, called single and double precision, which differ in word length and
spacing:






SEC. 1.6 NUMBER REPRESENTATIONS 65

single precision double precision
w 32 64
R 16 16
minexp —64 — 64
maxexp +63 +63
o 2-24 2-56
o-R/2 2-21<5x10-7 2-53<1.2x10716

With Rmexexp>7x 1075, the range — R™Maxexp <x < RM&e*P seems enor-
mous, but it can be exceeded easily in moderately complicated calculations.
The occurrence of an operation whose result is outside this range is an
overflow and, as with integer overflow, causes termination with an error stop
in Algol W.

The occurrence of an operation whose result has a magnitude less than
Rminexp—1<5 4x10-79 is called an underflow. In the Algol W implementa-
tion the result of an underflow is set to zero and the computation continues.

Regardless of whether fixed or floating point is used, computation with
real numbers is dominated by the fact that these representations are only
approximate. One obvious point is the danger implicit in testing two approx-
imate values for equality. Instead of testing x=y, which is likely to be
spuriously false because of approximation, one should usually test either

abs(x—y)=e¢
or

abs(x—y)<pXxabs(x) ,

where ¢ or p is an appropriate positive constant. In other words, one should
test whether x and y approximate one another with a sufficiently small
absolute or relative error.

(Notice, however, that the above tests both differ from true equality in
failing to satisfy the law of transitivity, e.g. abs(x—y)<e and abs(y—z)<e
does not imply abs(x—z)<e.)

One other small point deserves mention. In decimal notation, certain
rational numbers have an exact finite representation which can be used to
advantage in hand computation. In a binary computer—more precisely,
when o is a power of two—many of these numbers will no longer have exact
representations. Thus for example, 1/5 and 1/10 are not exactly represent-
able.

*1.6.5 The Propagation of Errors

Even for simple calculations with real numbers, careful attention must be
paid to the effects of roundoff and other sources of numerical error. If one
could begin with exact input data, carry out an exact calculation, and then
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round the result x to the nearest representable number, the error in this
result would simply be the roundoff error grd or prmd which could easily be
controlled by the choice of representation of the result. But in actuality, the
inputs themselves will usually be approximate, and a roundoff error will
occur at each step of the computation. Each of these errors will induce a
corresponding error in the final result.

The effects of input errors can be illustrated by a simple geometric
example. Suppose the input data are coordinates of points p, g, 7, and s in the
plane, and that we wish to compute the coordinates of the intersection of the
line passing through p and g with the line passing through r and 5. As shown
in Figure 1.6, if the two lines are nearly parallel or the points on one line are
close to one another, then a small uncertainty in the input (indicated by
drawing p, g, r, and s as small circles) will induce a large uncertainty in the
output (indicated by the shaded regions).

This kind of error magnification is intrinsic in the problem being posed
and cannot be avoided by programming. The general case can be described
with a little calculus. Suppose we wish to compute a continuous and differen-
tiable function f(x,, ..., x,,) for approximate values of the inputs xy, ... , x,..
To a first order approximation, the absolute error due to input errors is

eﬂxl, Goo 5 x,,)

=|fx1, oo s Xn)~flx1, or s x|

d '
= — flxg, ooy X,) (i —x))
z ]fi.t,- 83} Xp) « ( i i [

i=1
n _} ’
O P
= Z |(.Ef(.l‘1. e s Xp) | - &,
1=1

and the relative error is
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< _ 18 .
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In these formulas, the underlined coefficients of the input errors are called
the (absolute and relative) error propagation coefficients.

For input errors, these coefficients are determined by the function fone
is trying to compute and the inputs x, ... , x,. When some of the coefficients
are large, one is close to an “ill-defined” problem, and cannot avoid magnifi-
cation of the error.

Further insight into the phenomenon of error propagation can be
gained by considering the computation of the sum or product of two num-
bers. When f(x;, x;)=x;+x,, the above formulas give

Byt = legy+l-8,, ,

X1 2
% |t oleippiad 22 L.
px1+x2 1'1'*'-‘-‘2, p.\] X1 +x2 px?

Thus for addition, absolute errors will not be magnified, but relative errors
will be magnified when x; is near to —x,.
For multiplication, taking f(x;, x,)=x; - x, gives

Exioxp = |x2| -sx]+|x1| *€x,
pxl-xzsl'p)q"i'l'pxz

Here the situation is reversed. Relative errors will not be magnified, but
absolute errors will be magnified when ixli or |x2| is large.

Although the propagation of input errors is essentially determined by
the function one is trying to compute, the propagation of errors occuring in
intermediate calculations can be profoundly influenced by the choice of
computation method. Suppose g(xy, ... , x,,) is an intermediate result in the
computation of f(xy, ..., x,,). Then the effect of g(xy, ... , x,,) on the final result
will be given by some function 4 such that

f(xl, 0oas x,,)=h(g(x1, ve 3 x,,), X1y see xn)

The problem is that a roundoff or other error in the calculation of
g(xy, ... , x,) will be magnified if the propagation coefficient for & with
respect toits first argument is large, and that this can happen even when all of
the propagation coefficients for fiitself are small. In essence, a well-defined
problem can be structured to give an ill-defined subproblem.

A vivid illustration is provided by the computation of derivatives.
Suppose we wish to compute the first derivative of a function 6 at the point x.
Since this derivative is the limit of [6(x+8) —6(x)]/6 as & goes to zero, an
obvious method is to compute

f(x+8)—0(x)
fo)= (x 8} (x)

for some very small value of 8.
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But consider the effect of a roundoff error in the computation of the
intermediate result #(x+38). In fact, we would be computing

F10)= rnd(é)(x8 +8)) - 6(x)

which would induce the absolute error

o= fo —f ()| =|0&*2) —;nd(o(xJ, 5)

d
=s;l(1x+8) / ) ’

which is inversely proportional to 8. Thus choosing too small a value of &
would catastrophically magnify the effect of an error in an intermediate
result.

This kind of analysis is a trivial example of numerical analysis, a highly
developed field which is intellectually quite distinct from the rest of compu-
ter science, but which is crucially important in many areas of application. At
least when the results are going to be relied upon, a solid knowledge of the
fundamentals of numerical analysis is needed to program any nontrivial
calculation with real numbers.

Even an introduction to the field is beyond the scope of this book; we
have only said enough to warn the reader that many pitfalls await the
unwary. Good introductory texts are [Dorn 72] and [Hamming 71].

1.6.6 Real Variables and Expressions

Real numbers, with single- and double-precision floating-point representa-
tions, are provided in Algol W by the data types real and long real. Simple
variables of these types are introduced by simple variable declarations of the
form

real ; ..., I,
or

long real [, ... , I,
in which L. ... , I, are binders of identifiers that denote real or long real
variables.

Constants are a bit complicated. In general, a numerical constant con-
sists of the following items, in order from left to right:

(1) A nonempty string of digits, possibly containing a decimal point.

(2) A scale factor of the form 'N, where N is an integer, possibly
beginning with + or —. The scale factor indicates that the number
being represented is to be multiplied by 10V.
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(3) An optional letter L, which indicates that a double precision rep-
resentation is to be used.

Either item (1) or (2), but not both, may be omitted. The data type of the
constant is long real if L is present, otherwise it isreal if a decimal point or a
scale factor is present, otherwise it is integer.

For example, the following are constants of different numerical types
which all represent the number ten:

integer real long real
10 10. 10L
10.00 10.L
Tl 10.00L
100’ -1 12L
1 100'—1L
1L

Note that the distinction between real and long real has nothing to do with
the number of digits occurring in the constant.

Expressions of type real or long real, as well as integer, are built up from
constants and variables by using the familiar operators of arithmetic.
Moreover, such expressions may have mixed type, i.¢. an expression of one
numerical type may have subexpressions of different numerical types. In
general, E op E' has type integer if E and E' are both integer, type real if
either E or E' has type real, or type long real in any other case. However,
there are the following exceptions:

(1) EXE' is long real unless E and E’ are both integer.

(2) E / E', denoting real division, is never integer; it will be long real
when both E and E' are integer. In contrast E div E' and E rem E’
are always integer, and are permitted only when E and E' are both
integer. These are quite different operations. For example, 7 / 2
=3.5L, but 7 div2=3 and 7 rem 2=1.

(3) E ** E', denoting EE | is always long real, and is permitted only
when E' is integer.

In a numerical assignment statement of the form X := E, X and E can have
different numerical types, except that if X is integer then E must be integer.

A more complete and precise description of this syntax, including
several additional operations, is given in Appendix B. Despite a few idiosyn-
crasies, the general effect is to give the programmer complete control over
the precision of his calculations, while providing adequate precision in cases
where the intention is not obvious from the program. For example, if all the
variables are real, then
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z = x1Xyl—x2Xxy2

will cause the intermediate results of the two multiplications to be rep-
resented in double precision. If the programmer wants these intermediate
results to be represented in single precision (which is probably unwise, since
the subtraction can cause a growth in the relative error), he must write

begin real ¢1, 12;
tl := xI1Xyl; 12 := x2Xy2; z :=t1—-12
end

Exercise

1. Write a statement that will set y to e*, where x and y are long real variables. Use
the Taylor series

a

~34

k=0

More precisely, since one cannot sum all the terms of this infinite series, stop

when
n—1
at
k!
k=0
approximates
n
A
L k!
k=0

with a relative error of no more than 10-1°. Try executing this program for a
variety of values of x. Explain why the program produces erroneous answers for
large negative values of x, e.g. —20. Suggest a way of overcoming this deficiency.






2 ARRAYS

2.1 ONE-DIMENSIONAL ARRAYS

The programming language we have used so far has the fundamental limita-
tion that all variables are denoted by identifiers occurring in the text of the
program. As a consequence, every evaluation of the same expression will
depend upon the values of the same set of variables, i.e. the variables
denoted by the identifiers occurring in the expression. Similarly, every
execution of the same assignment statement will affect the value of the same
variable, i.e. the variable denoted by the identifier on the left side of the
assignment statement.

Although an interesting variety of programs can be written within this
limitation, it is frequently necessary to write a statement with the property
that different executions can involve different members of some collection
of variables, where the choice of the particular variables affected by a
particular execution depends upon previously computed results.

For example, in a program that dealt with the variation of temperature
throughout the day, one might need a collection of twenty-four real vari-
ables, each giving the temperature at a particular hour. Within this program,
some statement might evaluate or assign to the particular variable giving the
temperature at time ¢. Moreover, such a statement might occur within a loop
that iterated over different values of ¢.

73
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The basic facility that provides this kind of capability is called the array.
A one-dimensional array is a finite collection of variables which is in one-to-
one correspondence with some finite consecutive set of integers, called the
domain of the array. If X is such an array, then the member of X correspond-
ing to the integer i is called the ith element of X and is written X(i).
Conversely, the integer i is called the subscript of X(i).

For example, if X is a real array with the domain {5, 6, 7}, then the
elements of X are three distinct real variables denoted by X(5), X(6), and
X(7).

It is important to distinguish between i=j, which implies that X(i) and
X(j) are the same variable, and X(i) = X(j), which means that X(i) and X(j)
are possibly distinct variables with the same value. If i=j, then X(i)=X(j)
will always be true, and an assignment to X (i) will change the values of both
X(i) and X(j). But if i#j. even though we may still have X()= X(j), an
assignment to X(i) will leave X(}) unchanged.

Just as with simple variables, each array used in a program must be
declared in some block. A one-dimensional array declaration has the form

Tarray I, ... , L, (L::U)

where 7 is integer, real, long real, or logical, [y, ..., 1, are binders of distinct
identifiers, and L and U are integer expressions, called the lower bound and
upper bound respectively. Such a declaration creates m distinct arrays,
denoted by I, ... , I,. Each of these arrays is a collection of variables of type
, whose domain is the set of integers i such that L=i< U. These collections
of variables will be part of the state of the computation during execution of
the block which immediately encloses the array declaration.

If I has been declared to be an array identifier, and E is an integer
expression, then

KE)

is a phrase called an array designator, which denotes the Eth element of the
array denoted by I. Since array designators denote variables, they can be
used in the same contexts as other kinds of variable-denoting phrases such as
variable identifiers.

For example, the declaration real array X(0::99) will create an array
containing one hundred real variables, whose domain is the set of integers
between 0 and 99 inclusive. Within the block containing this declaration, the
individual elements of the array can be referred to by real array designators
such as X(7), X(1), or X(i+j+1).

The possibility for different executions of the same statement to affect
different array elements arises from the fact that an array designator such as
X(i+j+1) can have a subscript containing variables whose values are deter-
mined by the computation. The price one pays for this flexibility is the
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possibility that an evaluation of X(E) can refer to a nonexistent element of
X, which will happen when the value of E does not belong to the domain of
X. Such an event is called a subscript error. During execution of an Algol W
program, every subscript evaluation is checked for such errors, and the
detection of an error causes program termination. Although this checking
has a significant cost in computer time, it is well worth paying, since
unchecked subscript errors can have unusually unpredictable and untrace-
able effects.

In contrast to many programming languages, Algol W provides a useful
capability called dynamic array allocation, which permits the domain of an
array, at the time the array is created, to depend upon previously computed
quantities. This arises from the possibility that the lower and upper bounds
in an array declaration can be integer expressions containing variables.
These bounds are evaluated each time the block immediately enclosing the
array declaration begins execution, so that different executions of this block
can create different sized arrays. But once an array has been created, its
domain remains fixed throughout the current execution of the enclosing
block.

For example, in

begin integer n; n := 0;
while n <100 do
begin n := n+1;
begin integer array X(1::n—1); S end
end
end

the nth execution of the statement S will use an array whose domain runs
from 1 to n—1. (Notice that this array will be empty for the first execution of
S. It is permissible to declare an empty array, although any assignment to
such an array will cause a subscript error.)

Dynamic arrays cause a rather subtle problem concerning the scope of
declarations. A block such as

begin integer n; integer array X(n:: X(1)); ... end

appears to be nonsensical, since the variable n will have an unpredictable
value, and the variable X(1) will not even exist, when the bounds # and X(1)
are evaluated. In Algol W this nonsense is avoided by excluding array
bounds from the scope of declarations in the same block. Specifically, the
scope of any declaration, and of its binders, is the immediately enclosing
block excluding lower and upper bounds of array declarations that are
immediately enclosed by that block.

Thus the above block makes sense in a context where n and X are
declared at a higher block level, e.g.
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begin integer n; integer array X(1::3);
n:=17; X1) :=09;

.....

end

Here the occurrences of n and X in n:: X(1) are bound by the declarations in
the outer block, so that the inner declaration of X will create an array with
domain {7, 8, 9}. (However, this is not recommended as an example of clear
programming style.)

2.2 PROGRAMS THAT USE ARRAYS

2.2.1 Summation of an Array

As a first example, consider a program for summing the elements of a real
array. More precisely, we want a program that will set the real variable s to
the sum of the values of those elements of an array X whose subscripts lie
between the integers a and b inclusive.

It is not necessary for a and b to be the declared lower and upper bounds
of the array X; we want our program to be applicable to an arbitrary segment
of X rather than just the entire array. Any array-manipulation program can
be generalized to handle segments rather than just entire arrays, and it is
invariably good programming practice to do so.

At the completion of our program, we want the assertion

b
s=2 X()
1=a
to hold, where the summation notation can be defined as follows:

b
09) _Z X()=0 when b<a ,

b b-1 \
Im > x@= ( _ X(i)) + X(b) when b=a
i=a i=a
k
An obvious approach is to achieve s= Y X(i) by setting k tg a—1lands
1=a

to 0, and then to repeatedly increase k while maintaining s= 3 X(i) until
k=b. Thus we use the invariant e

k
s=3 X()and a-1<k<b ,

which includes a specification of the range of k. The resulting program is
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{a—1=b}
begin integer k;
k:=a—-1;s :7 0;
{whileinv: s=._z X(i) and a—1<k=<b}
k<b
kb
begin
k:= k+1;
k-1
{s=> X(i) and a<k<b}
i=a
s := s+ X(k)
end
end

b
=3 x@} .

e [£2]

The scheme of iteration is essentially the same as in the factorial
program of Section 1.3.1, except that k ranges from a—1 to b instead of 0 to
n. The reader may check that the assertions are correct, and should notice
two salient points: First, the initial assertion a—1<b is needed to insure
a—1=<k =< b after the assignment k := a—1. Secondly, either the test k <b or
k+ b can be used in the while statement, since the presence of k<b in the
invariant insures that either test will give the same outcome.

The program must terminate since one cannot increase k indefinitely
without falsifying kK <b. However, now that we are using arrays, program
correctness involves more than assertion correctness and termination; we
must also consider the possibility of subscript errors.

Specifically, we must make sure that, for every execution of an array
designator, the value of the subscript expression belongs to the declared
domain of the indicated array. The only array designator in the above
program is the occurrence of X(k) in the statement s := s+ X(k). which is
preceded by an assertion containing a<k=<b. Thus the program will be
correct with regard to subscript errors if every integer k, such thata<k<b,
lies in the domain of X. As we will see in the next section, this condition can

be written as E dom X, which should be added to the initial assertion of

the program.
One final curious point remains. The initial assebrtion of the program

contains a—1= b, yet our original problem, to sets to Y X(i), is well-defined
1=a

even when a—1>b. Consider executing the program when a—1>5b. In
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contrast to the case covered by the assertions, the behavior of the program
will depend upon the choice of the test in the while statement. If the test is
kb, then the initial condition a—1> b will cause the program to run on
forever. But if the test is k <b, then the initial condition a—1>b will cause
the while statement to terminate without ever executing its body, so that the
final result will be s =0, which is the correct result when a—1>b. Thus one
can choose the while-statement test so that the program will still behave
correctly when part of its initial assertion is violated. The reason for this
rather surprising state of affairs will become apparent in the following
sections.

Exercises

1. Investigate the effects of changing while-statement tests (¢.g. from 5 to < or >)
on the illustrative programs and exercises of Chapter 1.

2. Write a program that will examine an arbitrary array segment and count the
number of elements whose value is zero.

2.2.2 Interval Diagrams

The introduction of arrays complicates the problem of specifying program
behavior. The notation for assertions used in the previous chapter (with the
addition of quantifiers, which will be discussed in Section 2.2.5) is theoreti-
cally adequate to specify array manipulations, but in practice it soon leads to
unreadably long and complex assertions. To alleviate this complexity, we
will introduce a variety of concepts, laws, and notations specifically oriented
towards making assertions about arrays.

Many readers will find this material more difficult than the use of
assertions in Chapter 1. This is largely due to unfamiliarity. In Chapter 1 we
made extensive use of arithmetic concepts such as the distributive law, often
without explicit mention. We were able to do so—without making things
«difficult’—because these concepts have been understood for centuries and
are now part of our common cultural heritage. But the analogous concepts
about arrays, which are just as vital to the understanding of programming,
are not centuries old. Indeed, their formulation is still a topic of current
research [Reynolds 79].

To begin with, we consider relationships among different segments of
the same array. Programmers have traditionally expressed such relation-
ships by box-like diagrams. In this section and the next, we will provide a
precise meaning for such diagrams which will permit their use in assertions.

Each segment of an array is in one-to-one correspondence with some
finite consecutive set of integers; such a set is called an interval. In fact, the
relationships we are interested in are really set-theoretic relationships
among intervals.
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In this section we will develop simple diagrams, called interval diag-
rams, which denote intervals themselves. For example:

la_|k denotes the set of integers i such that a<i<k
denotes the set {k} whose single member is k

klzl denotes the set of integers i such that k<i<h
|a__b| denotes the set of integers i such that a<i<hb

’

In the next section, we will use interval diagrams to compose more elaborate
entities called partition diagrams, which assert relationships among inter-

vals. For example, |a |k| b| asserts that the three intervals lz]k, , and
k[:b] are disjoint (i.e. no integer belongs to more than one of these inter-

vals), and that the union of these intervals is the interval . It will turn
out that this assertion is true if and only if a<k <.

We now proceed to make these ideas precise. For any integer expres-

sions a and b, a diagram of the form a[:b] is called an interval diagram. We
will use such a diagram in assertions as an expression denoting the set of
integers ¢ such that a<i<b. On either side of the box, we may write |a

instead of a—1| to improve readability. We may also write E] as an abbrevia-
tion for , which denotes the singleton set whose only member is a. Thus

al—_E' a<i<b

la_ b a<i<b
al:]b denotes the set of integers i such that | a<i<b
E:Ib a<i<b
@ i=a .

When formulating general properties of interval (or partition) diagrams we
will always use the standard form a| b|, but when using the diagrams to
make assertions we will freely employ all of the forms shown above.

For an array X we write dom X to denote the domain of X. Thus the
assertion g dom X used in the previous section states that every integer
i satisfying a <i< b belongs to the domain of X. (The relation S §' means
that S is a subset of S". It should be emphasized that diagrams, the operator

dom, and set-theoretic operators such as< are not part of Algol W and can
only be used in assertions.)

For any finite set S, we will write # S to denote the size, or number of
members of §. At first sight, one might expect that # aEl =b—a,butb-a

can be a negative number, while the size of a set is never less than zero.
Actually,
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# “Elzif b—a=0 then b—a else 0

The fact that we need a conditional expression to describe a fundamental
property of intervals is a clear portent of a potential source of programming
errors, i.e. the possibility that a program might be correct for one case of the

conditional but not the other. To emphasize this situation we say thata| b| is

a regular representation of an interval when a < b, and an irregular represen-
tation when a>b.
There are three possibilities:

If b—a Then a| b|isa
>0 regular representation of a nonempty set
=0 regular representation of the empty set
<0 irregular representation of the empty set.

Thus, only the empty set has irregular re presentations, but it also has regular
representations.

Of course, the notions of size and irregularity can also be applied to
interval diagrams in which one or both expressions appear to the right of a
dividing line. For example,

# =if b—a+1=0 then b—a+1 else 0

and |a b| is an irregular representation of the empty set when b—a+1<0.

The segment of an array X consisting of the array elements whose
subscripts belong to an interval (or other set) S will be called the segment of
X over S. For example, the program given in the previous section sums the

values of the segment of X over .

The one-to-one correspondence between array elements and their sub-
scripts insures that the number of elements in a segment over S is the same as
the size of S. (However, the number of elements in an array segment may be
greater than the size of its set of values, since several array elements may
have the same value.) When § has an irregular representation we will say
that a segment over S is irregular. For example, the “final curious point”
made in the previous section is that the summation program works correctly
for irregular segments when the test k<b is used in the while statement.

2.2.3 Partition Diagrams

For any integer expressions ag, 41, 45, ... , 4,, where n=1, a diagram of the
form

a(;l all azl wes Ay
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is called a partition diagram. The intervals denoted by a,| a,, a1| o e
a..—x are called the component intervals of the partition diagram, and the
interval denoted by aol a,,l is called the total interval of the partition diag-

ram.
We will use partition diagrams in assertions as logical expressions with
the following meaning:

A partition diagram is true if and only if its component intervals are
disjoint (i.e. no integer belongs to more than one of them), and the
union of the component intervals is the total interval.

(In set-theoretic terminology, this is equivalent to saying that the component
intervals form a partition of the total interval.)

Just as with interval diagrams, we may write ... E ... instead of ...
E ..,and ... |a| ...instead of ... |a al ... . For example,
a |k| b|

is a partition diagram with the same meaning as

o [k 4] b

which in turn has the same meaning as the standard-form diagram

a-1[ k=1[ A 8] .

Notice that, since these conventions work the same way for interval and
partition diagrams, we can decompose a partition diagram into component
and total interval diagrams without converting it into standard form. For

example, decomposes into

Component Intervals Total Interval

la_k |
K[ 2]

whose standard forms,

Component Intervals Total Interval

a—ll kT1| a—lEl g
k=1] 4]
Kbl
are the same as the decomposition of a—1] k—1] k[ »].
It is important to understand the distinction between interval diagrams,

which will be used in assertions as expressions denoting intervals, and
partition diagrams, which will be used in assertions as expressions denoting
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true or false. A diagram with intermediate dividing lines can only be used asa
partition diagram, but a diagram with only end lines can be used in either
role.

Since a partition diagram asserts a relationship among intervals that are
determined by integer expressions, the truth or falsity of the partition
diagram depends only upon the values of these integer expressions. The
following theorem shows that this dependency can also be expressed by
ordering relations:

Theorem 1 The partition diagram

anr all a:I s

is true if and only if either

() ap=a;=ay= ... =a,
or
(i) gp=a;za,= ... =a,

Notice that (i) asserts that every component interval diagram is regular,
while (ii) asserts that every component interval is empty.

Proof: (1) Suppose ap<a;<a,= ... =a,. To show disjointness, suppose
k belongs to some component interval a,,1 ,andleta;_, E be any other
component. Then either j<i, so that g;<a;_;<k, or i<j, so that
k=a;<a;_,. Either way, a;_; <k=a; is false, so that k does not belong to
a;,_, ajl

To show that the total interval is the union of the component intervals,
suppose that k belongs to some component a,AIE. Then since
ay<a,_1<k<a;<a,, k belongs to the total interval aol__T,,J. On the other
hand, suppose that k belongs to a0|_——‘;|- Since ag<k but k<a,, there is a
smallest i such that 1<i<nand k<a,. Thena;_, <k <a;, so that k belongs to
the component a;,,@].

(2) Suppose ay=2:=a,= ... =a,. Then each component interval is
empty, which establishes disjointness, and the total interval is also empty,
and is therefore the union of the component intervals.

(3) Finally we come to the interesting case: We must show that, if the
partition diagram is true, then either (i) or (ii) holds. The following proof is
due to F. L. Morris.

Suppose ao. A fundamental fact about partitions is that the

size of the total interval must be the sum of the sizes of the component
intervals, i.e.
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#a a)=3 #a[ af . (@)

where the size function # a| é|=if b—a=0 then b—a else 0 is always
nonnegative and is zero if and only if a| Ig| is empty.
However, for arbitrary a,’s simple cancellation gives

n

a,—ag = 2 @—8; . (b)

i=1
Now suppose we define the function
fla, b)=b—a—#a[_bl=if b—a>0then Oelse b—a ,

which is always nonpositive and is zero if and only if 4| lg| is regular. Then
subtraction of (a) from (b) gives

flag, a,) = i§1 flai-y, @) . ()

The total interval diagram “OEI must be either empty or regular (or
both). Suppose it is empty. Then (a) asserts that a sum of nonnegative terms
is zero, which implies that each term is zero. Thus, for each i, a,_1|‘_a,| is
empty and @;_1 = a;.

On the other hand, suppose a0 is regular. Then (c) asserts that a
sum of nonpositive terms is zero, which implies that each term is zero. Thus,
for each i, a,-_1|_'—a,~| is regular and q;_;<a;. []

From this theorem, we can derive some general rules for inferring one
partition diagram from another. Note that all the vertical lines in a partition
diagram are called dividing lines, which may be either end lines or intermedi-
ate lines.

Theorem 2 (1) (Erasure) A partition diagram implies any diag-
ram that can be obtained from it by removing dividing
lines (and their associated expressions).

(2) (Dividing line replication) Let

Dy =ag| ... a| ... a,]

be any partition diagram, and let

D2=an| LA =) (01 a,,l

be obtained from D; by adding a dividing line with the
same associated expression as an-adjacent dividing line.
Then D, implies D,.
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(3) (Direct Substitution) Let

Dl=u0| a,,,..,[ a,,,| a,,l

Dy=a,, 4| ¢ ..c| an

be partition diagrams such that the end lines of D, have
associated expressions which are the same as the associ-
ated expressions of two adjacent dividing lines in D;.
Then D, and D, implies D3, where

D3=aO|i am—ll cll cll aml anl

is obtained from D, by inserting the intermediate lines
of D, between the adjacent lines of D,.

Proof: (1) If ag=2.= ... =a, is true, then it will remain so if we delete
some of the a’s. The = case behaves similarly.
Q) If gg= ... =a,=< ... =a.then gy =< ... =a,=a,= ... <a,. The
= case behaves similarly.
(3) If D, and D, are true then there are four possibilities:
(@) ap=< ... =a,1<a,= ... =a,
and a,, 1= < ... =¢=a, ,
(b)) ag= ... =2 _,=2.= ... =a,
and am_12c12 000 ECIZam 9
©) a= ... =ap_1=a,= ... >a,
and a,,_=c¢1= ... =c;=a, ,
(d) a= ... =a,_1=a,= ... =a,
and @, 1<c1=< ... =c=a,
In case (a) we have gy< ... <@,_1<¢=< ... =¢;<a,=< ... <a, directly. In
case (b), ap_1=<ap, and a,_1=C1> ... =C;=ay, GIVE Gy 1=C1=...=C) =0y,
and again we have gy < ... <d.._1=¢:1 =< ... <(;<a,; = ... <a,. The remain-
ing cases are similar. []

A final theorem gives more specific results:

Theorem 3 (1) Any partition diagram without intermediate lines,
e.g. a| b, is always true.

(2) The following are equivalent: . , a<b,
# @ B=1,acls B,andbels b

(3) The following are equivalent: ,a<b=<=c,
arlb e .

The proof is left to the reader.
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Exercises

1. For each of the following assertions, give an equivalent partition diagram:
(a) kela blandme |a b|and k<m |
(b) keabandmela bl and k<m |,
(c) k6|a m| and |a m|§|a b

2. Prove

(@) a all a2[ a,,l is equivalent to

a0+c| a1+c] a2+c| a,,+c|

(b) E[jb is equivalent to |<_1__l_>|

2.2.4 Summation Revisited

To illustrate the use of interval and partition diagrams, we shall reconstruct
the program given in Section 2.2.1 for summing an array segment. We first
introduce a more general notation for summation. Let > ;. s X(i) denote the
sum of the values of X(i) over all i in the set S. Then

(I) 2X:csX(@)=0when S is empty |,
() Siem XO=Xk)
() Yiesus XO=(Zics XD)+(Zie s X))

when S and §' are disjoint sets.

In this notation, we want our program to achieve
§= 0 [ g X()

If our program is to iterate over the integers in the interval , then
its invariant should assert that this interval is partitioned into subsets of
“processed” and “unprocessed’ integers, and that s is the sum of X over the
processed subset. Moreover, if the iteration is to be in increasing order then
both of these subsets will be intervals and the processed integers will all be
smaller than the unprocessed integers. Using the integer variable & to keep
track of the division between the two subintervals, we get the invariant

a k| b|and s=2ielin X()

where the processed and unprocessed subintervals are the components
and k|l b| of the partition diagram.
(We could equally well have chosen to write j_k_ instead of 7k|

Roughly speaking, we have decided that k will denote the last processed
integer rather than the first unprocessed integer.)
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Initially, we can achieve the invariant by setting k to a—1 and s to zero,
so that the processed interval is the empty interval , the unprocessed
interval is the total interval a—1| b|=|a b, and s is the sum of X over the

empty processed interval. On the other hand, when k= b the unprocessed
interval will be empty, and the partition diagram will imply

la_kl=la_ Kl Ukl bl=la b| ,

so that the invariant will imply the consequent of our program. Thus we have

{@ < dom X}

begin integer k;

k:=a—-1;s:=0;

{whileinv: [a k[ b|ands=3;, d X}

while k<b do 5
“Process one integer”

end

{s=%ic g X0}

The invariant can be rewritten as

o [k+1 b] and s=3; ¢ e X0G)

and the test k <b implies Ik+1| :l by Theorem 3(2). Thus Theorem 2(3)
shows that, when “Process one integer” begins execution,

k+ 1 and s= Zie [a Jk+1 X@ ,

so that increasing k by one will give

um and s= zi €la_ik X&

Less formally, k <b insures that k+1 belongs to the unprocessed interval,
and k:= k +1 transfers this integer into the processed interval, which is then

the union of two disjoint subintervals: its former value I‘:.'k and the single-
ton IE Then (II) and (III) imply

Eie X()=2ie [a & X(i)+ X(k)

so that the invariant can be regained by s:=s+ X(k). Thus the summation
program is



SEC. 2.2 PROGRAMS THAT USE ARRAYS 87

{Eﬂ < dom X}
begin integer k;
k:=a—1;s5:=0;
{whileinv: and s=3; . - X0}
while k <b do
begin
k:=k+1;
{la_JK 2] and s=73, ;. X()}
s:=s+ X(k)
end
end

{S—_— Yie [a 8] X(l)} .

To show the role of interval and partition diagrams more explicitly, we
give a complete formal proof of the correctness of this program. The proof
consists of the two tableaus shown in Tables 2.1 and 2.2. The first tableau
shows that the while-statement body S satisfies the specification {/and L} S
{1}, where I is the invariant and L is the while-statement test. From this
specification, the inference rule for while statements gives {1} while L do S {1
and 1 L}. Then the second tableau uses this result to show that the entire
program meets its specification. Justifications of the various inferences are
given to the right of the tableaus. The terms ‘“‘disjointness property” and
“union property’’ refer to the two properties that define partition diagrams.

Termination is based on the size of the unprocessed interval k| b|,
which is decreased by the while-statement body and cannot be less than zero.
The impossibility of subscript errors is shown by the initial assertion E’j c

dom X (which must hold throughout the program since a and b are not
changed and dom X cannot be changed within the scope of the declaration of

X), plus the partition diagram [a_[k| 5], which is equivalentto k € by
Theorem 3(3) and which occurs in the precedent of the statement
s:=s+ X(k) containing the only array designator.

In contrast to Section 2.2.1, the correctness proof using interval and
partition diagrams includes—without any extra analysis—the case where
isirregular. Of course, the while-statement test that k| b/ is nonempty
must be k <b rather than k#b.

Notice that both nontermination and the impossibility of subscript
errors are shown by informal arguments which go beyond our formal logic
for inferring specifications. Formally, subscript errors are a special kind of
nontermination, so that {P} S {Q} means that if P holds beforehand then
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{ and s=3 ;. [, 4 A1) and k<b}

{m and s=3, ¢ [ Tk+1 X(0) and Efl:_l;l}
{la_lk+1] b] and s=3,c g Jer1 XO}

k:=k+1;

{la_Js ¢] and s=3, 1 X0}

{l«_Tk[ t] and s+ X(0)= (i @ X@)+(Z ;e @ XO)}
{la_Td bl and s+X()=3; c ey @ XO}

{la_Jk[ ] and [a_[k] and s+ X(k)=3; @k v [ XD}
{la_Tx[ o] and s+ X(k)=3, . 5 X}

s:=s+X(k)

{la_IKl o] and s=3, . u X}

{la_xi_t] and s=3, g X}

Table 2.1 Proof of the Summation Program,

CHAP. 2

Theorem 3(2)

Direct substitution

Assignment

(I
(IIT) and disjointness
property

Erasure

Union property

Assignment
Erasure
Part I.

{@9 dom X}
{la_alt
{a a—1| b|}

{la_a-1] b|and 0=3, ;o= X}

k:i=a-1;
{la k| bland 0=3,. 4 X0)}
5:=0;

{la_[ b] and s=3, . 5 X0}

while k<b do begin k:=k+1; s:=s5s+ X(k) end

{la_k| 5| and 5=, [ X() and 1 k<b}
{la_k| blands=3; 7w X() and k[_b empty}

{la_rl=[a bl and s=3,. ;g XO}
{s=3.c g X0}

Theorem 3(1)

Dividing line replica-
tion

(I) and definition of
interval diagram

Assignment

Assignment

while statement

Definition of interval
diagram

Union property

Substitution of equals

Table 2.2 Proof of the Summation Program, Part II.

executing S will, if S terminates without an error message, give a state in
which Q holds. This view presupposes that all subscript errors will cause
error messages; fortunately this is the case in Algol W.
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Exercise

1. The following generalization of the factorial-computing problem shows that the
kind of reasoning apout intervals facilitated by interval and partition diagrams
can be needed even in the absence of arrays. Write a program that will accept two
arbitrary integers a and b, and will set the real variable s to I, . i, where

@ IL.ge=1,
an IL.gi=k ,
am I sy 5 i=(1L e s ) x (IL; o 5 )

when S and S’ are disjoint

2.2.5 Quantifiers

Our next example will be a program to find the subscript of a maximum
element in an array segment: Given the segment of X over , we want to
find an integer j such that a [;| b] and X(j) is at least as large as every
element in the segment. However, before beginning to develop a program
for this task, we must translate the previous sentence into a precise logical

expression, and here we encounter a problem: How do we express “X(j) is at
least as large as every element in the segment”?

Given a particular integer i in , it is easy enough to say that
X(i)= X(j). The problem is that we want to assert this logical expression for
alliin[a b, not just for a particular i. The solution is simply to introduce a

new notation (V I € S) which is defined to mean “For all I in the set §.”” We
then write

(Vi€ [a_b)) X()<X())

The phrase (V I € S) is called a universal quantifier of 1. There is a
second kind of quantifier, called an existential quantifier of I, which is written
(31€ S) and means “‘For some / in the set §”” or “There exists an Iinthe set S
such that”’. The extension of logical expressions in assertions to include these
two kinds of quantifiers produces a fundamental increase in their expressive
power. (In the jargon of symbolic logic, we are moving from the proposi-
tional calculus to the first-order predicate calculus.)

Quantifiers, like declarations, are binding mechanisms. Specifically, the
occurrence of the identifier 7in (V 1 € §) Por (31 € S) Pis a binder whose
scope consists of itself plus the following expression P, i.e. the entire quan-
tified expression excluding the set S.

For example, in (Vi€ |a b|) X (i) < X(j) the scope of the binder of i is
the binder itself plus X(i) < X(j), and the only identifiers occurring in this
scope are i, X, and j. Thus the meaning of this assertion will remain
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unchanged if we alpha-convert it, as discussed in Section 1.5.2, by replacing
the binder of i and the occurrence of i in X (i) < X(j) by any other identifier
except X or j, e.g.

(Vkela b X(k)<X(j) ,
Or even

(Vaela b) X@=x() ,

but not
(Vjela b)) X()=Xx(j)

The nature of the universal quantifier is explicated by the following
laws:

IfScS and (Vie S)Pthen(VieS)P , (1)
(Vie{hP , (2)
(VieSuS) Pifandonlyifboth (Vie S)Pand (Vie S)P ,(3)
If(VieS)PandEe€ Sthen P|, ., , 4)

where {} denotes the empty set and S U S’ denotes the union of the sets S and
S'. Law (2) asserts that anything is true when universally quantified over the
empty set; in this case the quantified expression is often said to be vacuously
true. Law (4) asserts that, from a universally quantified expression one can
infer anything obtained by substituting for the bound identifier an expres-
sion denoting a member of S.

The universal and existential quantifiers are related by the operation of
negation: Something is true for all members of S if and only if it is not false
for some member of S. In other words,

(VieS)Pifandonlyif 1 (3ieS)1P , ®))
and similarly

(3ieS)Pifandonlyif 1(VieS) 1P . (6)

Although quantifiers can be used in assertions, they cannot occur in
logical expressions in Algol W programs themselves. This is not an acciden-
tal omission—it can be shown that it is theoretically impossible to write a.
computer program that will correctly evaluate an arbitrary logical expres-
sion containing quantifiers. (Actually, it would be possible to evaluate
quantifiers over finite sets. But even permitting such limited quantifiers in
programs would drastically change the nature of the programming language,
since it would introduce expressions with unbounded evaluation times.)
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Exercises

1. Explain the difference between

(Viela b)) @jela b])ix
@jela b)) (Viela b])ixj

2. Use quantifiers to formalize the following mathematical facts and definitions.
You may use Int to denote the set of integers and Real to denote the set of real
numbers. In (c) and (d) you may need the operator implies discussed in Section
2.2.10.

(a) For every integer, there is a larger integer.
(b) There is no maximum integer.

and

(c) There is a real number between every pair of distinct real numbers.
(d) For every real x, |x| is the largest integer that is no more than x.

3. Prove that the formalizations of (a) and (b) in the previous exercise are equival-
ent.

4. Binding occurs in the summation notations used in Sections 2.2.1 and 2.2.4, and
in the conventional notation for definite integrals. For each of these notations,
describe the binders and their scopes.

2.2.6 Substitution and Identifier Collisions

Both law (4) in the previous section and the rule for assignment in Section
1.4.2 involve the application of substitution to assertions that, with the
introduction of quantifiers, can contain bound identifier occurrences.
Because of this, we must consider an interaction between substitution and
binding which is often called identifier collision.

As an example, if Int denotes the set of integers then

(Vielnt) (3je Int)i=j—1
is an obviously true fact about the integers. Thus, since j+1 is an integer
expression, law (4) implies

(3j e Int) i=j-1] ;5

However, if we interpret the indicated substitution naively, then the above
expression seems to be

(3jelInt)j+1=j-1 ,

which is patently false. The difficulty is that the free occurrence of j in j+1
has been moved by the substitution into the scope of a binder of j, and has
therefore been “captured” by the binder. More briefly, the two usages of j
have collided.
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In essence, this means that the naive interpretation of substitution is
incorrect, and that a correct definition of substitution must preserve binding
structure by avoiding collisions. The basic method for accomplishing this is
to use alpha conversion to eliminate binders that could cause collisions.

In formulating such a definition of substitution, we include the case of
simultaneous substitution for several identifiers, and we permit the substitu-
tion to involve phrases, such as statements, that occur in programs but not
assertions. Although these generalizations are presently unnecessary, they
will be needed in Section 3.1.1, where we will use substitution to describe the
copy rule for procedures.

Suppose S is a phrase, I, ... ,1, are distinct identifiers, and A4, ... A,
are phrases. Let §' be an alpha variant of S (or possibly S itself) that contains
no binder of any identifier that occurs free in any of the A;’s. Then

S| I, ... ,In> Ay, ... ,Ap >

called the result of substituting the A;’s for the 1’s in S, is the phrase obtained
from S’ by replacing every free occurrence of each 1, by the corresponding A;.
For example, to obtain

@jent)i=j=1| i

we cannot take S’ to be (3 € Int) i=j—1, since this phrase contains a binder
of j, which occurs free in j+ 1. Instead, we must take S’ to be an alpha variant
suchas(3k e Int)i=k—1,to obtain (3 k € Int) j+ 1=k —1 as the result of the
substitution. (Which alpha variant we choose as S doesn’t matter—since
they all have the same meaning—as long as it does not contain any binder of
I-)

(Actually, the requirement that S’ contain no binder of any identifier
that occurs free in any of the A;s is stronger than necessary. The following
weaker but more complicated requirement is sufficient to avoid identifier
collisions: For each I;, S must contain no free occurrence of I: within the
scope of a binder of any identifier occurring free in A;.)

Two other aspects of substitution require comment. The replacement of
occurrences of 1, by A; must be carried out in terms of phrases rather than
strings of characters. For example, x Xy=0| x—a+p 18 (@a+b)Xy=0, not
a+b X y=0.In general, each A; must be enclosed in parentheses (or begin ...
end) whenever this is necessary to preserve its identity as a subphrase of the
result of the replacement.

Finally, it should be noted that simultaneous substitution can produce a
different result than repeated substitution. For example, x < y| xy—yx IS

y=x, but x=y|. )|, is x=x.
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Exercise

1. Suppose the consequent (\{ ie |a bl) X(i)<X(j) is to hold after executing the
assignment j:=i+1. What is the precedent that must hold before execution of
this assignment?

2.2.7 Maximum Finding

Now that we have introduced quantifiers and dealt with the interaction of
binding and substitution, we can attack the problem of maximum finding.

We want a program that, given the segment of X over , will set the
variable j to satisfy the consequent

and (Vi€ [a_ b)) X()=X())

An obvious plan of attack is to sequence through the elements in order of
increasing subscripts while always keeping j set to the subscript of the largest
element encountered so far. If we use a variable k to keep track of the
subscript of the last-examined element, then our invariant will be:

@ [ k[ bland (Viela k) X)<X(j) .

which asserts that Ia_—_bl is partitioned into a processed interval and an
unprocessed interval k| b|, and that j is the subscript of a maximum element
of the subsegment of X over the processed interval.

When k= b, the unprocessed interval will be empty, the processed
interval will equal IZb_I, and the invariant will imply the final assertion.
However, unlike the summation program, we cannot start with the initializa-
tion k:=a— 1, for then there could be no value of j satisfying |a | j| k|. The
smallest we can start with is a one-element interval. Moreover, since
this one-element interval must be a subset of , we must impose the
initial condition that be nonempty, or equivalently . In fact, this
initial condition is inherent in the problem we are trying to solve—if
were empty it would be meaningless to ask for the subscript of its maximum
element.

If b|, then the initialization j:=a; k:=awillgive [a_|j| k[ b|,and
also [a_k|=[j], which implies (V i € [a_k]) X(i) < X(j). Thus this initializa-
tion will achieve the invariant.

If we increase k at the beginning of the while-statement body, we get the
program skeleton
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{la 2]}
begin integer k;
ji=a; k:=a;
{whileinv: |a_[j[ k[ 5| and (Vi€ [a k|) X()<X()}
while k<b do
begin k:=k+1; “Inspect one element” end
end

{la_[il b and (Viela b) X)<x(j)} .

At the beginning of the while-statement body, the invariant will be true
and K l:>| will be nonempty, so that [a []I Jk+ ll b] will hold. Then
increasing k by one will give

a [ Tkl o] and (Vie[a Jo) X()=X(j)

With this assertion as precedent, “Inspect one element’’ must reestablish the
invariant.

At this stage, since E]ﬂ will be the union of Elk and IE, the max-
imum element of X over will be the larger of the maximum over |§ |,
which will be X(j), and the maximum over {Z} which will be X(k). Thusj can
be left unchanged if X(k)<X(j), and j can be reset to k if X(k) = X(j)).
(Notice that will not be falsified by j: =k since k € @, and
that either alternative can be taken when X(k)=X(}).)

As with the summation program, termination is assured by the decreas-

ing size of the unprocessed interval k|_ I:)| The only array designators are
X(k) and X(j) in ‘“Inspect one element”, whose precedent contains
u.m Thus subscript errors will be precluded by adding @ =
dom X to the initial assertion.

The final program is

{@ <€ dom X and @}
begin integer k;

j:=a; k:=a;

{whileinv: [a_[j| ] b and (Vi€ [a K]) X()<X(j)}
while k<b do

X(k)> X(j)

begin k:=k+1; if [
X(k)= X(j)

] then j:=k end

end

{la_[i o] and (v ieia b)) X)<x()} .
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Either choice of the relation which compares X(k) with X(j) gives a
program that meets the specification. However, this choice can make a
difference in the result of the computation. (Consider the extreme case
where all elements of X have the same value.) In fact, we have intentionally

provided a indeterminate specification; when the segment of X over

has more than one maximum element, the specification leaves the program
free to produce the subscript of any maximum element.

Exercises

1. For each of the two versions of the maximum-finding program, give a correct
specification and invariant that are determinate, i.e. that cannot be met by a
program with different behavior.

2. (Suggested by F. L. Morris) Write program that will produce the subscripts of
both a maximum and a minimum element of an array segment. Use a single while
statement, so that the array segment is only scanned once. With a bit of clever-
ness, this program can be written so that the number of executed comparisons of
array elements is no more than 3/2 times the size of the segment.

(Hint: Process the array elements two at a time.)

2.2.8 Functions as Array Values

So far we have taken the view that an array is a collection of variables which,
like the simple variables used in Chapter 1, possess numerical or logical
values. For many purposes, however, it is more convenient to view an array
as a single “‘giant’ variable, whose value is a function.

A function F consists of three sets:

(1) A set dom F, called the domain of F,
(2) A set cod F, called the codomain of F,

(3) A set, called the graph of F, consisting of pairs (i, r) such
that i belongs to dom F and r belongs to cod F,

which satisfy the following relationship:

For each i in dom F there is exactly one r in cod F such that (i, r)
belongs to the graph of F.

A function F is often said to be a function from dom F to cod F. For any i in
dom F, we write F(i) to denote the unique value such that (i, F(i)) belongs to
the graph of F; this unique value is called the result of applying Fto i, and Fis
said to map i into F(i). Two functions F and G are equal if and only if they
have the same domain, codomain, and graph, i.e. dom F=dom G, cod F
=cod G, and F(i)= G(i) for all i in dom F.
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Consider an array X in a particular state of some computation. Let F be
the function such that

(1) dom F=dom X.

(2) cod F is the set of values (e.g. the set of integers, the set of
reals, or the set {true, false}) that are associated with the
data type of the elements of X.

(3) For all i € dom F, F(i) is the current value of the array
element X(i).

Then the function F is said to be the current value of the array X.

Now suppose X(i) is an array designator in an expression, e.g. on the
right side of an assignment statement or in an assertion. Instead of saying
that X (i) denotes the value of the ith element of X, we can equally well say
that X(i) is the result of applying the value of X to i.

Suppose, for example, that sq is an integer array with domain

such that, in the older view, each sq(i) is a variable whose current value is the
square of the number i. In the functional view, sq itself has a current value,

which is the “squaring function” from |-5 5] to the set of integers, and an

expression such as sg(3) denotes the result of applying this function to 3. The
contrast between these views is pictured in Figure 2.3.

Henceforth, in discussing expressions or assertions we will often ignore
the distinction between an array and its value, e.g. we will say ““the function
X"’ rather than ‘“‘the function that is the value of the array X”’. Actually, this
is no worse than saying ‘“the integer x”’ instead of “the integer that is the
value of the variable x”.

At present, the main reason for emphasizing the functional view is to
introduce several mathematical concepts about functions and their sets of
results which will allow assertions to be expressed more succinctly.

The first of these concepts is restriction. If X is a function and S is a
subset of its domain, then the restriction of X to S, written X 4 S, is the
function from § to the codomain of X that gives the same result as X when
applied to any member of S. In other words, if S < dom X then

dom X1 §=S , (1)
cod X1 S=cod X |, (2)
(Vie S) (X198 ()=Xx() . (3)

This concept can be used to describe the value of a segment of an array:
The value of the segment of X over § is just the restriction X 1 S of the value

of X to S. For example, the value of the segment of sq over [2 4| is sq 1
, which is the squaring function from |2 4] to the set of integers.
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The integer array the value of which is The squaring function
sq with domain > from [—5 5| to the
EE' set of integers
3 s g
= £
g ge
g °
o W
J \
The integer the value of which is
variable sg(3) > The integer 9
Figure 2.3 Two Views of an Array.
It is easy to see that restriction obeys the following laws:
X1 dom X=X 4)
IfS<S<dom Xthen(X1851S=Xx1S8 , (5)
X1 {=0 . (6)

In the last line, () denotes the unique function from the empty set to the
codomain of X, whose graph must necessarily be empty. In general, we will
write () for such a function without explicitly stating its codomain, which will
usually be evident from context. Notice that () is the only possible value of an
empty array.

A second useful concept is the image of a function, which is the set of
results that can be obtained by applying the function to all members of its
domain. We write {X} to denote the image of X. Thus r belongs to {X} if and
only if there is an i in the domain of X such that X(i)=r. For example,

{sqt={0, 1, 4,9, 16, 25} ,
{sqg 1 [2_4]}={4, 9, 16}

Notice that, if a function maps several arguments into the same result, then
its image will be smaller than its domain.
It is easily seen that images obey the following laws:
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{X}< cod X , @)
If SC dom X then {X 1 S}< {X} , (8)
{X}={} if and only if X=() , 9)
If dom X=38US' then {X}={X1 S}u{x1 S} , (10)
X1 [h=txoy , (11)
# {X}=<#dom X when dom X is a finite set . 12)

In (11), {X(i)} denotes the singleton set whose only member is X(i). This
standard mathematical usage of curly brackets should not be confused with
our notation for an image—since X(i) is not a function.

Finally, to describe relations between sets such as images, we will use
the concept of the pointwise extension of a relation. Suppose p is a binary
relation between values of some type. If S and T are sets of such values, then
§ p* T is a logical expression that is true if and only if x p y is true for all x in S
andy in T. The entity p*, which is a binary relation between sets, is called the
pointwise extension of p.

Strictly speaking, we should say that if p relates values in some set U to
values in some set U’, then p* relates subsets of U to subsets of U'. However,
we can gloss over the specification of U when p is = or 5 , which are defined
for all kinds of values, or <, <, >, or = , which are defined for all kinds of
numeric values, and which will be extended to certain other kinds of values
in Section 2.3.7. When the latter relations are defined between all members
of a set, we will say that the standard ordering is defined for that set.

As an example,

2,3 =*{3,4}, {2,3} #*{4,5}
are both true, but
2,3 <*{3, 4}, {2,3}=*{2,3}., {2,3}%*{2, 3}

are all false. (The last two examples show that =£* is not the negation of =*.
Moreover =* and £* are different from the relations = and =« between sets.
This is why the asterisk is needed to indicate pointwise extension explicitly.)

It is easily seen that for any relation p, the pointwise extension of p
satisfies the following laws:

If ScSand Sp* Tthen S p* T ,

If T'cTand S p* Tthen Sp* T’ (13)
*T

Sp el

{x} p*{y} ifand onlyif x py , (15)

(SUS) p* T if and only if both S p* Tand S’ p* T , (16)

S p* (TUT') if and only if both S p* Tand Sp* T’
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Here (14) is justified since any logical expression quantified by “for all x in
§” is vacuously true when § is empty.

Very frequently, the set on one side or the other of a pointwise-
extended relation will have a single member. We write x p* T as an abbrevia-
tion for {x} p* T and S p* y as an abbreviation for S p* {y}. For example, for
any integers @ and b, @ <*a| b|and 4| b| <*b.

Some additional laws relate the pointwise extension of different rela-
tions:

If x p y implies x p' y for all x and y,
then S p* T implies S p'* T for all S and 7.
Ifxpyandyp zimplies x p” z for all x, y, and z,

then S p* T and T p™* U implies S p"™ U for all S and U (18)
and nonempty T.

17;

Notice that (18) does not hold when T is empty, since then S p* Tand T p'* U
are vacuously true, even though § p”* U may be false. Taking T to be the
singleton set {y} gives the special case:

If xpyandyp zimplies x p” z for all x, y, and z,
then S p* y and y p* U implies S p™ U for all S, y, and U.

Both (18) and (19) are particularly useful in the case where p, p’, and p”
are the same relation. If x py and y p zimpliesx p z for all x, y, and z, then p is
said to be a transitive relation.

The reason for introducing the concepts of restriction, image, and
pointwise extension is that they permit many (though hardly all) assertions
about arrays to be expressed without explicit quantifiers. For example, in the
invariant used in the previous section we wrote

(Vi e [a k] X()<X(j)

to indicate that X(j) is a maximum element of the segment of X over .
We can now express this assertion more succinctly as

{x1 ok} <* X(j)

The reasoning used to justify the assignment j := k when X(k)= X(j)
can now be given more formally by using the laws developed in this section.
Suppose

(19;

and {X 1 [a |k} <* X(j) and X(j)<X(k)
Since < is a transitive relation, (19) implies {X 1 |¢Z:Ik} <* X(k). On the
other hand, (11) and (15) give {X 1 [k]}={X(k)} <* X(k). Then, since
implies [ak|=[a |k U[k], laws (10), (5), and (16) give

X1]a kP={x11la Ku{x1 [k} =* Xk
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The notations defined in this section are not part of Algol W and can
only be used in assertions. (Notice that this prevents any confusion between
the use of curly brackets to enclose assertions and the use of such brackets
inside assertions to indicate images or other sets.)

Exercises

1. Determine which of the relations =, ,<,<,>,> satisfy which of the following
laws:
(a) (Transitivity) x p y and y p z implies x p z
(b) (Reflexivity) x p x
(¢) (Antisymmetry) x p y and y p x implies x=y
(d) (Totality)x pyorypx
(e) (Symmetry) x p y implies y p x
A relation is said to be preorder if it satisfies (a) and (b), a partial order if it

satisfies (a) through (c), a total order if it satisfies (a) through (d), and an
equivalence if it satisfies (a), (b), and (e).

2. Determine when the law x p y implies x p' y holds for the various relations listed
in Exercise 1. When this law holds p' is said to include p, since the set of pairs
related by p' includes the set of pairs related by p.

2.2.9 Linear Search

We next consider the problem of searching an array segment to find an
occurrence of a specified value. More precisely, we want a program that will
accept the segment of an array X over and a single value y, and will set
a variable j to an integer in such that X(j) =y. However, we must also
deal with the possibility that the value of y may not occur in the array
segment being searched. For this reason, we introduce a logical variable
present, and require our program to set present to true if it is able to achieve
the above criterion or to false if it is impossible to do so. Thus our program
must set present and j to satisfy the final assertion

if present then and X(j)=y else {X 1 } #*y

Notice the use of a logical conditional expression within an assertion. An
equivalent but less readable assertion would be present and and
X(j)=y or 1 present and {X 1 @} #“*y.

The basic idea is to test each X(}), in order of increasing subscript, until
either the search criterion is satisfied or the array segment is exhausted. The
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invariant asserts that if present is true then the search criterion has been

satisfied, while if present is false, then |a j|is a subinterval of for which
the search criterion cannot be satisfied:

if present then mm and X(j)=y

else and {X 1 |a j[} #*y

This invariant will imply the final assertion if either present is true or
]'[zl is empty. On the other hand, it can be achieved initially by setting j
to a—1 and present to false. Thus we obtain a program of the form

{la_b|< dom X}

begin

j := a—1; present := false;

{whileinv: if present then [a |j| b| and X(j)=y

else [a j| bland{X1|a jl} #*y}

while 7 present and (j<b) do
begin j : = j+1; “Test next element” end
end

{if present then and X(j)=y else {X 1 [a_b|} =* y}

At the beginning of the while-statement body the invariant will be true,
present will be false, and jl b| will be nonempty, which implies

Vpresentand o [j+1] bland {X 1 o j[} #*y

Taking into account the action of j : = j+ 1, we see that “Test next element”
must meet the specification

{ 1 present and and {X 1 [a_|j} #*y}

“Test next element”
{if present then um and X(j)=y
else [ j| b|and {X1 |a il=*y} .

If X(j)=y then present should obviously be set to true by “Test next ele-
ment”’, while if X(j)y then present can be left false, since

X1 e Pp=x1fa Jul=&x1fa_Jux 1 =%y

Thus “Test next element” can be replaced by

if X(j)=y then present := true

The finished program is
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{la_b]< dom X}
begin
j := a—1; present := false;
{whileinv: if present then |a |j| b| and X(j)=y
else |a j| bland {X1|a jl} #*y}
while 7 present and (j<b) do
begin j := j+1; if X(j)=y then present := true end
end
{if present then |a [;] b| and X(j)=y else {X 1 @} #*y} .

Termination is assured since the while-statement body either sets present to
true or eventually reduces ;|2| to the empty interval. Subscript errors are
precluded by @; dom X and the presence of Ia Hil bl in the precedent
of “Test next element”.

The contrast between this program and that of Section 2.2.7 reveals an
intrinsic difference between finding a maximum and finding an element with
a given value. The property “being a maximum” depends upon the entire
array segment in such a way that eyery element must always be examined.
But “being an element with a given value” is a property of the element by
itself, so that a successful search can sometimes terminate without examining
every element.

It is natural to ask if the above program is the best we can do. Intuitively
at least, the answer is yes; in the absence of any information about the values
of X, we must continue to test the elements of X over |a b| until either our
search is successful or all elements have been tested, and there is no reason to
prefer one order of search over another. However, as we will see in the next
section, the situation can be dramatically different if the programmer pos-
sesses a priori information about the values of the array being searched.

2.2.10 Binary Search

A much more efficient method for searching an array segment can be used in
the special but practically important case where the array segment is known
to be ordered.

The concept of ordering will be used in many programs. Let X be a
function with numerical arguments and results, such as the value of an
integer or real array. Then X is ordered in increasing order if and only if

(V i € dom X) (V j € dom X) i <j implies X(i) < X(j)

However, increasing order is only one way in which a function can be
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ordered. To deal with a variety of such possibilities we generalize the
relation between X(i) and X(j) to an arbitrary binary relation p. Suppose X is
a function such that the standard ordering is defined for its domain and p is
defined for its codomain. Then we write ord, X, and say that X is ordered
with respect to p, if and only if

(Vi € dom X) (V j € dom X) i<j implies X(i) p X(j)

In this definition we have used implies as a logical operator with the
following meaning:

14 q p implies g
false false true
false true true
true false false
true true true

We have previously used implication as a relationship between assertions:
«p jmplies Q” is an English sentence meaning that every computational
state described by P is also described by Q. Now we will also use implies (in
boldface) as a logical operator (akin to and and or except that it is not part of
Algol W) within assertions. The connection between these usages is that the
sentence ‘P implies Q” is true if and only if the assertion P implies Q
describes all computational states.
A worthwhile generalization should have several useful special cases

and satisfy nontrivial general laws. Useful special cases of ord, include:

ord - X: increasing order

ord. X: strict increasing order

ord. X: decreasing order

ord. X: strict decreasing order

ord_ X: all elements have equal values

ord_ X: all elements have distinct values ,

and general laws include:

If < dom X and ord, X thenord, X1 S , (1)
If # dom X <1 thenord, X , (2)

Suppose dom X=S U T and § <* T. Then ord, X holds
if and only if:
(@) ord, X135,
and (b) ord, X1 T, 3)
and (c) {X1 Sp*{X1T}

Also, since a|_b| c| implies a| b|<*b| ¢|, one can obtain the following
special case of (3) for intervals:
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Suppose dom X =a| c| and a. Then ord, X holds if and
only if
(@) ord, X 1 a |,
and (b) ord, X1 5| . (4)
and (¢) (X1 a[ bl p* {Xx 18] ]}

Further laws hold for certain relations. If x p x holds for all x, then p is
said to be reflexive; for example =< is reflexive. It is easily seen that

If p is reflexive and dom X= is nonempty, (5
then ord, X implies X(a) p* {X} and {X} p* X(b) . )

Another obvious law is:

If x p y implies x p’ y for all x and y,

then ord, X implies ord, X for all X 6)

For example, ord. X implies both ord< X and ord_ X.
Returning to the problem at hand, we want a program that will satisfy

{la_b|<: dom X and ord< X 1 [a_ 5|}

“Search”
{if present then and X(j)=y else {X 1 } #=*y}

The essential idea is that if inspection of an array element gives X(j)  y, then
one can test whether X(j) <y or X(j) > y; in the first case the ordering of the
segment implies that all elements to the left of X(j) must be less than y, while
in the second case the ordering implies that all elements to the right must be
greater than y. Either way, one is able to exclude from further search an
entire segment of elements rather than a single element.

As with linear search, the heart of our program will be a while statement
whose invariant asserts that if present is true then the search criterion has

been met, while if present is false then there is a portion of the interval
for which the criterion cannot be met. But now this portion can consist of

both a left and a right subinterval of , which enclose the subinterval
remaining to be searched. If we use the variables ¢ and d to delimit these
subintervals then the invariant is

if present then [a [j| b| and X(j)=y else
o fc d[ pland{X1a |} #*yand{X 14| bl}~*y
This invariant can be achieved with a trivial initialization. On the other
hand, it will imply the final assertion if either present is true or isempty.
The latter case holds since the partition diagram implies that
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l;:EJ:I;__:IC U dl bl when is empty. Thus we obtain the program
skeleton:
{la_&|< dom X and ord- X 1 la 5]}
begin integer c, d;
¢ := a; d := b; present := false;
{whileinv: if present then [¢ ;| b| and X(j)=y else
a Jc d| bland {X 1 [a_]c} #* y and {X 1 d| b} *y}
while 7 present and (c =d) do
“Reduce Ic—_—d] while maintaining invariant”
end

{if present then [a_[j| b| and X(j)=y else {X 1 la b} =*y} .
At the beginning of “Reduce while maintaining invariant” we will
have

and {X 1 [a_]c} #*y and {X 1 d[ b]} #*y

and 7 present and c<d

At this point we want to set j to some subscript in the interval , which is
known to be nonempty, and then do a three-way branch upon whether the
jthelement is equal to, less than, or greater than y. If we assume that “Pick ;”’
is a statement that sets j to satisfy

{c=d} “Pick j” {c<j=d} ,
then we get the following expansion of “Reduce while maintaining
invariant™:
begin
“Pick j”’;
{lo_le [ 4 bjand{x1fa Je} »*y
and {X 1 d|_—b|} #* y and 7 present }
if X(j)=y then ‘“Maintain invariant when X(j)=y”
else if X(j) <y then ‘“Maintain invariant when X(j)<y”
else “Maintain invariant when X(j)>y”

end

When X(j)=y, since ﬂn will also hold, we can set present to true.
When X(j) <y, since the subsegment of X over |a j| Cla b|is ordered, we

will have {X 1 [a_j|} <* X(j) by (5), which gives {X 1 [a_j|} »* y by (19) in

Section 2.2.8. Thus the invariant will be maintained if we set ¢ to j+1.
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Similarly, when X(j)>y, which implies {X 1 [j b|} #* y because of the
ordering, we may set d to j—1.
At this stage the overall program is:

{la 5| < dom X and ord~ X 1 [a_b|}
begin integer c, d;
c := a; d := b; present := false;
{whileinv: if present then [a [ b| and X(j)=y else
@ [c d[ bland{X1]a |c} #*y and {X 1 d[ b]} =*y}
while 7 present and (c<d) do
begin
“Pick j’;
if X(j)=y then present := true
else if X(j)<y then c := j+1
else d := j—1
end
end e
{if present then |a |]| bl and X(j)=y else {X 1 [a_b|} =*y} .

Termination is assured by the fact that each execution of the body of the

while statement either sets present to true or decreases the size of [_c___d-l, and
these operations cannot be repeated indefinitely without falsifying 1 present
and (c<d). (Note that termination would not be assured if the assignment to
cordwasc:=jord:=j.) The impossibility of subscript errors follows from
the fact that “Pick j” will insure [a [c [j| d| b| before execution of the
conditional statement which tests X(j).

Our final task is to fill in the statement “Pick j”’. which must satisfy

{c<d} “Pick j” {c=<j=<d} .

But here the problem is not just to produce a correct statement—for exam-
ple, j := cor j := d would be correct—but to make the program as fast as
possible.

Ideally, we would like to minimize the number of array elements that
will remain to be searched, which will be # j[ d| if X(j)<y, or # [c_|j if
X(j)>y. But at this stage we don’t know whether X(j) is smaller or larger
than y. The best we can do is to pick j to minimize the maximum of # ]|?
and # |ct| j, which will occur if j is as close as possible to the middle of the
interval |c d|. Since the “middle” is just the mean (c+d) / 2, we replace
“Pick j”’ by

j:= (c+d) div 2
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But here there is a subtle complication. When c+d is even, this state-
ment will produce (¢+d) /2, and will obviously meet its specification. But
when c+d is odd, the mean will not be an integer, the operation div will
round the mean downward or upward, and it is not obvious that the neces-
sary condition

c=<d implies c<(c+d) div 2<d

will be satisfied.

At first sight, this seems to mean that we are going to have to look at the
exact definition of the operation div, which would lead to a complicated
analysis. (Remember that ¢ +d might be negative.) But in fact our necessary
condition is a consequence of a simple property which holds for any reason-
able definition of integer division (including the one used in Algol W). All
we need to know about integer division rounding is that division by two is
monotone, i.e.

For all integers i and j, if i <j then
(i div 2) < (j div 2)

Because if c=d then (c+c) <(c+d)<(d+d), and by monotonicity, (c+c)
div 2= (c+d) div 2 < (d +d) div 2. But in the first and third cases, the divisor
is even, so that div gives an exact result of ¢ or d respectively. Thus c < (c +d)
div 2<d.

It is important to realize that the algorithm we have just described,
which is called binary search, is an order of magnitude faster than the linear
search algorithm given in the previous section. The previous search
algorithm required a time of the order of # —the size of the array
segment being searched—at least in the worst case where the element being
sought is not present. But binary search requires a time of the order of the
logarithm of # . Fundamentally, this is because each execution of the
while-statement body reduces the size of the interval to at most half of
its previous value. By an argument similar to that in Section 1.3.5, the
execution time of the program is bounded by a+8 - (log, # + 1),
where a and B are bounds on the time required for initialization and for the
while-statement body.

This is our first encounter with a pervasive phenomenon: The efficiency
of many algorithms for manipulating arrays (or other representations of
sequences of data) can often be improved by an order of magnitude if the
arrays are known to be ordered according to some easily tested ordering
relation. Curiously, this phenomenon has nothing to do with the “meaning”
of the ordering relation. Indeed, it is a common practice to obtain these
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efficiencies by ordering data in accordance with a completely arbitrary
ordering convention. (Of course, this idea is much older than machine
computation; it is the rationale behind alphabetic ordering.)

Exercises

1.

In general, a function X is said to be monotone when

(Vi € dom X) (V j € dom X) i<j implies X(i)<X(j) ,
to be injective when

(Viedom X) (Vje dom X) i # j implies X(i) = X(j) ,

and to be strictly monotone when it is both monotone and injective. Prove that X
is monotone if and only if ord - X, injective if and only if ord . X, and strictly
monotone if and only if ord . X. In your proof, indicate the roles of the following
laws about the standard ordering:

(a) (Transitivity) x<y and y<z implies x=z

(b) (Reflexivity) x<x

(¢) (Antisymmetry) x<y and y<x implies x=y

(d) (Totality) x<y or y=<x

(e) (Definition of <) x<y if and only if both
x<yand 1 y=<x

Prove law (3) given in the above section. As in the previous exercise, indicate the
roles of the laws about the standard ordering.

(Suggested by S. Winograd) On a computer with short word length, unneces-
sary overflow can be caused by using j := (c+d) div 2 for “Pick j”, since ¢ +d can
be out of range even when ¢, d, and (c+d) div 2 are all in range. In this situation,
a better alternative is j := ¢ +(d —¢) div 2. Use a monotonicity argument to show
the correctness of this version of “Pick j”.

(Suggested by C. J. Rimkus) The version of binary search developed in this
section may perform as many as two tests of X(j) per iteration. Write an
alternative version that meets the same specification but only performs a single
test in the body of its while statement, at the minor expense of always continuing

the iteration until isreduced to at most one element. The basicidea is to use
an invariant which asserts that if the search criterion is met by some integer in

then it is met by some integer in . or equivalently if the criterion fails
throughout |c¢ d| then it fails throughout |a_b|:

@ Jc_d] b|and ({X1[c_ dl} »*y implies {X 1 [a_b[} #*y)

Suppose an increasing zero of an array X is an integer i such that X(i)<0 and

X(i+1)>0. Write a program that will accept a segment of the array X over |a_ b
such that a< b and X(a) <0 and X(b) >0, and will set i to an increasing zero yof X
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suchthata<i<b. As with binary sqarch, each iteration should roughly halve the size

of the segment being searched. Notice that a proof of correctness and termination for

this program constitutes a proof of the existence of an increasing zero under the

| sgelcified precedent.

6. Suppose a run in an array segment is a subsegment whose elements all have the
same value. Write a program that will accept a nonempty segment of the array X
over EE] and set i and j to integers such that the segment over [E is (one of)
the longest runs in the given segment. The program should require a time of the
order of the size of |a_b|.

2.3 PROGRAMS THAT SET ARRAYS

In the previous section, we have described programs that use arrays without
creating or altering them, i.e. that evaluate array elements but do not assign
to them. We now turn to programs that also assign to array elements.

2.3.1 Two Simple Examples

As a first example, consider a program for creating a table of the values of
some function such as the factorial. Given a segment of an array F over

0 n|, we want to set each element F(k) of the segment to k!, i.e. we want a
program satisfying

{El < dom F}

“Tabulate Factorial”

{(vielo n) FO)=it} .
Trivially, we could iterate over |0 »|in any order, computing each factorial
by means of the algorithm we have already developed in Section 1.3.1:

{lo n|< dom F}
begin integer k;
k:= —1;
{whileinv: [0 k| n|and (Vie [0 k|) F@)=i!}
while £ <n do
begin k := k+1; “Compute k! and assign it to F(k)”’ end
end

{Vielo n)) Fo)=i}
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But this is ludicrously inefficient, since it does not take advantage of the
fact that our method of computing k! will compute all smaller factorials ““on
the way”. Actually, once we have set F(0) to 0!, if we iterate over increasing
k, then we can always obtain k! directly from the stored value of
Flk=1)={k=1)L

In this approach the iterative structure is somewhat different. Each
execution of the while-statement body still computes a single factorial, but
now this computation presupposes the presence of a previously computed
factorial. This presupposition is reflected in the invariant by the assertion

that [0 k| must be nonempty. In turn, this causes the initial assertion to
contain the requirement that |0 nl be nonempty:

{W—__rd and < dom F}
begin integer k;
k :=0; F) := 1;
{whileinv: and (Vi€ 0 k) F()=il}
while k<n do

begin k := k+1; F(k) := kx F(k—1) end
end

{(vielo n) Fo)=it} .

One can view this program as a modification of the program given in
Section 1.3.1, in which the successive values of k! are stored in distinct array
elements rather than in a single simple variable. It is common to make this
kind of modification when the intermediate results of a computation can be
used effectively later in the program.

As a second example, we consider a program for shifting each element
of an array segment one place to the left. We want a program satisfying

{a| b| and |E_Ig| < dom X and X=X}
“Shift left”
{(Viela |b) XO)=X(i+1D} .

Notice that, since this program is non input-preserving, we must use a ghost
identifier X, to denote the initial value of the array X.

The program scans from left to right, copying each array element into
the element on its left. The invariant asserts that the segment of X over
is partitioned into a lefthand segment which has already been shifted and a
righthand segment which retains its initial value, with a hole in the middle
which has been copied but not yet copied into:
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{la] 5| and [a b|< dom X and X=X,}

begin integer k;

k= a;

{whileinv: [a_ ki bland (Vie a Ik) X(i)=Xo(i+1)
and (V i € k| bl X())=X,() }

while kK <b do
begin k := k+1; X(k—1) := X(k) end

end

{(Viela ]p) X@)=XoGi+1)} .

Exercises

1.

Write a program that will set F(k) to the kth Fibonacci number fib(k), for each
element of the segment of F over |0 n|, where contains at least two
elements.

As above, but for each element of an arbitrary segment over . Use
fib(n—2)=fib(n) —fib(n—1) to define fib for negative n.

By comparing it with the left-shifting program given above, one might expect the
following to be a right-shifting program:

begin integer k; k := a;
while kK <b do begin k := k+1; X(k) := X(k—1) end
end

In fact its behavior is quite different since, after the first iteration, the expression
X(k—1) yields a value that has been stored during the previous iteration.
Describe the behavior of this program by giving an invariant and initial and final
assertions.

2.3.2 Inference for Array Assignments

So far we have relied upon the reader’s intuition to see that assignment
statements which assign to array elements satisfy their specifications. Before
proceeding further, we will develop an inference rule which can be used to
verify such assignments rigorously.

In the first place, it is easily seen that the inference rule for simple

assignment given in Section 1.4.2,

{Plx.e} X :=E{P} ,

is inadequate to deal with assignments to array elements. If we try to apply
this rule to an array assignment such as X(i) := y, we get

{PlX(i)—-»y} X :=y{P} .
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But it is not clear what P| X~y Means. We might reasonably infer

{y=2} X() := y {X()=2}

or
{w=z} X@) := y {w=z} ,

but the rule falls apart in a situation such as
{7} X0 := y {x()=2} .

In fact, if j=i we must have y =z before executing X(i) : =y, while if j i we
must have X(j)=z. Thus

{(if j=i then y else X(j))=z} X() := y {X()=z} .

But this is hardly a consequence of the inference rule for simple assignment.

As first pointed out in [Hoare 72a, 73], the simplest and cleanest way to
reason about array assignments is to regard them as operations which change
the value of an entire array rather than a single element. (This idea draws
upon earlier work in [McCarthy 67].) Specifically, X(i) : = y can be regarded
as an operation that assigns to X the function that is just like the old value of
X except that it maps i into y.

To formalize this idea we need a notation for describing the variation of
a function at a single argument. Suppose X is a function such thati belongs to
its domain and y belongs to its codomain. Then we write [X | i: y] to denote
the function such that

dom [X| i: y]=dom X , 1)
cod [X| i: y]=cod X , ' 2)
[(X| i yl@)=y ., (3)
If j#1 then [X| i: y]()=X(j) . (4)

Using this notation we can regard an assignment statement of the form
X(S) := E, which assigns to an array element, as an abbreviation for X :=
[X| S: E], which assigns to an entire array. The latter form is acceptable to
the inference rule for simple assignment, which gives {P| X—[X| S: 1;]} X :=
[X| S: E]{P}. Thus we have the following inference rule [Hoare 72a, 73]:

Array Assignment:

{P| xoix | s: £} X := E{P} .

Notice that the precedent of this inference rule does not contain a
condition such as § € dom X which would preclude subscript errors. The
absence of such a condition is consistent with our view that subscript errors
are a special kind of nontermination, so that their absence must be shown by
informal arguments.
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As an example of the use of the array assignment rule, consider the
statement F(k) := kX F(k—1) in the factorial tabulation program given in the
previous section. To show the correctness of this program, one must show

that
{lo Tk-1k| n|and (Vi€ o |k) FG)=it}

F(k) := kX F(k—1)

{lo J«[ n|and (viefo k|) Fo)=it} .

Let P be the consequent. Then we must show that the precedent implies
Pl Fo[F | k: kxFk=1)] which is

and (Vi€ |0 k|)[F| k: kxF(k—1)] ()=i!
The partition diagram [0 Ik—1|k| n| gives |0 |k| n| by erasure, and also
implies k—1 € ng and |0 k|=E|k U [ﬂ

According to the last result (along with (3) in Section 2.2.5), in order to
show

(Vielo k|)[F| k: kxF(k—1)] ()=i!
it is sufficient to show

(Vielo |k)[F| k: kxFk-1)]G)=i

and
(Vie k) [F| k: kxF(k—1)] ()=1!

Buti € lojk implies i#k, and i € @ is equivalent to i=k. Thus by the
definition of [F | k: kX Fitk —1)], the two conditions above are equivalent to

(Vie o Jo) FG)=i!

kX F(k—1)=k!

and

The first of these conditions is given directly by the precedent, while the
second is a straightforward consequence of the precedent and the definition
of the factorial function.

It is evident that repeated application of the array assignment rule can
create expressions of the form

[ [X | nz yad e | it ya)

This kind of nesting is common enough that it is useful to abbreviate it: To
stand for the above expression we will write

[X | i1z yq .- | in: yal
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As with the other concepts we have introduced, there are useful laws
about the variation of a function at a single argument. Suppose i and j belong
to dom X, y and z belong to cod X, and S < dom X. Then

(X | i X=X 5)
[X|iy|iz]l=[X]iz] , (6)
Ifi=jthen[X|iiy|jz]=[X]|jz| iyl . (7
Ifie Sthen[X | i:y]] S=[X1S]|iy] , (8)
Ifi¢ Sthen[X | i y]1 S=X1S , 9)
{{X | i: y}={X 1 (dom X—{)} U {y} , (10)
{{x|&Xx() | XOR={x} . (11)

The last of these laws says that the image of an array value is preserved by an
exchange operation. In (10), the operator — denotes the subtraction of sets,
i.e. S—T is the set of those values which belong to S but not to 7.

Since expressions denoting array values and other functions are useful
in assertions, the reader may wonder why such expressions, or even assign-
ment statements that assign values to entire arrays, are not permitted in the
programming language itself. Although such features are provided in some
programming languages, notably APL and PL/I, their use makes it difficult
to control or even estimate the time and space requirements of programs. So
we have chosen to use a “lower level” language that forces the user to
express his programs at a level of detail much closer to the actual operation
of the computer. (An additional pedagogical benefit is that even fairly
simple programming tasks lead to programs with significant structure.)

Exercises

1. For the left-shifting program given in Section 2.3.1, and the program given in
Exercise 3 following that section, determine the appropriate specification for the
array assignment statement, and prove that this specification is met

2. Prove law (11).
(Hint: Treat the cases i=j and i=j separately.)

3. An additional subtlety of array assignment arises when an array occurs in its own
subscript. For example, one might expect that, for any variable-denoting phrase
L, the two statements L := 7and L := 7; L := 7 should have the same effect. But
in fact, the two statements X(X(1)) := 7 and X(X(1)) := 7; X(X(1)) := 7 have
different effects if X(1)=1 before execution. Show that the inference rule for
array assignment describes this situation correctly.
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2.3.3 Sorting by Maximum Finding

Next we consider a program for sorting an array segment, i.e. for rearranging
the values of the elements so that the segment becomes ordered in increasing
order. One approach is to build upon the program given in Section 2.2.7 for
finding the maximum element of a segment; the idea is to find the maximum
of the entire segment and move it to the right, then find the maximum of the
remaining elements and move it to the right, etc. We begin by writing an
invariant that describes the typical situation in the midst of program execu-
tion. The array will be divided into two subsegments such that the right
subsegment is already ordered, and each element in the left subsegment is
smaller or equal to each element in the right subsegment. If we use the
variable m to keep track of the right end of the left subsegment, then the
invariant is

m and ord< X 1 m| b|and {X1 [a m|} <*{X1 m[ b]}
The invariant can be achieved by setting m to b, so that m| b|is empty

and @] = , and it implies the final assertion when | m| is empty.

Thus we get the program skeleton:

{lab|< dom X}
begin integer m;
m := b;
{whileinv: and ord= X | m| b
and {X 1 a_m|} <*{x1 m[ b} }
while a =m do
‘Maintain invariant while decreasing m”
nd

{ford< X 1 @} :

Within “Maintain invariant while decreasing m”’, we want to find a
maximum element of the left subsegment and move it to the right of that
subsegment. When execution begins, we know that the left subsegment is
not empty, so that we can use our previously written program to set a
variable j to the subscript of a maximum element in this subsegment. At this
point the invariant will still be true, and we will also know that

o [i[ m] b|and {X1 | m|} <* X(j)

Next we will exchange the elements X(j) and X(m). Since these elements fall
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outside the subsegment over m| t:»l, X1 m| Bl will still be ordered. Also

{xX1 @}<* {X1 m| bl} will remain true, since the image {X 1 DJ}

will be unaffected by an exchange of elements within the segment over

m But now X(m) will be a maximum of the subsegment over M
So far “Maintain invariant while decreasing m’’ has the form:

begin integer j;
“Set j to the subscript of a maximum of X over “;

{la [j[ m| 5] and ord< X1 m| 5| and

X1 [a_ml} =*{X 1 m[_b]} and {x 1 [a_m]} =* X(j) }
“Exchange X(j) and X(m)”’;
{ and ord.. X 1 le and

(X1 [a_mly <*{x1 m[ 8]} and (X1 [a_m]} <* X(m) }

end

At this stage, the fact that all elements in the left subsegment are smaller or
equal to those in the right subsegment implies that the right subsegment will
remain ordered if we decrease m by one, and the fact that the rightmost
element of the left subsegment is a maximum implies that the elements in the
left subsegment will still be less than all the elements in the right subsegment
if we decrease m by one.

To make this argument more formal, we first note that the partition

diagram [a [j| m| B implies that la_m| is not empty, and therefore
la_[m[ 5]. Then{X1 [a_m|}=*{x1 m[ b|} implies X(m)<*{X1 m[ b|}
which, in conjunction with ord- X 1 m| b|, implies ord< X 1 ::‘
Also, {X 1 [a_m|} =* X(m) and {X 1 [a_m|} <* {X 1 m[ b} implies
{X1 m =*{X1 m} and therefore {X 1 [;J—Im}<*{X'] I—_|} Thus

the last assertion in the above program implies

and ord- X 1 and {X 1 [a |m} =*{X1 [m b]}

which shows that the invariant will still be true if we complete ‘“Maintain
invariant while decreasing m” with the statement m := m—1.
To finish the program, we replace ““Set j to the subscript of a maximum

of X over Ia m|”’ by our program for maximum finding, with m substituted
for b, and replace ‘“Exchange X(j) and X(m)”” by an obvious program for
exchanging the values of two variables (which will have no effect when the
variables are the same). This gives:
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{[aj;] < dom X}
begin integer m;
m := b;
{whileinv: and ord_ X | m[ ]
and {X 1 } =*{X1 FHE}} }
while a<m do
begin integer j;
{la m|< dom X and [o] ]|}
begin integer k;
j:=a; k:= a
{whileinv: [ [j] 4] m|and {X 1 [a K} =* x(j)}
while k<m do
begin k := k+1; if X(k)> X(j) then j := k end
end;
{la T] m| »|andord< X1 m| b and
(X1 ]a_ml} <* (X1 m[ bl}and{x1[a_m]}=*x()}
begin integer t; t := X(j); X(j) := X(m); xym) := ¢ end;
{la il m| b|andord< X1 m|[ b|and
{x1]a_m)} <*{X1m[ bl}and{X1 [z m|} =* X(m)}

m:=m—1

end
end

ford- X1 |a_bl}

Termination is based on the size of . We have already seen that
the precedent S dom X will preclude subscript errors in the
maximum-finding subprogram. Subscript errors in the exchange statement
are precluded by the precedent a || m| b|and the initial assertion
C dom X.

The maximum-finding subprogram will, on the average, take time
proportional to half the size of . The outer while statement will repeat
this subprogram, along with some statements which require a constant
amount of time, once for each member of . Thus the execution time for
the whole program will be of the order of the square of the size of the
segment being sorted. This is an order of magnitude worse than what can be
achieved by more sophisticated methods. In Section 3.2 we will develop
programs that can sort a segment of size » in time of order n - log n.
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Exercises

1.

Show that the sorting program given above remains correct (and becomes
slightly faster) if the test a<m in the outer while statement is replaced by a <,

Give a formal proof that the exchange statement within the sorting program
meets the specification given by its surrounding assertions.

Complete the following partially written program for removing duplicate valuesg
from an ordered array segment. The program should set only X and ¢ (and local

variables), should require a time of order # , and should not use any loca]
arrays.

{la_b|< dom X and ord. X1 [a_b| and X=X}
begin integer d;
“Achieve invariant”;

{whileinv: Ia -d b| and ord. X1 |;-_|r

and {X 1 |a_[}={X,1 [a_|a}and X ] [d_b]=X,1 [d b]}
while d<b do

*“Reduce while maintaining invariant”
end

{la_lc b]andord. X1 [a Jeand (X1 [a Jeo}=(X,1 [« b} }

Another method for sorting an array segment is to build up an ordered subseg-
ment by repeated insertion of new elements. The simplest way to perform the
insertion while maintaining the ordering is to “slide” the new element from one
end of the subsegment to its proper destination by repeated exchanges of
adjacent elements.

Complete the following partially written program for sorting by insertion.
The program should set only X (and local variables), should require a time of

order (# )2, and should not use any local arrays.

{ @ < dom X}
begin integer d;
“Achieve invariant”;
{whileinv: Ia d| : and ord. X 1 |a__—£|}
while d<b do
begin
d:=d+1;
“Reestablish invariant by sliding X(d) leftward”
end
end
{ord. X 1 la__b|} :

Write a program that will set the segment of an integer array D over so that
D(k) is the smallest factor of k that is larger than one, i.e. the least integer i such
that i>1 and k rem /=0. An obvious approach is to test kK rem i for each k and
each i such that 1 <i<k, but you should be able to find a more efficient method.
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2.3.4 Rearrangement and Realignment

The sorting program given in the previous section was shown to satisfy the
specification

{la b|S dom X} “Sort” {ord< X 1 la bl} L

In fact, this specification is seriously incomplete, since it does not specify that
the final value of the segment will be some rearrangement of the initial value.
(For example, the specification could be trivially met by a program that sets
every element to zero.) Intuitively, it is obvious that the sorting program
satisfies this “‘rearrangement condition” since all the program ever does to
change the segment is to repeatedly exchange pairs of elements. But a
surprising amount of mathematics is needed to give a rigorous proof of the
rearrangement condition, or even a rigorous definition of the concept of
rearrangement.

One approach is to formalize the idea that X is a rearrangement of Y
when every value occurs the same number of times as a result of X and of Y.
Another approach is to formalize the idea that X is a rearrangement of Y
when there is a one-to-one correspondence or bijection between the domains
of these functions such that X and Y give the same result when applied to
corresponding values. We will pursue the second approach since, by impos-
ing restrictions on the one-to-one correspondence, we will also be able to
define the concept of an order-preserving rearrangement, or realignment.
Eventually, in Section 2.3.8, we will show that these two approaches are
equivalent.

First we will introduce the concepts of function composition and iden-
tity functions. Then we will use these concepts to define bijections, and
finally we will use bijections to define rearrangement and realignment.

If F is a function from S to T and G is a function from 7 to U, then F - G,
called the composition of F with G, is the function from S to U such that
(F-G) )= G(F(i)) for all i in S. (Note that the order of composition is the
reverse of the order of application.) If S is a set, then I, called the identity
function on S, is the function from S to S such that Is(i)=i for all i in S.

Composition is associative, and identity functions behave like identity
elements with regard to composition, i.e. if F is a function from Sto 7, Gisa
function from 7 to U, and H is a function from U to V, then

(F-G)-H=F-(G-H) |, (1)
Is- F=F @)
F'IT=F 5 (3)

Further laws relate composition and identity functions to the various con-
cepts about functions which we have introduced previously. Suppose Fisa
function from S to T, G is a function from T to U, S'< S, i€ S,andje T. Then
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(F-G)15=(F1S8)-G , (@)
{F-G}={G 1 {F}} , ()
{151 S'}=S' ’ (6)
[F|i:j]-G=[F- G| i G(j)] , )
If ord< F and ord, G thenord, F- G , (8)
ord. Iy . 9)

A function F is said to be injective when
(Vi€ dom F) (V j € dom F) i+j implies F(i) = F(j)

i.e. when for every k in its codomain there is at most one i in its domain such
that F(i)=k. When the standard ordering is defined for its domain, F is
injective if and only if ord, F. (See Exercise 1 after Section 2.2.10.) How-
ever, the concept of an injective function is meaningful for any domain.

On the other hand, F is said to be surjective when {F}=cod F, i.e. when
for every k in its codomain there is at least one i in its domain such that
F(i)=k. When F is both injective and surjective, i.e. when for every k in its
codomain there is exactly one i in its domain, it is called a bijection, or
sometimes a one-to-one correspondence.

Now suppose F is a function from S to T and F~!is a function from T to §
such that

F-Fl=[¢and F~!- F=I;

Then F~1is called an inverse of F. In fact, a function cannot have more than
one inverse, since if F~! and F~!' are both inverses of F then

FV=fFV.[=FV.F.Fl=];. F1=F-1
(Strictly, we should write

wo =F V. [g=FV . (F. F)=(F!.F).Fl= .
However, we will often elide the application of an associativity law by
omitting parentheses in multiple compositions.) Thus we are justified in

calling F~! the inverse of F.
However, not every function possesses an inverse. Indeed:

A function possesses an inverse if and only if it is a bijection. (10)

To see this, suppose F possesses an inverse F-1. If / and j are distinct
members of dom F, we cannot have F(i)= F(j) since this would imply i=
FY(F(i))=FY(F(j)) = j; thus F is injective. Moreover, if k is a member of
cod F, then F-1(k) is a member of dom F such that F(F-1(k)) =k, so that
k € {F}; thus F is surjective. On the other hand, if F is a bijection then F~!
can be taken to be the function which maps each k in cod F into the unique i
in dom F such that F(i)=k.
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If the standard ordering is defined for its domain and codomain, a
function F is said to be monotone when

(V i € dom F) (V j € dom F) i<j implies F(i) < F(j)

It is easy to see thatord< F holdsif and only if Fis monotone, and that ord< F
holds if and only if F is both monotone and injective. (See Exercise 1 after
Section 2.2.10.)
Suppose B is a bijection from S to T and C is a bijection from T to U.
Then
B-C-C1.B'=B.1;-B1=B-B 1=

and
cC-1.B1.B.C=C1. Iy - c=C1. Cc=Iy
Moreover, if ord< B and ord< C then, by (8), ord< B - C. Thus

If B and C are (monotone) bijections then B - C is dams
a (monotone) bijection with (B - C)~1=C-1- B~ . )

Here we are using a common mathematical convention for combining two
similar propositions: the above statement is true if either all the parenthes-
ized phrases are included or if they are all omitted.

Since Ig - Is=Ig and, by (9), ord< I,

I5 is a (monotone) bijection with Ig~!=1Ig5 . (12)

If B is a bijection from S to T then B - B-!=Igand B~! - B=1Ir, and
interchanging the order of these equations shows that B~ is a bijection from
T to S whose inverse is B. Moreover, if ord< B then ord< B~1. To see this,
suppose i and j are members of cod B=dom B~1such that i <j. We cannot
have B~1(1) > B~1(j), since ord< B would imply i= B(B-1()) > B(B~1(j)) =j.
We cannot have B-1(z)=B~1(j) since i j and B~ is injective. Therefore we
must have B~1({) < B~1(j). Thus

If B is a (monotone) bijection, then B! is a
(monotone) bijection with (B~1)~1=B

(13)

This development should seem familiar to readers who know abstract
algebra. For a given set S, functions from § to S form a monoid with
composition as multiplication and I as the identity element, and bijections
from S to S (often called permutations) form a group that is a subalgebra of
this monoid. Moreover, monotone bijections also form a group that is a
subalgebra of the monoid. (However, we are interested in functions between
arbitrary sets, which have a richer structure than an ordinary algebra: sets
and the functions between them form a category in which bijections are the
isomorphisms.)
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Additional laws establish that “interchange” functions and functiong
between singleton sets are bijections. We leave it to the reader to verify that:

Ifie Sandje Sthen[Ig| i:j| j:i]isa
bijection which is its own inverse.

The function B from {i} to {j} such that B({)=j is a
monotone bijection with an inverse such that B~1(j)=i

(4}
(1}

At last we can define rearrangement and realignment. Suppose X and Y
are functions with the same codomain. We write X ~ Y, and say X is a
rearrangement of Y, when there is a bijection B from dom X to dom Y such
that X=B - Y. We write X Y, and say X is a realignment of Y, when there
is a monotone bijection B from dom X to dom Y such that X=B .Y,
Obviously,

If X~ Y then X~ Y . (16)

If there are (monotone) bijections B and C such that X=B - Y and
Y=C- Z, then X=B - C - Z where, by (11), B - C is a (monotone) bijec-
tion. Therefore

(Transitivity)
IfX~Yand Y~ Zthen X~ Z , 17
IfX>~Yand Y~ Zthen X~ Z

By similar reasoning, (12) leads to

(Reflexivity)
XA CPXEN (18)
XX |

and (13) leads to

(Symmetry)
IfX~YthenY~ X |, (19)
If X~ Ythen Y> X

Thus ~ and 2~ are equivalence relations.

Two more laws establish that exchanging array elements creates a
rearrangement and that functions with singleton domains and equal results
are realignments of each other. From (14) and (7) we have

If i € dom X and j € dom X then
(X | i X(G) | j: X@1~ X,

and from (15) we have

If dom X ={i} and dom Y={j} and X(i)=Y(j) 21
then X~ Y . e

(20)
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Further laws show that rearrangement preserves images and realign-
ment DIESETVES ordering. If there is a bijection B such that X= B - Y then (5)
sives {X}={B - }={Y 1 {B}}={Y 4 cod B}={Y 1] dom Y}={Y}. Moreover, if
ord. B and ord, Y then (8) gives ord, X. Thus

If X~ Y then {X}={Y} . (22)

and
If X~ Y and ord, Y thenord, X . (23)

Finally, we note that if X=B -Y then X+ Z=B - Y - Z. Thus rear-
rangement and realignment are both preserved by composition on the right:

fX~YthenX:-Z~Y-Z

fX2>YthenX-Z>~Y-2Z . (24)

with these mathematical preliminaries, we can return to the sorting
problem. To specify the rearrangement condition, i.e. that the final value of
X1la b]isa rearrangement of the initial value, we use a ghost identifier:

{{z_b]= dom X and X=X} “Sort” {X1 [a_b[~ Xo1 la_bl}

By reflexivity, the initial assertion implies X 1 la b|~ Xo1 la_b],so that
this specification can be proved by showing that every part of the program

preserves X1 @ ~ X1 |a__b_|. In other words, we must show that each
program part will continue to meet its specification if we add this condition
to all assertions. This is trivial for the parts that do not assign to the array X.
The only interesting partis “Exchange X (j) and X(m)”’, which can be proved
as follows:

{e_ L m[ bland X1 [a_b]~ X4 [ &}
{la il m| bland[X1[a_b]||j: X(m)| m: X()]~Xo1 la o]}
{IX | j: Xtm) | m: X()11 [a_b]~ Xo1 la_b|}

t:= X(j);

{1x | j: Xm) | m: 411 [a_b]~ X1 [a_b}
X(j) := X(m);

(x| ma1la b~ X1 [a_bl}

X(m) =t

{x1 E’“Xo1 } .

The first step is a consequence of transitivity and (20), and the second step is
a consequence of (8) in Section 2.3.2. (A similar argument applies to the
insertion sorting program of Exercise 4 after Section 2.3.3)

The concept of realignment plays no role in the specification of the
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sorting program since the ordering of the final value of X is not affected by
the ordering of the initial value. A simple example of the use of realignment
is the following annotation of the left-shifting program, with assertions that
avoid the quantifiers used in Section 2.3.1:

{la] #| and Ia bJE dom X and X=X}

begin integer k;

k:=a;

{whileinv: |a b| and X 1 ([akuklzl)"_ X, 1 alz]}

while k< b do

begin k := k+1; X(k—1) := X(k) end

end

(X1 b= X1 [ 8]} -

Notice that the invariant expresses the idea of an array with a hole in the

middle by using a function whose domain |a |k U k| &| is not an interval.

Exercises

1. Prove law (5) in the above section.

2. Show the following generalization of (8): If ord, Fand ord, G then ord, F - G,
where p” is expressed in terms of p and p’ by

<> < == %
>S< =< =%
= = =
S o
> #~

Show that if B is a monotone bijection from an interval to an interval, then there

must be a constant s such that, for alli € dom B, B(i)=i+s. This implies that if X
2 Y and the domains of X and Y are both intervals, then there is an s such that
X()=Y(i+s), i.e. X is a “shift” of Y.

P
<
>
=
=
3.
4.

Actually, our specification of ““Sort” is still too weak, since we should also show
y Y

that the elements of X outside of the segment over [a_b| are left unchanged.
Show that the assertion X 1 (dom X—|a b])=X, ] (dom X—|a b|) can be
added to the consequent of the program.
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2.3.5 Partitioning

We next consider a program to rearrange an array segment so that it is
partitioned into a subsegment whose values are smaller or equal to a given
pumber 7, and a second subsegment whose values are larger than r. Specifi-

cally, we want a program that, when given the segment of X over |a b] and a
pumber r, will rearrange the segment and set an integer variable ¢ so that

and{X1 ];_jc}s“randr<"‘{X1 |c—_b|}

In the midst of program execution, there will be three subsegments,
with values known to be at most 7 on the left, values known to be larger than r
on the right, and values that remain to be processed in the middle. Thus the
invariant will be

and {X 1 E]c} <*rand r <*{X1 dl:b]}

This invariant can be achieved initially by making |a |c and d| b
empty and |c_d|equalto , and it will imply the final result when |c _d|is
empty. Thus we get:

{la_b] = dom X}
begin integer d;
c:=a;d:.=b;
{whileinv: [a [c d| b
and {X1[a |} <*randr<*{x14d[ 5]} }
while c <d do
“Reduce while maintaining invariant”

end
{ and {X 1 E‘c} <*randr <* {X ] }} .

For the body of the while statement, a straightforward approach is to
compare some element in the middle subsegment withr, moveitto the left or
right of the middle subsegment by exchange, and then increase c or decrease
d to incorporate the tested element into the left or right subsegment. A
portion of the exchanges can be avoided if the tested element is already at
the left (or equally well at the right) of the middle segment. Thus “Reduce

lc d| while maintaining invariant” can be filled in with



126 ARRAYS CHAP.

if X(c)<r then c := c+1 else
begin “Exchange X(c) and X(d)”; d := d—1 end

But this still does an unnecessary amount of exchanging. A better
approach is to notice that Ic d| can be reduced without any rearrangement if
either X(c)<r or X(d)>r:

if X(c)<r then ¢ := c+1 else
if X(d)>rthend :=d—1 else ...

In the remaining case we can exchange X(c) and X(d) to achieve X(c)<r and
X(d) > r, which suggests that we can then both increase ¢ and decrease d. But

this operation will violate the partition diagram by making
@ irregular unless # @22 beforehand. Fortunately, X(c)<r and
X(d)>r implies X(c)# X(d), and therefore c£d, so that # lc d|=2.

The final program is:

{@ < dom X}
begin integer d;
c:=a;d:=b;
{whileinv: Ia lc 4| bl
and {X 1 |ac} <*randr <*{X1 dI:b]} }
while c<d do
if X(c)<r then c := c+1 else
if X(d)>rthend := d—1 else
begin
{le]_a]}
begin integer ¢; ¢ := X(c); X(c) := X(d); X(d) := t end;
c:=c+l;d:=d-1
end

end
{la_lc bland (X1 [a Jc} <*randr<*{x1[c b} .

Termination and the impossibility of subscript errors are obvious. Since
the exchange operation is the only part of the program that alters the array,
the argument given in the previous section shows that the final value of X
over is a rearrangement of the initial value.

It is easily seen that the maximum time taken to partition an array
segment of size n is of order n.
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2.3.6 Merging

Nextwe consider merging. The basic problem is to copy the combined values
of two ordered array segments into a single segment, while performing a
rearrangement so that the final segment is ordered. Trivially, we could copy
one segment after the other and then sort the result, but a much faster
program is possible if we take advantage of the ordering of the input
segments.

Let the input segments be X over and Y over , and let
the output segment be Z over . For simplicity, we assume that the
output segment is exactly the right size to hold the result. Then the program
specification is:

{[ax bx| = dom X and lay by| < dom Y and [az bz| S dom Z
and ord- X ] and ord- Y | lay byl
and#'ax bx|+#|ay by =#}

“Merge”
ford< 21 [az_bs]}

Just as with the sorting and partitioning programs, we will postpone the
problem of showing that the output segment is a rearrangement of the
combined input segments.

The basic idea is to scan all three segments from left to right, while
copying individual elements from X or Y into Z. Thus each array segment
will be divided into a left subsegment containing copied values and a right
subsegment containing uncopied values (or unused space in the case of Z).
We expect that the Z segment will be ordered as it is built up, and that every
copied value will be smaller or equal to every uncopied value. The latter
condition insures that the uncopied values can eventually be moved into Z
without disturbing the values that are already present. Thus if we use the
variables kx, ky, and kz to keep track of the scanning positions in the three
segments, we will have the invariant

Ex [Kx EI and [ay [ky by| and laz [kz bz

and ord- Z 1 |az |kz

and {Z1 [az_|kz} =*{X 1 [kx_bx} U{Y 1 [ky by}
and # [kx_bx| + # [ky by] = # [kz_bz

The last line asserts that there is exactly enough space left in Z to accommo-
date the uncopied values.

The obvious initialization is to make the three lefthand segments empty,
and we can terminate when is empty, or equivalently when both

kx bx| and [ky by| are empty. This gives the program form:
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{lax_bx|< dom X and [ay by|< dom Y and [az bz| < dom z
and ord- X and ord- Y 1

and # |ax bx| + # lay by| = # [az bz]}
begin integer kx, ky, kz;

kx := ax; ky := ay; kz := az;
{whileinv: as above}
while kz <bz do
“Copy one element”
nd

€
ford.. 21 [ a]}

To preserve the condition that copied values must be smaller or equal to
uncopied values, “Copy one element” must move the smallest member of

{X1 |kx bx|}U{Y1 Iky byl} into Z1 [az |kz. Since X and Y are ordered,
this smallest member will be either X(kx) or Y(ky). At first sight, it might
appear sufficient to compare these two components, but this overlooks the
possibility that one of them may not exist. We do not know that both of the
segments over [kx bx| and I[;y l;] are nonempty. If only one of them is
nonempty, then its leftmost component should be copied without being

compared with a nonexistent component of the other segment.
Thus “Copy one element” has the form:

if (if ky > by then true else if kx > bx then false else X(kx) < Y(ky))

then {Ikxl bx| and
and X(kx) <* {X 1 } u{r1 lk)’ byl} }

“Copy X”
else {[kyl by] and [kz| b]

and Y(ky) =* {X1 [kx bx[} U{Y 1 [y by|} }

“Copy Y”

Notice the use of a logical conditional expression to avoid evaluating
X(kx)=Y(ky) in a context that could cause a subscript error.

In “Copy X’ we will perform Z(kz) : = X(kx) to copy the least uncopied
value, kx : = kx +1 to exclude this component from the uncopied segment of
X, and kz := kz+1 to include it in the copied segment of Z.

The fact that the previously copied values are all smaller or equal to the

uncopied values, including X(kx), insures that Z 1 |az |kz will remain
ordered. Moreover, the fact that X(kx) is a least uncopied value insures that
the copied values will continue to be smaller or equal to the uncopied values.
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The development of “Copy Y’ is similar. The final program is:

{[ax_bx| < dom X and [y by| < dom Y and [az bz| < dom Z
and ord< X 1] and ord- Y 1 |ay byi
and#W-%#lay by]=# az bzl}

begin integer kx, ky, kz;

kx := ax; ky := ay; kz := az,

{whileinv: [a.r |kx ﬂl and lay Iky b)j and |a: |kz bﬂ
and ord< Z 1 [iz |kz
and {Z 1 [az |kz} <*{X 1 [kx bx} U{Y 1 [ky by|}
and # [kx bx| + # [ky byl = # [kz 2] }

while kz<bz do

if (if ky > by then true else if kx> bx then false else
X(kx)<Y(ky))

then {[kx[ bx| and [kz[ b
and X(kx)=*{X 1 } u{Y }}
begin Z(kz) := X(kx); kx := kx+1; kz := kz+1 end

else { and
and Y(ky)=*{X 1 [kx_bx} U{Y 1 [ky_By]}}

begin Z(kz) := Y(ky); ky := ky+1; kz := kz+1 end

end

ford~ Z 1 [az_ 5}

Termination is based on the size of . The impossibility of subscript
errors is left to the reader. The time required by the program is obviously of

order # .

It is tempting to replace the logical expression

if ky > by then true else
if kx> bx then false else X(kx)=<Y(ky)

by the more compact expression
(ky> by) or (kx=<bx) and (X(kx)<Y(ky)) ,

but the latter expression does not make it obvious that the array designators
X(kx) and Y(ky) will only be evaluated when the appropriate segments are
nonempty. In fact, this situation hinges upon a rather subtle point of lan-
guage design. The expressions E, or E; and E; and E, have the property that,
if their first operand is true or false respectively, then the result is indepen-
dent of the second operand. In some programming languages, including
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Algol W and LISP, the second operand will not be evaluated under these
circumstances, so that the more compact expression given above is correct,
However, in many other languages, there is no guarantee that the second
operand will not be evaluated, so that the more cumbersome conditiona]
expression must be used.

It may be noted that the merge program involves some redundant
testing. For example, before copying an element from X to Z, the program
will have tested whether the right subsegment of Y is empty. Yet the next
time around the while-loop this test will be repeated, despite the fact that its
outcome cannot be different. In Section 4.2.7 we will develop a version of
the program that avoids this inefficiency.

2.3.7 Concatenation and Disjoint Union

Just as with the sorting program in Section 2.3.3, the treatment of merging in
the previous section avoided specifying a rearrangement condition. In this
case, we want to show that the result of “Merge” is a rearrangement of the
combined input segments, but to do this we must formalize the notation of
combining or concatenating functions.

Ordinarily, concatenation is only defined for sequences. For n=0, a
sequence of length n is a function whose domain is . If X and Y are
sequences of length m and n with the same codomain, then X @eq Y, called
the sequence concatenation of X and Y, is the sequence of length m +n, with
the same codomain as X and Y, such that

(X @seq Y) ()=if i<m then X(i) else Y(i—m)

for all i in . It is easily seen that
a. dom (X @ Y) is the union of the disjoint sets

and m|_m+n|
b (X @ V1[1_ml>x |
C. (X @eeq V1 m& Y
d. <*m|_m+n
However, we are going to need to consider the concatenation of func-
tions which are not sequences: The rearrangement condition for “Merge”
involves concatenating functions whose domains are intervals which might
not begin with one, later in this chapter we will need to concatenate functions
whose domains are not intervals, and in Section 5.3.1 we will concatenate
functions whose domains are not even sets of integers. Unfortunately, the
above definition does not generalize cleanly to such cases.
The way out of this difficulty is to realize that, for most purposes, the
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specific domain of the concatenation of X and Y does not matter; all that
matters is that this domain should partition into sets, akin to and
m[,;ﬁ__ r;], that possess the properties stated above. The simplest general
way to produce such a domain is to pair or “tag” the members of dom X with
some value, say one, and to tag the members of dom Y with some distinct
value, say two.

For sets $; and S,, we write S; X S,, called the Cartesian product of S: and
S, to denote the set of pairs (i1. i) such thati; € S; and i; € S,. Then, for any
sets $ and T, {1}X 8 and {2} X T are disjoint sets in one-to-one correspon-
dence with S and T respectively, so that we can define S+T, called the
disjoint union of S and T, to be the set

S+T={1}xS U {2}xT

It is easily seen that

IfScSand T < Tthen S'+T < S+T (1)
S+ U S +T)=S U S)+(TuT) ,

S+ n(S+T)=ESnSHH(TNnT) , (2)
S+T)—(S'+T)=(S-8+(T-T') ,

# (S+T)=(# S)+(# T) when S and T are finite sets. 3)

In (3), notice that + stands for the disjoint union of sets on the left, but for
the ordinary addition of integers on the right.

Now suppose X is a function from S to U and Y is a function from T'to U.
Then we define X® Y, called the concatenation of X and Y, to be the
function from S+7 to U such that

(X®Y) (1, i)=X(@) forallie S ,
(X®Y)(2,j)=Y(j)forallje T

The relationship between this definition of ® and the earlier definition of
@seq is illustrated by Figure 2.4.

Let B be the function from {1} X S to S such that B({1,i))=iforalliin S,
and C be the function from {2} X T to T such that C((2, j))=j for all jin T.
Then B and C are bijections such that (X@®Y) 1 ({1}xS)=B - X and
XeY)] 2}xT)=C - Y. Thus

a. dom(X@Y) is the union of the disjoint sets
{1}xdom X and {2}xXdom Y ,

b. (X®Y)1 ({1}xdom X)~ X ,

c. X®Y)1 {2}xdom Y)~ Y

(4)

However, we want realignments, not merely rearrangements, and we
also want the property {1} dom X <* {2} X dom Y. For these notions to be
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i (X @uq V) () i (X®Y) )
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Figure 2.4 Two Kinds of Concatenation.

meaningful, we must extend the standard ordering to encompass the pairs in
S+T.

If the standard ordering is defined for S and 7, then we extend itto S+ 7
as follows:

(x, y)=(x', y') if and only if x<x' or (x=x" and y<y') ,
(x, y)<(x', y) if and only if x<x" or (x=x" and y<y')

This kind of ordering is often called lexicographic ordering, since it is a
special case of the word ordering used in dictionaries. (Think of two-letter
words as pairs of letters.) Notice that repeated use of this definition extends
the standard ordering to sets constructed by repeated use of +.

When §+T is ordered lexicographically, (1, iy <(1, i’} implies i<i', so
that the bijection B is monotone, (2, j) <(2, ) impliesj<j', so that bijection
Cis monotone, and (1, i) <(2, j) always holds, so that {1} x S<*{2}xT. Thus
(4) can be strengthened to:

If the standard ordering is defined for dom X and dom Y, then:
a. dom(X@Y) is the union of the disjoint sets

{1} xdom X and {2} Xdom Y ,

(X®Y)1 ({1} xdom X) > X )

(X®Y)1 {2}xdom V)~ Y ,

d. {1}xdom X <*{2}xdom Y

o o
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This is similar to the basic properties of @eq, except that the sets {1} X dom X

and {2} xdom Y of pairs have replaced the intervals and m.

Concatenation is related to the restriction and composition of functions
by simple laws. If X and Y are functions with the same codomain then

If SS dom X and T< dom Y then
X®Y) ] S+T)=(X1®XY 1 T) . (6)

Moreover, if Zis a function whose domain is the common codomain of X and
Y then

X®Y)-Z=X-Z®Y-Z . 7

For each of these equations, the reader may verify that the functions denoted
by the two sides of the equation have the same domain and the same
codomain, and that these functions give the same result when applied to any
member of their common domain.

From (4) we can obtain an equation for the image of a concatenation.
By (10) in Section 2.2.8, we have

(XoY={X®Y 1 {l}xdom X} U{X®Y 1 {2} xdom Y} ,
so that by (22) in Section 2.3.4,

{xeYi={x} u {Y} . (8)

Similarly, from (5) we can obtain a relationship between concatenation and
ordering. From (3) in Section 2.2.10,

ord, (X®Y) if and only if
(@) ord, (X®Y) 1 {1} xdom X
and (b) ord, (X®Y) 1 {2} xdom Y
and (c) {(X®Y)1 {1}xdom X} p*{(X®Y) 1 {2}xdom Y} ,

so that by (23) and (22) in Section 2.3.4,

ord, (X® Y) if and only if

(a) ord, X
and (b) ord, ¥ ©)
and (c) {X} p* {Y}

A number of further laws relate concatenation to rearrangement and
realignment. Each of these laws arises from the existence of a bijection
between sets that are constructed by disjoint unions. We assume that X, Y,
Z, X', and Y’ are functions with the same codomain, and that the standard
ordering is defined for their domains. (If the standard ordering is not so
defined then the laws we derive still hold with 2 replaced by ~.)

The function B from (dom X+dom Y)+dom Z to dom X+ (dom Y
+dom Z) such that B((1, (1, i)))=(1, i), B(1, (2, M=, (1, j)), and
B((2, k))=(2, (2, k)) is a monotone bijection satisfying (X®@Y)® Z
=B - (X®(Y® Z)). Thus
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X@Y)®Z>XD(YDZ) . (10

The function B from dom X +{} to dom X such that B((1, i{)) =iis a monotone
bijection satisfying X@®()=B - X. Thus

XO)~X . (11)

Similarly, the function B from {}+dom X to dom X such that B((2, j))=jisa
monotone bijection satisfying ()@ X=B - X, so that

O®X>X . (12)

The function B from dom X +dom Y to dom Y+dom X such that B({1, i))
=(2, i) and B({2, j))=(1, j) is a bijection—but not a monotone bijec-
tion—satisfying X®@ Y=B - (Y® X). Thus

XOY~YOX . (13)

Next, suppose that there are (monotone) bijections B and C such that
X=B-X'and Y=C:Y'. Let D be the function from dom X+dom Y to
dom X’ +dom Y’ such that D((1, i))=(1, B()) and D((2, })) =(2, C(j)). Then
D is a (monotone) bijection such that X@®@Y=D - (X' ®Y’'). Thus

If X~ X and Y~ Y then XY~ X @Y’

If X~ X'.and Y~ Y’ then X@Y~> X' @Y’ (1=

The reader who is familiar with abstract algebra will recognize the
import of laws (10) to (14). Functions with a common codomain form an
algebra in which @ is a binary operation and () is a constant. By (14) the
equivalence relations ~ and 2~ are congruences on this algebra, by (10) to
(12) the quotient of this algebra by 2 is a monoid, and by (10) to (13) the
quotient of this algebra by~ is a commutative monoid. While we will not use
these algebraic concepts explicitly, they suggest that (10) to (14) are likely to
be pervasive laws about concatenation.

Finally, suppose that dom X= S U T where S and T are disjoint sets. Let
B be the function from S U T to S+ T such that B(i)=if i € S then (1, i) else
(2,i). Then Bis a bijection such that X=B - ((X1 S)@® (X1 T)). Moreover,
if S<*T then B is monotone. Thus

If dom X=S U T and S and T are disjoint
then X~ (X1 9@ (X1 17)

If dom X=S U Tand S <* T b7
then X~ (X1 ®X1 1)
As a special case where S and T are intervals:
If dom X=a| c|andd| b ( (16)

then X~ (X1 o[ b)@ (X1 5[ d)
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We can now formulate and prove the rearrangement condition for the
merging program. To show that the result of “Merge”” is a rearrangement of
the concatenation of its input segments, we must show that

(Z1 [az_bz)~ (X1 [ax Bx])@®(Y 1 [ay by])

can be added to the consequent of the program. (Since the program does not
alter X or Y, we do not need to use ghost identifiers.) The obvious addition
to the invariant is

(Z1laz_Jk)~ (X1 fax )@ (Y1 [ay_Jky)
which will imply the final result when |kx bx|, |ky by|, and are
empty. To show that the invariant is still preserved it is sufficient to show that
“Copy X satisfies the specification
{lax [kx| bx| and |az [kz] b2
and (Z 1 kz)m (x1 kx)@(Y 1 lay lky) }
begin Z(kz) := X(kx); kx := kx+1; kz := kz+1 end

{(z1 [z k)~ (X1 [ax |0 @ (Y 1 [ay |ky)}

and that “Copy Y’ satisfies an analogous specification.

To prove this specification, we will show that its precedent implies the
precedent of the following specification, which is a direct consequence of the
inference rules for array assignment and simple assignment:

{([2 | kz: X(k2)] 1 [az_ke]) ~ (X 1 [ax_ k) D(Y 1 lay Jky)}
begin Z(kz) := X(kx); kx := kx+1; kz := kz+1 end

{(z1[az_Jk2)~ (X1 [ax_Je)@(Y 1 [ay_lky)}

Thus, assume the first precedent. Then:

[Z | kz: X(k)] 1 [az_ke]
~([Z | kz: X(kx)] 1 [az_Jkz) @ ([Z | kz: X(kn)] 1 [kz])  (16)

= (21 [az_lk) @ ([Z | kz: X(kx)] 1 [kz]) (9in 2.3.2)
2(Z 1 faz_ Jk2) @ (X 1 |kx]) (21 in 2.3.4, 14)
m(X‘] ax k) @®(Y 1 [ay Jky) ®(X 1 [kx]) (hypothesis, 14)
~(X i o k@1 )@ 1 oy (13, 14)

~«(X1 kcl)@<Y1 lay Jky) . (16, 14)

Here we have hidden applications of the associativity law (10) by writing the
fifth and sixth lines without parentheses; even though the functions denoted
by the two ways of parenthesizing one of these lines are not equal, they are
realignments of one another, and that is enough for our purposes. By (1 6),
and (18) in Section 2.3.4, each adjacent pair of lines is related by~. Thus the
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desired conclusion follows from the fact that ~ is transitive. The proof for
“Copy Y” is similar.

Sometimes concatenation can be used to good effect in proving specifi-
cations where it does not appear explicitly. An example is provided by the
version of the left-shifting program given at the end of Section 2.3.4. To
show that the while-statement body meets its specification, we must show
that

a Jk=1[k] 5] and X 1 (la_|k-1U k-1[_b)) ~ X, 1 o] 5|
implies

[X | k—1: X()11 (fa Jk U k[ By~ Xo1 4] b| .

This can be proved by a sequence of realignments involving concatenations:

[X | k=1: X(K0)11 ([a ]k u k[ b])

~([X | k=1 X(0]1 [o_J) @ (X | k=1: X(K)] 1 &[ b]) (15)

~([X | k=1 X1 [a Jk-1)@([x | k=1: X(k)] 1 [k=1])
®([X | k—1: X(k)] 1 k[ _5]) (16, 14)

X1 [a k-n@x 1 [hex 1 b))

(9in 2.3.2, 21 in 2.3.4, 14)

~(X1fa k-D@® X1 k=1] b]) (16, 14)

~X1 ([a Jk-1Ui-1[_b]) (15)

~Xo1a b . (hypothesis)
Exercises

1. Show that the lexicographic extension of the standard ordering is consistent with
the laws given in Exercise 1 after Section 2.2.10, i.e. prove that if these laws are
satisfied by members of § and T then they are satisfied by members of S+7.

2. Prove thatif X and Y are sequences with the same codomain then X @, Y is the
unique sequence which is a realignment of X @ Y. Then use this fact to show that
laws (7) to (14) and (16) hold for sequences when @ is replaced by @, and >
by =.

(Hint: The result of Exercise 3 after Section 2.3.4 implies that if X and Y are sequences
such that X~ Y then X=Y.)

3. Suppose S and T are sets, J is the function from S to S+ 7 such that J(i) —(1, i) for
alliin S, and K is the function from 7 to S+7 such that K(j)=(2, j) foralljin T.
Prove that:

If Uis a set, X is a function from S to U, and Y is a function from 7 to U,
then there is exactly one function from S+ 7T to U, namely X@® Y, such
that J . (X®Y)=X and K- (X®Y)=Y.

(This property characterizes disjoint union in terms of category theory by
asserting that S+7 is a “coproduct” in the category of sets.)
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4. Write a program to merge two strictly ordered array segments into a strictly
ordered array segment, eliminating duplicate values. The program should set

only Z and kz, should require time of order # + # |ay by|, and should
not use any local arrays. It should satisfy

{E dom X and |ay by|< dom Y and |az
and ord. X 1] |ax bxl and ord. Y ]
and # |ax bx| + # lay by| < # laz

“Strict Merge”

{ andord. Z1 |az |kz
and (Z 1] [az ikzi=1%1 [ax_bx|} U Y] [y by]} } -

(Suggested by W. J. Gadbow) Write a program to merge two ordered array
segments that takes one of its inputs from an upper subsegment of its output
segment. This is possible since the processed part of the output segment will
never overlap the unprocessed part of the input segment. The program should

set only X, should require a time of order # |ax bxl, and should not use any local
arrays. It should satisfy

{g dom X and |ay by|< dom Y and ?u‘ bx|

and ord. X ] |ex ba|and ord- Y1 |ay by

and # [Zcx = # |iy by|and X=X, }
“Overwriting Merge”
ford. X1 |ax bx| and

(X1 |ax bxl ~ (X ] |ex bx|) ® (Y] lay byl)} ;

6. Write a program to eliminate all values in an ordered array segment that do not
occur in another ordered array segment. At the same time the program should
eliminate duplicate values. It should set only X and cx, should require time of
order # |ax bx| + # [ay by|, and should not use any local arrays. It should

satisfy

bz| < dom Z

tn

{lax bxlg dom X and |ay by|< dom Y
and ord. X 1 |ax bx| and ord. Y1 lay by| and X=X}
“Intersect and remove duplicates”

{-cx bx| and 0rd< X1 @cx
and (X 1 [ax_Jes}=1%, 1 [ax ox}n{¥ 1 [y _byl}} -

2.3.8 Preimages and Related Concepts

In this section we introduce some additional concepts about functions that
are useful in specifying array manipulations. Most important is the notion of
a preimage. If U is a subset of the codomain of a function X then 2(U. X),
called the preimage of U under X, is the subset of the domain of X whose
members are mapped by X into members of U. In other words, i € ?(U. X) if
and only if i € dom X and X(i) € U.
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Let Uand U’ be subsets of cod X. Then it is easily seen that 2 preserves
set inclusion:
If U'c Uthen 2(U', X)c ?(U, X) , (1)
distributes with U, N, and — :

PWUUU', X)=2U, X)UPWU', X) ,
2UNU’, X)=2(U, X)nP(U', X) ()
PU-U', X)=2(U, X)-2P(U', X) ,

and takes on its maximum or minimum values when U includes or excludes
the entire image of X:

P(U, X)=dom X if and only if {X} < U , 3)
#(U, X)={} if and only if U and {X} are disjoint . “

There are also some obvious relationships with composition and identity
functions. If X - Y is defined and U is a subset of the codomain of Y then

PU, X-Y)=2(2(U, V), X) , (%)
and if U’ is a subset of U then
U, Iy)=U" . (6)

Somewhat more subtle are the relationships among preimages, restric-
tion, and images. Suppose S < dom X and U< cod X. Then #(U. X 1 S)
consists of the members of dom(X 1 S)=S that are mapped by X into
members of U, which are just the members of (U. X) that are also members
of S. Thus

PU,X189=2U,X)nS . @)

If we start with a set S< dom X of arguments, form the set {X {1 S} of
results obtained by applying X to these arguments, and then form the set
P({X 1 S}, X) of all arguments that give these results, we must end with at
least the arguments we began with, i.e.

Sc 24X 1S, X) . (8)

Going in the other direction we can give even more information. If we start
with a set US cod X of results, form the set (U. X) of arguments that give
these results, and then form the set {X 1 ?(U, X)} of results obtained from
these arguments, we must get exactly the members of U that can be obtained
by applying X to any argument, i.e.

{X12WU, X)}=Un{X} . )
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Next, we connect preimages with concatenation. Suppose U is a subset
of the common codomain of X and Y. Since dom(X @ Y)=dom X +dom Y
={1}xdom X U {2}Xdom Y, we can use (7) and (5) to obtain

PU, X®DY)

=(2(U, X®Y) n ({1} xdom X))
U(PU, X®Y) N ({2} xdom Y))

=2(U, (X®Y) 1 ({1} xdom X))
UP(U,(X®Y) 1 ({2} xdom Y))

=2WU,B-X)UPWU,C-Y)

=P(P(U. X), B) U #(?(U, V), C) ,

where B is the bijection from {1} X dom X to dom X such that B((1. {)) =i and
Cis the bijection from {2} X dom Y to dom Y such that C((2, j))=j. Then the
preimage of P(U. X) under B is {1} x ?(U, X), the preimage of P(U. Y)
under C is {2} X 2(U, Y), and the union of these preimages is (U. X)+
P?(U, Y). Thus

P, X®Y)=PU, X)+PU, Y) . (10)

Finally, we relate preimages to rearrangement and realignment. Sup-
pose B is a (monotone) bijection from dom X to dom Y, and § is a subset of
dom X. Since B(i) € {B ] S}for alliin S, we can define a function Bg by first
restricting B to S and then reducing its codomain to {B ] S}. In other words,
By is the function from S to {B 1 S} such that Bg(i)=B(i) for all i in S. This
function is obviously surjective, and it inherits the injectivity (and monoton-
icity) of B. Thus Bg is a (monotone) bijection from S to {B 1] S}.

Now suppose X=B - Y, where X and Y are functions with the same
codomain, and suppose U is a subset of that codomain. Then Bgy_ x) willbe a
(monotone) bijection from P(U. X) to {B{ #(U, X)}. But from (5) and (9)
and the fact that B is surjective, we have

{B1 2, X)}={B1 (U, B-Y)}

={B1 ?(2(U, Y), B)}={B} n 2(U, Y)

=cod BN P(U.Y)=PU, Y)
Thus the composition By, x) + (Y 1 P(U, Y)) is well-defined. Moreover,
for all i in (U, X),

(Y1 2, V) (Baw, x) ))=Y(BG)=XG) ,
sothat (X1 2(U, X))=Bgwy. x) - (Y1 2(U, Y)). Thus when U is a subset of
the common codomain of X and Y, we have

If X~ Y then X 1 ?(U, X)~ Y1 P(U,Y) , (1)

If X~ Ythen X1 PU, X\)~Y 1 2, Y) . )

The first part of this law is one step in proving a fundamental theorem
about the nature of rearrangement:



140 ARRAYS CHAP. 2

Theorem If X and Y are functions with the same codomain, then the
following statements are equivalent:

(a) X~Y ,

(b) ForalUScod X, X1 P(U, X)~ Y1 2WU,Y) |,
(c¢) Foral U< cod X, # P(U, X)=# P(U,Y) ,

(d) Forallrecod X, X1 P2({r}, X)~ Y| 2({r}, V) ,
(¢) Forallrecod X, # P({r}, X)= # P(r}, Y)

Notice that the equivalence of (a) and (e) captures the idea that X is a
rearrangement of Y when every value occurs the same number of times as a
result of X and of Y.

Proof: From the first part of (11), we see that (a) implies (b). To see that (b)
implies (c), suppose X 1 (U, X) ~Y 1 P(U, Y). Then there is a bijection
from P (U, X) to (U, Y), so that # P(U. X)=# P (U, Y) follows from the
well-known proposition of set theory that two sets have the same size if and
only if there is a bijection between them. (For finite sets, this can be proved
by induction on the size of the sets; for infinite sets it is the definition of
“have the same size”.)

Since (d) is a special case of (b) and (e) is a special case of (¢), (b) implies
(d) and (c) implies (e). Moreover, (d) implies (e) for the same reason that (b)
implies (c).

Finally, we must show that (e) implies (a). If (¢) holds then the above-
mentioned proposition of set theory insures that, for each r in cod X, there
will be a bijection C, from ?({r}. X) to P({r}, Y). Since each i in dom X
belongs to P({X (i)}, X), we can define C to be the function from dom X to
dom Y such that C(i) = Cx;(i). Similarly, we can define D to be the function
from dom Y to dom X such that D(j)=Cy; ().

For each i € dom X, C(i) = Cx;(i) will belong to 2({X(i)}, Y), so that
Y(C())=X(G), and D(C())= Cy(cu)(C))=Cxe™(Cxp(@) =i. Thus
X=C-Yand C- D=ljom x-

Similarly, for each j € dom Y, D(j)= Cy;~1(j) will belong to P({Y(})},
X), so that X(D(j))=Y()), and C(D(}))=Cx(p)(P()) = Cy((Cyy~ ()
=j. Thus D - Czldom Y-

Combining these results, we see that D is the inverse of C, so that Cis a
bijection, and X=C - Y, so that X ~ Y.

In summary, (a) implies (b), (b) implies (c) and (d), either (c) or (d)
implies (e), and (e) implies (a). Thus if any of these statements are true, they
must all be true. []

For a function X and a set U, the restriction X 1 ?(cod X N U, X) retains
just those domain elements which are mapped into members of U. This is a
sufficiently useful notion that it is worth defining X\ U, called the intersec-
tion of the function X with the set U, to be X 1 #(cod XN U, X).
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Since {X}< cod X, {X}< U holds if and only if {X}< cod X N U which, by
(3), holds if and only if 2(cod X N U, X)=dom X. In turn, this holds if and
only if X 1 P(cod XNU, X)=X. Thus

Xn U=Xif and only if {X} < U . (12)
On the other hand, U and {X} are disjoint if and only if cod X N U and {X}

are disjoint, if and only if, by (4), ?(cod XN U, X)={}, if and only if X 1
P(cod X N U, X)=(). Thus

X n U=() if and only if U and {X} are disjoint . (13)
Since restriction doesn’t alter codomains, we have cod(X N U)=cod X.
Thus

P(cod(Xn U) N U, X1 U)
=P(cod X N U', X1 P(cod X N U, X))
=P(cod X N U, X) N P(cod X N U, X)
=P(cod XNUNU, X) ,

where the last two lines are consequences of (7) and (2). Then

(XA UNU=(XnAU)1 Pleod (XANU)NU', XA V)
=(XNU)1 Plcod X NUNU, X)
=(X1 Pcod XN U, X))] Plcod X NUN U, X)
=X1PcodXNUNU,X) ,
i.e.
XAaU)AU=XnUNU) . (14)
If X and Y, and therefore X ® Y, have the same codomain, then (10),
along with (6) in Section 2.3.7, gives

XOVNNU=X®YV]1Plced X®Y)NU,XDY)
=X® Y)1] (P(cod X N U, X)+P(cod Y N U, Y))
=(X1Pod XNU,X)®(Y]PcodYNU,Y)) ,

i.e.
XeYVANU=XNnU)®(YNnU . (15)

Further laws relate () to images, rearrangement, and realignment. From
(9) we get

XaU={X}nU |, (16)
which shows why N is called intersection. From (11) we get

If X~ YthenXnU~YNU , (17)
If X Ythen XnUx>YNU .
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Sometimes one needs to consider the restriction of a function X that
eliminates, rather than retains, just those domain elements that are mapped
into members of a set U. In this case it is useful to define X = U, called
the subtraction of U from X, to be X 1 P(cod X—U, X)=X ¢
(cod X— U). Each of the laws (12) to (17) for intersection has an analogue
for subtraction, which can be derived in a similar manner:

X — U=Xif and only if U and {X} are disjoint , (12-)
X=U=()ifandonly if {X}c U , (13-)
X-U)=U=x=-UuU) , (14-)
X®Y)=-U=X=-U)® (Y=-U) |, (15-)
(X=Uu={Xx}-U , (16-)

IfX~YthenX=-U~Y=U |,

IfX~Ythen X=UxY=U 17-)

A simple illustration of these concepts is provided by the following
program, which restricts the array segment X 4 to eliminate all values
outside of the interval |E|, and realigns the result so that its domain is a left
subinterval of |‘Z b|

{la b|< dom X and X =X}

begin integer d; c := a; d := a;

{whileinv: |z |c |4 b| and X 1 la Je=~ (Xo 1 [ajd) A |r_—s|
and X 1 |d_b|=Xo1d b|}

while d<b do
if (X(d)<r) or (s<X(d)) thend := d+1
else begin X(c) := X(d); c :=c+1;d := d+1 end

end

{la_Jc bland X1 [a e~ (Xo1 |a_ b0 [ s} -

The heart of the correctness proof for this program is to show that the
invariant and d<b and X(d) ¢ |u| imply

Xfa Je~ o1l dhal o
and that the invariant and d<b and X(d) € |;Zv| imply

[X| e X@]1[a |~ Xo1la_dDn[r s

To see this, assume the invariant and d=<b. Then —|a|d| and ﬂ and
X 1 ldl=X, 1 |dl, so that
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(X0 1 la_d)n
2 ((X%o1 [a_Jy@® (X1 [d])) n (16 in 2.3.7, 17)
=(Xo1la l)n [ _sD@ (X1 [dhn [ s]) (15)
X1l 0@ (X1 [a)n [r s]) (hypothesis, 14 in 2.3.7)
=X1[a Jo®(x1ldhnl o)

IfX(d) ¢ ,then and {X 1 @}={X(d)} are disjoint sets, so that (13)

gives (X 1 |Z|) N Irz| =(), and the above concatenation equals

X1 Joe@q

~X1fa | . (11 in 2.3.7)
On the other hand, if X(d) e then {X 1 [a]}< [ 3], so that (12) gives
x 1 ldhn E.5|=X 1 ld|, and the above concatenation equals

X1l lo@x1 4

(X | e X o J)@ (X | e: X@11 [])

(9 in 2.3.2, 21 in 2.3.4, 14 in 2.3.7)
~[X | e X(d)] : (16 in 2.3.7)

Exercises

1. Prove
If US cod X then 2(U. X)=2(U n {X}, X)
XNU=XnUn{x} |,
X-U=X=(Un{Xx}

’

2. Write a program to eliminate all values in an ordered array segment that do not
occur in another ordered array segment, without eliminating duplicates of the
values that are retained. The program should set only X and cx, should require

time of order # + # |ay by|, and should not use any local arrays. It
should satisfy

{g dom X and |ay by|< dom Y

and ord- X 1] |ex bx| and ord. Y and X=X, }
“Intersect segments”
{ax |cx bxl

and X 1 ru_—_lcx’\* (X0 1 |lax_bx) {Y 1] |ay byl}} -

(Compare the consequent of this specification with that in Exercise 6 after
Section 2.3.7.)

3. Asin the previous exercise, except that the X-values to be eliminated are those
that do occur in the segment of Y. The program specification is the same as in the
previous exercise, except that — replaces the occurrence of .
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4. (Suggested by O. O’M. Pardee) Write a program to remove, from an array
segment with nonnegative values in decreasing order, all elements whose values
are squares of values in the original array segment. The program should set only

X and c, should require time of order # [ b], and should not use any local
arrays. It should satisfy

{la 5] dom X and ord. X ] |a bI and {X 1 |a b]} =*0
and X=X, }

“Remove squares’’

{la I 8]
and X1 la Je (X1 [a_ b))~ {X-Sg1[a 8]} } .

where Sq is the function from integers to integers such that Sq(i)=iX.i.

*2.3.9 Ordering by Keys and Stability

In our programs for sorting, partitioning, and merging, the order of occur-
rence of values in the output array is specified in terms of an ordering
relation which is applied to the values themselves. In the merging program of
Section 2.3.6, for example, the order of occurrence in the output array is

specified by ord- Z 1 . which is
(Vi€ faz bz]) (Ve [az_bz]) i<jimplies Z(i)=< Z(j)

In many applications, however, the values in an array such as Z are complex
records, and the order of their occurrence depends upon the application of
an ordering relation to values called keys which appear in certain fields of
these records.

Abstractly, we can formalize this situation by assuming that there is a
function K, from the codomain of the array being ordered to the set of keys,
that maps each record into the value of its key field. (We are assuming here
that a set of records can be described by a data type. In fact, we are
anticipating problem-oriented, or user-defined types, which will be dis-
cussed in Chapter 5.) Then the order of occurrence of values in an array can
be specified in terms of the composition of that array with K. In specifying a

merging program, for example, one would assert ord< Z - K 1 .
which is

(Vielaz bz]) (Vjelaz bz|)i<jimplies K(Z(i)) < K(Z(j))

In fact, the generalization of a program such as “Merge’ to handle
ordering by keys is usually straightforward. In tests of the values of array
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clements and assertions about such values, the arrays are replaced by their
composition with K. However, this replacement is not applied to statements
which move values of array elements, or to assertions about rearrangement
or realignment—it is the records themselves, not their keys, that are to be

rearranged. -
For instance, the generalization of ‘“Merge” to ordering by keys is:

{lax bx|< dom X and [ay by|< dom Y and [az bz| < dom Z
andord< X - K1 [ax_bx| and ord- Y- K 1 |ay by]
and # |ax bx +#|ay by|=#@}

begin integer kx, ky, kz;

kx := ax; ky := ay; kz := az;

{whileinv: lal lkx bx| and [ay [ky by] and Iaz Ikz bzl
andord.. Z- K 1 [az [kz
and {Z- K1 [az |kz} <* {X- K1 [kx bx]}

0¥ K1 [ byl
and # [kx M+#[ky byli# kz bz
and (Z1 [az_Jk)~(X 1 [ax k) @ (Y 1 [ay_Jky) }
while kz <bz do
if (if ky > by then true else if kx> bx then false else
K(X(kx)) =< K(Y(ky)))
then {|kx| bx| and |kz| b2

and K(X(kx))<*{X - K1 [kx_bx]}U{Y - K1 [ky_by]}}

begin Z(kz) := X(kx); kx := kx+1; kz := kz+1 end
“Copy X”

else {|[ky| by| and [kz| b]
and K(Y(ky))<*{X - K1 [kx_bx]} U{Y- K1 [ky_by]}}

begin Z(kz) := Y(ky); ky := ky+1; kz := kz+1 end
“Copy Y”

end

ford- Z- K1 [az_b2]
and (Z1 fiz_ba)~ (X1 [ BD@ (1 [y By} -

The specification of this program illustrates a curious characteristic of
ordering by keys. If distinct records can have the same key, i.e. if the function
K is not injective, then the specification is indeterminate: its consequent
would remain true if one were to rearrange output records with the same
key.
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Although this indeterminacy is often acceptable, in some applications jt
is necessary to strengthen the program specification by adding a condition
called stability. Roughly speaking, a program which rearranges records to
meet some ordering criterion is said to be stable if records with the same keys
occur in the same order in the output as in the input.

This idea can be described rigorously by using the concepts of realign-
ment, preimages, and array intersection. Suppose X, Y, and K are functions
such that cod X=cod Y=dom K. Then X is said to be a stable rearrangement
of: Y with respect to K when

(V k € cod K) X1 P(k}, K)~ Y n 2({k}, K)

The following theorem shows that stability is preserved by exchanging
array segments which have no keys in common:

Theorem If X, Y, and K are functions such that
codX=cod Y=dom K and {X - K} #* {Y - K} then
(V ke cod K) (X®Y)n P({k}, K)> (Y @ X)n P({k}, K).

Proof: Let k be a member of cod K. Since {X + K} and {Y - K} are disjoint
sets, either k ¢ {X - K} or k ¢ {Y - K}.

Suppose k ¢ {X - K}. Then {k} and {X - K} are disjoint, so that by (4) in
Section 2.3.8, 2({k}, X - K)={}, and therefore X 1 ?({k}, X - K)=(), Thus,
using (5) in Section 2.3.8 and the definition of N, we have X 1 P({k},
X-K)=X1 P(P(k}, K), X)= Xn P({k}, K)=(). Similarly, if k ¢ {Y - K}
then Y N P({k}, K)=().

From (15) in Section 2.3.8, we have

(X@Y)n PUk} K)=(Xn 2(k}, K)) @ (Y 1 Pk}, K)
(Y@ X) h Pk}, K)=(Y 1 Pk}, K)) @ (X 1 P({k}, K))

Then, since either XA P({k}, K) or YN P({k}, K) is (), the identity laws for ()
with regard to @ (i.e. (11) and (12) in Section 2.3.7) establish that the right
sides of these equations are realignments of one another. []

To illustrate the application of this theorem, we show part of a proof
that the generalization of “Merge” to ordering by keys is stable. At the
outset, it should be stressed that this stability hinges upon the use of the test
K(X(kx)) < K(Y(ky)) to compare array elements; had we chosen to use
K(X(kx)) < K(Y(ky)) the program would still have met its previous specifi-
cation but would not have been stable.

We replace the rearrangement condition in the consequent by an asser-

tion that Z 1 is a stable rearrangement of the concatenation of X ]

and Y 1 with respect to K:
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(V k € cod K) (Z1 |az bzl) n 2k}, K)
2 ((X 1 [ax_bx)@®(Y 1 [ay by])) & PikY. K)

Similarly, we replace the rearrangement condition in the invariant by an
assertion that the concatenation of the processed subsegment of Z, the
unprocessed subsegment of X, and the unprocessed subsegment of Y is a

stable rearrangement of the concatenation of X 1 and Y 1]

with respect to K:

(V k € cod K)
(21 |az_Jkz)@ (X1 [kx_ba)® (Y1 [ky by))) 1 Pk}, K)
~((X 1 lax b @ (Y1 [y by])) & P({K3, K)

Also, as a consequence of ord< X - K 1 [ax bx| and the falsity of the test
which branches between “Copy X”” and “Copy Y”’, we add {Y - K1 [I_:yl} *
{X - K |kx_bx|} to the precedent of “Copy Y.

The heart of the correctness proof is the demonstration that “Copy Y”
preserves the stability assertion which we have added to the invariant. After
propagating the invariant backwards through the assignments in “Copy Y,
we are left with the task of showing that the invariant and the precedent of
“Copy Y~ imply

(V k € cod K)
(([Z] kz: YUy) 1 [az_ kz]) @ (X1 [k b)) @ (Y1 ky| by]))
A P({k}, K)

(X [ax_bx) @Y1 [ay_by]) A (iR}, K)

We assume the invariant and the precedent of “Copy Y”*, and write 2 as
an abbreviation for ?({k}, K). Then, for any k in cod K,

(((Z | kz: Yky)) 1 [az_ k)@ (X1 [kx_bx]) @ (Y 1 ky[ byl)

h P
~((21 [az_ k)@ (Y 1 (o)) @ (X1 [kx_bx)) @(Y 1 ky[_by]))
nh P

At this point, we need to interchange Y 1 and X 1 |kx _bx|. (Such an
interchange is not needed in proving the analogous implication for “Copy
X”.) Using (15) in Section 2.3.8, the theorem we have just proved, and the

assumption that{Y - K lk__yl} and {X - K1 } are disjoint, we see that
the above expression is a realignment of
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((Z1 [az_Jkz) n P)
(Y1 ) ex 1 [ b)) n )
@((Y 1 ky[_by)) 1 @)
~((Z1 [az_Jk2) 0 P)
@(((x1 [kx_bx)@(Y 1 [y]) 2 2)
®((Y 1 ky[ _byhn 2)
2((z1 faz_ k)@ (X1 [ke_ba])@(Y 1 [y ®(Y 1 ky[ _byl))
h P
(21 faz_lkz) @ (X1 [kx_ba)@(Y 1 [ky_byp)) A 2
~ (X1 fax @Y1 [y Y02,

where the last step follows from the stability condition in the invariant.

Exercises
1. Prove that a stable rearrangement is a rearrangement, i.e. that
(V k € cod K) X P({k}, K) > Y () P({k}, K)

implies X ~ Y.
(Hint: Use the equivalence of (a) and (d) of the Theorem in Section 2.3.8.)

2. Generalize the insertion-sorting program of Exercise 4 after Section 2.3.3 to
ordering by keys, and prove that it is stable.

3. Give examples to show that the generalizations to ordering by keys of the
programs for sorting by maximum finding (Section 2.3.3) and for partitioning
(Section 2.3.5) are not stable.

2.4 MULTIDIMENSIONAL ARRAYS

2.4.1 Multidimensional Arrays in Algol W

So far we have only considered arrays whose domains are intervals, i.e. finite
consecutive sets of integers, but conceptually an array domain could be any
set. A case of particular practical importance is multidimensional arrays,
whose domains are finite sets of finite sequences (or “tuples”) of integers.
Ever since FORTRAN, most programming languages have provided
facilities for multidimensional arrays, which are especially useful in numeri-
cal calculations, e.g. for the representation of matrices or tables of multi-
argument functions. (More recent languages, such as Pascal [Wirth 71a],
provide an even richer variety of arrays.)
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In Algol W, an n-dimensional array declaration has the form
Tarray Iy , ... , I, (Ly:: Uy, ..., L, :: Uy

where 7 is integer, real, long real, or logical, I, ... , I, are binders of distinct
identifiers, and Ly, ... , L, and Uy, ..., U, are integer expressions, called the
Jower bounds and upper bounds respectively. Such a declaration creates m
distinct arrays, denoted by I, ... , I,,,. Each of these arrays is a collection of
variables of type 7 whose domain is the set of integer sequences (. ... , i)
such that Ll =< Uls 566m & Ln <in5 Un.

If I has been declared to be an n-dimensional array identifier, and
Ei, ... , E, are integer expressions, then

IE,, ... , E,)

is an array designator denoting the array element corresponding to the
domain member (E, ..., E,). E; is called the ith subscript of I(Ej, ... , E,).
For example, the declaration real array X(1::4, —2::2) will create a
two-dimensional array containing twenty real variables, whose domain is the
set of integer pairs (i, j) such that 1<i=<4 and —2=<j<2.
In the case of a two-dimensional array, the elements can be visualized in
a rectangular arrangement, e.g.

X(1,-2) XxQ@1,-1) Xx@1,00 x@1,1) Xx(1,2)
X2,-2) X@2,-1) X(2,00 X(2,1) X(2,2)
X(3,-2) X(3,-1) X(3,0) X(@3,1) X(3,2)
X4,-2) X@4,-1) X@4,00 X4,1) X@4,2)

As suggested by this arrangement, the ith row of a two-dimensional array is
the set of elements whose first subscript is i, and the ith column is the set of
elements whose second subscript is i.

As with one-dimensional arrays, the value of an n-dimensional array X
is the function with the same domain as X which maps (i, ... , i,) into the
value of the element X(iy, ... , i,).

2.4.2 Assertions for Multidimensional Arrays

Most of the concepts and notations we have introduced for assertions about
one-dimensional arrays carry over to multidimensional arrays. The main
novelty is the use of the Cartesian product to describe domains. In Section
2.3.7 we introduced the binary Cartesian product, but now we must general-
ize to a product of n sets: If Sy, ... , S, are sets, then the Cartesian product
§;X ... X8, is the set of sequences (iy, ... , i,) such thati, € §y, ... , i, € S,
It is easily seen that
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§; X ... X§, is empty if any S, is empty , (1)
If S;< T, and ... and §, < T, then )
S$iX .. X8,S Ty%X ... xXT, @

S$1X ... X(§, U T)X ... XS, 3
=(S1X oo XX oo XS U (§1X ... XT;X ... XS,) )
#(S1X ... XS)=F# SPX ... X(# S,) 4
when S, ... , S, are finite sets . )

(Note that X denotes a Cartesian product on the left of (4), but an ordinary
numerical product on the right of the same line.) If all of the S,’s are intervals,
then §; X...X S, is called a block. Thus for example, the declaration real
array X(/;::uy, ... , l,::u,) creates an array whose domain is the block
[ ... x| ).

Suppose Sis a block that is a subset of the domain of X. Then the portion
of X consisting of the elements X(o) such that o € S, is called the segment of
X over S. For example, if dom X= S X T, then the ith row of X is the segment

of X over H X T and the jth column of X is the segment of X over S X []]
If (iy, ... , i,) belongs to the domain of a function X, then[X | (ij, ... , i,):
y] denotes the function with the same domain such that

[X I (il’ s=cp s in>: y] (jl’ ’jn)
=if i;=j, and ... and i,=j, then y
else X(ji, ... , jn)

The obvious extension of the inference rule for array assignments is:

Multidimensional Array Assignment:

{Pl xsixicsi. .., sny: B} X(S1, oo 5 Su) := E{P} .

*2.4.3 The Minimax of an Array

As an example of the use of a multidimensional array, we consider a problem
arising in game theory: finding the minimax of a two-dimensional array
segment. Consider a nonempty segment of a two-dimensional array X over

[1_m|x[1 n|. X(i0,j0) is a minimax of this segment if and only if
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(1) X(i0,j0) is a maximum of the iOth row,
(2) The maximum of each row is at least X(i0,j0).

Thus our program should set the integer variables i0 and jO to meet the
specification
{@X]ljjg dom X and [1[ m| and [1] x]}
“Find Minimax”
{ll 0| m|and |l |j0| n
and {X 1 [iolx[1 x|} =* X(i0,j0)
and (Vie[l m))(Vjel[l n

{x 1 [i]x[1 _n[} =* X(i,j) implies X(i0,j0) < X(i,j) } .

On the main level, our program will iterate over successive rows, using a
variable k to keep track of the last row processed. The invariant asserts that
X(i0,j0) is the minimax of the part of X processed so far, i.e. the segment

over I—l_—_—iclxh "15
[1_fiof & m|and[t [j0f «l
and {X 1 [i0]x[1_n|} =* X(i0,j0)

and (Viell k) (Vje[l n])

{X 1 [i]x[1 n]} =* X(i,j) implies X(i0,j0) < X(i.j)

This will imply the final consequent when k| | is empty. On the other hand
it can be achieved initially by setting k to one and i0 and jO to the subscripts of
a maximum of the first row. Thus the program has the form:

begin integer k;
Set jO to second subscript of maximum of first row’’;
i0:=1;k:=1;
{whileinv: [1 io] k| m| and [1 [j0] =]

and {X 1 [i0]x[1 ]} =* X(i0,j0)

and (Viell &) (Vje[l a)

{x1 []x[1 n[} =* X(i,j) implies X(i0,j0) < X(i.j) }

while k <m do

begin k := k+1;

“Process kth row”

end
end
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At the beginning of “Process kth row’” we will have

1 liO Ik m| and |1 [jO| n
and {X 1 [i0]x[L n]} =* X(i0,j0)
and (Viel [0 (Vjell n)

{X1 [i|x|1_nl} =* X(G.j) implies X(i0,j0) < X(i,j)

To regain the invariant, the obvious thing to do is to scan the kth row to find
its maximum and, if the new maximum is smaller than X(i0,70), to reset {0
and jO to the subscripts of the new maximum.

But one can do better than this. While scanning the kth row, we can
compare each element with X(i0,j0). If we find any element which is at least
X(i0,j0) then, without completing the scan, we can infer that the maximum
must also be at least X(i0,j0), so that i0 and jO will not be reset.

Thus, suppose we begin “Process kth row’ with

begin logical new; integer jl;
“Scan kth row”;

end

where “Scan kthrow” either sets new to true and j1 to the second subscript of
a row maximum which is smaller than X(i0,j0), or sets new to false if there is
some row element which is at least X(i0,j0):

{[1_[«]_m| and [t n[}
“Scan kth row”
{if new then and {X 1 [I{lx EI} =* X(k, 1)
and X(k,j1) < X(i0,j0)
else (3j € [1 n|) X(0,j0)= X(k,j) }
By the reasoning of the previous paragraph, this consequent implies that if

new is false then the maximum of the kth row is at least X(:0,j0). Thus
“Process kth row” can be completed with

if new then begin i0 := k; jO := j1 end

The invariant of ‘“‘Scan kth row’” is similar to the consequent except that,
if new is true, it only asserts that X(k,j1) is a maximum of a subsegment of the
kth row over |Z]| This invariant will imply the consequent when either new
is false or j| n| is empty, and can be achieved initially by setting j and ;1 to
one and new to X(k,1) < X(i0,j0). Thus “Scan kth row” has the form
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begin integer j;
ji=1;j1:=1; new := X(k,1) < X(i0,j0);
{whileinv: if new then ] J n
and {X 1 [K]x[1 j]} =* X(k,j1)
and X(k,j1) < X(i0,j0)
else (3 j € [1_n) X(i0,j0) =< X(k,)) }

while new and (j<n) do
begin j := j+1; “Inspect X(k,j)” end
end

At the beginning of “Inspect X(k,j)”” we will have

L[] [j[ n] and {x 1 [klx[1 ]} =* XGjD
and X(k,j1) < X(i0,j0)
If X(i0,j0) = X(k,j) then we can set new to false; otherwise we can proceed as
in a conventional maximum-finding program. Thus “Inspect X(k,j)” can be
replaced by
if X(i0,j0) <= X(k,j) then new := false else
if X(k,j1)< X(k,j) then j1 :=j
Filling in “Set jO to second subscript of maximum of first row”” with the
obvious subprogram, we obtain the following final program:



154 ARRAYS CHAP. 3

{1 m|x[1 n|< dom X and [1] m| and [1] |}
begin integer k;
begin integer j;

j:=1;j0:=1;
while j<n do
begin j := j+1; if X(1,j0) <X(1,j) then jO ::= j end

end;
i0:=1;k:=1;
{whileinv: [l IiOl kl !ﬂl and ]1 [jO] n|

and {X 1 [io] x[1_a} =* XG0, j0)
and (Vie[l &) (Vje[L n])
{x 1 [i]x[1_n|} =* X(i,j) implies X(i0,j0) < X(i,j) }
while k<m do
begin k := k+1;
begin logical new; integer j1;

begin integer j;
ji=1;j1:= 1; new := X(k,1) < X(i0,j0);
{whileinv: if new then
and {X 1 [K]x[1 j]} =* X(k,j1)
and X(k,j1) < X(i0,j0)
else (3j € [1_n|) X(i0,j0)<X(k,j) }
while new and (j<n) do
begin j := j+1;
if X(i0,j0) < X(k,j) then new := false else
if X(k,j1)< X(k,j) then jl1 := j
end
end;
if new then begin i0 := k; jO := j1 end
end
end
end
{[L_Jo] ] and [T ]
and {X 1 [i0]x[1_A]} =* X(i0,j0)
and (Vie[l m)(Vje[l n)
{x 1 [i]x[1_n]} =* X(G.j) implies X(i0,70) = X(i j) }

Termination and the impossibility of subscript errors are left to the reader.
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The idea of aborting the row scan when encountering an element larger

or equal to X(i0,j0) is a special case of J. McCarthy’s ‘““alpha-beta heuristic”,
which is an algorithm for the more general problem of finding the minimax
of a tree with numerical node values [Slagle 69].

Exercises

1.

For many array-manipulation problems, reasonable efficiency requires substan-
tially different approaches to the input-preserving case and the non-input-
preserving or “inplace” case. A simple illustration is provided by the problem of
transposing a two-dimensional array.

Write two programs, one for placing the transpose of X 1 |1 m| X1 nl in

Y1 Il_?l X |1 m| and the other for placing the transpose of X 1 X|[1 nfin
X itself. The programs should require time of order # |1 ml X and
# E_—_ﬂ X ll_fl respectively, and should not use any local arrays. They should

satisfy
{|DIXI1 n| € dom X and x 1 m|< dom Y}
“Input-preserving transposition”
{(vie[l m)(¥je L n) Y(, D=XG, D}

and

{[L n|x[1_n|< dom X and x=x}

“Inplace transposition”
{(v it n) Vel a)XG,D=Xoli, 0} -
(Suggested by R. W. Floyd) Write a program that will examine the segment of a

logical array T over [1_m|x|1_n| to determine the largest square subblock
within which the values of T are all true.

Let
squ(i, j, d) =
i—d[_ixj-d[_j]< [1_m|x[1 ]
and {T 1 i—d[?] xj—d[j]} =* true

Then the program should set integer variables i, j, and d, and satisfy

([ mx[1 7 = dom T}

“Find largest square”

{squ(i, j, dyand (Vi € [1_m|) (V] €1 n]) (Vv d >0

(squ(i, j, d) implies d’ =< d)} .

With some ingenuity, it is possible to construct such a program that requires time
of order m - n.






3 PROCEDURES

Most programming languages provide facilities that, to at least a limited
extent, permit the programmer to define and then use new kinds of state-
ments and expressions. In Algol-like languages, this capability is provided by
procedures: new statements called procedure statements are defined by
proper procedure declarations, and new expressions called function desig-
nators are defined by function procedure declarations. (Most of our attention
will focus on proper procedures; function procedures will be introduced in
Section 3.1.8.)

The use of procedures can sometimes save considerable writing and also
reduce the space needed to store a program in the computer. But the real
importance of procedures is their usefulness for displaying program struc-
ture. One can encapsulate as a procedure a conceptually subordinate prog-
ram for performing some task, and then treat the performance of this task as
an elementary operation on the same level as the basic statements and
expressions of the programming language.

Of necessity, our discussion of procedures will be more language-
dependent than that of previous topics, since facilities for procedures (often
called “subroutines” or “macros”’) vary substantially among different prog-
ramming languages. Fortunately, the procedure facility of Algol W, based
upon that of Algol 60 [Naur 60, 63], is exceptionally powerful, elegant, and
amenable to formal reasoning. Indeed, this is one of the main reasons that
Algol W, as opposed to Pascal for example, is used in this book.

157



158 PROCEDURES CHAP. 3
3.1 PROCEDURES IN ALGOL W

3.1.1 Proper Procedures and the Copy Rule
Suppose a statement S occurs several times in some block of a program:
begin ... ; S; ... ;S; ...; S; ... end

Rather than writing out each occurrence of S, we may declare some iden.
tifier P to stand for S, and then write P instead of S:

begin procedure P; S;
3P .. Py ... ; P;...end

Here procedure P; S is a procedure declaration whose body is S, and the
other occurrences of P are procedure statements. The procedure statements
are said to call the procedure defined by the procedure declaration.
Under the scope of the declaration procedure P; S, the procedure state-
ment P will have the same meaning as S. For example, under the scope of

procedure stepx; x := x+1 |

the statement stepx will have the same meaning as x := x +1.

In this form, the procedure facility has limited usefulness; it is unusual
to need exactly the same statement in several places. More often, one needs
statements that are similar in form but different in the occurrences of certain
subphrases. To accomplish this kind of variation, we introduce parameters.

The basic idea is to add a parenthesized list of distinct identifiers Fy; ... 3
F,, called formal parameters, to the procedure declaration:

procedure P(Fy; ... ; F,); S

and to add a corresponding list of phrases Ay, ... , A,, called actual param-
eters to each procedure statement:

P(Ay, ..., Ay)
Then, under the scope of the above declaration, P(Ay, ... , A,) will have
the same meaning as the statement obtained by substituting A, ... , A, for
Fl! cee o Fn in S.

For example, if we declare
procedure incx(integer {exp} Y x:i=x+y

(the occurrence of integer {exp} here will be explained in the next section),
then the procedure statement incx(3) will have the same meaning as x :=
x + 3, and the procedure statement incx(a X b) will have the same meaning as
x:=x+aXhb.

Actually, the exact definition of the meaning of procedures, called the
copy rule, is somewhat more complicated than is indicated by the above
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discussion. Before stating the copy rule, however, we must describe the
binding properties of procedure declarations, which are more complex than
those of other declarations.

Like all declarations, a procedure declaration binds the identifier which
it declares, i.e. in

procedure P(Fy; ... ; F,); S

the occurrence of P is a binder whose scope is the scope of the declaration,
which is the immediately enclosing block, excluding lower and upper bounds
of array declarations that are immediately enclosed by that block. However,
the occurrences of Fy, ... , F, in the formal parameter list are also binders,
whose scope is different than that of the declaration: the scope of Fy, ..., F,is
the formal parameter list itself plus the body S of the procedure declaration.

This binding structure is illustrated by

) S
begin procedure incx(integer {exply); &) := ©+y;

incx(®+1)
end ,

where we have circled free identifier occurrences and drawn arrows from
bound occurrences to the binders that bind them. Notice that the procedure
statement incx(Q)+ 1) falls within the scope of the binder of incx, but not
within the scope of the binder of y. Also notice that a procedure body can
contain free occurrences of identifiers, such as x, that are not formal para-
meters. In general, the free identifier occurrences in the body of a procedure
declaration that are not bound by the formal parameter list of that declara-
tion are said to be global occurrences.

We can now state the copy rule: Let P(A,, ... , A,) be a procedure
statement in which the occurrence of P is bound by the declaration

procedure P(Fy; ... ; F,); S

Suppose that, for every identifier G occurring globally in S, there is no binder
of G whose scope includes the procedure statement but not the procedure
declaration. Then P(A;, ... , A,) has the same meaning as

S‘ Fi, ..., Fp—A1, ..., An

The restriction on binders of global identifiers is needed to avoid
identifier collisions. As will be illustrated in Section 3.1.3, this restriction can
always be satisfied by alpha-converting the scope of the offending binders.

It should be emphasized that the copy rule describes the meaning of



160 PROCEDURES CHAP. 3

procedures rather than their implementation. One could implement proce-
dures (excepting recursive procedures, which will be introduced in Section
3.2) by using the copy rule to eliminate procedure statements prior to
translation into machine code; such an approach is often called an “open
subroutine” or “‘macro-expansion” implementation. In the implementation
of Algol W, however, “closed subroutines” are used: procedure declarations
and statements are compiled into separate segments of code, and during the
execution of a procedure statement control passes back and forth between
these segments in a complex manner that simulates the copy rule.

We will not discuss the details of this implementation method, which is
described in [Dijkstra 60] and [Randell 64]. Its overall effect, however, is to
reduce the storage needed for machine code at the expense of increasing
execution time and the storage needed for data. However, these increases do
not affect order of magnitude bounds on time or storage space.

3.1.2 Specifiers and Phrase Types

In the previous discussion, we glossed over the possibility that the
formal and actual parameters of a procedure may not match, so that the
substitution prescribed by the copy rule gives a syntactically invalid state-
ment.

Consider a procedure declaration with n formal parameters:

procedure P(F; ... ; F,); S

Under the scope of this declaration, each procedure statement P(A;, ..., A)
must obviously have n actual parameters. Beyond this, however, each A;
must be a phrase that can meaningfully replace F; at all of its free occurrences
in the procedure body S. For example, under the declaration of incx given in
the previous section, the statement incx(true) would be erroneous, since
substituting true for y in the body x := x+y would give the syntactically
invalid x := x + true.

Itis important to be able to detect this kind of error during compilation
rather than execution. (“During execution” can be long after the program
has been written, tested, and falsely presumed correct.) For this purpose,
Algol W requires the programmer to specify the types of all formal paramet-
ers. A procedure declaration with n formal parameters actually has the form

procedure P(oy; ... ; 0,); S

where each o, is a specifier, which not only names the formal parameter F;
but also describes its type. Using the type information in o, the compiler
checks both the occurrences of F; in § and the corresponding actual parame-
ter A; in each procedure statement that calls P. The type information is also
used to improve the efficiency of the closed-subroutine implementation.
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For example, the specifier integer y in
procedure incx(integer y); x := x+y

nermits the compiler to detect an incorrect usage, such as x := x and y, of the
'formal parameter y in the body of the procedure declaration, and to detect a
rocedure statement, such as incx(true), with an incorrect actual parameter.
Ideally, these checks by the compiler should insure that no parameter
mismatches can occur during execution of a program, i.e. that the substitu-
tion prescribed by the copy rule never gives a syntactically invalid statement.
Unfortunately, however, the specifiers used in Algol W are inadequate to
achieve this goal. For example, one can declare

procedure setzero(integer y); y := 0

In contrast to the situation with incx, a procedure statement such as
setzero(7) is erroneous, since the substitution of 7 for y would give the
invalid statement 7 : = 0. Similarly, setzero(a + 1) is erroneous, since it would
lead to a + 1 := 0. In general, however, this kind of error cannot be detected
in Algol W programs before execution.

This inadequacy is the most serious design mistake in the language. It
postpones the detection of a significant class of errors from compilation to
execution. Moreover, the need to detect such errors during execution
degrades the efficiency of the procedure mechanism.

At the time Algol W was developed, the design of adequate specifiers
was not understood. Since then, however, largely through the development
of Algol 68 [van Wijngaarden 69], the problem has been solved. In this
book, we will apply the solution retroactively to Algol W.

Essentially, we will change Algol W by extending the form of specifiers
to eliminate their inadequacies. Of course, we will not actually change the
compiler to accept a different form of specifier or to detect more errors. The
extra information in our extended specifiers will really be comments—indi-
cated by the perennial curly brackets—but these comments will be used in a
formally prescribed manner that will insure the correctness of parameter
matching.

For example, we will write

procedure incx(integer {exp} y)ixi=x+y

to indicate that the formal parameter y is used in the procedure body as an
integer expression, but not in a context, such as the left side of an assignment
statement, that requires a variable. This permits procedure statements such
as incx(7) or incx(a + 1), though it prohibits statements such as incx(true) or
incx(3.5) where the actual parameter is not an integer expression.

On the other hand, we will write

procedure setzero(integer {var} y); y:= 0
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to indicate that the formal parameter y may be assigned to (as well ag
evaluated) in the procedure body. This permits statements such as setzero(a)
or setzero(X(1)), but prohibits statements such as setzero(7) or setzero(a + 1)
where the actual parameter is not a variable.

In general, what an (extended) specifier specifies is the phrase type of
the formal parameter that it binds. At the outset, it must be emphasized that
phrase types are quite different than data types. A data type, such as integer.
describes a set of values that can be taken on by a particular kind of variable.
On the other hand, a phrase type, such as integer variable, integer expres-
sion, or procedure(integer expression), describes a set of phrases that have a
particular kind of meaning. When a formal parameter is specified to have the
phrase type 6, it must only occur in contexts that would permit any phrase of
type 6 (perhaps after parenthesization), and each corresponding actual
parameter must be a phrase of type 6.

For instance, for any data type 7, the specifier 7 {var} F specifies that F
has phrase type 7 variable. Phrases of this type include not only appropri-
ately declared identifiers, but also array designators such as X(1), where X
denotes a one—dimensional 7 array. On the other hand, the specifier
7 {exp} F specifies that F has phrase type 7 expression. Phrases of this type
include not only phrases of type 7 variable, but also various constants and
compound expressions. Since the variety of phrases is greater for 7 expres-
sion than for 7 variable, the variety of contexts that permit formal parameters
is more limited, e.g. it excludes the left sides of assignment statements.

Formal parameters of phrase type 7 variable or 7 expression are often
called simple parameters. In Section 3.1.5 we will introduce other specifiers
for simple parameters, and in Sections 3.1.6 to 3.1.8 we will introduce
specifiers for parameters of other phrase types.

Frequently, several formal parameters of the same procedure will have
similar specifiers. When such specifiers appear consecutively in the formal
parameter list they may be combined into a single compound specifier. For
example, the formal parameter list

integer {exp} i; integer {exp} j; real {var} x; real {var} y
can be abbreviated by
integer {exp} i, J; real {var} X,y

Note that, just as with declarations, specifiers are separated by semicolons,
while formal parameters within compound specifiers are separated by com-
mas.

Not only specifiers, but all binding mechanisms specify the phrase type
of the identifiers that they bind. For example, the declaration 7 I, ... , I,
specifies that Iy, ... , I, have phrase type 7 variable. The quantifiers (V1 € S)
and (31 € S) each specify that I has phrase type 7 expression, where 7 is the
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data type of the members of S. (One needs 7 expression here, rather than 7
variable, so that constants or compound expressions can be substituted for /
when applying law (4) of Section 2.2.5.)

The nature of specifiers and phrase types is formalized by the syntax in
Appendix B, where phrases of type 6 are the phrases that can be derived
from the nonterminal (6), and the contexts that permit formal parameters
and other identifiers of phrase type 6 are the contexts that permit the
nonterminal (@ identifier). In Section B.3 of Appendix B, it is shown that
correctness with regard to this syntax is preserved by the copy rule.

3.1.3 Identifier Collisions

Most of the programs developed in previous chapters might reasonably
occur within complete programs as the bodies of procedure declarations. An
example is the following declaration of a procedure for computing the
factorial:

procedure fact(integer {exp} n; integer {var} f);

{n=0}
begin integer k;
k:=0;f:=1;

while k= n do
begin k := k+1; f:= kX fend
end

{f=nt} .

Suppose 4, b, c are integer variables, and x is a real variable. It is easily
seen from the copy rule that, under the scope of this declaration, the
procedure statement fact(a, b) will set b to the factorial of a, fact(3, a) will set
a to 6, and fact(a+ b, c¢) will set ¢ to the factorial of a + b. On-the other hand,
because of the rules for parameter matching, fact(a, b, c), fact(true, a),
fact(x, a), fact(3, x), fac(3, 4), and fact(3, a+ b) are all erroneous.

A more interesting case is the procedure statement fact(k, a). At first
sight, it might appear that the copy rule asserts that this is equivalent to

begin integer k;
k:=0;a:=1;
while & > k do
begin k := k+1; a := kXa end
end

But this statement will not compute the factorial correctly, since the actual
parameter k has been captured by the declaration of the local variable k.

This is another instance of the interaction between substitution and
binding called identifier collision, which was first encountered in Section
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2.2.6. The definition of substitution given there requires that, before sup.
stituting Ay, ... , A, for Fy, ... , F, in §, S must be alpha-converted to
eliminate binders of identifiers that occur free in any A;. In this case, since k
occurs free in an actual parameter, the procedure body must be converted tg
eliminate the binder of k before substituting k,a for n, f. Thus the procedure
statement fact(k, a) is equivalent to

begin integer k;
kK :=0;a:=1;
while &' k do
begin K := k' +1; a := k' Xa end
end ,

where the bound occurrences of k have been renamed k'. As one would
hope, this statement will set a to the factorial of k. (Strictly speaking, k' is not
a legal Algol W identifier, but for expository purposes the use of primes to
indicate renaming is irresistible.)

When a program is to be encapsulated as a procedure, one must decide
which of the identifiers occurring free in the program are to be bound as
formal parameters and which are to be left as globals. In general, it is clearest
to parameterize only those identifiers whose meaning will vary among
different calls of the procedure. Thus one would declare

procedure incx(integer {exp} y); x 1= x+y

to increase the particular variable x by a variety of values,
procedure inchyy(integer {var} x); x := x+y

to increase a variety of variables by the particular value y, and
procedure inc(integer {var} x; integer {exp} y);x:=x+y

to increase a variety of variables by a variety of values.
Global identifier occurrences introduce further possibilities for iden-
tifier collisions. Consider, for example,

begin integer x;
procedure incx(integer {exp} y); x 1= x+y;

begin integer x; ... incx(3); ... end
end

Here the global occurrences of x are bound by the first declaration of x, so
that incx is a procedure for increasing the particular variable denoted by that
declaration. Thus this block should not be equivalent to
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begin integer x;

begin integer x; ... x := x+3; ... end
end ,

in which x := x + 3 increases the variable denoted by the second declaration
of x.

This is the rationale for the proviso in the copy rule that “for every
identifier G occurring globally in S, there is no binder of G whose scope
includes the procedure statement but not the procedure declaration.” To
meet this proviso, we must alpha-convert our example to eliminate the
second declaration of x before applying the copy rule. This gives

begin integer x;

begin integer x ; ... x := x+3; ... end
end ,

in which x := x + 3 increases the variable declared by the first declaration.

Exercise

1. For each identifier occurrence in the following statements, indicate whether it is
free or bound and, if it is bound, indicate the binder that binds it. Then use the
copy rule, with alpha conversion when necessary, to produce equivalent state-
ments that do not contain procedure statements.

(a) begin integer x;
procedure powerx(integer {exp} n; integer {var} y);
begin integer k; k := 0; y := 1;
while ksn do begin k := k+1;y := xXy end

end;
x:=3;
begin integer x; ... powerx(k+1, x); ... end
end
(b) begin
procedure p(integer {var} y);
begin

procedure p(integer {var} y, z);
begin integer x; x := y; y := z; z := x end;
plx, y)
end;
begin integer x; ... p(x); ... end
end
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3.1.4 Interference and Parameter Assumptions

Although the copy rule avoids identifier collisions by alpha conversion, it
does not avoid another phenomenon called interference. A simple illustra-
tion is provided by the procedure statement fact(a, a), which is equivalent to

begin integer k;
k:=0;a:=1;
while k% a do
begin k := k+1;a := kXaend
end

This statement does not set the variable a to the factorial of its previous
value. The difficulty is that the two formal parameters n and f, which we
expected to denote distinct variables when we wrote the procedure body,
have both been replaced by actual parameters denoting the same variable.
This replacement causes f to interfere with n, i.e. an assignment to f will
change the value of n. In fact, the assignment f := 1 will obliterate the value
of n whose factorial we are trying to compute.

More generally, interference can occur whenever an actual parameter
of phrase type 7 variable occurs in some other actual parameter. For exam-
ple, fact(a + b, a) will not set a to the factorial of a + b. Again, the replace-
ment of formal by actual parameters causes f to interfere with n.

Interference can also take place between formal parameters and global
identifiers. For example,

procedure powerx(integer {exp} n; integer {var} y);

{n=0}
begin integer k;
k:=0;y:=1;

while ks n do
begin k := k+1; y := xXy end

end

{y=x}
will normally set y to the nth power of the global variable x. But this
procedure will not behave correctly if y interferes with either the formal
parameter n or the global identifier x. Thus both powerx(a, a) and powerx(a,
x) would be erroneous calls.

These examples make it clear that the correctness of a procedure
statement will often depend upon assumptions of noninterference that
restrict the replacement of formal by actual parameters. A clearly
documented procedure declaration must include a description of these
parameter assumptions.

For this purpose we will write X # E, where X is a variable and E is an
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expression, to indicate that X must not interfere with E, i.e. that no assign-
ment to X may affect the value of E. (Normally, X and E will be formal
parameters or global identifiers.) When more than one such assumption is
necessary, they will be joined together with the symbol & (meaning “and’).
The parameter assumptions will then be labeled with the symbol pa, sur-
rounded by curly brackets (since they are formal comments about program
correctness), and placed between the formal parameter list and the proce-
dure body (before the precedent of the body if it is present).
For example, a correctly annotated version of fact is

procedure fact(integer {exp} n; integer {var} f);

{pa: f # n}
{n?O}

begin integer k;
k:=0;f:=1;

while k = n do
begin k := k+1; f:= kX fend
end

{ f=n!} g
Similarly, for powerx we would write

procedure powerx(integer {exp} n; integer {var} y);
{pa: y#n & v#x}

{n=0}
begin integer k;
k:=0;y:=1;

while k #n do

begin k := k+1; y := xXyend
end
{y=o"} .

It is important to understand the distinction between assertions, para-
meter assumptions, and specifiers. Assertions describe states of the compu-
tation. Parameter assumptions and specifiers describe restrictions on the
replacement of formal by actual parameters. The distinction between the
latter two entities is that specifiers describe syntactic restrictions, i.e. restric-
tions that can be expressed by a syntactic description of the programming
language (as in Appendix B), and that can be enforced by a compiler (even
though the existing Algol W compiler does not enforce our extended speci-
fiers). In contrast, parameter assumptions describe restrictions that are, in
general, too subtle to be treated syntactically or to be enforced by a com-
piler.

(Actually, the possibility of devising syntactic restrictions to control
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interference is a current research topic of considerable importance, espe-
cially for the design of programming languages for concurrent computation
[Reynolds 78a]. However, such an approach to the problem of interference
is beyond the scope of this book.)

3.1.5 Call by Value and Result

For simple parameters, there is a standard method for avoiding the problems
of interference. The basic idea is to replace occurrences of formal paramet-
ers in the procedure body by local variables. Then the formal parameters
that convey input information are used to initialize the corresponding local
variables, while the formal parameters that convey output information are
assigned the final values of the corresponding local variables.

For example, the result of applying this transformation to the procedure
fact would give

procedure fact(integer {exp} n; integer {var} f);
begin integer n’, f;
n' := n;
begin integer k;
k:=0;f :=1;
while k#n’ do
begin k := k+1; f := kXf end
end;
Fe

end

In this form, the procedure will still work correctly when f interferes with n,

since this will not cause the local variables ' and n’ to interfere, and since the

procedure never examines the possibly altered value of n after assigning to f.
For example, fact(a+b, a) has the same meaning as

begin integer n', f';

n :=a+b;
begin integer k;
k:=0;f :=1;

while k< n' do
begin k := k+1; f := kxf end
end;
a:=f
end .
Of course, this statement will change the value of a+ b, so that a=(a + b)!
will not hold after execution. But the final value of a will be the factorial of
the initial value of a+ b, i.e.
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{a+b=0 and a+b=ny} fact(a+b, a) {a=ny} .

This kind of transformation is so commonly useful that an equivalent

mechanism is built into Algol W. To define the procedure given above, one
need only write the declaration

procedure fact(integer value n; integer result f);
begin integer k;
k:=0;f:=1;
while k>n do
begin k := k+1; f:= kX fend
end

The general mechanism is the following: Instead of using the specifiers
v{var} For7 {exp} F (where 7 is some data type), one may use any of the
following specifiers:

7 value F
7 result F
7 value result F

In these cases the formal parameter F is said to be called by value, called by
result, or called by value and result, respectively. In contrast, a formal
parameter with any other form of specifier is said to be called by name.

(Although these terms are firmly entrenched in the computing litera-
ture, they are slightly illogical. One normally speaks of a procedure state-
ment “calling” a procedure, e.g. fact(a+b, c) calls fact. But “‘call by name”’ or
“by value” or “by result” describes the behavior of a parameter, not a
procedure.)

The effect of these new specifiers is equivalent to transforming the body
of the procedure declaration as follows:

(1) All free occurrences of formal parameters called by value or by
result (or both) are renamed. (We will indicate this renaming by
adding primes to the parameter occurrences.)

(2) The procedure body is enclosed in a block in which the renamed
parameters are declared as local variables, with the data types
indicated by their specifiers.

(3) For each formal parameter F; called by value, or by value and
result, the assignment F; := F; is added to the beginning of the
block enclosing the body.

(4) For each formal parameter F; called by result, or by value and
result, the assignment F; := F; is added to the end of the block
enclosing the body.

After the procedure body has been transformed in this manner, specifiers of
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the form 7 value F should be replaced by 7 {exp} F, and specifiers of the form
7 result F and 7 value result F should be replaced by 7 {var} F.

This transformation preserves syntactic correctness if each forma]
parameter specified by 7 value, 7 result, or 7 value result is used as a 7 variable
within the procedure body. For 7 result and 7 value result, the corresponding
actual parameters must also be 7 variables, but for 7 value, the corresponding
actual parameters may be = expressions. (Thus 7 value is anomalous in
specifying one phrase type, 7 variable, for the identifier that it binds but
another phrase type, 7 expression, for corresponding actual parameters.)

In addition to avoiding the problems of interference, call by value and
call by result are usually more efficient than call by name. This is especially
true when a formal parameter that is repeatedly evaluated in the procedure
body is replaced by an actual parameter that is a complex expression. For
example, consider fact((a+ b) X ¢, d). When the formal parameter n (cor-
responding to (a + b) X c) is called by name, this statement is equivalent to

begin integer k;
k=305 ds=iil
while k « (a+ b) X ¢ do
begin k := k+1; d := kXd end
end ,

which will repeatedly evaluate (a+ b) X c. On the other hand, when n is
called by value, the expression (a + b) X ¢ will only be evaluated once, at the
beginning of the procedure body.

In most cases, it is best to call simple parameters by value and/or result.
One should specify value if the formal parameter conveys input information,
and result if it conveys output information. Indeed, the Algol W compiler
encourages the use of call by value and result by giving a warning message
whenever a simple parameter is called by name. Conceptually, however, call
by name is more fundamental, since it is defined directly by the copy rule,
while call by value and result are defined in terms of call by name in the
manner we have just described.

Nevertheless, there are situations where call by name is needed for
simple parameters. One case occurs when it is necessary to avoid evaluation
of some parameter for certain values of other parameters. Consider

procedure setimply(logical result p; logical value g;
logical {exp} r);
p := if q then r else true

If P is a logical variable and Q and R are logical expressions, then the
procedure statement

setimply(P, Q, R)
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has the same effect as P := if O then R else true, or P := Q implies R (which
cannot be written in Algol W since the language does not provide the logical
operator implies). Calling r by name rather than by value avoids the
unnecessary evaluation of R when Q is false. This is vital if R is ill-defined for
certain states in which Q is false. For example, suppose X is an array with
domain @. Then the use of call by name for r is necessary to avoid
subscript errors in a procedure statement such as

setimply(zerovalue, (a<i) and (i<b), X(i)=0) -

A more profound application of call by name, known as Jensen’s device,
turns the phenomena of repeated evaluation and interference into advan-
tages. Consider

procedure sum(integer {var} i; integer {exp} e);
begin s := 0;i:=a—1;
while i<b do
begini:=i+1;s5 := s+e end
end

Suppose I is an integer variable and E is an integer expression. Then the
procedure statement sum(l, E) is equivalent to

begin s := 0; ] := a—1;
while /<b do

begin I := I+1, s := s+ E end
end

At first sight this statement appears to sum the same value of E
repgﬁedly, i.e. to be an unusually inefficient way of setting s to
(#IL’_,I") X E. But suppose that the variable / interferes with the expression
E. Then each execution of the while-statement body will evaluate E for a
different value of I, and the program will set s to the sum

b
> E
I=a

For example, if a is 1, b is 100, and X is an array with the domain

[1100], then sum(j, X(j) X X(j)) will set s to

100

3 X)X

i.e. to the vector product of X with itself.

Call by name and call by value are peculiar to Algol-like languages, and
call by result is an original feature of Algol W. Most programming languages,
including FORTRAN and PL/I, treat parameters by a method known as call
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by reference or by address. In this approach, a formal parameter F; denoteg
the same variable as the corresponding actual parameter A; when A; denoteg
a variable, but F; denotes a local variable initialized to A; when A; is 3
constant or a compound expression. Roughly speaking, variables are called
by name, while constants and compound expressions are called by value,
Repeated (or avoided) parameter evaluation never occurs, but interference
is still possible. Call by reference is less powerful than the combination of call
by name and by value, but it can be given a more efficient implementation,

This brief description glosses over some subtle differences between call
by reference and call by name which have profound repercussions upon the
formal definition of programming languages and methods for proving prog-
ram correctness. Although call by reference is more prevalent in present-day
programming languages, the author believes that call by name is a more
sound conceptual basis for the procedure mechanism.

Exercises

1. Show that, for the procedure fact, interference problems will be avoided if 7 is
called by value and f by name, or if n is called by name and f by result.

2. When call by value is specified, one can assign to the formal parameter without
affecting the corresponding actual parameter. Use this capability to write a
version of fact whose only local variables are the ‘“hidden” local variables
implicit in the use of call by value or result.

(Hint: Use the invariant f X (n!)=ny! and n=0, where ng is a ghost identifier referring to
the value of the formal parameter #» when execution of the procedure body begins.)

3. Consider how the examples and exercises in Chapter 1 might be encapsulated as
procedures. In particular, determine which identifiers should be formal para-
meters, and what their specifiers should be. Are there any cases in which call by
name might be useful?

3.1.6 Array Parameters

So far, we have only considered simple parameters, whose phrase type is 7
variable or 7 expression. In this section and the next we move on to paramet-
ers with other phrase types. The copy rule is sufficiently general to handle
these extensions, but additional specifiers must be introduced.

An array specifier in Algol W has the form rarray F(#, ..., *), where 7 is
a data type and the parenthesized list, called a dimension list, contains n=1
asterisks. This specifies that F denotes an n-dimensional array whose ele-
ments have data type 7. A corresponding actual parameter must also denote
an n-dimentional array whose elements have data type 7.
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Just as with simple call-by-name parameters, we will extend array
specitiers by adding {exp} or {var}. The specifier

T array {exp} F(», ..., *)

which establishes the phrase type 7 array expression(*, ..., *), will be used if
no element of F can be assigned to or changed by executing the procedure,
while

7 array {var} F(x, ... , *)

which establishes the phrase type 7 array variable(*, ... , *), will be used
otherwise.

In this case, the use of {exp} or {var} is not needed to ensure that the
copy rule preserves syntactic correctness, since there is no phrase in Algol W
that denotes an array value but not an array whose elements can be assigned
to. However, such array expressions are conceptually possible; indeed,
much of Chapter 2 was devoted to defining such expressions, e.g. [ X| i: e] or
X - Y, for use in assertions. Moreover, the use of {exp} or {var} provides
essential information about a procedure by indicating which parameters
denote arrays whose values may be changed by the procedure.

Similar array specifiers that occur consecutively can be combined. For
example,

integer array {exp} X(*); integer array {exp} Y(*)
can be abbreviated by the compound array specifier
integer array {exp} X, Y(x)

Array parameters are always called by name, so that interference
between arrays can affect correctness. One should be wary whenever the
same array identifier occurs more than once as an actual parameter in a
procedure statement.

The omission of call by value or result for arrays is motivated by both
consistency and efficiency. The provision of these facilities would introduce
implicit array assignments into a language that does not permit explicit array
assignments, and would obscure the space and time requirements of array-
handling procedures. Although, as we will see below, there are situations
where arrays must be copied to avoid interference, such copying can have a
major impact on the time and space requirements of a program, so that it is
better to program the copying explicitly rather than hide it in a parameter-
passing mechanism.

As an example of the use of array parameters, the following procedure
encapsulates the program constructed in Section 2.2.7 for finding the sub-
script of a maximum of an array segment:
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procedure max(integer value a, b; integer result j;
integer array {exp} X(*));

{Ia bl < dom X and |a| 5|}
begin integer k;

j:=a; k := a;
{whileinv: [« [;] %] bl and {X 1 | &} =* X(j)}
while k<b do

begin k := k+1; if X(k)>X(j) thenj := k end
end

{la [ bl and{X 1]a 8]} <* X(j)} .

Similarly, we can present the sorting program of Section 2.3.3 as a
procedure. But now we can express the way in which this sorting program
uses maximum-finding as a subsidiary operation by having the sorting pro-
cedure call the previously defined maximum-finding procedure, i.e. by using
a procedure statement referring to max in the body of the declaration of
maxsort:

procedure maxsort(integer value a, b; integer array {var} X( *));
{la_bj<dom X and X=X}
begin integer m;
m := b;
{whileinv: [a_m| b| and ord< X 1 m| b|
and (X 1 [a_ml} <* {X 1 m[ b))
and X1 [a_b|~ Xo1[a_b]}

while a<m do
begin integer j;
max(a, m, j, X);
begin integer ¢; ¢ := X(j); X(j) := X(m); X(m) := ¢ end;
m:=m-—1
end
end

ord- X1 [a bland X1 [a ]~ X, 1 [a 5]}

We could also express the subsidiary operation of exchanging two array
elements as a separate procedure, i.e. we could define

procedure exchange(integer value i, j; integer array {var} X (*));
begin integer ¢; ¢t := X(i); X(i) := X(j); X(j) := tend ,

and then write
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procedure maxsort(integer value a, b; integer array {var} X(+));
{la_b|=dom X and X=X}
begin integer m;
m := b;
{whileinv: ... }
while a<m do
begin integer j;
max(a, m, j, X);
exchange(j, m, X);
m:=m-1
end
end

{ord- X1 [a_bland X1 [a_b|~X,1 [« b]} .

Notice that the specifier of X contains {var}, even though no assignment
toan element of X appears in the body of maxsort. One must still use {var} to
indicate that executing maxsort will change X, even though the change is
caused by calling another procedure.

Two more examples of array-manipulating procedures are constructed
from the partition program of Section 2.3.5:

procedure partition (integer value a, b, r;
integer result c; integer array {var} X (*));
{la_bicdom X and X=X}
begin integer d;
c:=a;d:= b;
{whileinv: Ia Ic d| b| and {X 1 E]c} <*r
and r <* {X 1 d[:b]}andX’] EH'\-X(A |a—__b|}
while c<d do
if X(c)<r then c := c+1 else
if X(d)>r then d := d—1 else
begin
{14}
begin integer ¢; ¢ :=X(c); X(c) :=X(d); X(d) := t end;
c:=c+l;d:=d-1
end
end
{la Jc bland {X1[a_Jc} <*randr <*{X1[c b}
and X1 [a_ 5|~ X1 la 8]} .
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and from the merging program of Section 2.3.6:

procedure merge(integer value ax, bx, ay, by, az, bz;
integer array {exp} X, Y(#); integer array {var} Z(+));
{pa: Z#X & Z#Y}
{lax_bx|=dom X and [ay by|<dom Y and [az bz|< dom 7
and ord- X and ord< Y ]
and # [ax bx]+ #lay ﬂ=#|a: bz| }

begin integer kx, ky, kz;

kx := ax; ky := ay; kz := az;

{whileinv: [ax [kx bx| and [ay [ky by| and [az [kz b

and ord< Z 1 |az |kz

and {Z 1 [az_|kz} =*{X 1 [kx_ba}U{Y 1 [ky by]}

and # |kx bx|+ #|ky by|=# |kz b2

and (Z1 [az_Jkz)~ (X 1 [ax k)@ (Y 1 [ay k) }

while kz<bz do
if (if ky>by then true else if kx>bx then false else
X(kx)<Y(ky))
then begin Z(kz):=X(kx); kx:=kx+1; kz:=kz+1 end
else begin Z(kz):=Y(ky); ky:=ky+1; kz:=kz+1 end
end

{ord-. Z 1 !az bzl
and (Z1 [az_bz))~ (X1 [ax_bs]) @ (Y1 [ay_by) } .

Since the last procedure has several array parameters, one of which is
changed by the procedure, it raises the possibility of interference between
the array parameters. Consider a procedure statement merge( ... ) in which
the same array identifier occurs twice as an actual parameter. There is no
problem if the actual parameters corresponding to the formal parameters X
and Y are the same, since neither of these arrays is changed by the proce-
dure. But merge may not behave correctly if the actual parameters corres-
ponding to X and Z, or to Y and Z, are the same. In this situation, the
procedure may perform assignments to elements of Z that are yet-to-be-
processed elements of X or Y. Thus, correct usage of merge requires that Z
must not interfere with X or Y.

We have indicated this requirement as a parameter assumption. In
general, if X and Y are arrays, we write X# Y to indicate that no assignment
to an element of X should affect the value of an element of Y. Similarly, if X
is an array and E is an expression, we write X#E to indicate that no
assignment to an element of X should affect the value of E.
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Of course, even though we cannot call arrays by value or result, we
could overcome the interference problem by simulating call by result for Z
(or call by value for X and Y). We could simply replace Z in the body of
;nerge by a local array ZZ, and add a statement for copying ZZ into Z to the
end of the body:

procedure merge(integer value ax, bx, ay, by, az, bz;
integer array {exp} X, Y(*); integer array {var} Z(*));
begin integer array ZZ(az::bz);
begin ... end;
begin integer k; k := az — 1;
while k<bz do
begin k := k+1; Z(k) := ZZ(k) end
end
end

(where begin ... end is the previous procedure body with Z replaced by ZZ).
But now we have increased the space and time requirements of merge
substantially and, more crucially, we have imposed this penalty on all usages
of merge to accommodate a particular kind of usage. A far more flexible
approach, encouraged by the absence of call by value or result for arrays, is
to retain the original version of merge, to state its limitations clearly, and to
leave the problem of circumventing these limitations to its users.

Exercise

1. For Exercises 4 to 6 following Section 2.3.7, encapsulate the solution of each
exercise as a procedure by constructing an appropriate heading. Include the
necessary parameter assumptions.

3.1.7 Procedure Parameters

In Algol W, a parameter of a procedure can itself denote a procedure. Thus
one procedure can be passed as a parameter to a second procedure, and then
called from within the body of the second procedure. For example, if we
declare

procedure p(procedure g {integer exp, integer var});
begin ... gla+b, ¢) ... end

then the statement p(fact) has the same meaning as the result of substituting
fact for q in the body of p, so that g(a +b, c) becomes fact(a+b, c).

In Algol W, the specifier procedure F is used to indicate that the formal
parameter F denotes a proper procedure. However, just as with other kinds
of parameters, this form of specifier must be extended to provide enough
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information to check parameter matching. As illustrated above, we wij
include in the specifier of a procedure parameter a list of the phrase types of
the parameters to which the procedure parameter can be applied. In genera].
we will use a specifier of the form

procedure F {61, v, 0,}

to indicate that the formal parameter F denotes a proper procedure that i
turn accepts n=1 parameters of types 61, ... , 6,. The phrase type established
by this specification is procedure(f, ... , 6,).

When n=0, i.e. when F denotes a ‘“‘parameterless” procedure, ap
interesting possibility arises. Within the body of the procedure in which Fisa
formal parameter, any call of F will be a procedure statement consisting of F
by itself, which will remain syntactically correct if F is replaced by any
statement. Thus an actual parameter corresponding to F can be any state-
ment, rather than just an identifier denoting a parameterless procedure.

In fact, this possibility is permitted in Algol W. Thus we say that the
specifier procedure F (where the absence of curly brackets indicates n=0)
establishes the phrase type statement, indicating that an actual parameter
corresponding to F can be any statement.

As an example, consider

procedure repeat(procedure s; logical {exp} / );
begin s; while 1/ do s end

If S is a statement and L is a logical expression, then repeat(S, L) is
equivalent to begin S; while 7L do S end, or to the flowchart

Thus repeat(S, L) is equivalent to the statement repeat S until L, which is not
provided in Algol W, but occurs in several other languages and expositions
of programming [Wirth 71a, Dijkstra 71].

As a second example, consider

procedure iterate(integer value a, b; procedure p {integer exp});
begin integer k; k := a—1,;
while k<b do
begin k := k+1; p(k) end
end
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The effect of this procedure is to apply p to every integer in m, in
increasing order. (Notice that {integer exp} in the specification indicates that
ptk) should not change the value of k.) Thus, for example, the following
statement will set s to the sum of the segment of X over

begin

procedure addoneelement(integer {exp} i); 5 := s+ X(i);
s := 0; iterate(a, b, addoneelement)

end

To see this, we first apply the copy rule (and the rule for call by value) to
the call of iterate:

begin
procedure addoneelement(integer {exp} i); s := s+ X(J);
s:=0;
begin integer a', b';
a :=a;b :=b;
begin integer k; k := a —1;
while k<b" do
begin k := k+ 1; addoneelement(k) end
end
end
end ,

and then apply the copy rule to the resulting call of addoneelement:

begin
procedure addoneelement(integer {exp} i); s := s+ X();
s := 0;
begin integer a', b';
a :=a;b :=b;
begin integer k; k := a' —1;
while k<b' do
begin k := k+1; s := s+ X(k) end
end
end
end

Procedures that accept procedure parameters are often called higher-
order procedures. As illustrated by repeat and iterate, such procedures can be
used to describe control mechanisms. Indeed in Section 4.1.1 we will see that
the Algol W for statement can be viewed as a call of iterate. Further examples
of higher-order procedures will occur in Chapter D
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3.1.8 Function Procedures

Just as proper procedure declarations can be used to define new statements
called procedure statements, so function procedure declarations can be used
to define new expressions called function designators.

Let 7 denote integer, real, long real, or logical. Then a 7 functiop
declaration has the form

7 procedure P(oy; ... ; 0,); E

where each o, is a specifier of a formal parameter F;, and E is a 7 expression.
Within the scope of this declaration, one can write a 7 expression of the form

P(A,, ..., A,)

which is called a function designator. The meaning of P(A;, ..., A,) is again
defined by the copy rule: it is the same as the meaning of

El F1, ..., Fp—>Ay1, ... , Ay

with the proviso about global identifiers that is needed to avoid identifier
collisions. The form of specifiers, the rules for matching formal and actual
parameters, and the behavior of call by value and result are the same as for
proper procedures.

The following examples should be obvious:

integer procedure maximum(integer value m, n);
if m>n then m else n;

logical procedure even(integer value x); 10dd(x);

logical procedure implies(logical value g; logical {exp} r);
if g then r else true

Function procedures may also be used as parameters to either proper or
function procedures. For n=1, the extended specifier

7 procedure F {6, ... , 0,}

establishes the phrase type 7 procedure(fy, ... , 8,). When n=0, a corres-
ponding actual parameter may be any 7 expression, rather than just a 7
function procedure, since any call of F will be a function designator consist-
ing of F by itself, which will remain syntactically correct if F is replaced by
any (parenthesized) 7 expression. Although this possibility is not mentioned
in [Sites 72], it is a natural analogue of the situation for proper procedures
which appears (on the basis of several test cases) to be supported by the
Algol W implementation. Thus the specifier 7 procedure F (where the
absence of curly brackets indicates n=0) establishes the phrase type 7
expression. In fact, 7 procedure F has the same meaning as 7 {exp} F.
Algol W permits the bodies of function procedures to be a kind of
phrase called a block expression which can contain assignments and other



SEC. 3.1 PROCEDURES IN ALGOL W 181

statements. Unfortunately, the introduction of block expressions permits
the construction of expressions with side effects, i.e. expressions whose
evaluation can change the state of the computation.

The use of side effects can make programs very difficult to understand.
More fundamentally, side effects invalidate our whole approach to specify-
ing programs and proving their correctness, which relies upon the assump-
tion that any expression which can be written in the programming language
can also appear in assertions. The occurrence of an expression with side
effects in an assertion is meaningless, and thus the introduction of a language
feature permitting side effects would undermine the rigor of our logic.

For this reason we will not use block expressions in this book, nor will
we use call by result for the parameters of function procedures.

On the other hand, we will use call by value. The formal explanation of
call by value given in Section 3.1.5 does not extend to function procedures
(since we have proscribed block expressions), but the reader’s intuitive
understanding should be adequate. Call by value is usually preferable to call
by name (for simple parameters) since it prevents repeated evaluation of an
actual parameter. However, as indicated by the above declaration of implies,
call by name may be needed to avoid unnecessary evaluation.

Exercise

1. Most of the programs in Section 2.2, which use arrays but do not alter them, can
be recast as proper procedures that accept function procedures that in turn
accept integers. Encapsulate the program for binary search in Section 2.2.10asa
proper procedure that accepts a function X and searches over an interval for an
integer j such that X(j)=y.

3.1.9 A Summary

Since our exposition of the various aspects of procedures has been rather
discursive, it is useful to summarize their characteristics. Throughout this
summary, the symbol 7 stands for any of the four data types integer, real, long
real, or logical.

A proper procedure declaration has the form

procedure P(oy; ... 5 0,); S

where the body S is a statement, and a 7 function procedure declaration has
the form

7 procedure P(o(; ... ; 0,); E

where the body E is a 7 expression. In each case Pis a binder of an identifier,
and oy ; ... ; 0, is a formal parameter list in which each o, is a specifier. When
n=0 the parentheses enclosing the formal parameter list are omitted.
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In the sequel we will only describe specifiers that contain a single binder
of an identifier, which is called a formal parameter. However, any specifier
can be compounded by listing several formal parameters, separated by
commas, in place of a single formal parameter.

The scope of the binder P in a procedure declaration is the immediately
enclosing block, excluding lower and upper bounds in array declarations
immediately enclosed by that block. The scope of the binders in the forma]
parameter list is the formal parameter list plus the following procedure
body; the identifier occurrences which are free in the body and not bound by
these binders are called global occurrences.

The meaning of a procedure declaration can be obtained by first using
the transformation described in Section 3.1.5 to eliminate the specifiers
7 value F, 7 result F, and 7 value result F, and then using the copy rule
described in Section 3.1.1.

We have extended the form of specifiers in Algol W, by adding formally
prescribed comments in curly brackets, to achieve a syntax that guarantees
that the copy rule will preserve syntactic correctness. This syntax, precisely
described in Appendix B, is based on the idea that every binder establishes
the phrase type of the identifier occurrences that it binds, which in turn
determines the contexts that can contain these occurrences. In particular, an
identifier P of phrase type procedure(f,, ..., 6,) can only occur in a proce-
dure statement P(Aq, ..., A,) if each actual parameter A; is a phrase of type
0;. A similar requirement is imposed upon an identifier occurrence of type
7 procedure(f;, ... , 8,) in a function designator. As a consequence, the
substitution prescribed by the copy rule is always type-correct, i.e. it replaces
identifier occurrences by phrases of the same phrase type. In Section B.3.5
of Appendix B, we will show that, with appropriate parenthesization, such
substitutions preserve syntactic correctness.

The following is a list of the phrase types used in programs in this book,
along with a description of the declarations, specifiers, and other binders
that establish these phrase types:

(1) 7 variable. This phrase type is established by the declaration 7 I;,
... , I,, or by the specifier 7 {var} F, v value F, T result F, or 7
value result F.

(2) 7 expression. This phrase type is established by the declaration 7
procedure P; E, or by the specifier 7 {exp} F or 7 procedure F.
Moreover, as we will see in Section 4.1.1, the phrase type integer
expression is established by the binder in a for statement.

(3) 7 array variable(*, ... , *). This phrase type is established by the
declaration 7 array iy, ... , L,(L::Uq, ... , L,::U,), or by the
specifier 7 array {var} F(x, ... , *). The number n=>1 of asterisks
indicates the number of dimensions of the array.
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(4)

©)
(6)

™
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r array expression(#, ... , *). This phrase type is established by the
specifier 7 array {exp} F(*, ... , *). Again, the number of asterisks
indicates the number of dimensions.

statement. This phrase type is established by the declaration proce-
dure P; S, or by the specifier procedure F.

procedure(0y, ..., 0,), where n =1 and each 4, is a phrase type. This
phrase type is established by the declaration procedure P(oy; ... ;
a,); S, where each o, is a specifier establishing the phrase type 6;,
except that if g, is 7 value, 6, is 7 expression. It is also established by
the specifier procedure F {6, ... , 6,}.

7 procedure(fy, ... , 0,), where n=1 and each 6, is a phrase type.
This phrase type is established by the declaration 7 procedure P(c ;;
... ; o) E, where each o, determines v; as described in (6) above. It
is also established by the specifier 7 procedure F {6, ... , 0,}.

Exercise

1. Consider the following procedure declaration.

(a)
(b)
(©)

For each identifier occurrence, show the binder that binds it.

For each binder, show the phrase type that it establishes.

Use the copy rule to obtain an equivalent procedure declaration that does
not contain any calls of the procedures iter or q.

procedure doubleiter(procedure p {integer exp, integer exp});
begin
procedure iter(procedure p {integer exp});
begin integer k; k := 0;
while k<100 do
begin k := k+1; p(k) end
end,
procedure g(integer {exp} i);
begin
procedure g(integer {exp} j); p(i, j);
iter(q)
end;
iter(q)
end
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3.2 RECURSION

Since the scope of a procedure declaration is a block that includes the body
of the declaration, a procedure can be called from its own body, or from the
body of any other procedure declared in the same block. Thus a procedure
can call itself, and a family of procedures declared in the same block can cal]
one another. This capability is called recursion.

So far, we have used procedures to encapsulate parts of programs in
order to clarify structure and to avoid replicating similar parts of programs,
But the use of recursion goes far beyond this. It is a profound extension
of our programming language, which provides an essentially new way of
writing programs.

3.2.1 Simple Examples
Consider the procedure

procedure fact(integer value »; integer result f);
{n20}
if n=0 then f := 1 else
begin fact(n—1, f); f := n X f end
{f=n1} ,

which calls itself via the procedure statement fact(n—1, ). Obviously, fact(0,
f) sets fto the factorial of zero, since it only executes the assignment f:= 1.
But then fact(1, f) must set f to the factorial of one, since in this case the
recursive call fact(n—1, f) is fact(0, f). Similarly, fact(2, f) will call fact(1, f)
and will set f to the factorial of two, etc.

In summary, fact(0, f) works correctly, and for n>0, the correctness of
fact(n—1, f) implies the correctness of fact(n, f). Thus by induction on n,
fact(n, f) is correct for all n=0. However, the procedure does not work for
n<0; in this case it will continue to call itself forever with increasingly
negative values of n. Just as with the while statement, the use of recursion
can produce nonterminating computations.

Recursion can be explained by means of the copy rule. Of course,
applying the copy rule to a procedure statement that calls a recursive
procedure will always give another statement that still contains one or more
procedure statements as substatements—one can never eliminate such
statements completely. However, for any particular terminating execution
of a recursive procedure statement, there will be some finite number of
copy-rule applications such that the remaining procedure statements will not
be executed. For example, applying the copy rule twice to fact(n, f) (and
using the rules for call by value and result) gives
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begin integer n', f'; n' :=n;
if =0 then f := 1 else
begin
begin integer n”, f'; n":=n' —1;
if n"=0 then f" := 1 else
begin fact(n"—1, f"); f' := n" X f" end;
fe=f
end;
f i=n'xf
end;
fi=F

end |,

which will set f to the factorial of n, when 0=n<2, without executing the
recursive procedure statement fact(n”—1, f"). More generally, N applica-
tions of the copy rule will be sufficient for 0<n<N.

In general, recursion can be used to solve a problem if:

(1) There is some integer characteristic of the problem, which we will
call the size of the problem, that has a minimum value.

(2) Minimal-sized cases can be solved directly, i.e. without recursion.

(3) The solution of any nonminimal-sized case can be expressed in
terms of the solution of (perhaps several) cases with smaller sizes.

A problem with these characteristics can be solved by a recursive procedure
of the form:

procedure solve( ... );
if “Size is minimal’’ then “Direct solution™
else “General solution”

where “General solution” will use recursive calls of solve to obtain solutions
for smaller cases. A proof of correctness and termination will involve induc-
tion on the size of the problem.

For the problem of setting f to n!, the size is n, the minimum size is zero,
the direct solution for n=0 is f :=1, and the general solution for n>0 is
fact(n—1, f); f :=nXxf.

Computing factorials is a trivial application of recursion; a program
using iteration by means of a while statement will be nearly as clear and
somewhat faster. A more significant example is a puzzle called the “Towers
of Hanoi” [Dijkstra 71].

This puzzle consists of three pegs and n disks of distinct sizes which can
be piled on the pegs. In a legal configuration every disk will be on some peg,
and no disk will be on top of a smaller disk. (See Figure 3.1.) A move consists
of removing the topmost disk from one peg and placing it on top of another
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Figure 3.1 A Legal Configuration of an Eight-disk Tower of Hanoi Puzzle.

peg, without violating the constraint that no disk can be on top of a smaller
disk. Starting with all disks on one peg, the problem is to find a sequence of
moves that will place all disks on one other peg.

The key to solving the puzzle is to notice that the problem of moving the
k smallest disks from one peg to another is unaffected by the presence of
larger disks on any of the pegs—the larger disks simply remain unmoved
beneath the moving ones, and they cannot violate the constraint that no disk
can be on top of a smaller one.

To treat the problem of moving the k smallest disks recursively, we take
k to be the size. Then the minimal case is k=0, and the direct solution is to do
nothing.

For k>0, the general solution is to move k—1 disks to the “intermedi-
ate” peg (the one that is neither the start nor the destination), to move a
single disk from the start to the destination peg, and then to move k—1 disks
from the intermediate peg to the destination.

To express this solution as a recursive procedure, we represent the pegs
by three distinct integers, and we assume the existence of a procedure
moveone(integer value a, b) for moving the topmost disk from peg a to peg b.
(In practice moveone might simply print a record of the move from a to b.)
Then the following procedure will move & disks from peg a to peg b, using
peg c as an intermediary:

procedure movemany (integer value %, a, b, c¢);
if k>0 then
begin
movemany(k—1, a, c, b);
moveone(a, b);
movemany(k—1, c, b, a)
end
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In contrast to the factorial computation, this procedure expresses the
-eneral solution in terms of more than one smaller solution. In other words,
; single execution of the body of movemany may cause two immediate calls
of movemany. This situation is usually characteristic of a nontrivial use of

recursion.

Exercises

1. Show that movemany(k, a, b, c) will execute 2k—1 moves.

2. The following recursive procedure, which sets f to the nth Fibonacci number, is
very similar to the factorial example:

procedure fib(integer value n; integer result f);
{n=0}
if n=0 then f := 0 else if n=1 then f := 1 else
begin integer g;

fib(n—2, g); fib(n—1,f); f:=f+g

end
{f=fib(n)}

However, this is an extremely inefficient way to compute Fibonacci numbers.
Why?

3. The computational power of recursion subsumes that of the while statement. To
show this, define a recursive procedure whiledo, whose body does not contain a
while statement, such that whiledo(L, S) has the same meaning as while L do S.

3.2.2 Sorting by Merging

To provide further examples, we will explore several ways of applying
recursion to the problem of sorting an array segment. An obvious measure of
the size of this problem is the size of the segment to be sorted. The minimal
case occurs when the segment contains zero or one elements—in this case
the segment is already ordered and nothing needs to be done.

For larger segments, we can divide the segment into two smaller sub-
segments, recursively sort each of the subsegments, and then merge them,
i.e. rearrange the ordered subsegments so that the entire segment is ordered.
Thus our program has the form:
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procedure mergesort(integer value a, b;
integer array {var} X(»));
{la b]<:dom X and X=X,}
if a<b then
begin integer m;
“Pick m”’;
{la m| b and # |a m|<#[u]and#m[ﬂ<#[€;b]}
mergesort(a, m, X); mergesort(m+1, b, X);
ford- X 1 [a_m| and ord< X 1 m| b
and X1 |a m|~ Xg1|a m
and X 1 m| b~ Xo1 m| b|}
“Merge”
d

en
ford- X1 [a_b] and X 1 [a b]~ X, 1 la b}

At first sight, one might expect to replace “Merge” by

merge(a, m, m+1, b, a, b, X, X, X) ,

where merge is the procedure defined in Section 3.1.6. But, as discussed in
that section, this would cause the formal parameter Z to interfere with the
formal parameters X and Y, which would cause merge to malfunction. To
overcome this difficulty, we will declare a separate local array to hold the
result of merge, and then copy this array back into X. Thus “Merge” is
replaced by

begin integer array Y(a::b); integer k;
merge(a, m, m+1, b, a, b, X, X, Y);
{ord< Yand Y~ X,1 [a b[}

k:i=a—1;
while k<b do begin k:=k+1; X(k):=Y(k) end
end

To insure termination of our recursive procedure, we must program
“Pick m” so that both |[a m| and ml| bl are smaller than @ b, i.e. so that

{a<b} “Pick m” {a=m<b} .

Moreover, to maximize speed, we want to make # and # ml_é| as
nearly equal as possible. The solution is to replace “Pick m” by

m:=(a+b—1)div 2
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Correctness can be shown by a monotonicity argument similar to that given
in Section 2.2.10.
The complete procedure is

procedure mergesort(integer value a, b;
integer array {var} X(* ));
{la_b]=dom X and X=X}
if a<b then
begin integer m;
m:=(a+b—1)div 2;
{la m| b|and#|ul<#|£_bl
and # m| bl <#[a b}
mergesort(a, m, X); mergesort(m+1, b, X);
ford-X 1 [a_m| and ord< X 1 m| b|
and X 1 Ia__rrL’on1 |a m|
and X 1 m| b|~Xo1 m| b|}
begin integer array Y(a::b); integer k;
merge(a, m, m+1, b,a, b, X, X, Y);
ford- Yand Y~ Xo1 [a b}

k:i=a—1;
while k<b do begin k:=k+1; X(k):=Y(k) end
end

end
{ord- X 1 andX1 NXO’] Ia_—_b|} .

(For simplicity, we have used slightly incomplete assertions. As dis-
cussed in Exercise 4 after Section 2.3.4, we should also specify that
mergesort has no effect on the elements of X outside of the segment over
ai_b]. For this purpose, X 1 (dom X — [a b])=Xo1 (dom X - [a_b])could
be added to all assertions. )

To determine the time required by this procedure, we must investigate
the pattern of recursive calls that occur during execution. This pattern can be
described by a calling tree in which each node represents a call of mergesort,
and one node is a subnode of another if the call represented by the lower
node occurs during execution of the call represented by the higher node. At
each node of the tree we will place the size of the segment being sorted by the
corresponding call. For example, Figure 3.2 shows a calling tree for sorting a
segment of size 7.

A node without subnodes is called terminal. The depth of any node is its
distance from the top node, and the depth of the tree is the depth of its
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Figure 3.2 A Calling Tree for mergesort with n=7, d=3, t=13, and s=27.

deepest node. In Figure 3.2, one terminal node has a depth of 2 while the
others have depths of 3; the depth of the tree is 3.

The nature of mergesort ensures that its calling tree will have the
following properties:

(1) A node is terminal if and only if its attached size is one.

(2) A node is nonterminal if and only if its attached size is greater than
one. In this case the node will have exactly two immediate subnodes
(i.e. the calling tree will be a binary tree), and the size attached to
the node will be the sum of the sizes attached to the immediate
subnodes.

(We are ignoring the case where the attached size is zero, which will not
occur in a calling tree except in the trivial special case where the entire array
being sorted is empty.)

From these local properties of calling trees, we can establish certain
global properties. Consider a calling tree with the following parameters:

n=size attached to top node,
d=depth of tree,

t=total number of nodes,

s=sum of sizes attached to nodes,
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Then

3)t=2- n—1,
(4)s=n- (d+1)

To show that (3) and (4) are consequences of (1) and (2), we use
induction on tree depth, i.e. in proving (3) and (4) for an arbitrary tree, we
assume that (3) and (4) hold for its subtrees. If the tree consists of a single
terminal node, then n=1, d=0, t=1, and s=1, so that (3) and (4) are
obviously true.

Otherwise, the calling tree has the form shown in Figure 3.3.

n

d=depth

t=number of nodes

n, n;

v s=sum of sizes ey

/ s .'/ A
; . FOR FULL TREE g N,
‘dy=depth ‘d,=depth®

t,=number of nodes t,=number of nodes
s,=sum of sizes s,=sum of sizes
FOR LEFT SUBTREE FOR RIGHT SUBTREE

Figure 3.3 The General Case for Induction on the Depth of a Calling Tree.

The induction hypothesis for the two immediate subtrees gives

t1=2-n1—1 t2=2-n2—1
s1<np-(d;+1) $;<ny - (d,+1)
Then
t=t1+t2+1
=(2 .- *1)+(2 -n2—1)+1
=2-(n+ny—1
=2.-n—1 ,
and

S=S1+S2+n
=ny-(di+1D)+ny-(dyt1)+n
=ny-d+n,-d+n
=(n1+n2)-d+n
=n-(d+1) ,
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where the second inequality holds because the depth of a tree is one larger
than the maximum depth of its immediate subtrees.

Now consider the time required to execute a single call of mergesort for
an array of size n, exclusive of the time required to execute any recursive
subcalls. The only iterations are the while statement within merge and the
while statement that copies from Y into X. Thus the time for a single call wil]
be bounded by a linear function of n, say a+ 8 - n.

It follows that the total time required by mergesort, including recursive
calls, will be bounded by the sum of a + 8 - n over the nodes of the calling
tree, whichisa - £+ 8 - 5. Then (3) and (4 ) show that the time to sort an array
segment of size n is bounded by

a-(2-n—1)+B-n-@+1)

This formula shows the importance of minimizing the depth of the
calling tree. For a given #, this depth will be minimized if the tree is almost
balanced, i.e. if the depths of the highest and lowest terminal nodes in the
tree differ by at most one. For example, the calling tree in Figure 3.2 is
almost balanced, while the tree in Figure 3.4 is highly unbalanced, and has
much larger values of d and s.

In fact, mergesort produces an almost balanced tree because, at each
recursive level, the segment to be sorted is split as nearly as possible into
equal parts. Specifically, the calling tree satisfies

(5) For any nonterminal node with attached size n=2, if n is even then
both immediate subnodes have attached size n /2, while if n is odd
then the immediate subnodes have attached sizes (n—1)/2 and
(n+1)/2.

Let[log, n| be the largest integer that is at most log, 7, and let [log, n] be the
smallest integer that is at least log, n. Then (5) implies

(6) Every terminal node has a depth d’ such that |log, n] < d’
=< [log; n|.

Again the proof is by induction on tree depth. For a single-node tree,
n=1 and d' =0, so that (6) is obvious. Otherwise, we have the situation
shown in Figure 3.3, and the induction hypothesis implies that, for every
terminal node in the left subtree, the depth in the full tree satisfies

[logy ny]+1 < d' < [log, ny|+1

(Remember that the depth of a node in the full tree is one larger than its
depth in an immediate subtree.) Then since [log, n;|+1=
[(log, n1)+ 1]=|log; (2 - n1)), and similarly for [log, ny]+1, we have

[logz (2« ny)] = d' < [log, 2 - ny)]
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Figure 3.4 A Highly Unbalanced Calling Tree with n=7, d=6, t=13, and s=34.

By a similar argument, for every terminal node in the right subtree, the depth
in the full tree satisfies

llogs (2 - np)] = d' < [log; (2 - n2)]
When 7 is even, 2 - ny=2 - n,=n, so that every terminal node satisfies

(6). On the other hand, when n is odd, either 2 - ny=n—1and2 - n,=n+1
or vice-versa. Thus every terminal node satisfies

llog, (n—1)] < d' < [log, (n+1)]

But here n is an odd integer and is not one (since it is attached to a
nonterminal node), so it is not an exact power of two. This implies
{log; n|=|log, (n—1)] and [log, n]=[log, (n+1)], which again establishes
(6)-
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From (6), we see that the calling tree for mergesort is almost balanced,
and that its depth is bounded by [log, n]<log, n + 1. Thus the time required
by mergesort is bounded by

a-(2-n—-1)+B-n- (log, n+2)
=2-(a+B)n—a+B-n-logn ,

which is of order n - log n.

This result shows that sorting by merging is an order of magnitude faster
than sorting by maximum finding, which requires a time of order 2. It also
shows that the time to sort large arrays is dominated by the coefficient 3. so
that attempts to improve the speed of mergesort for large arrays should focus
on the bodies of the while statements within merge and the copying opera-
tion. Thus, for example, the speed for large arrays would not be significantly

improved by treating # |a bl =2 as a special case to be sorted by a simple

exchange. (For an improvement that does reduce 5. see Exercise 2 below.)

Finally, we must consider the space required by mergesort. For an
order-of-magnitude estimate we can ignore individual variables and only
consider the local array Y. Of course, each recursive call of mergesort will use
its own local array, but no two of these arrays will exist at the same time. This
is because the recursive calls of mergesort are outside the block in which Y is
declared. As a result, all storage used by lower-level recursive calls will be
released before the block using Y is entered. Another way of seeing this is to
notice that, although repeated application of the copy rule will create many
blocks with local arrays, these blocks will never overlap.

Thus the local storage used by mergesort is the size of the largest local
array, which is obviously the one at the top level of recursion whose size is

#la ).

The situation would be completely different if the declaration of Y were
moved outward to the block containing the recursive calls. Then several
local arrays would be used simultaneously, and their combined size would be
the sum of the sizes along some path in the calling tree, which could be nearly
twice the size of the largest single array. This is a vivid instance of the
importance of declaring arrays as locally as possible.

On the other hand, as discussed in Exercise 3 at the end of this section,
there is an ingenious method of reducing the storage requirements of
mergesort—but not to the point where they are negligible. The need for
substantial extra storage to avoid interference is inherent in the underlying
method of sorting by merging, and is the most serious limitation of this
method in comparison with others.
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Exercises

1. Show that, for any tree in which every node has either zero or two immediate
subnodes, the number of terminal nodes is one more than the number of
nonterminal nodes.

2. Although the need for temporary storage is inherent in sorting by merging, it is
possible to avoid performing the copying operation after each call of merge. This
will significantly reduce the coefficient 8 of the term in the time bound that is
dominant for large n.

Define two procedures insort and outsort that satisfy the following specifica-
tions:

procedure insort(integer value a, b; integer array {var} X,Y(+));
{pa: X#Y & Y#X}
{la b|=dom X and |a b|Sdom Y and X=X}

{ord- X1 [a_bland X 1 [a_b|~ X, 1 [a_8l};

procedure outsort(integer value a, b; integer array {var} X ,Y(*));
{pa: X#Y & Y#X}

{L—blgdom X and @Edom Y and X=X}
{ord. Y 1 @andY1 @'\«X01 @}

Insort should sort the segment of X over |a b| and leave its result in the same
place; it should use the segment of Y over as its temporary storage. OQutsort
should sort the segment of X over Eb_‘ and leave its result in the segment of Y
over . The two procedures will be mutually recursive, i.e. each will call the
other (and both will call merge). The provision of a second array as a parameter
obviates the need for declaring a local array.

3. (Suggested by W. J. Gadbow) Use the “Overwriting Merge” program of Exer-
cise 5 after Section 2.3.7 to develop a variation of mergesort that uses less
storage.

4. Show that, when merge is generalized to ordering by keys as discussed in Section
2.3.9, mergesort is stable.

3.2.3 Quicksort

We next consider a different recursive sorting method, called quicksort,
which was invented by C. A. R. Hoare [Hoare 62, Foley 71]. As before, we
will take the size of the problem to be the size of the segment to be sorted, so
that the minimal case of zero or one elements can be treated by doing
nothing, and we will treat the general case by dividing the segment into two
smaller subsegments and sorting the subsegments recursively.
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In mergesort, we followed the recursive calls by an operation that
rearranged the ordered subsegments into a completely ordered segment,
Now we will reverse the approach: we will precede the recursive calls by an
operation such that sorting the subsegments will make the entire segment
ordered without further computation. A sufficient condition is that, before
the recursive calls, all values in the left subsegment should be smaller or
equal to all values in the right subsegment.

Thus our procedure has the form:

procedure quicksort(integer value a, b; integer array {var} X *));
{la_bl=dom X and x=Xx,}
if a<b then
begin integer c;

“Prepare”;
quicksort(a, c—1, X); quicksort(c, b, X)
end

ford< X1 [a bland X1 [a b~ X, 1 la_bf} ,

where “Prepare” must satisfy

{la b/=dom X and and X=X}

“Prepare”

{lal_lc_1b] and {x 1 [a Je} <*{x 1 [c_B]}

and X 1 |a_bl~ Xo1|a 8|} .

Notice that the consequent asserts that Elc and |c b| are both nonempty,
and therefore both smaller than Ia b|, which is necessary to insure termina-

tion of the recursion.

An obvious possibility for “Prepare” is to choose some integer r and
then use the procedure partition given in Section 3.1.6 to obtain two sub-
segments whose values are smaller or equal to r and larger than r:

begin integer r;
“Choose r”;
partition(a, b, r, ¢, X)
end

But partition gives no guarantee that both Iq lc and will be nonempty.

Moreover, this situation cannot be remedied by a careful choice of r; in the
extreme case where all segment values are equal, one of the subsegments will
be empty, regardless of the choice of r.

A simple way around this problem is to treat the outermost elements of
the segment separately, and to apply partition to the interior. The details of
the argument are evident from the assertions in this version of “Prepare”:
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{@E dom X and }

begin integer r;

if X(a)>X(b) then ‘“Exchange X(a) and X(b)”’;

{X(@)=X()}

“Choose r’’;

{X(@)=<r=X(b)}

partition(a+1, b—1, r, ¢, X)

end

{[a] Tc Joi and X(a)<r and {X 1 a[ |c} <*r
and r<*{X 1 b} and r=X(b) }

{laf Jc To] and {x 1 [a_Je} <*{x 1 [c_8]}} .

(For clarity, the obvious rearrangement conditions have been omitted from
the assertions.)

To maximize speed we want to choose r, within the constraint
X(a)=r=X(b), to make the segments |;1 |c and D’l as nearly equal in size
as is possible without doing a time-consuming operation. If we exclude the
possibility of examining more than the outermost elements, the obvious
choice is 7 := (X(a)+ X(b)) div 2, which satisfies X(a)<r<X(b) by a
monotonicity argument similar to that in Section 2.2.10.

The final version of the procedure is:

procedure quicksort(integer value a, b; integer array {var} X(*));
{la_blcdom X and X=X}
if a<b then
begin integer c;
begin integer r;
if X(a)>X(b) then
begin integer ¢;
t:= X(a); X(a) := X(b); X(b) := 1
end;
r:= (X(a)+ X(b)) div 2;
{X@)=r=X()}
partition(a+1, b—1, r, ¢, X)
end;
(I Tol ana (X 1 o =* (X1 [ &)
and X1 [a_oi~ Xo 1 a_bl}
quicksort(a, c—1, X); quicksort(c, b, X)
d

en
{ord_ x 1 [a bland X1 [a_b|~ Xo1 [a_bl}
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(As with mergesort, we have omitted the specification that this procedure

must not disturb X outside of the segment .)

In contrast to mergesort, this procedure does not use any local arrays, so
that its storage requirements are negligible in comparison with the array
being sorted (with the exception discussed in Exercise 2 below).

The time required by quicksort presents a phenomenon we have not
encountered before: there is an order-of-magnitude difference between the
worst-case behavior and the average behavior. In the worst case, at each
recursive level X(a) and X(b) might be the largest two elements in the

segment over . In this situation the calling tree will be extremely

unbalanced, as in Figure 3.4, and the time required to sort a segment of size
will be of order n2. But if the execution time is averaged over a reasonable
distribution of segments of size n, then the probability of a nearly balanced
tree is high enough that the average time is of order n - log 7 (as is shown in
[Aho 74]).

Some refinements of quicksort are discussed in the following exercises.
A thorough discussion of improvements to the algorithm, with an extremely
detailed analysis of time requirements is given in [Sedgewick 77, 78]. With
such improvements, the algorithm is the best general-purpose method for
sorting large arrays (unless the arrays are so large they must be kept in
secondary storage devices such as disks or tapes). The only important
qualifications are the anomalous worst-case behavior, which renders quick-
sort unsuitable for certain kinds of real-time applications, and a lack of
stability.

Exercises

1. Hoare’s version of quicksort [Hoare 62, Foley 71] uses the notion of “stoppers”
to achieve a faster partitioning operation than the version given above. The basic
idea is as follows: Suppose {X 1 M} contains a value, called a stopper, which is
larger or equal to r. Since E’ must be nonempty, we can examine X(c) without
fear of a subscript error. If we find that X(c) is smaller than r, then it cannot be a
stopper, so that {X 1 cD)]} must contain a stopper. Moreover, if we also know
and {X 1 d| b|} =*r, then .

Hoare’s algorithm maintains the existence of a stopper in that is at
least rand astopperin |a _d| that is at most 7. In addition to justifying a reduction
in the number of tests executed during the partitioning process, these stoppers
insure that the recursively sorted subsegments will both be strictly smaller than
the segment over .

Check the correctness, including termination and lack of subscript errors, of
the following slight variation of Hoare’s algorithm. Within assertions, I stands
for
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and {X 1 [a_]c} <*r and {x 1 d_ b} =>*r
and (Jie[c b|) X(i)>r and (iela d|) X(i)<r
and X1 [a_b|~ Xo1la 5| .

procedure quickersort(integer value a, b; integer array {var} X(+));
{la bicdom X and X=X}
if a<b then
begin integer c, d, r;

L

“Choose r’’;
{Qi € [a_b]) X()=r and (3i € la_bl) X(i)<r}
c:=a,d:= b;

{whileinv: I} while X(c)<r do c := c+1;
{whileinv: 7 and X(c)>r} while X(d)>rdo d := d—1;
{whileinv: I and X(c)>r and X(d)<r}
while c<d do
begin
begin integer f; ¢ := X(c); X(¢) := X(d); X(d) := t end;
c:=c+l;d:=d-1;
{whileinv: I} while X(c)<r do ¢ := c+1;
{whileinv: / and X(c)>r} while X(d)>rdod:=d-1

end;
{I and {X 1 } ]

quickersort(a, c—1, X); quickersort(d+1, b, X)

end
ford- X1 [a bjand X1 [a_b]~ X1 [« b]} .

Notice that the specification of “Choose r’ can be met by setting r to any value in
the segment of X over . To minimize the probability of worst-case behavior
it might be better to set r to the median of a small sample of segment values,
which would also meet the specification.

Consider the worst case, in which the calling tree for quicksort has the extremely
unbalanced form shown in Figure 3.4. Even though there are no local arrays, the
individual variable c, plus some storage space used by the procedure linkage
mechanism, will be allocated at each level of recursion, so that the total storage
needed will be proportional to the size of the array segment being sorted.

To overcome this problem, one can combine recursion and iteration. The
basic idea is that the body of quicksort should contain a while statement with the
Invariant:

and ord. X 1 a and ord. X 1 b
and {X 1 a} =*{X1 @}
and {X 1 [a,_bJ} =*{X 1 b bol}
and X mX01 !

where a, and b, are ghost identifiers recording the values of a and b upon entry to
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quicksort. Within the body of the while statement, one can partition X over @
into two smaller subsegments, sort the smaller of these subsegments with a single
recursive call of quicksort, and then reset a or b so that the remaining subseg-
ment becomes the segment of X over .

This is an application of a general method for replacing recursion by
iteration which is discussed in [Knuth 74].

3.2.4 Sorting by Range Partitioning

Finally, we consider a third recursive sorting method, which is applicable
when the values occurring in the array segment to be sorted lie within a
known finite range. This method is distinguished from mergesort and quick-
sort by the use of a different notion of size.

Suppose that X is an integer array, and that there is a finite interval [r—j|
such that {X 1 @}9 . We can then regard the size of to be the
size of the problem of sorting X over . The minimal case occurs when
l_r .;I has zero or one members, which implies that X over @ is already
ordered. In the general case, we can use partition to obtain two subsegments
with ranges which are each smaller than B, and then sort each of these
subsegments recursively. If we make the ranges of the subsegments as nearly
equal as possible, we get

procedure rangesort(integer value a, b, r, s;
integer array {var} X *));
{la_b]<dom Xand{X1[a by [r o and X=X}
if r<<s then
begin integer c, ¢;
t:= (r+s—1)div 2;
{Irl_o sf}
partition(a, b, t, ¢, X);
{{x1la | and {X 1 [c_bltc { 4}
rangesort(a, c—1, r, t, X); rangesort(c, b, t+1, s, X)
nd

{ord- X 1 @andX‘] IE%X(M IEI} :

This procedure bears a curious relation to quicksort: Their forms are
similar yet the reasons for their termination, and also the times which they
require, are completely different. A calling tree for rangesort will still satisfy
s=n - (d+1), but now the depth of the tree will be the least integer k such
that # IGS 2k, Thus the time required for rangesort to sort an array
segment of size n will be of order of magnitude 7 - log(# a).
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In most cases this will be worse than n - log n. But sometimes one needs
to sort an array whose range is smaller than its size. In practice this situation
arises when one is sorting a large file of records, not on the entire value of the
records, but only on the value of some key field whose number of possible
values is less than the number of records. (In the extreme case the key might
only have two possible values, so that partition itself could be used to do the
sorting.)

In using rangesort in practice, one would probably replace the testin the
conditional statement by (r<s) and (a<b), so that termination will occur
when the segment being sorted has either minimal range or domain size.

3.2.5 Recursive Function Procedures

Algol W permits function procedures as well as proper procedures to be
recursive. For example, one can define

integer procedure factorial(integer value n);
if n=0 then 1 else n X factorial(n —1)

or

real procedure power(real value x; integer value n);
if n=0 then 1 else if odd(n) then x X power(x, n—1)
else power(x X x, n div 2)

It is evident that this kind of definition can possess a high degree of clarity
and elegance. Indeed, one well-known programming language—LISP
[McCarthy 60]—is built around the concept of recursively defined functions.

Nevertheless, with much regret, we will avoid the use of recursive
function procedures in this book. The reason is similar to that for avoiding
expressions with side effects. Our approach to specifying programs and
proving their correctness relies upon the fact that any expression which can
be written in the programming language can also appear in assertions. But if
recursive functions are permitted, then expressions such as factorial(—1) can
denote nonterminating computations. Unfortunately, the possibility that
such expressions might occur in assertions cannot be accommodated by the
logic we are using for program specification.

Exercises

1. The purpose of this exercise is to show how recursion can be used to do simple
parsing. A parser is the input-processing routine of a compiler which determines
whether the input is syntactically legal and, if so, how it is divided into sub-
phrases.

Suppose that an S-expression is a sequence of characters which is either the
single letter A or a pair of S-expressions, enclosed in parentheses and separated
by a period. In other words, in the notation of Appendix A, S-expressions are
defined by the productions
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(S-expression) ::= A | ((S-expression) . (S-expression) )

Thus for example, the following character sequences are S-expressions:

A
EA.A)
(A.A).((A.A).(A.4)))
while the following character sequences are not S-expressions:
( (A4)
0O (A.A.4)
A4) (4.4))

To represent a sequence of characters, one can use a one-dimensional
integer array in which the ith element has the value 1, 2, 3, or 4 depending upon
whether the ith character of the sequence is A, a left parenthesis, a period, or a
right parenthesis respectively. (Alternatively, one could use the string proces-
sing facilities of Algol W, which are not described in this book.)

Write a recursive procedure

procedure parse(integer value a, b; integer result c;
logical result correct; integer array {exp} X(*));

that will examine the segment of X over Ia b| to determine whether the charac-
ter sequence represented by this array segment begins with an S-expression.
More precisely,

(1) If there is an integer ¢ such that : ¢ b|land X 1 Ecrepresents an
S-expression, then ¢ should be set to thisinteger (which must be unique,
since an S-expression cannot be an initial subsequence- of any other
S-expression) and correct should be set to true.

(2) Otherwise, correct should be set to false.

The reader should be warned that the problems which arise in parsing
programming languages can be far more difficult than is indicated by this
exercise. We have purposely chosen a language whose parsing can be accom-
plished by a straightforward use of recursion. Good general references for the
construction of parsers are [Aho 72, Gries 71, Backhouse 79].

2. (Suggested by P. J. Landin) The function procedure in the following block does
not use our extended specifiers, and violates the parameter-matching discipline
described in Section 3.1. Nevertheless, it islegal Algol W, and its meaning can be
explained by the copy rule.

begin

integer procedure strange(integer n; integer procedure h);
if n=0 then 1 else nXh(n—1, h);

b :=strange(a, strange)

end

(a) Show that there is no way of extending the specifiers in this program that will
obey the parameter-matching discipline used in this book.

(b) Use the copy rule to explain the behavior of this program. (Assume that a
and b are integer variables.)

(c) Explain why this program might be said to exemplify “hidden recursion”.
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3.3 SPECIFICATION LOGIC

The introduction of procedures has greatly enriched the variety of meanings
that can be denoted by identifiers. Because of this, the logic for proving
program correctness introduced earlier cannot encompass the procedure
mechanism. In this section, we describe a more complex system, called
specification logic, that provides the generality needed to cope with proce-
dures.

Proof methods for procedures have been the goal of considerable
research. Most of this work, beginning with [Hoare 71b] and including
[Hoare 73], [London 78], and [Gries 80] (which is unusually clear and
readable), has focused on call by reference and value, and has neglected the
binding or “block” structure of Algol-like languages (though the use of
subsidiary deduction in [Hoare 71b] is a first step in this direction). The
result has been some exceedingly complicated inference rules, which fall
considerably short of dealing with the full generality of the Algol procedure
mechanism. In particular, these approaches cannot handle interference, call
by name, statement parameters, or higher-order procedures.

In contrast, specification logic uses a more elaborate logical framework
in which the meaning of specifications depends upon environments, which
are mappings of identifiers into their meanings. New forms of specifications
are introduced to deal with this dependency, and to permit the formulation
and inference of universal specifications, which are true in all environments.
Call by name is regarded as fundamental, with call by value and result
treated as abbreviational mechanisms in the sense of Section 3.1.5.

It should be admitted at the outset that, at least in its present form,
specification logic is still seriously incomplete. As discussed in [Reynolds
81], call by reference cannot be encompassed, and an interaction between
interference and higher-order procedures prevents the proof of certain
useful programs. Nevertheless, the author believes that specification logic is
more general than alternative approaches and also conceptually simpler
(especially in the abstract version discussed in Section 3.3.12).

To see the inadequacy of the logical framework used in previous chap-
ters, consider the specification

{a+b=0} p(a+b, c) {c=(a+b)!} .

Without further information, we cannot say whether this specification is true
or false; it is true if the “meaning” of p is a procedure that computes the
factorial and false otherwise.

One might be tempted to say that the truth or falsity of the above
specification depends upon the context of the statement p(a + b, ¢), i.e. upon
the declaration that binds the occurrence of p. But this view is inadequate
since p(a + b, ¢) may occur in the body of a higher-order procedure in which
p is a formal parameter. In this case, the meaning of p can range over a
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variety of procedures during different executions of the same occurrence of
p(a+b, c).

Indeed, occurrences of formal parameters can falsify specifications that
do not refer to procedures explicitly and that are inferable in the logic of
Chapters 1 and 2. In that logic, for example, one can infer

{ySz} x:=3{y=<z} .

However, if x or y or z is a formal parameter, then x can interfere with y<z,
and such interference will falsify this specification.

The solution to these difficulties is to recognize that the meaning of a
specification, as well as the meaning of any kind of phrase that can occur in a
specification, depends upon the meanings of the identifiers that occur free in
the phrase. More precisely, the meaning of a phrase depends upon an
environment which maps these identifiers into their meanings.

3.3.1 Environments and Meanings

To understand environments and meanings, we must introduce some of the
basic concepts of the semantics of programming languages. First, it must be
understood that environments and states of the computation are quite
different entities:

An environment is a function that maps identifiers into their meanings.
The kind of meaning appropriate for a particular identifier depends
upon its phrase type.

A state of the computation, or more briefly, a state, is a function that
maps variables into their values. The kind of value appropriate for a
particular variable depends upon its data type.

The distinction between these entities, and the fact that both are needed to
describe an Algol-like language, was first realized in the early work of
Strachey and Landin [Barron 63, Landin 65, 66a, 66b]. These authors called
variables “L-values™, and they called states ‘“stores™, which is the British
term for computer memories. This terminology was meant to suggest that
states were an abstraction of the contents of a computer memory. (The
meaning of “environment” introduced here is different from the informal
meaning of the term used in Section 1.1.)

The meanings of identifiers or phrases of type 7 variable are variables
that can possess values of data type 7. When we speak of the value of a
variable identifier x, we really mean the value, in a particular state, of the
variable that is the meaning, in a particular environment, of x.

For example, if we say that, in an environment n and a state o, the
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values of x and y are both seventeen, we might be describing either of two
situations:

(@) The meanings of x and y in 7 are distinct variables, which are both
mapped by ¢ into seventeen,

or (b) The meanings of x and y in % are the same variable, which is
mapped by o into seventeen.

The distinction between these situations shows how interference between
variables is described: In (a) x and y do not interfere, while in (b) each
interferes with the other.

In general, we write M, for the set of meanings appropriate to the
phrase type 6, and [ X],, for the meaning of an identifier or phrase X in the
environment m. Thus, if X has phrase type 6 then [ X], € My, and if X is an
identifier then [ X[, =mn(X).

For example, M, aianie 1S the set of variables that can possess values of
data type 7. The two cases distinguished above can be described more
succinctly as

@) [xI,#[y]y and o([x],)=0(ly],)=17 ,
or (b) [x],=[yl, and o([x],)=17 .

The meaning of an expression or assertion determines a value that
depends upon the state of the computation, so that this meaning is a function
from states to values. Thus M, ypression 1S the set of functions from the set of
states to the set of values of data type 7, and M ...qon 1S the set of functions
from the set of states to {true, false}. For example, if x and y are integer
variable identifiers, then [x+y], is the function that maps o into
o([x],)+a([y]y,)- Similarly, [3], is the constant function that maps o into 3.

For an assertion P, we say that [ P],, describes a state o, or that o satisfies
[P],. when [P], (o) is true.

For statements, M ement 1S the set of functions from the set of states to
the set of sequences of states. In particular, the meaning of a statement maps
a state o into the sequence of states (excluding o itself) that occur during
execution of the statement beginning with o. If this execution does not
terminate then the sequence is infinite, otherwise it concludes with a final
state.

Assignment statements give rise to statement sequences consisting of a
final state by itself. If X and E are phrases of type 7 variable and 7 expression,
then

[X := E],(0)=([o| [X]y:[Els(0)D

where the final state is similar to o except that it maps the variable that is the
meaning of X into the value of E in o.
For example, if x and y are integer variable identifiers then
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[x := 3],(@)=(o| [x],: [3]4(c)D
=([o| [x],:3D
Iy := x+yly(@)=(o | [yl,: [x+y],(a)]
:([Ul ﬂ}']]n:cr([['ri]n)+‘T(II-V]]n)])

Longer sequences of states occur for compound statements. Suppose S;
and S, are statements. If [S,],(o) is an infinite sequence then
[S1; $21,(0)=[S1],(o). Otherwise, if [ S1],,(¢") concludes with the final state
oy, then [S1; $,],(0)=[S1]4(0) Pseq [S2]5(0y).

For example,

[x :=3;y := x+y],(c)
=<[0'| ]Ix]In: 3) ®seq [y := x+y]],,([o-| [[x]]'q: 3])
=([o | [x],: 3], [o°| [x]y: 3| [Y]n: [x+y]ne | [x],: 3DD)
=([o'| 1x1y: 3], [o| [xTw: 3] [¥],:
[o] [x],: 31([x1,)+ Lo | [x]s: 31([¥1.)D
=([UI [[x]ln: 3]’ [()’l ﬂx]]n: 3| ![_)’]]7,:
3+[o| [x1.: 31([¥1)D

In the last line, notice that[o | [x],: 3]([y],) cannot be simplified to a(ly1,)
unless we know that [x], #[y],., i.e. that x does not interfere with y in the
environment 7.

Finally, as an example of nontermination,

[x := 0; while true do x := x +1],(c)
=(o| [x],: 0, [o]| [x],: 11, [o] [x],: 2], ...)

We can now define the meaning of specifications of the form {P} S {Q}
The informal definition:

I{P}s {Q}]],, is true if and only if, starting with any state described
by [ P],, executing [S],, will either never terminate or will termi-
nate with a final state described by [Q],,.

is formalized by:

I{P} s {Q}]],, is true if and only if, for any state o such that
[P],(o) is true, the sequence [S], (o) is either infinite or con-
cludes with a final state oy such that [Q],(ay) is true.

Notice that there is an implicit quantification over states but not environ-
ments. This reflects the way in which specifications differ fundamentally
from assertions: their truth or falsity depends upon only an environment
rather than both an environment and a state.

For most purposes, including the above definition, the only relevant
information about the sequence [S], (o) is whether it s finite and, if so, what
its final state is. However, to define noninterference specifications in Section
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3.3.4, we will need to consider the intermediate states that occur during
execution of a statement.

It is evident that a statement describes a change of state, but not a
change of environment. In contrast, environments are “‘changed’” by binding
mechanisms. For example, the meaning of begin integer I; S end in an
environment 7 is the meaning of § in the environment [ | I: V]that is similar
to m except that it maps / into a “‘new”’ variable V that is distinct from all
variables relevant to the meanings prescribed by 7.

In general, for any phrase P, [ P], depends only upon the part of n that
gives meanings to the identifiers occurring free in P. If P is the scope of
binders of the identifiers I;, ... , I, then [P], is some function of the
meanings of the immediate subphrases of P in environments that differ from
nonly for I, ..., I,. More generally, if P’ is any subphrase of P,and I, ... , I,
are the identifiers occurring free in P’ but bound in P, then [P], depends
upon the meaning of P in environments that differ from nonlyfori,, ..., I,.

Operationally, one can think of the execution or evaluation of P as
creating new environments for the execution or evaluation of subphrases,
but these new environments do not “persist” in the sense that changes of
state persist.

There is a fundamental relationship between environments and sub-
stitution called the substitution law: If P is any phrase, n is any environment,
and Fy, ..., F,—>A;, ... , A, is any type-correct substitution, then

[P] Fi, ..., FuoA1, ..., Al =[Pl Fy: [A1ly| - | Fn: [Anlnl

Essentially, the effect of the substitution Fy, ..., F,—A,, ..., A, is the same
as a change of environment that maps each F; into the meaning of A;.

We can now describe the meaning of proper procedures. The meaning
[H(Ay, --- , A,)], of a procedure statement can only depend upon the
meaning [/ ], of the procedure being called and the meanings [A,],), ... ,
[An], of the actual parameters. Therefore, since the only role of procedures
is to determine the effect of their calls, [ H],, can be taken to be the function
that maps [A],, ..., [Ar],into [H(A4, ..., A,) ], Thus M, ocedure(or, ..., 6n) 1
the set of functions from My, X ... X My, t0 Mement> and

IIH(AI’ see An)]]nzﬂH]]n(ﬂAI]]n’ nse ) [[An]]'n)

Now consider the declaration procedure H(6; Fy; ... ; 6, F,); Bproc.
(Here and in the rest of this chapter we will use 6, F; ... ; 8, F, as the general
form of a parameter list, ignoring call by value and result, compound
specifiers, and such syntactic trivia as the fact that one writes real array {var}
F (*) instead of real array variable(*) F.) As with any declaration, the
meaning of the enclosing block in an environment 7 is the meaning of the
block body in an environment that is similar to n except for giving a new
meaning to the identifier being declared:
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[begin procedure H(0; F;; ... ; 6, F,); Bproc; B end], = [B],

>

where
n'=In| H: h]

In this case, the new meaning 4 is the function from Mg X ... XM, to
Mstatement such that

h(f1, see s fn)=]IBproc]l[1y'| Fi: f1| ... | Fu: fa]
For example,

[ begin

procedure g(integer {var} v; integer {exp} e);
begin x:=3; v:=¢ end;

q(y, x+y)

end]],,

=[q(y, x+»)]y

where ' =[7| g: h] and h is the function such that

h(fl’ f2)=ﬂx:=3; Vz:e]]['r]'|v:f1|e: ™l
Thus

[9(y, x+ )1 =19l [y 1> [x+y1x)
=h([yly, [x+yly)

=[x:=3; vi=el|v: pyiyle pxeyig
=[x:=3; V:=e| V. e—y, x+y]]‘n'
=[x:=3;y:=x+y]l, .

where the penultimate step is an application of the substitution law. Thus the
meaning of the block enclosing the declaration of g, in an arbitrary environ-
ment 7, will remain the same if g(y, x+y) is replaced by x:=3; y := x+y.
Notice that this coincides with the prescription of the copy rule.

In fact, the copy rule can be derived from the semantics of procedures
and the general properties of environments given in this section. Consider
the block

begin procedure H(0, Fy; ... ; 6, F,); Bproc; Bend |

and suppose that B contains a procedure statement H(A 1, ... , A,) in which
the occurrence of H is bound by the procedure declaration. Also suppose
that, for every identifier G occurring globally in Byroc, there is no binder of G
whose scope includes the procedure statement but not the procedure decla-
ration. Then the meaning of the block enclosing the procedure declaration,
in an environment 7, will only depend upon the meaning of H(A, ... »A,)in
environments " that agree withn'=[7 | H: k] for H (since the occurrence of
H is bound by the procedure declaration) and the identifiers occurring
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globally in Bproc (since there are no intervening binders of these identifiers).
For such an environment 7",
[H(Ay, ..., A)],
LT [[H]In"("AlJ]TJ" LS ) I]An]]n")

=hii A e s [Anly)
ZIIBproc]][n'|F1: [A1ly| .. | Fn. [An]q4]
The environment here agrees with ["| Fy:[A;],»| ... | F,:[A,],] for both

the formal parameters and the identifiers occurring globally in Broc, and
therefore for all identifiers occurring free in Byroc- Thus the above meaning is
the same as

=[Borocltn'| Fi: 1AWy | . | Fn: [An]y]
oy [[Bproc [ Fi, ..., Fp— Ay, ..., A,,]]n" )

where the last step is an application of the substitution law. Thus the
meaning of the block enclosing the declaration of H, in an arbitrary
environment 7, will remain unchanged if H(A,, ... , A,) is replaced by
Bprocl Fi, ..., Fa—>A), ... . An*

This argument also leads to a conclusion which will be used in Section
3.3.8 when we justify an inference rule for procedures, and which is obtained
by taking the actual parameters A, ... , A, to be the same as the formal
parameters Fy, ..., F,, so that the substitution of actuals for formals has no
effect on Bpoc: If " is an environment that agrees with ' =[n | H: h] for H
and the identifiers occurring globally in B, then [H(Fy, ... , F,)],
— IIBproc]]'q"'

Although this discussion of semantics is enough to preface the presenta-
tion of specification logic, it is not a general exposition of the subject. Three
omissions in particular should be noted:

(1) Saying that M, ,.anie iS @ set of variables precludes phrases of type 7
variable, such as array designators, that can denote different vari-
ables depending upon the state of the computation. To encompass
such phrases, the members of M, 4 iapie Must be functions from the
set of states to the set of variables that can possess values of data

type 7.

(2) In the definition of the meaning of procedure declarations, the
equations

n' =[n| H: k]

and
h(fla ey fn)= ﬂBproc]I['r” F1: f1| ... | Fn: fn)
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are mutually recursive; in effect a recursive semantic definition ig
needed to define the semantics of recursive procedures. Although
it is nontrivial to show that these equations possess a solution, the
real difficulty lies in the opposite direction: there are a variety of
solutions, and the particular solution that describes procedures is
the least solution in a certain partial ordering that can be imposed
on the set of procedure meanings. This is the subject matter of
fixed-point theory, which is a major topic in modern semantics,

(3) The semantics we have described, often called direct semantics,
cannot easily accommodate labels and goto statements, which will
be introduced in Section 4.2. To describe these entities, one must
use a more complex approach called continuation semantics.

Two useful survey papers on semantics are [Reynolds 72], which deals
with operational semantics, and [Tennent 76], which deals with denotational
semantics. A good text is [Stoy 77]. A more elementary text is [Tennent 81],
which uses the underlying concepts of semantics to describe a variety of
programming languages.

3.3.2 Universal Specifications

It is now clear that the meaning of a specification such as
{a+b=0}p(a+b, c) {c=(a+b)!}

or

{y=z}x:=3{y=<z}

depends upon an environment. Thus the “truest” kind of specification is one
that, unlike these examples, is true for all environments (that provide
type-appropriate meanings to the identifiers occurring free in the specifica-
tion). We will call such a specification universal. Unfortunately, because of
the problem of interference, there are hardly any universal specifications of
the form {P} § {Q}. To obtain universal specifications, we must enlarge the
language of specifications radically.

For example, if X is a variable and E is an expression, we will write
X#E to specify that X does not interfere with E. More precisely, the
specification X # E is true in those environments in which assignments to the
variable that is the meaning of X cannot affect the value of E.

We will also use a kind of implication to construct compound specifica-
tions. If &, and ¥, are specifications, then &¥.1=>%> is a specification mean-
ing “if ¥, then &, or “¥, implies ¥,”. More precisely, ¥;=>>%, is true in
those environments in which either &, is false or &, is true.

Using notations such as these, we can write nontrivial specifications that
are universal. For example,
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x#(y<z)=>{y<z}x:=3 {y=z}

is true in all environments.

A particularly desirable advantage of universality is that it is preserved
by substitution. The result of performing any type-correct substitution upon
a universal specification is another universal specification. This is a consequ-
ence of the substitution law stated in the previous section. If [ #],, is true for
all environments 7, then

L] F, ..., Fasar, . addy =[ L | Fr: ask | .. | Fo. [An]y]

is true for all 0.
For example, consider the substitution that replaces x and y by the same
identifier w. When applied to the nonuniversal specification

{y<zbx:=3{y<z} ,
this substitution gives
fw<z} w:=3{w=z} ,
which is patently false. But when applied to the universal specification
x#(y<5)=>{y=z}xi=3{y=<s} ,
the same substitution gives
wHw=z)=>{w=<z} w:=3{w=z} |,

which is true—indeed universal—since w # (w < z) is false.

3.3.3 Additional Phrase and Data Types

A vital property of both assertions and specifications is that the language in
which they are written is as similar as possible to the language in which
programs are written. In particular, identifiers have the same kinds of
meaning, and binding and substitution behave in the same way. For exam-
ple, the meaning of assertions and specifications, like that of programs, is
preserved by alpha conversion.

However, to obtain the full expressive power of specifications, we must
introduce additional phrase types. To see this, consider the following univer-
sal specification, which succinctly characterizes while statements:

{i and I} s {i}=>{i} while ! do s {i and 1 I}

Here [/ is a logical expression identifier, s is a statement identifier, and i is an
assertion identifier. Since this specification is universal, it holds for all
meanings of /, s, and i that are appropriate for logical expressions, state-
ments, and assertions respectively. As a consequence, we may perform any
type-correct substitution, such as
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[—=k#n
s—begin k:=k+1; f:= kXfend
i—>f=k!and O<k<n |,

which gives

{f=k! and 0<k<n and ks<n}
begin k:=k+1; f:= kxf end
{f=k! and 0<k=<n}
=
{f=k! and O<k=<n}
while k 5= n do begin k:=k+1; f:= kX fend
{f=k!and O0<k<n and 1 ksn}

Itis evident that this universal specification conveys the same information as
the while-statement rule given in Section 1.4.3.

This example illustrates the usefulness of identifiers that stand for
assertions. To permit such identifiers we will add assertion to the set of
phrase types. An identifier of type assertion can be used in any context that
permits an assertion, while a phrase of type assertion can be any assertion.

This generalization seems less startling if one remembers that assertions
are similar to logical expressions—both are phrases whose meanings map
states into truth values. (Indeed, when we defined M ygertion in Section 3.3.1,
we were treating assertion as a phrase type.) The difference is that assertions
are not part of the programming language and may even be uncomputable in
principle. Thus assertions, including assertion identifiers, cannot occur
within executable phrases such as statements and expressions (except as
comments).

In fact, we will go a step further and introduce procedures whose calls
are assertions, by adding assertion procedure (61, ..., 8,) to the set of phrase
types. (Here 64, ..., 6, is a list of phrase types.) Of course, such procedures
cannot be called from statements or expressions, but they still can be used to
define concepts that are needed to make assertions intelligible.

For example, the concept of increasing order introduced in Section
2.2.10 can be defined by

assertion procedure incord(integer array {exp} X *);
(Vi € dom X)(Vj € dom X) i <j implies X(7) = X())

We can even define the concept of ordering with respect to an arbitrary
binary relation on integers if we regard such a relation as an assertion
procedure accepting two integers:

assertion procedure ord(assertion procedure rho {integer exp,
integer exp}; integer array {exp} X(*));
(Vi € dom X)(Vj € dom X) i<j implies rho(X (i), X(j)) .
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Another useful generalization will be to use data types that do not occur
in executable programs. In Sections 3.3.13 and 4.1 we will treat integer set as
a data type, so that interval diagrams are phrases of type integer set expres-
sion. Then in Chapter 5 we will introduce abstract data types that are specific
to the problems our programs are intended to deal with.

One final point about specifications and phrase types requires
emphasis. Specifications will usually contain free identifier occurrences. In
this situation it is essential to state the phrase types of the free identifiers. For
example, when we gave the universal specification for the while statement,
we were careful to indicate that / had type logical expression, s had type
statement, and  had type assertion. This point is crucial since some specifica-
tions are syntactically correct for several assignments of phrase types to their
free identifiers, but universal only for some of these type assignments.

3.3.4 The Syntax and Semantics of Specifications

We now introduce the full variety of specifications used in the rest of this
book. The reader who has difficulty with the formal definitions of the
meaning of these specifications should return to them after reading the later
sections describing inference rules and illustrating their usage.

First we have the form {P} S {Q} that was introduced in Chapter 1. As
described in Section 3.3.1:

(1) If P and Q are assertions and S is a statement then [{P} S {Q}], is
true if and only if, for any state o such that [ P],(o) is true, the
sequence [S], (o) is either infinite or concludes with a final state oy
such that [Q],(oy) is true.

Secondly, we introduce a specification of the form {P} to indicate that
an assertion P is static, i.e. that P holds for all states of the computation and
therefore cannot be falsified by executing any statement:

(2) If Pis an assertion then ﬂ{P}]],, is true if and only if [ P], (o) is true
for all states o.

For example, if k is an integer expression identifier then {k > 4 implies k > 5}
isuniversal, and {odd(2 X k + 1)} is true in any environment in which odd has
its predeclared meaning. (Notice, however, that neither of these specifica-
tions is true if k is a real expression identifier; this illustrates the importance
of stating the phrase types of free identifiers explicitly.)

Next, we have forms of specifications containing subspecifications. If
#1..... 7, and & are specifications then ¥, & ... & ¥..=>¥ is a specification
meaning “if #; and ... and &, then ¥ or “5, and ... and &, implies 7.
More precisely:
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(3) Forn=1,if %....., ¥, and & are specifications then 1 & ... &
Fn=>F], is true if and only if either [ ], is true or some 11, is
false.

Notice that & and => play roles in the formation of specifications
analogous to the roles of and and implies in the formation of assertions. We
have intentionally chosen different symbols to emphasize that specifications
are different from assertions. Also notice that this kind of compound specifi-
cation has a more restricted form than the analogous forms for assertions; &
can only appear on the left of =>, and there are no operations corresponding
to or or 7. The use of this restricted form is based on Gentzen’s notion of
natural deduction [Gentzen 35].

In the form & & ... & ¥, = ¥, the subspecifications F15 ooy P, are
called assumptions.

We will also use a universal quantifier V that is analogous to V for
assertions. The specification (V8 I) ¥ means that & is true for every meaning
of I that is appropriate to the phrase type 6. More precisely:

(4) If I is an identifier and & is a specification such that the free
occurrences of 1 in & have phrase type 6, then [ (V6 I) ¥ I is true if
and only if, for all meanings m appropriate to 6, [Tty | 1: m] is true.

Next we consider noninterference specifications. We have already men-
tioned the case V# E, where V is a variable and E is an expression; then
V# E means that assigning to V does not affect the value of E. The left side of
# can also be a statement, in which case S# E means that executing S does
not affect the value of E. More precisely, it means that, starting with any
state, the value of E will not be affected at any time during the execution of S;

(5a) If S is a statement and E is a r expression or assertion then
[S# E], is true if and only if, for all states o and o’ such that ¢’
occurs in the sequence [S], (o), [E],(¢")=[E], (o).

For example,

begin x:=x+1; x:=x—1end # x
is not true. On the other hand,

while true do x:=x+1 # y

is true if x and y denote distinct variables.
We can define the case where a variable occurs on the left of # in terms
of (5a), by saying that V# E holds if no assignment to V interferes with E:

(5b) If Vis a 7 variable, E is a 7 expression or assertion, and / is an
identifier not occurring free in V or E then, for all environments,
V#E has the same meaning as

(Vrexp ) (V:i=D)# E
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In fact, we will generalize noninterference specifications further, to
permit any statement-like phrase to appear on the left of #, and any
expression-like phrase to appear on the right. The classification of various
types of phrases as statement-like or expression-like is given in Table 3.5.
Roughly speaking, statement-like phrases describe ways of changing states,
while expression-like phrases describe ways of computing values from states.
Notice, however, that simple and array variables are both statement-like,
since assigning to a variable causes a change of state, and expression-like,
since any variable is also an expression.

Phrase Type Statement-like Expression-like

 variable X
T expression

r array variable(*, ... , *)

¢ array expression(*, ... , *)
statement

assertion

procedure(6y, ... , 6y)

r procedure(6y, ... , 0,)
assertion procedure(fy, ... , 8,)

XX
I S R oo

Table 3.5 Statement-like and Expression-like Phrases.

An array variable does not interfere with an expression or assertion E if
none of its elements interfere with E:

(5¢) If X is an n-dimensional 7 array variable, E is a 7 expression or
assertion,and /I, ... , I, are distinct identifiers not occurring free in
X or E then, for all environments, X # E has the same meaning as

(V integer exp I,) ... (V integer exp I,) X(Iy, ... , I,) # E

A procedure does not interfere with E if the only calls of the procedure
that interfere with E are ones in which statement-like actual parameters
interfere with E.

(5d) If H is a procedure(fy, ... , 8,), E is a 7 expression or assertion,
Iy, ... , I, are distinct identifiers that do not occur free in H or E,
and@,,, ..., 0, are the statement-like members of {6, ... , 6,,} then,
for all environments, H# E has the same meaning as

(Vo.1,)...(¥6,1,) (I, #E& ... & I, # E=>H(l,, ... , I, #E) .

Roughly speaking, H does not interfere with E if no call of H interferes with
E by means of global identifiers. For example, in the environment created by
the declaration

procedure p(integer {var} z); begin z:=z+1; x:=zend ,
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p(D)# E holds whenever x # E and [ # E, so that p # E holds whenever x # E.

Next we generalize the right side of #. A statement-like phrase does
not interfere with an array expression if it only interferes with applications of
the expression to subscripts when it interferes with the subscripts:

(5e) If S is a statement-like phrase, Y is an n-dimensional 7 array
expression, and /1. ..., I, are distinct identifiers not occurring free
in S or Y then, for all environments, S# Y has the same meaning as

(V integer exp /) ... (V integer exp I,)
(S#L & ... & S#L,=>S#Y(y, ... , 1,)) .

Finally, a statement-like phrase does not interfere with a function (or
assertion) procedure if it only interferes with calls of the function procedure
when it interferes with expression-like actual parameters:

(5f) If S'is a statement-like phrase, Fis a 7 procedure(8, ..., 8,) or an

assertion procedure(8y, ... , 8,), !, ... , I, are distinct identifiers
not occurring free in S or F, and 6,,, ... , 8;, are the expression-like
members of {6, ..., 8,} then, for all environments, S# F has the

same meaning as
Vo,5)...(V0,1,)(S#I;, & ... & S# L, =>S#F(l,, ..., 1,))

Again the effect is to specify an absence of interference through globals.

Sometimes it is necessary to quantify a specification about noninterfer-
ence over an identifier of an arbitrary statement-like (or expression-like)
type rather than a specific phrase type. For example,

(V sta-like s) (s#x & s#y=>s#7z)

specifies that something interferes with z only when it interferes with x or y,
where the “something” could be a simple variable, statement, array vari-
able, or procedure. The generalization of (4) is straightforward:

(4') If I is an identifier and ¥ is a specification such that all free
occurrences of I in & have the form I#... (or ... #I), then
[(V sta-like I) #],, (or [(V exp-like I) ], ) is true if and only if, for
all meanings m appropriate to any statement-like (or expression-
like) type, {57y | 1: m) i true.

The final form of specification that we will use is gv(V), where Visar
variable. This specification holds if assigning any value to V will transform
any state into a state in which V possesses that value; in this situation we say
that V is a good variable.

At first sight, it might seem that gv(V) should be true for all variables
and all environments. But the syntax of Algol W permits phrases of type =
variable, such as the array designator X(X(1)), that are not good variables.
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(See Exercise 3 after Section 2.3.2.) For a state in which the array elements
X(1) and X(7) have the values 1 and 2 respectively, execution of
X(X(1)):=7 will produce a state in which X(X(1)) has the value 2. Thus
gv(X(X(1))) is false. Moreover, the use of X(X(1)) as an actual parameter
will create an environment in which the corresponding formal parameter is
not a good variable.

The formal definition of gv(V)is based on the idea that this specification
holds when, for any value E and any property II of values, the assignment
v := E will transform a state in which II holds for E into a state in which II
holds for V. The formalization of IT is an assertion procedure(r expression)
that is not interfered with by V:

(6) If Vis a 7 variable, and E and II are distinct identifiers that do not
occur free in V then, for all environments, gv(V) has the same
meaning as

(V 7 exp E) (V assertion procedure(r exp) I1)
(v#n={I(E)} v:=E {TI(V)}) .

The relationship between this definition and an axiom for assignment
will be explored in Section 3.3.12.

3.3.5 Rules of Inference for Universal Specifications

Specification logic is a system for inferring universal specifications. In this
section we present most of the rules of inference dealing with arbitrary
specifications, and with the parts of the programming language that do not
involve binding mechanisms. These inference rules replace the ones given in
Sections 1.4.2 and 1.4.3, which do not take into account the effects of
interference and other phenomena that can occur when procedures are used.

The form of the rules is essentially the same as in Chapter 1. Each rule
consists of a sequence of zero or more specifications called premisses,
separated by a horizontal bar from a single specification called the conclu-
sion. Again, an instance of a rule will be formed by replacing capital letters,
called metavariables, by phrases, subject to restrictions that preface the rule.
These restrictions will state the types of phrases that can replace metavari-
ables, and will sometimes restrict these phrases to be identifiers. In the latter
case, the phrase type stated for the identifier must be the phrase type of all
free occurrences of that identifier in the premisses and conclusion of the
instance of the rule.

The essential change from Chapter 1 is that the rules describe the
inference of universal specifications, rather than specifications that are true
in a particular environment. Thus the meaning of a rule is that, for any
instance, if all the premisses of the instance are true in all environments, then
the conclusion of the instance is true in all environments.
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Some special conventions apply to specifications of the form &, & ... &
¥,=. It is evident that the meaning of such a specification does not
depend upon the order in which the assumptions &1 & ... & &, are written,
nor does the meaning change if duplicate occurrences of the assumptions are
added. For these reasons, we can regard 1 & ... & ¥, as a (finite) set of
specifications.

Because of this, we will permit expressions denoting finite sets of
specifications to appear on the left of => in inference rules. In constructing
such expressions we will use the metavariables 2 and & (with occasional
subscripts and superscripts) to stand for finite sets of specifications and
individual specifications respectively. We will write & & 3’ to denote the
union of the sets 3, and 2', and 2, & & to denote the union of % and {¥}. When
such an expression is replaced by a specific set of assumptions, these assump-
tions can be written in any order and can be duplicated. For example, if
S stands for {#;, ¥,} and 3’ stands for {¥,, ¥3}, then 2 & 3’ & ¥, =>F
stands for any of the following equivalent specifications (among others):

P& S & P & Sy S
P & Fu & F2 & F1>F
F &L &S &S & S & P>

We can even include the case where the set of assumptions is empty. If 3
stands for the empty set, then 3 => & simply stands for .
Our first rules of inference describe the basic properties of = and &:

(R1) Self-Implication
F=F
(R2) Adding Assumptions
2=
P &EE S

(R3) Separating Assumptions
3&3=>%
S>3 =>9)

(R4) Combining Assumptions
3=>E'=>9)
3&3=>9

(R5) Modus Ponens
21>

b2 2
3&F & ... & ST
2&3, & ... &3, F
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The first rule says that any specification implies itself. The second rule says
that assumptions can always be added to a specification. The third rule shows
how multiple assumptions can be separated by introducing an extra =, and
the fourth rule shows how such separation can be removed. The fifth rule
says that assumptions can be replaced by other assumptions that imply them.
It is called “Modus Ponens” by analogy with classical logic.

The next three rules deal with quantifiers of the form (V6 I):

(R6) Quantifier Introduction

If 1 is an identifier of phrase type 0 that does not occur free in %

then .
TN

S =>Vo S
(R7) Quantifier Removal
If I,, ..., I, are distinct identifiers of phrase types 0y, ... , 0, and
Ay, ..., A, are phrases of types 6, ... , 6, then
VO, L) ... VO, In) F=>F| 1, . 1hsay, .., A
(R8) Free Substitution
If |1 .. 1nsAL ..., As IS @ type-correct substitution, then
F

y' I, ..., In>A1, ..., An

Rule (R8) says that substitution preserves the universality of specifica-
tions. In fact, this rule can be derived from the more general rules (R6) and
(R7). To see this, suppose ¢ is a universal specification and I;. ... , I,— A,
..., A, is a type-correct substitution. Then there are phrase types 6, ... , 0,
such that each free occurrence of I,in & has type 6, and each A, has type 6,. By
applying rule (R6) n times to & (taking  to be the empty set), one can infer
(V6. 1,)...(¥ 0,1,) ¢ Then from rule (R7) and modus ponens (RS5), one
can infer #|; . 540 ., An

The next rules deal with specifications of the form { P}, which hold in a
particular environment if P is a static assertion, i.e. if Pis true for all states:

(R9) Mathematical Fact Introduction

If P is an assertion that is a mathematical fact then
{P}
(R10) Reductio ad Absurdum
{false}=>v

(R11) Static Implication
If P and Q are assertions then

{P} & {P implies Q}:>{Q} .
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Rule (R9) says that mathematical facts (typically about various data
types) are true in any environment and state. Rule (RI0) says that the
specification {false}, which is not true in any environment, implies anything.
Rule (R11) says that static assertions can be combined according to the usual
laws of mathematical reasoning.

In fact, rule (R11) can be expressed in a different way. By substituting
the assertion identifiers p and g for the metavariables P and Q, we can infer
the particular universal specification

(R11') Static Implication (Axiom)
{p} & {p implies g}=>{q} .

On the other hand, from (R11") we can use rule (R8) for free substitution to
obtain { P} & { Pimplies 0}=>{Q} for any assertions P and Q. Thus the single
universal specification (R11") has the same power in our logic as the rule of
inference (R11).

Of course, a universal specification such as (R11') can be viewed as a
very simple kind of inference rule, with no premisses and no metavariables.
But it is simpler to view it as an axiom, i.e. a particular specification that,
because it is known to be universal, can be written as part of a proof without
being inferred from anything that precedes it.

In fact, most of the rules of inference given in Sections 1.4.2 and 1.4.3
can be reformulated as axioms in specification logic. In stating these axioms,
we use p, q, I, i, p1, P2, 91,and g, as assertion identifiers, s, s;, and s, as
statement identifiers, and / as a logical expression identifier:

(R12) Statement Compounding (Axiom)

{p} s1 {a} & {q} 2 {r}=>{p} s1; 52 {r} .
(R13) Strengthening Precedent (Axiom)

{p implies q} & {q} s {r}=>{p} s {r}
(R14) Weakening Consequent (Axiom)

{p} s {q} & {q implies r}=>{p} s {r} .
(R15) while statement (Axiom)

{i and 1} s {i}={:} while /do s {i and 11} .
(R16) Two-way Conditional Statement (Axiom)

{pand}s,{q} & {pand 11}s,{q}=>{p}if ! thens, elses;{q}
(R17) One-way Conditional Statement (Axiom)

{p and I} s {q} & {(p and 1 [) implies q}={p} if I then s {q}
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(R18) Empty Statement (Axiom)

{p} {p}
(R19) Specification Conjunction (Axiom)

{pi} s {a1} & {2} s {q2}=>{p: and p;} 5 {g; and g2}
(R20) Specification Disjunction (Axiom)

{pi} s {q1} & {2 s {g2}=>{p1 or po} s {qi or g3} .

To see the relationship between these axioms and the rules of Chapter
1. consider (R12). Let P, O, and R be any assertions and S; and S, be any
statements. Then by applying the rule of free substitution (R8) to axiom
(R12), we may infer {P} S, {0} & {Q} S; {R}=>{P} S; 5, {R}.

If {P} S1 {Q} and {Q} S, {R} have been shown to be universal specifica-
tions then, by modus ponens (RS), we may infer {P} 81; S, {R}. In form, this
is exactly the inference permitted by the rule for statement compounding
given in Section 1.4.2. However, in specification logic it is no longer a very
useful inference. The problem is that it is very rare for specifications of the
form {P} s: {0} or {0} S, {R} to be universal.

The usual situation is that {P} S; {Q} will only be true in all environ-
ments satisfying some set 3 of assumptions, and {0} S, {R} will only be true
in all environments satisfying some set 2, of assumptions. In other words,
> :>{P} S1 {Q} and 22:>{Q} S, {R} will be universal specifications. In this
situation, we may use modus ponens and (R12) to infer 3; & %, =>
{P} Sy, S {R}. Thus {P} §;; S, {R} will be true in all environments satisfying
both 21 and 22.

More generally, if

=%

4 o
}"ﬂ :> "/H

are universal specifications, and ¥ & ... & .= ¥ can be obtained from an
axiom A by type-correct substitution, then free substitution and modus
ponens can be used to infer

S, & .. &S,

Henceforth, we will simply say that such an inference is obtained “by
applying A”.
It is this ability to carry along and combine assumptions about environ-
ments that distinguishes specification logic from the logic of Chapter 1.
Next we consider specifications of the form S # E, which specify that §
does not interfere with E. The essential idea we want to capture is that
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everything that can cause interference is named by an identifier. Thus if 7,
..., I, are the identifiers occurring free in S, we would expect L #E & ... &
I,#E to imply S#E.

However, this form of reasoning needs to be strengthened. For exam-
ple, x # (y+z)=>(x:=y) # (y+z) holds despite the fact that y interferes with
y+z. The reason is that the only occurrence of y in x :=y is in a context—the
expression on the right side of an assignment statement—that is not
statement-like, and therefore cannot describe any action that might cause
interference.

To make this precise, we must develop some notation for identifier
occurrences. Let P be any phrase. We write %(P) for the set of identifiers
that have free occurrences in P.

We say that an occurrence in P of an identifier (or more generally, an
occurrence of a subphrase) is statement-like if the type of every subphrase of
P enclosing the occurrence is statement-like. This concept can be defined
more formally by using the terminology of Appendix A: A statement-like
identifier or subphrase occurrence in P corresponds to a subtree in a deriva-
tion tree for P such that every node on the path from the root of the
derivation tree to the root of the subtree has a statement-like phrase type.
We write Fga.nike( P) for the subset of F(P) consisting of those identifiers that
have statement-like free occurrences in P.

Then we have the following inference rule:

(R21) Left-Side Noninterference Decomposition

If S is a statement-like phrase, E is an expression-like phrase,
and g;sta-like(s)={11,--- s In}a then

LA#E & ... & L, #E=>S#E

A similar rule deals with the identifiers occurring on the right side of # .
We say that an identifier or subphrase occurrence in a phrase P is
expression-like if the type of every subphrase of P enclosing the occurrence is
expression-like, and we write F ¢y ke (P) for the set of identifiers that have
free expression-like occurrences in P. Then:

(R22) Right-Side Noninterference Decomposition

If S is a statement-like phrase, E is an expression-like phrase,
and g?exp-llke(E)={Ila «eo » Iy}, then

SHL & ... & S#I,=>SHE

For example, since Fexpke(y+2)={y, z}, rule (R22) gives x#y &
x#z=>x#(y+z). Then since Fganke(x:=y)={x}, rule (R21) gives
x#(y+z)=>(x:=y)#(y+z). Using modus ponens to combine these two
specifications gives x#y & x# z=>(x:=y)# (y+z). In this way, these two
rules can be used to express any noninterference specification in terms of its
free identifiers.
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Our next rule describes an important consequence of noninterference.
Suppose a statement § does not interfere with an assertion P, and consider
executing S withan initial state for which Pis true. Then P will continue to be
true during execution of S and will still be true when (and if) S terminates.
Thus if S satisfies {Q} S {R}, it will also satisty {Q and P} S {R and P}.

This reasoning is captured by the following axiom, in which s is a
statement identifier, and p, q and r are assertion identifiers:

(R23) Constancy (Axiom)
s#p & {q} s {r}=>{q and p} s {r and p} .

Finally, we come to the inference rule for assignment. In Chapter 1 we
gave the rule {P| x_g} X:=E {P}, which can be falsified by various effects
caused by the procedure mechanism. To avoid such falsification, we must
preface this specification with the assumptions that X is a good variable and
that X does not interfere with any other identifier that has a free expression-
like occurrence in P. Thus we have

(R24) Simple Assignment

Let X be a 7 variable identifier, E be a 7 expression, and P be an
assertion such that all free occurrences of X in P have type
7 expression. Let {Iy, ... , F,}= Fexpiike(P) —{X}. Then

gv(X) & X#1, & ... & X#1,>{P|x_.g} X:=E {P}

Notice why this rule makes sense syntactically. The free occurrences of
X in P are in contexts that permit 7 expressions, and therefore 7 variables,
since a variable can always be used as an expression. Thus we can either
substitute the expression E for X in P, or leave X unchanged while changing
its type from 7 expression to 7 variable.

Exercise

1. Derive the following rules of inference from the rules given in the preceding

section:

(@) —— ~ lewa
S & E>F)>F

(b) 3=>%,

(7, ::’-’f:):"(}::“-’fl)
(c) If I has phrase type 6 then

P& .. & S
VoD P & ... &« (Vo) $,>(N0 D) &
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(d) If I, and I, have phrase types 0, and 9, then

Vo, 1)) (V6, 1)) $=>(¥0, L) (Y6, I,) &
(e) If I and J have phrase type 6 then

(Ve I) (Vo) F=>(VOI) (L],
(f) Axiom
{q} s {r} & {pt=>1at s {p and 1}

3.3.6 An Example of Inferences in Specification Logic

We have now accumulated enough rules to give an extended example. Let k,
[, and n be integer variable identifiers. Then the following two universal
specifications are instances of the assignment rule (R24):

gv(k) & k#f & k#n=>
{(k+1)xf=(k+1)! and 0<k+1<n}
k:=k+1{kxf=k! and 0<k<n}
gv(f) & f#k & f#n=>
{kxf=k! and 0<k<n}
fi=kxf{f=k!and O<k<n} .

By applying axiom (R12) for statement compounding, we get

gv(k) & k#f & k#n & gv(f) & f#k & f#n=>
{(k+1)xf=(k+1)! and 0<k+1<n}
ki=k+1; f:= kxf{f=k! and 0<k<n}

Next, the rule for introducing mathematical facts gives

{(f=k! and 0<k<n and k»n)
implies ((k+1)xf=(k+1)! and 0<k+1=n) } ,

since the assertion within curly brackets is a mathematical fact about the
integers. Then by applying axiom (R13) for strengthening precedents, we get

gv(k) & k#f & k#n & gv(f) & f#k & f#n=>
{f=k!and 0<k=<n and ksn}
ki=k+1; f:= kxf{f=k! and 0<k=<n} .

Just as in Chapter 1, reasoning that involves the rules for statement
compounding, strengthening precedents, and weakening consequents can
be concisely communicated by using a tableau. The only change is that now
the tableau must be prefaced with the union of the assumptions used in each
step of the reasoning. For example, the chain of reasoning we have just given
can be described by the following tableau:
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{f=k! and 0<k=<n and k~n}
{(k+1)xf=(k+1)! and 0<k+1<n}
gv(k) & k#f & k#n } o) k= ket
& gv(f) & f#k & f#n {kxf=k! and 0=<k=n}
fi=kxf
{f=k! and 0<k=<n} .

The general situation is that a tableau has the form 2 => L, where Lisa
Jist of intermixed assertions and statements that begins and ends with asser-
tions. Such a tableau is valid if:

(1) Whenever the triple {P} ${Q} occursin L, where Sis a statement or
sequence of statements, 3=>{P} S {Q} is a universal specification,

and (2) Whenever the pair {P}{Q} occurs in L, 3=>{P implies Q}is a
universal specification.

If a tableau S=L is valid, then 3=>{P} S;; ... ; S, {Q} is a universal
specification, where {P} Y bod B Y {Q} is obtained from L by deleting
intermediate assertions.

From the result of the above tableau, we can use the while-statement
axiom (R15) to infer the universal specification:

gv(k) & k#f& k#n & gv(f) & f#k & f#n=>
{f=k! and 0<k=<n}
while k#n do
begin k:=k+1; f:= kXfend
{f=k! and 0<k=n and 1 k#n} ,

which is the main step in the following tableau:

fn=0}

{1=0! and 0<0=<n}

k:=0;
{1=k!and 0<k=n}
gv(k) & k#f & k#n ] =85

= ) {f=k! and 0<k=n}

while k< n do

begin k:=k+1; f := kXfend
{f=k! and 0<k=n and 7 k#n}
[ {f=n!}

& gv(f) & f#k & f#n |

The remaining steps are obvious applications of the rules for assignment
statements and for introducing mathematical facts. Notice that these steps
do not introduce any additional assumptions.
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This example shows that specification logic treats assignment and con-
trol statements in much the same way as in Chapter 1. The difference is that
each assignment statement introduces assumptions about the relevant iden-
tifiers. In the following sections we will see how these assumptions are
eliminated or ‘“‘discharged’ by declarations and other binding mechanisms,

Exercise
1. Determine the necessary set of assumptions 3, and prove
S=>{n>0}
k:=0; y:=1;
while k> n do
begin k:=k+1; y:=xXy end

{y=x"}

3.3.7 Inference for Simple Variable Declarations

The fundamental shortcoming of the kind of reasoning about programs used
in Chapters 1 and 2 is that the specification of a statement is always inferred
independently of the context in which the statement occurs. This is in sharp
contrast to the way in which one reads a program in a language with block
structure. As the reader descends into the program, each declaration pro-
vides information about the identifier being declared which can be used in
understanding the statements within the scope of the declaration. Similarly,
specifiers and parameter assumptions provide information about formal
parameters. In specification logic this information is conveyed by assump-
tions.

Consider a block begin integer X; B end, which contains a single simple
variable declaration, and suppose that we wish to show that this block
satisfies { P} begin integer X; B end {Q}. If the block is not a complete
program, this will not be a universal specification, but it should be implied by
some set 2, of relevant assumptions that have been established by declara-
tions in enclosing blocks. In other words, we want to show that 3 =>{ P} begin
integer X; B end {Q} is universal.

To do this, we must obviously show that the block body B satisfies { P} B
{Q}. But now, in addition to the assumptions 2,, we may use certain addi-
tional assumptions arising from the nature of the declaration integer X.
Specifically, we may assume that X is a good variable, and that there is no
interference between X and any phrase that does not contain a free occurr-
ence of X.

This reasoning is captured by the following rule of inference:

(R25) Simple Variable Declarations

If X is a 7 variable identifier, B is a statement, P and Q are
assertions, E,, ... , E,, are expression-like phrases, S;, ... , S,
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are statement-like phrases, and X does not occur free in 3, P, Q,
B S E S 1o Sy sthen

S&eVX) & XH#E & ... & XHE, & i#X & ... & S, # X=>{P} B{Q}
) 3 =>{P} begin  X: Bend {Q} .

The reason that X must not occur free in 3, P, or Q is that the meaning of this
identifier outside the block is unrelated to its meaning inside the block.
As an example, we apply this rule to the specification proved at the end
of the previous section. To match the premiss to this specification, we take X
to be k and
% E, E, &

————— e =L e
gv(f) & f#n & gv(k) & k#f & k#n & [#k=
P
{n=0}
l k:=0;f:=1;
B { while k=n do
l begin k:=k+1; f:= kXfend
Q

——
{f=nt}
Then the rule for simple variable declarations gives

gv(f) & f#n=>

{n=0}
begin integer k;
k:=0; f:=1;

while k>n do
begin k:=k+1: f:= kXf end
end

{r=nt}

Informally, we say that the declaration integer k discharges the assumptions
gv(k) & k#f & k#n & f# k which were used in reasoning about the body of
the block.

Notice that there is no choice about which assumptions are discharged
by a declaration 7 X. The undischarged assumptions 2 must be those not
containing free occurrences of X, while each discharged assumption must
have one of the forms gv(X) or X # E or S# X, where S and E contain no free
occurrences of X. In effect rule (R25) tells us everything we can assume
about X and nothing else.
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Of course, the rule for simple variable declarations only applies to a
block that contains the declaration of a single variable. However, a block
containing a multiple declaration or a sequence of declarations can be
expanded into a nest of blocks in which each block contains the declaration
of a single variable.

Exercise

1. Using the result of Exercise 1 after the previous section, determine the necessary
set of assumptions 3 and prove

3={n=0}
begin integer k;
k:=0; y:=1;

while kn do

begin k:=k+1; y:=xXy end
end
{y=x"}

3.3.8 Inference for Proper Procedure Declarations

Now we come to the heart of our development: the formulation of an
inference rule for proper procedure declarations. Because of its importance
and complexity, we will give a more rigorous justification for this rule than
for others: we will prove the correctness of a version of the rule that is
adequate for nonrecursive procedures, and only rely upon the reader’s
intuition to justify the strengthening of this rule that is necessary to handle
recursion.

Suppose we wish to infer a universal specification about a block contain-
ing the declaration of a proper procedure, i.e.

3.={P} begin procedure H(6; Fy; ... ; 6, F,); Bproc; B end {0} (1)

where H, Fy, ..., F, are distinct identifiers. To do this we must show that the
block body satisfies {P} B {Q}, using both the inherited assumptions S and
additional assumptions 3, that describe the nature of the procedure being
declared. In other words, we must have a premiss of the form

S &3, .. >{P} B{O} . @)

Since the procedure identifier H has a different meaning in B than outside
the block containing the procedure declaration, we assume that H does not
occur free in 3, P, or Q.

With a simple variable declaration, the analogue of %, is completely
determined by the declaration. With a procedure declaration, however, the
situation is more complex: to make an assumption about calls of a proce-
dure, one must first prove something about the body of its declaration. Thus
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our rule will have a specification of B as an additional premiss, and the

form of 2 proc Will depend upon this premiss as well as upon the procedure
declaration itself.

The premiss about B, has the form
Z, & E’p:s::“'{Ppmc} Bpmc {Qproc} 0 (3)

Here the assumptions needed to insure {Poc } Bproc {Qproc} are divided in E’,
which is a subset of the inherited assumptions 2 that describes global
identifiers in Bpmc, and Epa, which is the set of parameter assumptions
discussed in Section 3.1.4. We assume that 3 contains no free occurrences of
the formal parameters Fy,..., F,, since these identifiers have a different
meaning in By, than outside the enclosing block. We also assume that H
does not occur free in 25, Pprocs OF Qproc-

The complexity of the rule for proper procedure declarations lies in the
form of 2 ;;oc. Rather than stating this form ad hoc, we will develop it while
proving that the rule is correct, i.e. that if (2) and (3) are universal specifica-
tions then (1) is a universal specification.

Assume (2) and (3) are universal, and led n be any environment in
which 2 is true. Then we must show that

{P} begin procedure H(6; Fi; ... ; 6, F,); Bpoc; B end {Q}

is true in 1. But the block in the above specification has the same meaning in
nasitsbody Bhasinn' =[n | H: h], where h is the meaning of the procedure
being declared, as described in Section 3.3.1. Moreover, P and Q have the
same meaning in 7 and 0’ since H does not occur free in these assertions.
Thus it is sufficient to show that {P} B {Q} is true in 7'.

Since H does not occur free in 3, the truth of % inn implies the truth of %
inn'. Thus the universality of (2) implies the desired result that {P} B{Q}is
true in m', providing 2o is true in M.

Now consider (3), and let n” be any environment that gives meanings of
the appropriate type to the identifiers occurring free in (3), and that gives the
same meaning asn’ to H and to the identifiers that occur free in 3 or globally
in Bproc. We know that X istrue inm’, 3’ is asubset of 3, and " agrees with n’
for the identifiers occurring free in X'; thus %' is true in n”. Then the
universality of (3) implies that

2:pa == {P proc} Bproc {Qproc}

is true in n". Moreover, as shown in Section 3.3.1, since n" agrees with n' for
H and the identifiers occurring globally in Bp,oc, H(Fy, ... , F,) has the same
meaning in 1" as By, SO that

2"pa = {Pproc} H(Fy, ..., Fy) {Qproc}

is true in n". It follows from the definition of quantified specifications that
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the above specification, quantified over any of the identifiers for which "
can differ from 7n’, is true in the environment 7', and can therefore be an
assumption in ;..

These quantified identifiers can include the formal parameters F, ..,
F,, which are distinct from H and do not occur free in X’ or globally in Boroc.
Moreover, we can also quantify over other identifiers that are distinct from
H and do not occur free in 3’ or Boc- If such identifiers have any free
occurrences in (3) (which is the only case of interest), then they are ghost
identifiers of (3); we therefore call them ghost parameters.

Thus X, can contain the assumption

(V 6, F) ... (¥ 6, F,) (Y 6,Gy) ... (VY 6.Gy)
(Cpa>{Poroct H(F1, -, F) {Qproc})

where the ghost parameters Gj, ..., Gi can be any identifiers, of phrase types
GRS 500 6,;, that are distinct from each other and H, ¥, ... , F,, and do not
occur free in 3 or By

However, we will also need a second assumption in 2 proc that describes
noninterference properties of the procedure being declared. To derive this
assumption, let I, ... , I, be the identifiers with global statement-like
occurrences in B, i.e.

{, ..., Im}:g;sta-like(Bproc)_{Fl’ R

and let E be some identifier distinct from Fy, ..., F,, H, and the identifiers
occurring globally in B,,. Since every member of Fsta-iike(Bproc) must be
either an J, or a statement-like formal parameter, we can use rule (R21) for
left-side noninterference decomposition to infer the universal specification

L#E & ... & I#E>(Fy,#E & ... & F#E>Bpo#E)

where F;, ..., F;. are the formal parameters with statement-like phrase type.

Let e be any meaning, appropriate to an expression-like phrase type,
such that L1#E & ... & I,,#E is true in [y’ | E: e], and let %" be any
environment that gives the same meaning as [y’ | E: e] to all identifiers
except the formal parameters. Since the formal parameters do not occur in
L#E & ... & I,#E, this specification is true in 0", so that the universal
specification in the previous paragraph implies that

F,#E & ... & F,# E=> By #E

is true in n". But By, and H(Fy, ..., F,) have the same meaning in 0", since
this environment agrees with n’ for H and the identifiers occurring globally
in By Thus the above specification, with By replaced by H(Fy, ..., F,),is
also true in 0", and since 0" gives arbitrary meaning to the formal parameters
and agrees with [n’ | E: e] for other identifiers,



SEC. 3.3 SPECIFICATION LOGIC 231

(V6; &1y ... (Y0, F,) (Fy#E& ... & Fy# Ex>H(Fy, ..., F,) #E)

is true in [0’ | E: e].

By (5d) in Section 3.3.4, this specification is the definition of H# E, so
that H# E is true in [0’ | E: e]. Then since e is any expression-like meaning
such that I; #E & ... & I, #E is true in [y’ | E: €], the specification

(V¥ exp-like E) (LZ“#E & ... & I,# E=>H#E)

is true in " and can be taken as the second assumption in X ... (A minor
generalization of the form of this assumption, obtained by alpha-conversion,
is that E can be any identifier distinct from I, ... , I,,, and H.)

This argument shows the correctness of a rule that is adequate for-
nonrecursive procedures. To handle recursion, the rule must be streng-
thened in two ways:

(a) The assumptions X, must be added to the premiss (3). Essen-
tially, we must be able to make the same assumptions about calls of
a procedure from within its body as from elsewhere in its scope.

(b) H must be excluded from the identifiers Iy, ... , I, in the noninter-
ference part of % .. Essentially, a procedure only interferes with
something if some global identifier other than the procedure name
interferes with it.

Thus we have:
(R26) Proper Procedure Declarations
Suppose

Fy, ..., F,, Gy, ..., G, H are distinct identifiers of phrase
types 64, ... , 0,, 81, ... , 0, procedure(f;, ... , 8,),

Bproc, B are statements,

Porocs Qproc» P, Q are assertions,

3,3, 3, are finite sets of specifications,

such that
=P

Fi, ..., F, do not occur free in 3,
Gy, --- , Gy do not occur free in By OF 3, ,
H does not occur free in Pproc, Qprocs P> O 2,3, 0r 2,

Let 20c be

(VO,F) ... (V6,F,) (Y6,G)) ... (Y0,Gy)

(Epa:>{Pproc} H(Fl, 0cs g Fn) {Qproc})
& (V exp-like E) (W #E & ... & I, # E=>H#E) ,
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where {11, seey Im} = ‘-o;sta-like(Bproc) .- {Fl! veey Frn H} and Eis SOme
identifier that is distinct from I, ... , 1,, and H. Then

3 & 2"pa & Eproc:>{Pproc} Bproc {Qproc}
3 & Spr0c = {P} B{0}
3 =>{P} begin procedure H(6,Fy; ... ; 6,Fy); Byroc; B end {0} .

As with the rule for simple variable declarations, this rule only applies
to blocks that contain a single declaration. Usually, blocks with multiple
declarations can be expanded into nests of blocks with single declarations,
but this approach will not handle groups of mutually recursive procedures,
To handle mutual recursion, one must extend the above rule to multiple
procedure declarations. Although such an extension is conceptually straight-
forward, the resulting rule is so complicated that we will not try to formulate
it.

On the other hand, the full generality of the single-declaration rule
given above is frequently unnecessary. In reasoning about nonrecursive
procedures, the assumption 2, may be omitted from the first premiss.
When this premiss does not contain ghost identifiers, there will be no need
for the ghost parameters Gy, ... , G;. When B, contains no global identi-
fiers, or when the only assumptions about global identifiers also involve
formal parameters, 2, will be empty.

3.3.9 Examples of Inference about Procedures

Our first example of the use of the rule for proper procedure declarations
does not involve recursion, ghost parameters, or inherited assumptions.
Consider the specification proved in Section 3.3.7:

5
“'pa

gv(f) & [#n:>

n

I proc

{n=0}

begin integer k;
k:=0;f:=1;

Bpoc 1 While kK £n do
begin k := k+1; f:= kXf end
end

Qproc
{f=ni}
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we will encapsulate the statement in this specification as the body of a
procedure declaration with the heading

H 01 Fl 02 F2

procedure fact(integer {exp} » ; integer {var} f ); ...

The metavariables in the procedure rule must be replaced so that the
procedure declaration in the conclusion matches the declaration of fact, and
the first premiss matches the specification of the procedure body. Most of
these replacements are indicated above. Since there are no global identifier
occurrences in By, 2" is empty. Since there are no ghost identifiers in the
specification of By, there are no ghost parameters.

These replacements map the first premiss of the procedure rule (with
p 1, omitted since there is no recursion) into the universal specification
given above, and map Ep,oc into the procedure assumptions

(V integer exp n) (V integer var f)

(8v(f) & f#n=>{n=0} fact(n, ) {f=nt})
& (V exp-like e) fact# e

In the last line, there are no I, ..., I,, since there are no global identifiers in

Boroc
proc
Thus the rule for proper procedure declarations shows that, from an
instance of the second premiss,

3 & S,0.=>{P} B{O} .

we can infer an instance of the conclusion,

=>{P}
begin procedure fact(integer {exp} n; integer {var} f);
begin ... end;
B
end

{o}

Notice that, in addition to f# n, the parameter assumptions include the
assumption gv(f), which was omitted from the informal presentation of this
procedure in Section 3.1.4. In fact, the use of gv in parameter assumptions is
so stereotyped that it would be pedantic to include it in program comments.
Normally, gv(F) will occur as a parameter assumption for each formal
parameter F of type 7 variable.

To illustrate how the assumption mec is used in reasoning about the
block body, we consider the procedure statement fact(a+ b, c). From rule
(R22) for right-side noninterference decomposition, we have

c#a & c#b=>c#(a+b) |,
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and from rule (R7) for removing quantifiers, we have

((Vinteger exp n) (V integer var f)

(&v(f) & f#n=>{n=0} fact(n, ) {f=n'}))
=>(gv(c) & c#(a+b)=>{a+b >0} fact(a+b, c){c=(a+ b)) .

Thus

gv(c) & c#a & c#b & 3
=>{a+b=0} fact(a+b, c) {c=(a+b)!}

is a universal specification about the procedure statement fact(a+b, c).
However, %, also contains (V exp-like e) fact # e. To see the role of

this assumption, we will show that fact(a+b, c) preserves the assertion

a+b=0. The rule for right-side noninterference decompositon gives

c#a& c#b=>c#(@@t+tb=0) ,
quantifier removal gives
((V exp-like e) fact#e) => fact# (a+b>0) |,
and left-side noninterference decomposition gives
fact# (a+b=>0) & c#(a+b=0)=>fact(a+b, c)# (a+b=0)

since the occurrences of a and b in fact(a+b, c) are not statement-like.
Next we employ the rule of constancy (R23). By substituting fact(a+b,
¢) for s, a+b= 0 for both p and g, and c=(a+b)! for r, we get

fact(a+b, c)# (a+b=0)
& {a+b=>0} fact(a+b, c) {c=(a+b)}
=>{a+b=0} fact(a+b, c) {c=(a+b)! and a+b=0} .

Then using modus ponens to combine the last five specifications gives
s

—

rgv(c) & c#a & c#b & 2 proc=>

P B Q
(e — . = e = N
{a+b=0} fact(a+b, c) {c=(a+b)! and a+b=0} .

It is easy to see how this kind of reasoning could be extended to a block
body containing several calls of fact. However, if we just take the metavari-
ables as indicated, the above specification becomes an instance of the second
premiss of the procedure rule, so that we may infer
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gv(c) & c#a & c#b=>
{a+b=0}
begin procedure fact(integer {exp} n; integer {var} f);
begin ... end;
fact(a+b, c)
end
{c=(a+b)! and a+b=0} .

As a second example, we consider a recursive procedure for computing
factorials:

H 0, F 0, F,

FETE A = i W
procedure fact(integer {exp} n ; integer {var} f);
i
{pa: gv(f) & f#n}
Pproc
{n=0}

B [if =0 then f := 1 else
Prec ) begin fact(n—1, f); f:= nxfend

Qproc
{f=n} .

With a recursive procedure, we cannot proceed by first proving a specifica-
tion of the body and then matching this specification against the first premiss
of the procedure rule to determine ., since we need to know 3 proc While
proving the specification of the body. However, an adequately commented
procedure declaration, such as the one above, will contain enough informa-
tion to determine the metavariable replacements that give the first premiss
and 2 ppoc- (Notice that the stereotyped parameter assumption gv(f) has
been included since f has type 7 variable.)

If we replace the metavariables as indicated, take 2. to be empty since
there are no global identifiers, and use no ghost parameters since there are
no ghost identifiers, then the first premiss of the procedure rule becomes

gv(f) &f#n & E'proc:>
{n=>0}
if n=0 then f := 1 else
begin fact(n—1, f); f := nXf end
{f=n} ,
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where 2, is

(V integer exp n) (V integer var f)

(8v(f) & f#n=>{n=0} fact(n, f) {f=n1})
& (V exp-like e) fact# e

Actually, this is the same %, as in the previous example, which is hardly
surprising since the two procedures are intended to have the same meaning.

However, we must now prove the above specification of B, using
3proc @s an assumption. This reflects the basic method of reasoning about
recursion: In showing the correctness of the. procedure body, one assumes
that recursive calls behave correctly.

As a first step, an argument similar to that given for the previous
example shows that the statement fact(n—1, f) satisfies

gv(f) &f#n & Eproc:’
{n=1=0} fact(n—1, f) {f=(n—1)! and n—1=0} .

Then the following tableau establishes a specification for the compound
statement in the procedure body:

{n=0and 71 n=0}
{n—-1=0}

fact(n—1, f)

gv(f) & f#n & 30> { {f=(n—1)! and n—1=0}
{nxf=n!}

f:=nxf

{f=n1} .

The other half of the conditional statement satisfies
{n=0and n=0}
— t
gv(f) & fn=> 1 =0l
{ f=n!} :

Finally, the desired premiss about the procedure body can be inferred by
using rule (R16) for the two-way conditional statement:

gv(f) & f#n & Zproc=>
{n=0}
if n=0 then f := 1 else
begin fact(n—1, f); f := nXf end
{f=n}

Since %o is the same as in the previous example, its usage in reasoning
about the body of the block containing the procedure declaration is similar.
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For a third example, we consider a nonrecursive factorial-computing

procedure that uses call by value and result:

procedure fact(integer value #; integer result f);

begin integer k;
k:=0; f:=1;
By { while k>n do
begin k:=k+1; f:= kXfend
end .

This procedure declaration will lead to a 3, which is stronger than in the
previous examples, reflecting the fact that this procedure will still behave
correctly when its parameters interfere. However, to express this extra
strength we will need to use ghost identifiers and parameters.

Let B, be the body of the above procedure declaration, and let By be
Bo| . f—n', f- Then according to the transformation described in Section
3.1.5, the above declaration is equivalent to

H . F 9, F,

—_—— = —— - ——
procedure fact(integer {exp} n ; integer {var} f);

begin integer n', f';
Bpocyni=n; By; f:= f

end
As in our first example, B, satisfies
gv(f) & f#n=>{n=0} B, {f=n!}
Moreover, since fis the only identifier with a free statement-like occurrence
in By, the rules for noninterference decomposition give
f#n & f#no=>Bo# (n=ng)
Next, we use the rule of constancy (R23) to obtain
Bo#(n=ng) & {n=0} B, {f=n'}=>
{n=0and n=ny} By {f=n!and n=ny
Then by combining these results and weakening the consequent, we obtain
gv(f) & f#n & f#ny=>{n=0and n=ny} By {f=ny!} .

At first sight, it may seem surprising that we will need this kind of
ghost-identifier description of the behavior of By. Intuitively the reason is
that, since  is called by value, a caller of fact will have no access to the value
of n after By has completed execution, and therefore no interest in the fact
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that f—n! will hold. What is important to the caller is that f will be the
factorial of the value n, possessed by n before execution of By, since ng will
also be the value of the corresponding actual parameter.

Next, we apply the substitution n, f—>n', f' to the above specification, to
obtain

gv(f) & f #n' & f' #no=>{n"=0and n'=ny} By {f =ne!} ,

which is the main step in the following tableau:

[ {n=0 and n=ng}
n':=n;
gv(n') & n' #ny {n' >0 and n' =ng}
& gv(f) & f' #n' & f #ng t = 1 By;
& gv(f) & f#ng {f'="9!}
f:=f
{r=no} .

Then two applications of rule (R25) for simple variable declarations give

"'pa
f—A—\
gv(f) & f# ng:=
Pproc
e\ e——
{n=0 and n=ng}
begin integer ', f';
Bproc n:=n; By, f:=f

end

Qproc

G=rol} .

The indicated metavariable replacements map this specification into
the first premiss of the procedure rule. As in our previous examples, since
there are no global identifiers, 2" is empty. But now, since ng is a ghost
identifier of the above specification, it becomes a ghost parameter in %o
Thus we take G. to be ng and 6; to be its phrase type integer expression. Thus
S'pmc is

(V integer exp n) (V integer var f) (V integer exp ng)

(av(f) & f#nog=>{n=>0 and n=ne} fact(n, f) {f=no'})
& (V exp-like e) fact#e

The reader may verify that this 3, implies the %, ot the two
previous factorial-computing procedures. (Hint: Substitute n for n,, usirg
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parts (¢), (d) and (e) of Exercise 1 following Section 3.3.5.) Thus the present
procedure will behave correctly whenever the previous ones do so.

On the other hand, as an example of the additional capabilities provided
by call by value and result, the present X, implies

(V integer exp ng)
(gv(a) & a#ny=>
{a+b=0 and a+b=ng} fact(a+b, a) {a=ne!}) ,

which characterizes the kind of call that will not behave correctly when call
by name is used.

Exercises

1. For each of the following procedures, determine %, and prove the appropriate
instance of the first premiss of rule (R26) for proper procedure declarations.

(a) procedure powerx(integer {exp} n; integer {var} y);
begin integer k;
k:=0; y:=1;
while k%n do
begin k:=k+1; y:=xXy end
end .

Here the specification of the procedure body is the result of Exercise 1 after
Section 3.3.7. Despite the presence of the global identifier x, 3’ is empty, since
the only assumption about x is y # x, which also involves a formal parameter and
must therefore be part of 3.

(b) procedure powerxy(integer {exp} n);
begin integer k;
k:=0; y:=1;
while k#n do
begin k:=k+1; y:=xXy end
end .

Again, the specification of the procedure body is the result of Exercise 1 after
Section 3.3.7. Now, however, 3’ is gv(y) & y#x.

(c) procedure powerxy(integer {exp} n);
{pa: y#n}
{n=0}
if n=0 then y:=1 else
begin powerxy(n—1); y:=xXy end
{y=x"}
As in the previous case, 3’ is gv(y) & y#x.

(d) The procedure described in Exercise 2 following Section 3.1.5.
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2. Show that the procedure declaration

procedure swap(integer {var} x, y);
begin integer ¢; f:=x; x:=y; y:=t end
gives rise to the procedure assumption 3 ;.. =
(V integer var x) (V integer var y) (V integer exp x,) (V integer exp Yo)
(gv(x) & gv(y) & x#xy & x#y, & y#xy & y#y, & y#x=>
{x=x, and y=yo} swap(x, y) {y=x, and x=y} )
& (V exp-like e) swap#e . -

Notice the asymmetry between x and y.

3.3.10 Further Examples

The examples in the previous section show the application of specification
logic to procedures that can be proved by more conventional methods, e.g.
[Hoare 71b]. The only significant novelty is the treatment of call by value
and result as abbreviational constructs in the sense of Section 3.1.5, which
avoids the complications of the procedure rule that would be necessary to
include these parameter-passing mechanisms explicitly.

We now consider two examples, involving statement parameters and
the use of call by name to repeatedly evaluate expressions with changing
values, that cannot be treated by other approaches. In both of these exam-
ples, we will use parameter assumptions that go beyond the simple noninter-
ference and good-variable specifications used previously.

The first example is the higher-order procedure

H  0,=statement F; 0, F,
—_—— ——— - A ——
procedure repeat( procedure s ;logical {exp} [ );
B

proc
A

5egin s; while 11 / do s end

which was introduced in Section 3.1.7. Suppose the identifier p denotes an
assertion that will be true when the body of this procedure begins execution,
and the identifier i denotes the invariant of the while statement. Then the
statement s should satisfy the specifications {p} s {i} and {i and 1 } s {i}, or
equivalently the single specification {p or (i and 7 I)} s {i}. The key to
reasoning about the procedure is to take this specification as the parameter
assumption.
We begin with the obvious tableau

{i and 1 1}
{p or (i and 1 1)} s {i}:> EP or (i and 1 /)}

i} .
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Then an application of the while-statement axiom (R15) gives the main step
in the following tableau:

{p}

p
{por (i and 11)}

S5
{p or (i and 1 1)} s {i}:> { {i}
while 1 /do s
{i and 7 (0 1)}
{i and 1}

To match the result of this tableau with the first premiss of rule (R26),
we use the metavariable replacements

Epa Ppl'OC BPI'OC Qpl'OC

X T Te I e
{p or (i and 1 1)} s {i}=>{p} s; while 1/ dos {i and I} .

Since there are no global identifiers, 3 is empty. Since p and i are ghost
identifiers, they become ghost parameters, of phrase type assertion. Thus
2pl’OC iS

(V statement s) (V logical exp !) (V assertion p) (V assertion i)

({p or (i and 11 )} s {i}=>{p} repeat(s, I) {i and 1})
& (Y exp-like e) repeat# e

The second line of 3, is similar to the kind of axiom one would give
about a repeat statement if it were available in Algol W. However, 2, is
not a universal specification; it only holds in environments in which the
identifier repeat has an appropriate meaning.

Our second example is the procedure given in Section 3.1.5 that uses
Jensen’s device to compute an iterated sum:

procedure sum(integer {var} i; integer {exp} e);
begin s:=0; i:=a—1;
while i <b do
begin i:=i+1; s:=s+e end
end

To describe the body of this procedure, we introduce a ghost identifier 6, of
phrase type integer procedure(integer expression), that expresses the value
of e as a function of i. The relationship between these three identifiers is
expressed by the static assertion {e=46(i)}, which will appear as a parameter
assumption.

The invariant of the while statement asserts that @ is partitioned
into a processed interval @ and an unprocessed interval i| I§|, and that s is
the sum of @ over the processed interval:



242 PROCEDURES

and 5=

CHAP. 3

Zje D 0(])

The following tableau shows that this invariant is preserved by the while-

statement body:

gv(i) & i#a & i#b

& i#s & i#0
&{e=0(i)}

& gv(s) & s#a & s#b
& s#Hi& s#0

=1

“- and §=> __,,E

({la_i[ 5] and s=3, . ;7 6(j) and i<b}

{fa_fix1] "] and 5= ¢ G350 00D}
ir=it+l;

{la_T[ o] and s=3; . g 0G)}

{la i » ands+H(a)—_,EE]0(])}
{la i » and5+e—M€E]H(j)}

s:=5+e

7 00N}

Then the while-statement axiom gives the main step in

gv(l) & i#a & i#b
&i#ts & i#6

& {e=6(i)}

& gv(s) & s#a & s#b
& s#i & s#0

>

{true}
{o=0}
s:=0;
{s=0}
{la_a—1 b' and s=3 ¢ o) ()}
i:=a—1;
{la_i blands=3;c7 00}
while i<b do
begin i:=i+1;s:=s+e end

{ and s=3 ;. [, 6(j) and 1 i<b}

{s=3 < g5 000}

The following metavariable replacements map the first premiss of the
procedure rule into the result of this tableau:

5!

-

gv(s) & s#a & s#b

<
<4pa

&gv(i) & i#a&iftb&i#s&itt0& sHi&s#0&{e=0(i)}=>



SEC. 3.3 SPECIFICATION LOGIC 243

lnproc
——
{true}
=0;i:=a—1;
Boproc | While i<b do
begin i:=i+1; s:=s+e end

Qproc
e e,
{s=3, 06}
The formal parameters are i and e, and the ghost parameter is 6. Thus Epmc is

(V integer var i) (V integer exp e)
(V integer procedure(integer exp) 0)
(@v() & i#a & i#b&i#s&i#O&s#i&s#O&{e=0()}
=>{true} sum(i, e) {s= 2.; e 3 0()})
& (V exp-like e) (s# e=>sum#e)

In the next section, we will show how these assumptions can be used to
reason about calls of sum.

Exercise

1. The procedure whiledo described in Exercise 3 following Section 3.2.1 uses
recursion to obtain the effect of a while statement. Show that the declaration of
whiledo leads to a X, bearing a close relation to axiom (R15) for the while
statement.

3.3.11 Lambda Expressions

A significant shortcoming of Algol W is that it does not provide any way to
denote a procedure without using an identifier to name the procedure. This
deficiency is particularly painful for procedures that are actual parameters in
calls of other procedures. For example, in Section 3.1.7 we used the follow-
ing statement to sum an array segment:

begin

procedure addoneelement(integer {exp} i); s:=s+ X();
s:=0; iterate(a, b, addoneelement)

end

Here the only usage of the procedure named by addoneelement is in the call
of iterate, but we are forced to name this procedure by an identifier and to
define the meaning of this identifier at a point remote from the only point
where it is used. The program would be simpler and clearer if we could write
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an expression denoting this procedure directly as an actual parameter of the
call of iterate.

This kind of facility is provided by a procedure-denoting expression
called a lambda expression, which consists of the symbol A, followed by a
parenthesized formal parameter list, a period, and a procedure body, e.g,

A(integer {exp} i). s:=s+ X(i)

A lambda expression defines the same procedure as would be defined by a
procedure declaration with the same formal parameter list and body, but
leaves the procedure unnamed. Instead, the lambda expression is written
directly at the point where the procedure is used. For example, the array-
summing program given above could be written as

begin
s:= 0; iterate(a, b, \(integer {exp} i). s: =5+ X(i))
end

Syntactically, a lambda expression of the form
)\(01 Fl, - 0,, Fn) B

is a phrase of type procedure(6, ... , 0,), 7 procedure(6, ... , 6,,), or assertion
procedure(#,, ..., 8,), depending upon whether the body Bis astatement, at
expression, or an assertion. As with procedure declarations, the occurrences
of Fy, ..., F, in the formal parameter list are binders whose scope is the
formal parameter list plus the following procedure body, i.e. the entire
lambda expression.

Just as the meaning of procedure declarations can be explained by the
copy rule, so the meaning of lambda expressions can be explained by a
process called beta reduction. Consider a procedure statement or function
designator that begins with a lambda expression:

(\(8y Fy; ... ; 6, F,). B) (Aq, ... , An)

Such a phrase is called a beta redex. Its meaning is always the same as the
meaning of the phrase obtained from the procedure body B by substituting
each A; for F;:

Bl F, ..., Fp—A1, ..., Ap

The replacement of a beta redex by the result of this substitution is called
beta reduction. (The terms beta redex and beta reduction, like the term alpha
conversion, are taken from the study of the lambda calculus, which is a
logical language based upon the use of lambda expressions.)

In this description of beta reduction, we have assumed that call by value
or result is not used in the lambda expression. When such usage occurs, it
must be eliminated by means of the transformation described in Section
3.1.5, before the process of beta reduction is performed.
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As an example, suppose iterate is defined by the declaration

procedure iterate(integer {exp} a, b; procedure p {integer exp});
begin integer k; k:=a—1;
while £ <b do
begin k:=k+1; p(k) end
end

(To keep the example simple, we use call by name, rather than call by value
as in Section 3.1.7.) Then an application of the copy rule shows that

iterate(a, b, \(integer {exp} i). s:=s+ X(i))
is equivalent to

begin integer k; k:=a—1;

while £ <b do
begin k:=k+1;
(A(integer {exp} i). s:=s+X(i)) (k)
end

end

Next, the beta redex in the fourth line can be reduced to s: = s+ X(k), so that
the call of iterate is equivalent to

begin integer k; k:=a—1;
while k<b do

begin k:=k+1; s:=s+ X(k) end
end

Although lambda expressions are not available in Algol W, they are
provided in several programming languages, including LISP and (with
slightly different notation) Algol 68. In the rest of this book, we will occa-
sionally use them in programs to improve clarity. In such cases they can be
eliminated by declaring a procedure with a dummy name. Specifically, one
can replace a lambda expression of the form A(0; Fy; ... ; 6, F,). B by an
identifier D that does not occur elsewhere in the program, and then insert
the declaration

procedure D(6, Fy: ... ; 0, F,); B

in a block enclosing the occurrence of D. One should be careful that the
enclosing block is small enough to fall within the scope of all binders of the
identifiers occurring globally in B. As an example, this transformation would
convert our array-summing program back into the form containing a decla-
ration of addoneelement that was given at the beginning of this section.
However, our main reason for introducing lambda expressions is to use
them in specification logic. Since lambda expressions denote procedures,
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they are among the phrases that can be substituted for identifiers of pro.
cedural types. Moreover, since beta reduction preserves meaning, it can be
used as a rule of inference, i.e. the reduction of a beta redex occurring in 3
universal specification gives another universal specification. Indeed, one cap
even use beta reduction backwards to create a redex in a specification.

To illustrate the use of lambda expressions in specification logic, con-
sider the procedure sum discussed in the previous section. By applying rule
(R7) for quantifier removal to the Epmc obtained for this procedure, with the
substitution

i, e, 9 > j, X(j)x X(j), A(integer {exp} k). X(k)x X(k) ,
one can infer
Sproc & gV(j) & j#a & j#b & j#s
& j# (\(integer {exp} k). X(k)x X(k))
& s#j & s# (\(integer {exp} k). X(k)x X(k))

& {X(j)x X(j)= (A(integer {exp} k). X(k)*x X(k))(j)}
=>{true} sum(j, X(j)x X(}))

{s=3; g (A(integer {exp} k). X(k)x X(K))(j)} .
By beta-reducing the two redexes, we infer
Sproc & 8V(J) & j#a & j#b & j#s
& j# (A(integer {exp} k). X(k)x X(k))
& s#j & s# (\(integer {exp} k). X(k)x X(k))
& {X(NxX()=X()x XD} i
=>{true} sum(j, X()x X())) {s=2;c mg X()*XG)} .
Then, since X(j)x X(j)= X(j) X X(j) is a mathematical fact, and right-side
noninterference decomposition gives
j# X=>j# (\(integer {exp} k). X(k)* X(k))
and
s# X =>s# (\(integer {exp} k). X(k)x X(k))
(since only X occurs free in the lambda expression), we have
Zproc & 8V(j) & j#a & jH#D & jH#s & jHX & s#] & s#H X
=>{true} sum(j, X(j))* X())) {s=3;c g XND* X} .
Next, rule (R25) for simple variable declarations gives
Sproc & s#X=>
{true}
begin integer j; sum(j, X(j) x X(j)) end
{s=3¢ s X()*x X0}
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Thus, if we take this specjfication as the second premiss of the procedure
rule, remembering that 2" =gv(s) & s#a & s# b must be a subset of %, we
obtain the conclusion

gv(s) & s#a & s#b & s# X=>
{true}
begin
procedure sum(integer {var} i; integer {exp} e);
begin s:=0; i:=a—1;
while i<b do
begin i:=i+1; s:=s+e end
end;
begin integer j; sum(j, X(j)* X(j)) end
end

{s=3jcam X)*xX0)} .

Exercise

1. Use the copy rule and beta reduction to eliminate the procedure statements from
the following program, which computes the sum of a segment of a two-
dimensional array:

begin s:=0;
iterate(al, b1, A(integer {exp} i).
iterate(a2, b2, A(integer {exp} j). s:=s+X(, ) )
end
(Assume the formal parameters a and b of iterate are called by name.) Also, use

the method of introducing declared procedures with dummy names to convert
this program to conventional Algol W.

*3.3.12 Abstract Specification Logic

Once lambda expressions have been introduced into specification logic, with
beta reduction as an inference mechanism, the logic can be simplified
significantly. In particular one can give axioms, which we will call abstract
axioms, from which several of the more complicated inference rules can be
derived by substituting lambda expressions and then using beta reduction. In
effect, much of the complexity of the logic can be encapsulated in the
mechanism of beta reduction.

For example, the following is an abstract axiom for assignment, in which
x is a 7 variable identifier, e is a 7 expression identifier, and 7 is an assertion
procedure(r expression) identifier:
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(R27) Simple Assignment (Axiom)
gv(x) & x# m=>{m(e)} x:=e {m(x)} .

From this axiom, we can derive our previous rule (R24) for assignment
as follows: Suppose X is a 7 variable identifier, E is a T expression, and Pis an
assertion such that the free occurrences of X in P have phrase type r
expression. By substituting X for x, E for e, and A(7 exp X). P for = in rule
(R27), we can infer

gv(X) & X# (\(t exp X). P)=>
{(\(r exp X). P)(E)} X:=E {(\(z exp X). P)(X)} .
Then by beta-reducing the precedent and consequent, we get
gv(X) & X# (\(r exp X). P)=>{P| x_£} X:=E{P} ,
since beta-reducing the consequent leads to the substitution X— X, which

leaves P unaffected.
However, by right-side noninterference decomposition, we have

X#I & ... & X # I,>X# (\(7 exp X). P)

where {I, ... , I,}= ZFpike(M(7 exp X). P)= Z exp-tike(P) —{X}. Then modus
ponens can be used to infer the conclusion of rule (R24).

From rules (R6) and (R7) for the introduction and removal of quanti-
fiers, it can be seen that axiom (R27) is equivalent to

gv(x)=>(Vr exp e) (V assertion procedure(r exp) )
(x#7m=>{m(e)} x:=e{n(x)}) .

In this form, the axiom is an obvious consequence of the definition (6) of gv
given in Section 3.3.4, as is the converse implication

(R28) Good Variables (Axiom)

(V 7 exp e) (V assertion procedure(r exp) )

(x#m=>{m(e)} x:=e {m(x)})

=>gv(x)

In the next section, we will use (R28) to obtain conditions for insuring that
array designators are good variables.
Another abstract axiom describes nonrecursive proper procedures. Let
m be a procedure(#, ... , 8,) identifier and o be a procedure (procedure (6,
.. » 8,)) identifier, and consider the block

begin procedure k(0; fi; ... ; 0, fu); m(fi, ... , fn); o(h) end

Obviously the effect of the procedure declaration is to give s the same
meaning as m, so that o-(h) inside the block has the same meaning as o(m)
outside the block. This justifies the following abstract axiom, where p and q
are assertion identifiers:
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(R29) Nonrecursive Proper Procedure Declarations (Axiom)

{p}a(m) {q}=>
{r}
begin procedure h(0; fi; ... ; 0, fu); m(fi, .-, fn)s
a(h)
end

{q} .

(Strictly speaking, this is a family of axioms, one for each choice of n=>1 and
6y, - » 0n)

Despite the seeming triviality of this axiom, it can be used to derive the
nonrecursive case of rule (R26) for proper procedure declarations. Suppose
that Fy, ... , Fn, Gy, ... , G, H, E are distinct identifiers, Bpyroc, B are
statements, Pyroc; Qproc, P, Q are assertions, and Bysh 3. pa are finite sets of
specifications, that satisfy the restrictions given in rule (R26) and also the
restriction that H does not occur free in B (since we are not considering
recursion).

Suppose that the first premiss of rule (R26), with 2, omitted since we
are avoiding recursion,

2 & 2pa:>{Pproc} Bproc {Qproc}

is a universal specification. Since the F’s and G’s do not occur free in 3, we
can introduce quantifiers to infer

3 = (VF, G) Cpa=>{Pproc} Bproc {Qproc) >

where we have written (VF, G) torabbreviate the list of quantifiers
(V0,F) ... (VO0,F,) (V01Gy) ... (YO, Gy).

By using left-side noninterference decomposition and introducing a
quantifier, we can infer

(V exp-like E) (LW#E & ... & I, #E=
()‘(OIFI; e s BnFn)- Bproc)#E) )

where {I;, ..., Im}='07'sta-like()\(01F1; ey 0,F). Bproc)z‘oista-like(Bproc)_
{F,, ... , F,, H}.
Next, suppose that the second premiss of rule (R26),

2 & (VF’ G) (zpa:>{Pproc} H(Fla ses g Fn) {Qproc})
& (V exp-like E) (W#E & ... & I,# E=>H#E)

>{P} B{Q} ,

is a universal specification. Since beta reduction preserves meaning, we can
replace B by the redex (A(procedure(9;, ... , 6,) H). B)(H) which reduces to
B, i.e. we can do beta-reduction backwards. Then we can substitute
M(01Fy; .. 5 0,F,). Bproc for H. Since the F’s, G’s, and E do not occur free in
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A(O1F1; ... 5 0,F,). Bproc, there is no alpha conversion. Since H does not occur
free in 3, 3 ,, Pprocs Qprocs P @, OT A(procedure(6;, ... , 6,) H). B, these
phrases are not changed by the substitution. On the other hand, the state-
ment H(Fy, ... , F,) changes to (A(01Fy; ... ; 0,F,). Bproc) (Fi, ..., Fy),
which beta-reduces to By, Thus we have

3 & (VF, G) (Zpa™{Pproct Bproc {Qproc})

& (V exp-like E) (L#E & ... & I, # E=
()‘(HIFIQ cee s HnFn)' Bproc)#E)

=> {P} (A(procedure(d,, ... , 6,) H). B)
(A(OIFI; cee s onFn)' Bproc) {Q} ©

Next we use axiom (R29). First we use alpha conversion to replace
fi, - s fwsand h by Fy, ... , F,, and H. (Without loss of generality, we can
assume that these identifiers are distinct from p, g, m, and o.) Then we
substitute P for p, Q. for q, A(0,F;; ... ; 0,F,). By;oc for m, and
M(procedure(d,, ..., 6,) H). Bfor o Since Fy, ..., F,, and H do not occur free
in the first of these lambda expressions and H does not occur free in the
second, the substitution does not cause any alpha conversion. However, the
substitution does convert the statements m(Fy, ... , F,) and o(H) into
redexes. After beta-reducing these redexes, we have

{P} (\(procedure(6;, ... , 6,) H). B)

(}‘(011:1; cee s onFn)- Bproc) {Q}
={P} begin procedure H(6:Fy; ... ; 0,F,); Bproc; B end {0}

Finally, from the results of the last four paragraphs and the restriction
3’ <€ 3, we can use modus ponens to infer the conclusion of rule (R26):

3 =>{P} begin procedure H(0:Fy; ... ; 8,F,); Byroc; B end {Q}

Thus in the nonrecursive case, lambda expressions and beta reduction can be
used to derive the complex rule (R26) from the almost trivial abstract axiom
(R29).

Unfortunately, this approach cannot be extended to encompass recur-
sion. To give an abstract axiom for recursion, one must introduce
specification-valued procedures. Moreover, to insure the soundness of the
axiom one must restrict the bound occurrences of identifiers in lambda
expressions denoting these procedures so that, in the language of fixed-point
theory, the meanings of these lambda expressions are continuous functions.
These considerations, which are beyond the scope of this book, are discussed
in [Reynolds 81].
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Exercise

1. Simple variable declarations can be described by a family of abstract axioms
indexed by.the integers m=0 and n=0. Let e,, ... , e, be identifiers of
expression-llke types, s1, ... , 5, be identifiers of statement-like types, p and g be

assertion identifiers, and o be a procedure(r variable) identifier. Then:

(V¥ 7 var x) (gv(x) & xte & ... & x#e,,
& s;#x & ... & s, #x=>{p} o(x) {4})
= {p} begin 7 x; o(x) end {g}

Derive rule (R25) from this family of axioms, and vice-versa.

+3.3.13 Inference for Arrays

In this section we give a brief account of the inference rules that describe
assignment to array elements and the declaration of arrays. For simplicity,
this account is limited to the one-dimensional case.

In Section 2.3.2, we gave the rule {P| X—[X| S: E]} X(S):=E {P} for
assignment to array elements. Just as with simple assignment, the generaliza-
tion to specification logic requires us to preface this specification with
assumptions about noninterference, namely that assigning to X(S) will not
affect the meaning of any identifier other than X that has a free occurrence in
P. However, we do not need to assume that X is a “good” array variable
since, in the subset of Algol W used in this book, all array variables have
good behavior. (It is array designators, not array variables, that can behave
badly.) Thus there will be no analogue of the specification gv(V) for arrays.

As in Section 2.3.2, our rule will not take subscript errors into account,
i.e. we will assume that such errors are akin to nontermination and must be
treated by informal arguments outside of our conditional logic.

These considerations lead to the following rule, which plays the same
role for assignments to array elements that rule (R24) plays for simple
assignments:

(R30) Array Assignment

Let X be an identifier of type 7 array variable(#*), S be an integer
expression, E be a 7 expression, and P be an assertion such that
all free occurrences of X in P have type 7 array expression(*).
Let {I, ... , I}= Fexpaiike (P) —{X}. Then

XOS)#1, & ... & X(S)# I, >{P| xox) 5. 1)} X(8):=E {pP} .

The same rule can be stated more abstractly as an axiom, analogous to rule
(R27) for simple assignment, in which x is a T array variable (#) identifier, s is
an integer expression identifier, e is a 7 expression identifier, and p is an
assertion procedure(r array expression (*)) identifier:
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(R30") Array Assignment (Axiom)

x(s)#p=>{p((x | s: e} x(s):=e {p(x)} .

We leave it to the reader to verify that (R30) and (R30’) can each be derived
from the other.

In a sense, either rule (R30) or (R30’) tells us everything that we need
to know about assignment to array elements. In practice, however, we need
additional rules to deal with the use of array designators as actual paramet.
ers. For example, let 3, be the procedure assumptions obtained in Section
3.3.9 that describe a factorial-computing procedure using call by name. It is
easy to infer the following specification about the call fact(X (i), X( J)), where
X is an integer array:

Zproc & gV(X())) & X(j)# X(i)=>
{X())= 0} fact(X (), X(j)) {xX()=x()1} .

But to make use of such a specification we need rules to show when we can
assume that an array designator is good, e.g. gv(X(j)), or that two array
designators referring to the same array do not interfere with one another,
e.g. X()# X(@).

The following rule serves the first of these purposes. Here x isa 7 array
variable (*) identifier and s is an integer expression identifier:

(R31) Good Array Designators (Axiom)
x(s)#s=>gv(x(s)) .

This rule can be derived from (R30") and (R28). To see this, let 7 be an
assertion procedure (r exp) identifier. By substituting A( array exp (*) x).
w(x(s)) for p in (R30') and using right-side noninterference decomposition
and beta reduction, we have

x(s)#s & x(s)# w=>{m([x | 5: €](s))} x(s):=e {m(x(s))} ,
or since [x | s: e](s)=e,
x(s)#s & x(s)# w=>{m(e)} x(s):=e {m(x(s))} .
Next, we separate assumptions and introduce quantifiers to obtain

x(s)#s=>
(V¥ 7 exp ) (V assertion procedure (r exp) )

(x@)#m=>{n(e)} x(s):=e {m(x(s))}) .

Then modus ponens can be used to derive rule (R31) from this result and
rule (R28) for good variables.

Notice that the assumption x(s) # s normally precludes x(s) from being
an array designator such as X(X(1)).

The next two axioms describe noninterference. They show circum-
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stances in which assigning to an array element will not affect another
clement of the same array, or even a segment of the same array. Here s and¢
are integer expression identifiers, x is a 7 array variable (+) identifier, andvis
an integer set expression identifier:

(R32) Array Element Noninterference (Axiom)
{s1t} & x(s)# t=>x(s) # x(2)

(R33) Array Segment Noninterference (Axiom)
{s ¢ v} & x(s)#v=>x(s)#x1v

These axioms go significantly beyond the previously given rules for
noninterference, since they specify noninterference between parts of an
entity named by a single identifier. Notice the use of static assertions to
insure that noninterference will hold for any state.

Also notice that in defining the phrase type of » we have introduced
integer set as a new data type. As described in Section 3.3.3, this is a
straightforward extension of specification logic, despite the fact that integer
set is not one of the data types provided in Algol W. In making inferences
from rule (R33), one is free to substitute for » any expression, such as an
interval diagram, which denotes a set of integers.

We have remarked that the last three axioms are needed to deal with the
use of array designators as actual parameters. As a simple example, consider
the following program, which uses the procedure fact to create a table of the
factorial function:

{@9 dom X}
begin integer k;
k:=-1; =0
{whileinv: and (Vie [0 &]) X@)=i"}
while k<n do

begin k:=k+1; fact(k, X(k)) end
end

{(vielo n) x®)=i} .

(As pointed out in Section 2.3.1, this is a ludicrously inefficient way of
computing a table of factorials. However, it serves nicely to illustrate the
points we are trying to make.)

We assume that fact has been declared to be either of the procedures in
Section 3.3.9 that use call by name, so that the appropriate procedure
assumptions 2, are

(V integer exp n) (V integer var f)

(gv(f) & f#n=>{n=0} fact(n, f) {f=n'})
& (V exp-like e) fact#e

Then we may infer by quantifier elimination
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2 proc & gV(X(K)) & X(k)# k=>{k =0} fact(k, X(k)) {X(k)=k1}
and by rule (R31)
S oroc & X(k)# k=>{k=0} fact(k, X(k)) {X(k)=k!} .

Next we develop some relevant noninterference specifications. The
rather complicated reasoning used here is typical of programs in which array
designators are used as actual parameters. Let z be an integer variable
identifier and Y be an integer array expression (*) identifier. By noninterfer-
ence decomposition we have

fact#k & fact#Y & z#k & :#Y=>
fact(k, z)# (¥ i € [0_Jk) Y()=i! ,

since the occurrence of k in fact(k, z) is not statement-like. Thus since 3,
contains (V exp-like e) fact# e, we have

Sproc & z# k & z#Y=>fact(k, z)#(V i € [0_Jk) Y(@)=i!
Then by substituting X(k) for z and X 1 [0 |k for ¥ we get
S0 & X(K)#k & X(k)#X 1[0 |k=> s
fact(k, X(k))#(V i e o Jk) (X1 [0 lk)@)=it

To deal with the third assumption, we use rule (R33) to obtain

{k ¢ 0 |k} & X(k)#[0 Jk=>X(k)#X 1 [0 |k
Here the first assumption is a mathematical fact and the second assumption
is implied by X(k)# k. Thus we have
Sproc & X(k)# k= i
fact(k, X(k)) # (Vie[o Jk) (X1 [0 |k)@)=i!
The results of the last two paragraphs may be combined by using the
rule of constancy:
2 proc & X(k)# k=> )
{(vielo Jk) (x1 0o ]k)(i)=i! and k=0}
fact(k, X(k))
{(vielo J&) (X1 [0 Jk)(@)=i! and X(k)=k!}

Then another application of the rule of constancy gives

ZSproc & X(k)#k & fact(k, X(k))#[0_[k] n|=
{lo J«| njand (Vieo Jk) (x1]0 |k)(i)=i! and
k=0 }
fact(k, X(k))
{lo [k n]and (Vv ie[o Jk) (x1 0 |k)@)=i! and

X(k)=k!} .

proc
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In conjunction with
Sproc=>fact# k & fact# n
and the noninterference decompositions

fact#k & fact#n & X#k & X #n=>fact(k, X(k))#[0_[k[ ]
and

X#k=>X(k)#k

|

the result of the previous paragraph gives the main step in the following
tableau:

{0 k[ n|and (Vielo k) X()=i! and k<n}
{o [k+1] nfand (vielo Je+1) X(@)=it}

k:=k+1;
gv(k). {0 T ] and (Vv i€ 0_Jk) X(G)=it}
& k#n & k#X :’*{0 k| n| and
& Siproe (Vielo lk)(x1 o Jky@)=i and k> 0}
& X#k & X#n fact(k. X(k))
{| [k| n| and

(Vielo Jk)(x 1[0 Jk)@)=i! and X(k)=k!}
L{IO kl nland (Vi€ E]) X@)=i} .

Then the application of the while-statement rule to the result of this tableau
gives the main step in

f{true}
{| nland (Vi€ _) X(l)—z'}

gv(k) {- | n|and (Vie “) X(t)—t'}

& k#n & k#X | —. ] while k<n do

& Ziproc begin k:=k+1; fact(k, X(k)) end
& X#k & X#n {0 % n]and (Vie o k) X(@i)=i! and
7 k<n}

{(Vielo n)) x@)=i}

and the application of the rule for simple variable declarations gives
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Zproc & X#n=>
{true}
begin integer k;
k:=-1;
while k<n do
begin k:=k+1; fact(k, X(k)) end
end

{(Vielo n))x@=it} .

This matches the informal description of the program except for the
absence of the initial assumption <€ dom X, which is only needed to
insure against subscript errors.

To complete the treatment of arrays we must deal with their declara-
tions. The following rule is a straightforward generalization of rule (R25) for
simple variable declarations; the only novelty is the treatment of array
bounds:

(R34) Array Declarations

If X is a 7 array variable(*) identifier, B is a statement, P and Q
are assertions, L and U are integer expressions, Ey, ... , E,, are
expression-like phrases, Sy, ... , §, are statement-like phrases
and X does not occur freein 3, P, Q, L, U, E4, ..., E,, Sy, ..
S,, then

3 & XH#HE & ... & X#E, & $Si#X & ... & S, # X
={P and dom X=[L U]} B {Q}

3 =>{P} begin 7 array X (L::U); B end {Q}

)

]

Finally, the following axiom expresses the fact that, once an array has
been declared, its domain cannot be changed by executing any statement. If s
is an identifier of any statement-like type and x is a 7 array variable (*)
identifier, then

(R35) Domain Constancy (Axiom)

s#dom x

Exercises
1. Derive rule (R30) from (R30').

2. LetZX, be the procedure assumption obtained in Exercise 2 after Section 3.3.9.
Infer the following universal specification:

Zproc & gV(0) & i #xy & i Hyy & X #i & X#xy & X#y,=>
{i=x, and X(i)=yo} swap(i, X(i)) {X(i)=x, and i=y,} .

What goes wrong when one tries to infer a similar specification about
swap(X (i), i)?



SEC. 3.3 SPECIFICATION LOGIC 257

+3.3.14 Inference for Function Procedures

To complete our discussion of specification logic, we consider function

rocedures. At the abstract level, the appropriate axiom is identical to axiom
(R29) for nonrecursive proper procedures, except for a change of types. Let
pandg be assertion identifiers, m be a 7 procedure (44, ... , 8,) identifier, and
o be a procedure (~r procedure (61, ... , 0,,)) identifier. Then:

(R36) Function Procedure Declarations (Axiom)

{p} o(m) {g}=>
{p}
begin 7 procedure h(0; fi; ... ; 0, fn); m(f1, --- » fn)s
o(h)
end

{q} -

At a more concrete level we need a rule that is similar in nature to (R26)
for proper procedures. However, the concrete rule for function procedures
issimpler than that for proper procedures. For a proper procedure, the main
part of the procedure assumptions embodies some property that must be
proved about the procedure body. But for a function procedure the corres-
ponding property is self-evident; it is just that the value of any procedure call
will be equal to the value of the procedure body (after appropriate substitu-
tions). Since this property is independent of the state, it can be expressed by
a static assertion of equality.

This idea is captured by the following rule:

(R36') Function Procedure Declarations

Suppose

Fi, ... , F,, H are distinct identifiers of phrase
types 6y, ... , 0,, T procedure(fy, ... , 0,),

Biprocisa T expression,

B is a statement,

P, Q are assertions,

3 is a finite set of specifications,

such that H does not occur free in 2, P, Q, or Bipc.
Let Efpmc be

(VY 61F1) ... (V 6,F,) {H(Fla cee s Fn):prroc}
& (V sta-like S) (S#, & ... & S#1,=>S#1I) ,

where {1}, ... , I} = Fexpatike(Biproc) = 1£1: ++v F,tand S is some
identifier that is distinct from Iy, ... , I,, and H. Then

2 & 2"fproc:>{P} B {Q}
S =>{P} begin 7 procedure H(6:Fy; ... ; 0,F,); Brproc; B end {0}
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Notice that neither rule (R36) nor (R36’) permits recursion. For the
reasons discussed in Section 3.2.5, recursive function procedures cannot be
treated by specification logic.

Exercise

1. Derive rule (R36’) from (R36). The following is an outline of the derivation:

(a)

(b)

©

Assume that the premiss of (R36') is universal. Use beta reduction back-
wards to replace B by (A(r procedure(d;, ... , 6,) H). B) (H). Then
substitute A(6,F;; ... ; 0,F,). Bpyo. for H.

In the result of (a), use rule (R9) for introducing mathematical facts to
eliminate the assumption containing a static assertion, and use rule (R22)
for right-side noninterference decomposition to eliminate the assumption
about noninterference.

In axiom (R36), use alpha conversion to replace f, ... , f, and h by F,, ...
F,, and H, and then substitute

>

p—>P

q—Q

m—\0,Fy; ... 5 0,F,). Byyoc
o—A(r procedure(d,, ... , 6,) H). B

After appropriate beta reduction, use modus ponens to combine this result
with the result of (b) to infer the conclusion of (R36").



4 ADDITIONAL CONTROL
MECHANISMS

In this chapter, we will consider additional language facilities for describing
control structures. On the one hand, we will introduce an iterative state-
ment, called the for statement, that is more specialized than the while
statement. On the other hand, we will consider labels and goto statements,
which can be used to describe a wider variety of control structures than the
language used in previous chapters.

4.1 for STATEMENTS

4.1.1 for Statements in Algol W

In the programs we have seen so far, some (but not all) of the while
statements have served a particularly simple purpose: to cause some state-
ment within their bodies to be repeatedly executed while some integer
variable takes on successive values in a predetermined interval. Thisis such a
common situation in programming that Algol W (like most higher-level
programming languages) provides a special kind of iterative statement for
describing it.

Let K be an identifier, L and U be integer expressions, and S be a
statement. Then the for statement

for K := L until Udo S

259
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causes the following actions: First L and U are evaluated, and then the
integersin the interval are sequenced through in ascending order. For
each such integer, the integer is made the value of K, and the statement Sis
executed.

For example, the program in Section 2.2.4 for summing an array seg-
ment can be rewritten as follows using a for statement:

{la_b] < dom X}

begin s : = 0;
for kK := auntil b do s : = s+ X(k)
end

{s=3ic g X0}

Although nearly every higher-order programming language provides an
iterative construct that is roughly similar to the for statement, the precise
meaning of these constructs varies significantly from one language to
another. (As an extreme example, the DO statement in FORTRAN always
executes its body at least once.) Fortunately, the for statement in Algol W is
unusually clean and elegant.

The simplest way to specify the precise meaning of the Algol W for
statement is to define it to be an abbreviation for some statement built out of
previously understood language constructs. However, since a correct defini-
tion of this kind is surprisingly subtle, we will approach it through several
stages of plausible though inaccurate definitions. This approach will also
suggest why the analogous constructs in other languages exhibit such diver-
sity.

At first sight, one might expect that for K := L until U do S should have
the same meaning as

begin K : =L —1;

while K< U do 1)
begin K :=K+1; S end

end

However, this definition is inaccurate in several respects. In the first place, it
does not have the correct binding structure. In the for statement, the initial
occurrence of K'is a binder whose scope is the entire for statement, excluding
L and U. Thus if K is declared in some block enclosing the for statement,
then the variable defined by this declaration will be unaffected by execution
of the for statement.

This binding structure is captured by the following definition: If K does
not occur free in L or U, then for K := L until Udo S has the same meaning as
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begin integer K; K :=L—1;

while K< U do g
begin K :=K+1; S end (2)

end

(If K does occur free in L or U, one must alpha-convert the for statement
before applying this definition.)

In the second place, Algol W syntactically prohibits S from performing
any action that could affect the value of K. This insures that successive
executions of S will be performed for successive integers. To express this
prohibition we add to our definition the requirement that all free occur-
rences of K in S must have the phrase type integer expression (as opposed to
integer variable).

It is slightly surprising that Algol W enforces this requirement for for
statements, even though it does not make a syntactic distinction between
expressions and variables as procedure parameters. (In [Sites 72] the
occurrences of K in S are described by the nonterminal symbol {(control
identifier), which is equivalent to our (integer expression identifier).)

Finally, Algol W evaluates the upper bound U once before any execu-
tion of S, but not repeatedly after each execution of S. Not only does this
improve the efficiency of the for statement, but it insures that S cannot alter
the interval being iterated over by interfering with U.

To capture this characteristic, we introduce a local variable U "to save
the initial value of U. For the sake of symmetry, we also introduce L' to save
the initial value of L. Thus we define for K : = L until Udo S to have the same
meaning as

begin integer L', U'; L' :=L; U':=U;
begin integer K; K :=L'—1;
while K< U’ do Sehs
begin K : =K +1; S end )
end
end |,

where L' and U’ are distinct identifiers that do not occur in the original for
statement.

Except for overflow considerations, (3) is a precise definition of the
Algol W for statement. It implies that (in contrast to many programming
languages) there is a firm guarantee on the number of times a for statement

will execute its body. Let N be the size of before the execution of
for K : = L until U do S. Then S will be executed at most N times, and if S
terminates without an error stop or a goto to an external label, then it will be
executed exactly N times. As a consequence, a for statement will always
terminate if its body always terminates. This is the most important distinc-
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tion between the for statement and the more general iterative mechanism
provided by the while statement.

The for statement is closely related to the procedure iterate which wag
defined in Section 3.1.7 and used as an example in Section 3.3.11. In fact,
for K :=L until U do S is equivalent to the statement

iterate(L, U, \(integer {exp} K). S) ,
where iterate is defined by

procedure iferate(integer value a, b; procedure p {integer exp});
begin integer k; k :=a—1,;
while k<b do
begin k : =k +1; p(k) end
end

By using the call-by-value transformation of Section 3.1.5, the copy
rule, and beta reduction, it can be seen that this definition is equivalent to
(3). Moreover, if the parameters a and b of iterate are called by name, rather
than by value, then this definition becomes equivalent to (2). For this reason,
we will say that (2) and (3) define the call-by-name and call-by-value variants
of the for statement, respectively.

4.1.2 Inference for for Statements

As with the while statement, the key to reasoning about the for
statement for K : = L until U do Sis an invariant that holds both initially and
after each execution of the body S. The most obvious approach is to take this
invariant to be a function of K that holds for K= L — 1 before execution, and
for the succession of integers in after each iteration. But this approach
leads to a complication: One must pursue separate lines of reasoning for the
two cases where the interval is regular and irregular.

A more elegant approach, given in [Hoare 72b], is to regard the
invariant as a function of the interval of integers that have been
“processed so far”’. We will follow Hoare’s approach since it unifies the
regular and irregular cases, and meshes nicely with the use of interval and
partition diagrams.

As an example, the invariant of the array summation program given in
the previous sectioniss = Y, . ;7 X (i), which asserts that s is the sum of the
elements of X over the proce@d interval. The for-statement body s : =
s+ X(k) maintains this invariant in the following sense: If the invariant
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holds for IE‘——_lk (and if k € [a bl) before execution, then the invariant holds
for la k-ivafter execution, i.e.

{s=3ic ) XG) and [a_[k] b]}
si=s+X(k) {s= ;e pm XG)}

As a consequence, if the invariant holds for the empty interval before
execution of the entire for statement, then it will hold for l:a], Ia a+1|,
, ... after successive executions of the body, and for the complete
interval @ after the entire for statement has finished. Thus we may infer

{s=3;:c o X (i)} for k :=a until b do s : =s+ X(k)
{s=3ica3 XO} -
In specification logic, the general case of this reasoning is given by the
following rule of inference:

(R37) for Statements

Suppose

K and N are distinct identifiers of phrase types
integer expression and integer set expression,

L and U are integer expressions,

S is a statement,

I is an assertion,

3 is a finite set of specifications,

such that K does not occur free in L, U, I, or X.
Let {Si, ... , Sy} = Fgaaine(S) and S, 1, ... , S, be any other
identifiers distinct from K. Then

S& S #K&...&S, # K=>
{11 N-[L_ |k and } s {1 Na}
S&S#L& .. &S, #L&S1#U& ... &S, # U=
{I|n- g} for K :=L until Udo S{I| v L 0]}

Notice that in defining the type of N we are using integer set as a data

type. The identifier N, which serves to indicate the dependence of / upon

the interval of processed integers, never actually occurs in the premiss or

conclusion of the inference rule, since it is always replaced by either {} or

some interval diagram. (In most applications, n will be equal to m.)
As an example of the formal use of this rule, let
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K be k Ubebdb

N be v Sbes:=s+X(k)

S; be s Ibes=32;c, X(0)

Lbea Sbegv(s)&sHa&ks#X

Then the premiss of rule (R37) matches the result of the tableau

{s=3icl 1 XG) and [a_Tx[ 5]}
& s # +XKk)=Diecla 1 X(@
g&v(;)#Xs&stz#k}:> .Es:=sg-3\’(k§ o 0
{s=2cgmawp ,

so that we may infer the conclusion

gv(s) &sH#a&s# X&s#b=>

{s=3ic o X}
for k := a until b do s := s+X(k)

{s=3:. X(i)}

The remainder of a correctness proof for the summation program is obvious.

Less formally, a clearly annotated program should include the
invariants of nontrivial for statements. For this purpose, we will adopt the
convention of writing the invariant of a for statement in the formI|y_, [z
labeling it with the symbol forinv, and placing it immediately before the for
statement. For example, the array summation program would be annotated:

{la b|] < dom X}

begin s := 0;

{forinv: s=3; . X(@)}

for k := a until b do s:= s+ X(k)
end

{s=2ic g X0}

Notice that, in contrast with the while case, the invariant of a for statement
does not contain range information such as a<k=b. Essentially, this infor-
mation is built into the structure of the for statement itself.

Also notice that, since K must not occur free in /, it can only occur
free in I|y . [ & in the context of the interval expression L K|. This
restriction insures that the invariant is actually a function of the interval
of processed integers rather than of K itself. Although it is occasionally
nontrivial to express the invariant in this way, the advantage of doing so is
that the inferred specification of the for statement will include the case
where is irregular. For example, an appropriate invariant of the
following factorial-computing program is that fis the product II, i uiof
the members of the processed interval (which is 1 when the processed
interval is empty):
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{true}

begin f := 1;

{forinv: f=1I, . ;5 i}

for k := 1 until n do f := kXf

end

{f=I1,c 7 i=if n > O then n! else 1}

similarly, the invariant of a (slow) exponentiation program can be expressed
in terms of the size of the processed interval:

{true}

begin y := 1;

{forinv: y=x# [L_4}

for k := 1 until n do y := xXy

end _

{y=x#[_1 = if n = O then x" else 1} .

Note that for both examples, in contrast with the program specifications
given for similar programs in Chapter 1, the case n < 0 is included without
any extra analysis.

A more complicated example is a for-statement version of the program
for finding the subscript of a maximum element of an array, which was
developed in Section 2.2.7 and encapsulated as a procedure in Section 3.1 .6.
In this case, one might expect the invariant of

for k := a+1 until b do if X(k) > X(j) thenj:= k

jela K and{X1 [a K} =* X(j)

to be

But this invariant must not depend upon k except through the interval of

processed elements, which is [a+1 k|=a| k|. Thus we must replace

by [a] U a[_r__ki. which gives

procedure max(integer value a, b; integer result j;
integer array {exp} X(*));
{[a] U a[ 8] = dom X}
begin
ji=a
{forinv: ; € @ Ua[ k] and {X 1 [ U a} <* X(j)}
for k := a+1 until b do if X(k) > X(j) thenj:= k
d

€n
{jelad ual b)and{x1 [duad b} =*X()}
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In this case the reasoning seems rather unnatural, but it correctly reflects the
“unnatural” behavior of the procedure when a > b.

1. Review the examples and exercises of previous chapters to determine which
instances of iteration can be clarified by use of the for statement. In these
instances, formulate an appropriate invariant. In one or two cases, give a formal
proof using specification logic.

*4.1.3 A Stronger Rule of Inference
Consider the statement
for k :=luntilndon := nt+k

Unlike the examples given previously, the body of this for statement changes
its upper bound. Thus its behavior distinguishes between the call-by-value and
call-by-name variants of the for statement defined in Section 4.1.1. With the
call-by-value variant, the upper bound of the iteration is fixed by the initial
value of n, so that the for statement increases n by the sum of the numbers
between one and its initial value. With the call-by-name variant, if the initial
value of n is greater than zero, then the upper bound keeps increasing and
never drops below the current value of k, so that the statement never
terminates.

With the call-by-value variant, which is actually used in Algol W, the
specification

gv(n) & n # nyg=
n=ny
for k := 1until ndon := nt+k
{n=n0+ziell__n_|;|’:}

is universal. However, this specification cannot be proved by using inference
rule (R37) given in the previous section. The difficulty is that, if we take U to
ben and Stoben := n+k, then the unsatisfiable assumption n # n appears in
the conclusion of the rule.

In fact, (R37) is a valid rule of inference for both the call-by-name and
call-by-value variants of the for statement, and therefore it cannot be used to
reason about programs whose behavior is different in these two cases.
However, it is possible to give a stronger rule that is specific to the call-by-
value variant:
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(R38) Strong for Statement Rule
Suppose

K and N are distinct identifiers of phrase types
integer expression and integer set expression,

L, U, Ly, and U, are integer expressions,

S is a statement,

I is an assertion,

2 is a finite set of specifications,

such that K does not occur free in Ly, Uy, I, or 3.
Let {81, .o , S} =Faaike(S) and S, 44, ... , S, be any other
identifiers distinct from K. Then

S&S#K& ... &S, # K=
{Ily-Egxand [Ly [K] U} S{Ilno Lo K}
S&SALy& ... &S, # Lo& S # Up& ... & S, # Up=>
{Iln> g and L=L, and U= U,}
for K := L until Udo S {I|y_ 75 wg) -

By taking L, to be the same as L and U, to be the same as U, and
strengthening the precedent of the conclusion to eliminate L=L and U= U,
it is easy to derive rule (R37) from rule (R38). However, although (R38) is
stronger than (R37), it is also more complicated, so that it is usually simpler
touse (R37) in the cases where it suffices, i.e. where S does not interfere with
L or U. (Indeed, the greater complexity of (R38) directly mirrors the fact
that for statements that alter their bounds are unnecessarily difficult to
understand.)

Exercise

1. Use rule (R38) to prove the universal specification given in the beginning of the
above section.

*a.1.4 Deriving the Inference Rules

Since the for statement can be defined in terms of previously introduced
features of Algol W, we can “‘check” its inference rules by deriving them
from the definition. In this section we will show that (R37) holds for the
call-by-name variant of the for statement. An analogous but somewhat more
complicated demonstration that (R38) holds for the call-by-value variant is
left to the reader (as Exercise 2 below).

Suppose that the premiss of rule (R37),

S&S,#K&...& S, # K=

{lv- ok and [L_[K] U} s{lly- =}
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is a universal specification in which the metavariables stand for phrases that
satisfy the restrictions in the rule. By noninterference decomposition, we
have

S, #L&..& Sy # L&S; # K& ... & S # K
&S 1 #U&.. &S, #U

>s# LK U -

From this specification and the premiss of rule (R37), we may use the rule of
constancy (R23) to infer the main step in the following tableau:

gv(K)& K# L& K# U {Ily . gand [L_K[ U] and K<U}
&K#E &... & K#E {I|n - ks and [L_|K+1] U]}

; K :=K+1;
&3 ;
&S #L&...&S, # L[ {S”N—-IZ__IK and [L_[k] U]}

&S #K&.. &S, #K
&S #U&.. &s.#u | v gand L [k U}
f {Inocgand [L_K U} .
where {Ej, ... , E}=% expae(I) ~{N}.

Next, the while statement rule gives the main step in

H”N-{}}

ev(K)& K#L&K#U| |{llyozgand[L L] U]}

&K#E & ..& K#E) K:=L-1;

& 3 =l {I|N_, and }

&S, #AL&...&S, #L while K< U do

&S #K&..&S,#K begin K := K+1; S end

&S, #U& ... &S, # U] {Ily.xand [L K| Ul and 1 K<U}
t{llN—-E]} :

Here K is distinct from E, ... , Ej, Sy, ... , S», and does not occur free in X, L,

U, or the initial or final assertion. Thus we may use the rule for simple
variable declarations to infer

S& S, #L&..&S, #L&S #U& ... &S, # U=
{1l -}
begin integer K; K := L—1;
while K< U do begin K := K+1; S end
end

{I|N_,|E} :

The statement in this specification is the definition (2) of the call-by-name
variant of the for statement given in Section 4.1.1. Thus we may replace this



SEC. 4.1 for STATEMENTS 269

statement by for K := L until U do S, which converts the specification into
the conclusion of rule (R37).

Exercises

1. The following statement can be used in place of (2) in Section 4.1.1 as an
alternative definition of the call-by-name variant of the for statement:

begin integer K; K := L;
while K= U do

begin S; K := K+1 end
end .

(Except for overflow considerations, the two definitions are equivalent.) Show
that this alternative definition can be used in place of (2) to derive rule (R37).

2. Derive rule (R38) for the definition of the call-by-value variant of the for
statement. Notice that, since (R37) can be derived from (R38), this implies that
(R37) describes the call-by-value, as well as the call-by-name variant.

(Hint: The derivation follows the same lines as that given in the preceding section. The
invariant of the while statement should be 7| 5 _, [Lo_xjand m and L'= Ljand
U'=U,, where L' and U’ are distinct identifiers that do not occur in (the instance of) rule
(R38).)

3. At the beginning of Section 4.1.2, we said that the most obvious approach to
reasoning about for K := L until U do S was to take the invariant to be a function
of K. However, since this approach requires separate lines of reasoning for the
two cases where is regular and irregular, we chose instead to regard the
invariant as a function of the processed interval.

Nevertheless, the “most obvious approach” is more natural when only the

regular case is relevant, as for example in the maximum-finding program. This
approach is embodied in the following rule of inference:

Suppose
K is an identifier of type integer expression,
L and U are integer expressions,
S is a statement,
J is an assertion,
3, is a finite set of specifications,

such that K does not occur free in L, U, or .
Let {Sy, o+ » S} = Fyaice(S) and Spiq, ... , S, be any other identifiers distinct
from K. Then

S&S H#K&...&S, # K=>
{JlK—bK—l and L$K<U} S {]}

S& S, #L& . &S, #L&S #U&K.. &S, # U=
k= -1 and L—1=U}
for K :=L until U do S {J|x_, ¢}

Derive this rule from rule (R37).
(Hint: Replace I in rule (R37) by J| g, — 144 n-)
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*4.1.5 The Descending for Statement

Occasionally it is useful to iterate through an interval in descending rather
than ascending order. For this purpose, one can use a for statement with the
form

for K := U step —1 until L do S
which is equivalent to

begin integer U', L'; U’ := U; L' := L;
begin integer K; K := U'+1;
while K> L' do
begin K := K—1; S end
end
end |,

where L' and U’ are distinct identifiers that do not occur in the original for
statement. Asin the ascending case, occurrences of K in § must have the type
integer expression, so that S cannot change the value of K. (Actually, Algol
W provides a more general for statement with an arbitrary integer step size,
but in this book we will only use the simple cases that correspond to the step
sizes +1 and —1.)

The following rule of inference describes the descending for statement:

(R39) Descending for Statements
Suppose

K and N are distinct identifiers of phrase types
integer expression and integer set expression,

L and U are integer expressions,

S is a statement,

I is an assertion,

3, is a finite set of specifications,

such that K does not occur free in L, U, I, or 2.
Let {5.. ... , S} =Fsaake(S) and Sp,41, ... , S, be any other
identifiers distinct from K. Then

S&S; #KE&...& S, # K=
{Il y - k) and L _[«]_u} Sy~ g}

S&S#L&..&S,#L&S;#U& ... &S, # U=>
{I|y— o} for K:=Ustep —1until Ldo S{I| oz 7} -

An example of the use of the descending for statement is provided by
the following version of the program for sorting by maximum finding, which
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was originally developed in Section 2.3.3 and encapsulated as a procedure in
section 3.1.6:

procedure maxsort(integer value a, b; integer array {var} X(*));
{la_b] < dom X and X=X}
{forinv: ord~ X 1 and X1 [a b|~ X1 |a bl
and {X 1 ~[m b <*{x 1 Im bt}
for m :=b step —1 until a do
begin integer j;
max(a, m, j, X);
begin integer £; t := X(j); X(j) := X(m); X(m) := t end
nd

€
ford< X1 [a_bjand X1 [a b]~ X, 1 [« 8]} .

Notice the convention of writing the invariant in the form 1| y _, X 0

The developments of the preceding sections can be recapitulated for the
descending case: call-by-name and call-by-value variants of the descending
for statement can be defined, rule (R39) can be derived from the call-by-
name definition, and a stronger rule can be derived from the call-by-value
definition. The details are left to the reader.

4.1.6 A Caution

When it is necessary to iterate an action over a predetermined interval, the
for statement provides a notation that is clearer and more concise than the
while statement. However, a significant number of the iterations in well-
written programs do not fit this pattern. The danger of the for statement is
that it can narrow the programmer’s viewpoint to a particular kind of
iteration that, though often useful, is also often inappropriate.

It is all too easy to approach a programming task with the unspoken
assumption that the main loop will be a for statement. In many cases—parti-
tion in Section 2.3.5 is a good example—this assumption seems perfectly
reasonable, yet it precludes any simple or efficient solution. In all but the
most cut-and-dried situations, the programmer must constantly remind him-
self that there is more to iteration than the for statement.

For this reason, some authors, notably [Dijkstra 71, 72, 76], avoid the
for statement completely. We are unwilling to go so far, but have postponed
its introduction until after the reader has been exposed to a substantial
number of programs that cannot be fit into the mold of the for statement.

(
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4.2 goto STATEMENTS AND LABELS

In contrast with the for statement, goto statements and labels can be used tq
construct a wider variety of control structures than the language described in
previous chapters. Although their use has been the subject of considerable
controversy [Dijkstra 68]—precisely because of their generality—we
believe there are programming situations where their judicious employment
can be beneficial. Certainly their use is compatible with the basic nature of
structured programming.

4.2.1 - goto's and Labels in Algol W
As discussed in Section 1.5, a block has the form

begin Dy; ... ; D3 S1; 825 ... 3 S, end
t1 t

where Dy; ... ; D, is asequence of zero or more declarationsand Sy; ... ; S, is
a sequence of one or more statements. In front of each statement in this
sequence, i.e. at the positions indicated by the arrows, one can place any
number of label definitions of the form

o

where L is anidentifier which is said to label the following statement. Strictly
speaking, one cannot place a label definition between S, and end, but the
same effect (and appearance) can be achieved by making S, a labeled empty
statement.

A label definition L: is a binder of L whose scope is the immediately
enclosing block. Within this scope the goto statement

goto L

can be used tointerrupt the normal control sequence and cause the computa-
tion to “jump”’ to the statement following the label definition that binds the
occurrence of L in goto L.

For example, the array summation programs givenin Sections 2.2.4 and
4.1.1 could be rewritten as

begin integer k;
k:=a—-1;s5:=0;

loop: if k=b then goto done;
k:=k+1l;s:=s+X(k),;
goto loop;

done: end
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(Note that done labels an empty statement.) However this program, which is
harder to understand than either previous version, is an obvious misuse of
the goto. It is typical of the kind of poor programming style that has been
fostered by obsolete languages with inadequate control mechanisms.

On the other hand, the following program for linear search is rather
clearer than that given in Section 2.2.9:

begin
for k := g until b do
if X(k)=y then
begin present := true; j := k; goto out end;
present := false;
out: end

Here the use of a goto clearly conveys the basic idea of aborting a sequential
examination of array elements when the search criterion is met.

In the latter example, the goto statement causes a jump out of the scope
of abinder of the identifier k. In general, such a jump causes the meaning of
the identifier to become inaccessible just as when control leaves a scope in
the normal manner. In this particular case, the value of k is saved by
assigning it to the variable j before leaving the scope of the binder of k.

The syntax of Algol W prohibits any jump from entering a scope.

4.2.2 Using Assertions with goto’s and Labels

In the next section, we will extend specification logic to encompass programs
containing goto statements and labels. Before doing so, however, it is useful
to examine the use of assertions in such programs from a more intuitive
viewpoint. In particular, we will consider the use of assertions as formal
comments, as originally discussed in Section 1.3.3.

From this viewpoint one thinks of the flow of control as passing through
assertions, and the fundamental property of a correctly annotated program
is that, once control has passed through some assertion P with a current state
of the computation which satisfies P, then at any later time when control
passes through an assertion P’ the current state of the computation will
satisfy P'.

Now consider a goto statement with its surrounding assertions:

... {P} goto L {Q} 200 g

and suppose that L is bound by a label definition attached to a statement S
with precedent P':

L:{P} S ..
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Suppose that control passes through P with a current state of the computa.
tion which satisfies P. Then the goto statement will send control through p'
without changing the state of the computation. Thus, to insure that the state
satisfies P, it must be the case that P implies P'.

On the other hand, consider Q. Since it immediately follows a gote
statement, control will never pass through Q, and Q can be any assertion. Ip
particular, Q can be the strongest possible assertion, false, which is not
satisfied by any state of the computation, and therefore can only appear at 3
program point through which control will never pass.

In summary, the precedent of goto L must imply the precedent of the
statement following the label definition that binds L, and the consequent of
goto L can be any assertion, even false.

For example, the following is a thoroughly annotated version of the
linear search program:

{ < dom X}
begin
{forinv: {X 1 } =% y}
for k := a until b do
if X(k)=y then
begin
present := true;j := k;
{present and - and X(j)=y}
goto out
{false}
end;
{tx 1 [a_bl}»*y}
present .= false;
{7 present and {X 1 } £* y}
out: {if present then and X(j)=y else {X 1 @} =* y}
end

{if present then [a_[;[ »| and X(j)=y else {X 1 } “* y}

Here the assertion preceding goto out implies the assertion preceding the
empty statement labeled by out. In addition, the latter assertion is also implied
by the assertion following the statement present := false; this reflects the fact
that control can pass to the labeled statement from the preceding statement, as
well as from the goto statement. The assertion immediately following goto out is
false, indicating that control will never pass through this point in the program.
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These assertions suggest that, in reasoning about the for statement, its
body

if X(k)=y then begin ... ; goto out end

can be thought of as a statement that “achieves” X(k) >y by jumping to a
free label if this condition is false. Then the for statement itself can be

thought of as a statement which achieves X(k)»y for all k in @.

From the use of assertions as comments, we turn to the use of assertions
to specify statements. Here the basic question is when the specification {P}
goto L {Q} is true. At first sight, since regardless of the state of the computa-
tion control will never reach the end of the goto statement, one might expect
that this specification would be true for any P and Q, even in the extreme
case {true} goto L {false}. However, as suggested by the preceding discus-
sion, P must insure that the computation will behave correctly after control
reaches the statement labeled by L, so that P must imply the precedent of the
labeled statement.

The problem is that this is a condition on P that is not a property of goto
L by itself, but rather of the context in which goto L occurs. This kind of
context dependency cannot be described by the logic used in Chapters 1 and
2. However, it can be described in specification logic, where the truth of {P}
goto L {Q} depends upon an environment that can reflect the context in
which goto L occurs.

*4.2.3 Inference for goto’s and Labels

We now describe the extension of specification logic to encompass goto
statements and labels. The basic idea behind this extension was first pre-
sented in [Clint 72]. To avoid a full-fledged exposition of continuation
semantics, which is beyond the scope of this book, our description will be
somewhat informal.

Since labels are identifiers, an environment must specify some kind of
meaning for labels. We define the meaning of a label to be a set of states, and
say that a state belonging to the meaning of a label is permissible for that
label. In other words, an environment specifies whether a state is permissible
for a label. Intuitively, when [goto L], is executed, the current state will
cause the rest of the computation to behave correctly if it is permissible for L
n 7.

Next we enlarge the variety of circumstances in which a specification of
the form {P} S {Q} is true. Specifically,we define i{P} s {Q}]],, to be true if
and only if, starting with any state described by [P],, executing [S], will
either:

(1) Never terminate,
or (2) Terminate with a final state described by [ Q].,
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or (3) Execute a jump to a label L occurring free in S with 5
current state that is permissible for L in 7, i.e. that belongs
to the set [L],.

From this definition, it is evident that [{P} goto L {Q}]},, will be true if every
state described by [ PJ},, belongs to [ L],,. Notice that there is no dependency
upon Q.

We must now develop a rule of inference that will enable us to infer 4
universal specification about a block of the form

begin Sy; L: 3:: ... ; L,: S, end

from universal specifications about the statements Sy, ... , S,. The essentia]
idea is that in reasoning about the component statements we will assume that
a state is permissible for L; if it satisfies the precedent of S;.

To carry out this argument in detail, suppose that the following specifi-
cations are universal:

& 2"label:>{P0} SO {Pl}

2 & 2:label${Pn} Sn {Pn+1} ’
where 2, is the set of assumptions
{Pl} goto L, {false} & ... & {P,,} goto L, {false} .

Here Py, ..., P, are assertions and . is a finite set of assumptions such that
neither the P;’s nor 3 contain free occurrences of L, ..., L,.

Let n be any environment in which the assumptions 3, are true. For each
assertion P;, let A, be the set of states described by [ P,],. Then let

n'=[n| Li: A | oo | Lt A,]

be the environment that is similar to 7 except that it maps each L; into A,.

Since the assumptions % contain no free occurrences of the L;, they will
be true in %'. Similarly, since each assertion P, contains no free occurrence of
the L;, [ P;],; =[ P:], will describe the set of states A,=[L,|,;. As a consequ-
ence, the assumptions 3,,; will be true in 5’

Thus by our universal specifications about the S;, for 0<i<n, {P} S,
{P,,1} will be true in n'. It follows from axiom (R12) for statement com-
pounding that, for 0 <i=<n, the specification

{Pl} Si; e s Sn {Pn+1}

will be true in x'.
Thus, starting with any state described by [ P;],,, executing [ 5;; ... 5 S, ],
will either:

(1) Never terminate,
or (2) Terminate with a final state described by [P, 1],
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or (3) Execute a jump to a label other than Ly, ..., L,, with a
current state that is permissible for that label in 7',

or (4) Executeajumptosome L;, withacurrent state that belongs
to [L;],, and is therefore described by [P;], -

Now consider the execution of
[begin So; Li: Sy; --- 5 Lyt S, end],

starting with a state described by [ Py],;. This execution will be the same as
that of So; S1; ... ; 3, until when and if a jump to some L, occurs, at which
int the current state will be described by [ P,],; . Thereafter the continued
execution will be the same as that of S;; ... ; S, until when and if another jump
to some L; occurs, again with a current state described by the corresponding
Pi]]1 .
[[ i{epeating this argument, it is evident that every time a jump to an L;
occurs, the state will satisfy [ P,],’ and the continued execution will be the
same as that of S;; ... ; S, until the next jump. Ultimately, there will either be
an endless sequence of jumps, in which case the execution will never termi-
nate, or there will be a last jump, after which the continued execution will be
the same asthat of some S,; ... ; S, and will lead to one of the conditions (1) to
?3) given above.
Either way, starting with a state described by [ Py],, executing [begin
So; Ly. 815 «-- 5 Ln: S, end]),y will lead to one of the conditions (1) to (3). It
follows that the specification

{Po} begin Sg; Lqi: S5 ... ; Lp: S, end {P,,+1}

- . ’ . - . pe - .
will be true in n'. Moreover, since this specification contains no free occur-
rences of Ly, ..., L,, it will also be true in 7.
Thus, since m can be any environment in which % is true,

S=>{Py} begin Sy; L: Sy; ... ; Ly: S, end {P,+1}
is a universal specification.
This argument leads to the following rule of inference:
(R40) goto Statements and Labels

Suppose

Ly, ..., L, are distinct identifiers of phrase type label,
So, --- » S, are statements,

Py, ..., P, are assertions,

3 is a finite set of specifications,

such that Ly, ..., L, do not occur free in P, ... , Pn+1, OF 2.
Let Elabel be

{P;} goto L, {false} & ... & {P,} goto L, {false} :
Then
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2 & Elabel=>{P0} So {Pl}

& 2:label${Pn} Sn {Pn+1}

%={Po} begin So; Ly: Sy; ... ; L,: S, end {P,.1} .

Notice that we have introduced label as an additional phrase type in
specification logic. Phrases of type label, which will always be identifiers, are
neither statement-like nor expression-like.

Unfortunately, label is not a full-fledged phrase type in Algol W, since
labels cannot be used as parameters to procedures. This is a minor anomaly
in the design of the language. It causes no harm in practice, since in place of a
label parameter one can always use a goto statement that refers to the labe]
However, it complicates the description of the language by introducing a
usage of identifiers with unnecessarily different behavior than all other
usages.

*4.2.4 An Example of a Formal Proof

To illustrate the use of the inference rule derived in the previous section, we
will prove that the linear search program of Section 4.2.1 satisfies an approp-
riate specification. We begin by defining the appropriate assumption for the
label out:

Elabel E=

{if present then [a_[j| b|and X(j)=yelse {X 1 [a b} =*y}
goto out
{false} .

Then the inmost block of the program satisfies the tableau

[ {{x1 [a_J&} #* y and

and X(k)=y }

{true and |: |k| b| and X(k)=y}
gv(present) & present # a ] present := true;
& present # k & present # b {present and and X(k)=y}
& present # X & present # y ji=k;
& gv(j) & j # present r = | {present and and X(j)=y}
&j#Ha&j#b {if present
&j#X&jHY then [« [j[ 5] and X(j)=y
& Zjabel J else {X1 [a b} #*y}

goto out
{false}

(X1 [a_&} =y}
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From the result of this tableau and the mathematical fact

(X1 la |k} #*y and [a [k b| and 1 X(k)=y)

implies {X 1 |a_ x|} =" y

we may use rule (R17) for the one-way conditional statement to infer

gv(present) & present # a & present # k & present # b
& present # X & present # y & gv(j) & j # present
&]#a&]#b&]#X&]#y&Elabel=>

{{x1 [a_Jk} #*y and [a_[[ 5]}
if X(k)=y then
begin present := true; j := k; goto out end

{ix1[a K} =*y} .

Next we use rule (R37) for the for statement, taking the invariant I to be
X1 N #*y. This discharges the assumption present # k and gives the main
step in the following tableau:

[ {[a_b] < dom X}
{true}

{tx 1} =* y}
for k:=a until b do

if X(k)=y then

gv(present) & present # a begin

& present # b
& present # X & present # y Fighlien

& gv(j) & j # present = ]en; e e

& IR dggicd 2 (X1 ol = )

& j #KSd iy {1 false and {X 1 [a_b[} #* y}
& Zrabel present := false

{71 present and {X 1 [a b} #* y}
{if present

then a_[j| b| and X(j)=y
else (X1 [a b} #*y} .

present := true;

Notice that the initial assertion @ c dom X is irrelevant here. Its only
purpose is to insure against subscript errors in the evaluation of the logical
expression X(k) =y, and such errors are not treated formally in our logic.

Now we apply rule (R40) for goto’s and labels, taking L to be out, So to
be the statement sequence in the above tableau, S; to be the empty state-
ment, P, to be € dom X, P, and P, to both be
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if present then [a [j| b| and X(j)=y else {X 1 |a |} %%y

and 2 to be all of the assumptions in the above tableau except 2,p¢;. Then the
first premiss of rule (R40) is the result of the above tableau and the secong
premiss is an obvious consequence of rule (R18) for the empty statement.
We may therefore infer the conclusion

gv(present) & present # a & present # b & present # X & present # y
&gv()&j#present & jH#a& jHEDL&jH# X&j#H y=>
{luj < dom X}
begin
for k:=a until b do
if X(k)=y then
begin present := true; j := k; goto out end;

present : = false,;
out. end

{if present then |a |]| bland X(j)=yelse {X1|a b|}=*y} .

Specification logic, and rule (R40) in particular, can be used to prove
program correctness even in situations where goto’s and labels interact with
the full generality of the procedure mechanism (as in Exercise 2 below). By
itself, however, a logic for proving program correctness says little about how
to create programs in the first place. In the rest of this chapter we will deal
with this prior question with regard to goto’s and labels. Since we will not be
using procedures, we will leave specification logic in abeyance, and return to
the use of assertions as comments in the style of Section 4.2.2.

Exercises

1. Definition (2) of the call-by-name variant of the for statement, given in Section
4.1.1, will overflow unnecessarily if L is the smallest representable integer.
Similarly, the definition given in Exercise 1 after Section 4.1.4 will overflow
unnecessarily if U is the largest representable integer.

Write two definitions of the call-by-name variant of the for statement that
avoid these problems. One version should use gote’s and labels, and should only
contain a single occurrence of the for-statement body S. The other version
should not use goto’s or labels, but will contain more than one occurrence of S.

2. The following program performs linear search by using a subsidiary recursive
procedure containing a jump to a global label. It is a complicated and inefficient
way to search an array segment, but it illustrates a basic method that is useful for
searching recursively defined data structures such as trees or list structures.

Prove that this program satisfies the same specification as the linear search
program considered in the preceding section.
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{@ < dom X}
begin
begin
procedure search(integer {exp} ¢, d);
{pa: present # ¢ & present # d & j # ¢ & j # d}
{la_lc_d b}
if c<d then
begin integer k;
k := (c+d) div 2;
if X(k)=y then
begin present := true; j := k; goto out end
else
begin search(c, k—1); search(k+1, d) end

end;
{ix1 [c_d} #*y}

search(a, b)

end;
{tx 1 [a_o] =*y}
present := false;
out: end

{if present then [a_[j| b| and X()=y else {X 1 [a ot =%y}

4.2.5 Fast Exponentiation Revisited

For most programming, an adequate variety of control structures can be
formed by using conditional and while statements, as illustrated in the earlier
chapters of this book. Occasionally, however, one needs a control structure
that is difficult or even impossible to express with these constructs, and it is
necessary to use the more general mechanism of goto statements and labels.
Nevertheless, one can still construct programs systematically. In particular,
the concept of an invariant is still relevant [van Emden 79, Reynolds 78b].
As an example, consider the fast exponentiation program introduced in

Section 1.3.5. It can be written in the overall form

{n>0}

begin integer k, z;

k:=nyy:=1;z:=x;

{
“Achieve k=0 while preserving I”’
end

{y=x1 ,

where [ is the invariant
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yXzk=x" and k=0

Moreover, there are two invariant-preserving operations which can be used
to construct “Achieve k=0 while preserving I’’:

k:=k-1;y:=yxz (8.}
and

k:=kdiv2;z:=zxz , (Sdiv)

which satisfy the specifications

{Iand k=0} s_ {1}
and
{I and even(k)} Sy, {I} .

In Section 1.3.5, we constructed two versions of “Achieve k=0 while
preserving I’’:

while k0 do
if odd(k) then 5_ else Sg;,
and
while k20 do
begin if odd(k) then 5_; S ;, end

However, each of these versions has a deficiency: In the first, there are
unnecessary executions of the test odd(k), while in the second, the last
execution of Sy;, is unnecessary (and can cause unnecessary overflow). We
now want to devise a version of “Achieve k=0 while preserving I”’ that
overcomes both of these deficiencies.

The first step is to determine the exact precedent under which each
invariant-preserving operation will be performed. If k is zero, then an exit
should occur, since the desired goal has been achieved. If k is nonzero and
even, then Sg;, should be performed. Finally, if k is odd (and therefore
nonzero) S_ should be performed. (Of course, it would also be correct to do
§_ when k was nonzero and even, but Sy, is faster.)

Having established their precedents, we can reexamine Sy;, and S_ to
see if we can strengthen their consequents. In fact, it is easily seen that Sdiv
will never give k=0, and that S_ will always give an even %, i.e.

{1 and k 0 and even(k)} Sy, {I and k >0}
{I and odd(k)} S_ {I and even(k)} .

These specifications encapsulate all we need to know about the
invariant / in order to write “Achieve k=0 while preserving I”’. As long as
we use Sy, and S_ in accordance with these specifications and do not use any
other statements which interfere with I, we can be sure that I will be
preserved. Indeed, at the level of abstraction where Sy;, and S_ are consi-
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dered as indivisible actions, the invariant I will hold continuously. In this
situation we say that I'is a general invariant.

At this level of abstraction, we can forget the invariant and concentrate
on the remaining conditions k=0 and odd(k) that occur in the above
specifications. We intend to realize “Achieve k=0 while preserving I”’ by a
sequence of labeled statements in which the assertion at each label is a
conjunction built out of k=0 and odd(k) or their negations. The key point is
that the variety of such conjunctions that might be relevant to our program is
so small that we can reason about it exhaustively.

First we must enumerate all possibly relevant assertions. Suppose for a
moment that we were only interested in the conditions k=0. Then there
would be three possibly relevant assertions:

true
k#0
k=0

Informally, these describe the “states of information’’ in which it is unknown
whether k is zero, k is known to be nonzero, and k is known to be zero.

If the conditions k = 0 and odd(k) were independent of each other, then
the three assertions about each condition would combine to give 3X3=9
composite assertions:

true even(k) odd(k)
k<0 k0 and even(k) k#0 and odd(k)
k=0 k=0 and even(k) k=0 and odd(k)

However, since zero is an even number, the conditions are not independent,
and the number of relevant assertions is less than nine. In general, we need
not consider an assertion that is impossible, i.e. that is not satisfied by any
state of the computation (that satisfies the invariant). Moreover, we need
not distinguish between two assertions that are equivalent, i.e. that are
satisfied by the same set of (invariant-satisfying) states. In this particular
case, k=0 and odd(k) is impossible, k0 and odd(k) is equivalent to
odd(k), and k=0 and even(k) is equivalent to k=0. Thus there are only six
relevant assertions:

true

k#0

even(k)

odd(k)

k 0 and even(k)
k=0

As a consequence, “Achieve k=0 while preserving I” will contain six
labels, so that our program has the form:
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{n=0}

begin integer £, z;
k:=ny:=1;z:=x;
{geninv: yx zk=x" and k= 0}

tr: {true} 569 8
nz: {k;éO} o
ev: {even(k)} ... ;
od: {odd(k)} ... ;

nzev: ik 0 and even(k)} ... ;

zr: {k=0} ...
end
{y=x} .

Here we have used the symbol geninv to indicate that I is a general
invariant. We adopt the convention that an assertion prefixed by geniny
must hold continuously from the occurrence of the assertion to the end of the
immediately enclosing block.

The specification

{I and k0 and even(k)} Sy, {1 and k 50}

shows that Sy;, can be performed at the label nzev, and followed by a jump to
nz. Similarly,

{1 and odd(k)} S_ {I and even(k)}

shows that S_ can be performed at od, and followed by a jump to ev.
Since the initialization & := n; y := 1; z := x achieves the invariant
without providing any knowledge about k = 0 or odd(k), it must be followed
by-a jump to ¢r. On the other hand, since an exit should occur when k=0, the
label zr should be attached to an empty statement at the end of the block. (In
fact, we have had the foresight to place zr in this position.)
At this stage our program has the form

{n=0}
begin integer %, z;
k:=n;y:=1;z:=x;
{geninv: yx zk=x" and k= 0}
goto Ir;

tr: {true} 550 5

nz: {k#0} ...;

ev: {even(k)} ... ;

od: {odd(k)} S_; goto ev;

nzev: {k+0 and even(k)} Syy; goto nz;

zr: {k=0}

end

{y=x}
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At the remaining labels, the assertions are insufficient to imply the
precedent of any operation, so that testing must be performed. At nz one can
obviously test odd(k) and go to either od or nzev. Similarly, at ev one can test
k=0 and go to either zr or nzev. At tr, either test will provide useful
information; if we choose the test k=0, then our final program is:

{n=0}
begin integer X, z;
k:=nyy:=1;z:=x;
{geninv I: y xz¥=x" and k= 0}
goto tr;
tr: {true} if k=0 then goto zr else goto nz;
nz: {k 0} if odd(k) then goto od else goto nzev;
ev: {even(k)} if k=0 then goto zr else goto nzev;
od: {odd(k)} begin; k := k—1;y := yXz end;
goto ev;

nzev: {k+0 and even(k)} begin; k := k div 2; z := zXz end,;

goto nz;
zr: {k=0}

end

{y=x"}

Here we have expanded S_ and Sg;, into blocks. In doing so, we have
dropped below the level of abstraction at which the general invariant is
continuously true, i.e. there will be points in the interior of these blocks at
which the general invariant does not hold.

To indicate this situation we adopt the following notational convention:
When an assertion is used as a general invariant, it is given a name (e.g. / in
this example). Then this name is placed as a subscript at the beginning of
each block within whose interior the general invariant may be momentarily
falsified. Such blocks must be regarded as indivisible actions when we say
that the general invariant holds continuously from its point of occurrence to
the end of the immediately enclosing block.

For clarity, we have used goto statements whenever control passes to a
labeled statement, so that control never passes through a label from the
previous statement. As a consequence, except for the attachment of zr to the
end of the block, the meaning of the program is independent of the order of
the labels.

In fact, this order has been chosen to clarify the proof that the program
terminates. Since the only backward jumps (from a goto statement to a
lexically preceding label definition) follow the occurrences of S and Sg;,, it
follows that every loop must contain an occurrence of S_ or Sy,. Thus
termination is based on k, which will be decreased by 5_ and by Sai
whenever their precedents are satisfied.

This program avoids both the redundant testing and unnecessary execu-
tion of Sy;, that occurred in the versions of Section 1.3.5. On the other hand,
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it is longer and more difficult to write than the earlier versions, and it would
only be justified in a programming situation where execution speed was
extremely important.

Nevertheless it is still a structured program. There is a clear separation
between two levels of abstraction: a detailed level at which the invariant-
preserving operations S_ and Sy;, are formulated, and a gross level at which
the invariant can be ignored since it is preserved by the primitive operations,
Indeed, this kind of invariant suppression is essential to the program
development, since it permits the programmer to limit his attention to the
conditions beyond the invariant—k =0 and odd(k)—which are so simple
that one can treat them exhaustively by enumerating all relevant assertions,

4.2.6 Transition Diagrams and Indeterminacy

When control structure becomes as complex as in the previous example, it is
helpful to use a graphical representation such as a flowchart. For many
purposes, however, a clearer graphical representation is provided by a
transition diagram.

In a transition diagram, labels and other program points where asser-
tions can occur are represented by nodes, whilst statements and tests are
represented by arrows or arcs from one node to another. As shown in Figure
4.1, a statement S is represented by a solid arc, marked with S, from the
program point where its precedent occurs to the program point where its
consequent occurs. As shown in Figure 4.2, a test L is represented by a pair
of dashed arcs: an arc marked with L from the point before testing to the
point to be reached if L is true, and an arc marked with the negation of L
from the point before testing to the point to be reached if L is false.

One can think of a computer executing a transition diagram by moving
from node to node along arcs. When a test arc marked with L is encountered,
it is only traversed if L is true. When a statement arc marked with § is
encountered, the statement S is executed.

Transition diagrams are given in Figure 4.3 for the basic control con-
structs used in Chapter 1. These diagrams may be compared with the
equivalent flowcharts given in Figure 1.2.

P s 0
Gt =0=0

Figure 4.1 {P} S {Q} as a Transition Diagram.






288 ADDITIONAL CONTROL MECHANISMS CHAP. 4

enter

N R
T

true ¢ J\.n"

exit

Figure 4.4 A Transition Diagram for Fast Exponentiation.

Figure 4.4 gives a transition diagram for the fast exponentiation prog-
ram developed in the previous section. The diagram reveals the logic behind
the program more directly that the Algol W program itself. The nodes
correspond to the relevant assertions, and the arcs for S_ and Sg;, are directly
attached to the appropriate precedents and consequents.

In order for a transition diagram to determine the behavior of a compu-
ter completely, there must be exactly one way out of each node—either a
single statement arc or a pair of complementary test arcs. Suppose we say
that a test arc marked with L is permissible for those states of the computa-
tion in which L is true, and that a statement arc (or exit arc) is permissible for
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all states of the computation. Then a transition diagram will completely
determine computational behavior if, for each node and each possible state
of the computation, there is exactly one permissible arc emanating from the
node.

However, transition diagrams that violate this condition are still mean-
ingful—and sometimes useful. For a given node, if there are any states of the
computation for which no outgoing arc is permissible, then the node is a dead
end, whose effect is a kind of nontermination. More interestingly, if there are
any states of the computation for which more than one outgoing arc is
permissible, then the node (and the transition diagram containing it) is said
to be indeterminate.

In executing an indeterminate transition diagram, the computer is
«gllowed” to traverse any permissible arc, so that its behavior is only partly
determined. Nevertheless, such a diagram is correct if every possible
behavior that it allows meets the program specification.

For example, when developing the fast exponentiation program in the
previous section, we made an arbitrary choice between the tests k=0 and
odd(k) at the label tr. Avoiding this choice leads to the indeterminate
transition diagram shown in Figure 4.5. At the node fr in this diagram, the
computer is free to traverse either of two test arcs, both of which lead to
correct behavior.

Further indeterminacy would be introduced by adding an arc marked
S_ from nz to tr, as indicated by the dotted line in Figure 4.5. This change still
leaves the program correct, but it introduces serious inefficiencies—essen-
tially it allows the computer to choose between fast and slow exponentiation.

In recent years, the importance of indeterminacy in programming has
increased, and at least one author has advocated a programming language
with indeterminate control mechanisms [Dijkstra 75, 76]. There are at least
three reasons for this development:

(1) Asshown in the nextsection, the intelligibility of a program can be
enhanced by avoiding unnecessary choices that do not affect cor-
rectness.

(2) As discussed in Chapter 5, it is often profitable to attack complex
problems by first writing an abstract program using problem-
oriented types of data, and then translating this program into a
concrete program using a particular data representation. In this
approach, it is often vital to leave the abstract program indetermi-
nate in order to postpone choices that require knowledge of the
data representation.

(3) Insome kinds of parallel processing, the actual program executed
by the computer may be indeterminate. Consider, for example,
searching a large data file, stored on several magnetic tapes or
disks, for any of several records giving the age of a particular
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enter
k:=n;
yi=1
z:=x
true () tr
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Figure 4.5 An Indeterminate Transition Diagram for Fast Exponentiation.

person. The particular record examined might not be determined
by the program, and could depend upon factors such as the rela-
tive speeds of motors in different storage devices.

In all of these situations, the key point is that an indeterminate program
is only correct if all of its possible executions are correct. (This point requires
special emphasis since there is another notion of indeterminacy used in
automata theory and artificial intelligence in which—roughly speaking—a
program is correct if some possible execution is correct [Floyd 67b].)
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*4.2.7 Merging Revisited

In Section 2.3.6, we developed a program for merging two ordered array
segments. Just as with fast exponentiation, a more efficient version of this
program can be obtained by considering transitions among all relevant
assertions built out of certain simple conditions.

The overall program can be written in the form:

{lax bx| < dom X and [1y by| = dom Y and c dom Z
and ord< X 1 and ord- Y ] Iay byl
and # Iax bx| + # lay by| = # |az bz| }

begin integer kx, ky, kz;

kx := ax; ky := ay; kz := az;

{1}

“Achieve kx> bx and ky>by while preserving I”’
nd

e
ford< Z 1 [az b:|}

where I is the invariant

lax [kx bx| and [ay [ky by| and [az [kz be|

and ord< Z kz

and {Z 1 [az |ke} =* {X 1 [kx_bx]} U{Y 1 [ky by]}
and#+#@ byl = # [kz bz| .

(As in Section 2.3.6, we are ignoring the rearrangement condition.)
The real work of “Achieve kx> bx and ky > by while preserving I’ will
be done by two invariant-preserving operations that copy the leftmost

element of either X 1 |kx bx|or Y1 |ky by| into the rightmost position of
Z laz |kz:

Z(kz) :
Z(kz) :

X(kx); kx := kx+1; kz := kz+1 (Copy X)
Y(ky); ky := ky+1; kz := kz+1 . (Copy Y)

These operations satisfy the specifications

{I and kx<bx and (ky > by or (ky<by and X(kx) = Y(ky)))}
“Copy X {1}

{I and ky <by and (kx> bx or (kx=<bx and Y(ky)=< X(kx)))}
“Copy Y {I} .

In effect, if either |?x bx| or |ky b)j is empty one must copy the leftmost
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element of the other nonempty segment, while if both segments are
nonempty, then one must copy the lesser of their leftmost elements.

In Section 2.3.6, ““Achieve kx> bx and ky > by while preserving I’ wag
realized by

while kz < bz do
if (if ky > by then true else if kx> bx then false else
X(kx) < Y(ky))
then “Copy X"’ else “Copy Y”

This clearly involves redundant testing. For example, after executing “Copy
X7, the program will test ky > by, although the outcome of this test cannot
differ from its previous outcome before executing “Copy X”’.

Saying that “Copy X preserves the outcome of ky > by is tantamount
to saying that it satisfies the following pair of specifications:

{1 and kx=<bx and ky> by} “Copy X’ {I and ky > by}
{1 and kx <bx and ky<by and X(kx)<Y(ky)}
“Copy X” {I and ky<by}

Similarly “Copy Y” satisfies

{I and kx> bx and ky < by} “Copy Y’ {I and kx > bx}
{1 and kx<bx and ky<by and X(kx)=Y(ky)}
“Copy Y” {I and kx < bx}

The significant conditions are obviously kx<bx, ky<by, and
X(kx)=Y(ky). The first two are obviously independent, and give rise to nine
relevant assertions. However, the condition X(kx)< Y(ky) is only well-

defined when both [kx bx] and [ky byl are nonempty, i.e. when kx < bx and
ky <by. In general, an assertion of the form C; and ... and C,, is not relevant
if there is any (invariant-satisfying) state for which no C, is false and some C,
is undefined. Thus in this particular case, X(kx) < Y(ky) gives rise to only
two more relevant assertions: kx <bx and ky <by and X(kx)<Y(ky), and
kx < bx and ky < by and X(kx)= Y(ky). (Strictly speaking, X(kx)= Y(ky) is
not the negation of X(kx)=<Y(ky), but the “overlap” between the two
conditions will not cause any difficulties. )

Thus we have the eleven assertions shown in the transition diagram in
Figure 4.6. The operations “Copy X’ and “Copy Y’ each occur twice, in
accordance with their specifications. The placement of tests is obvious.
Entrance after initialization occurs at the node marked true, since none of
the significant conditions is known. Exit occurs when the goal kx > bx and
ky > by has been achieved.

The transition diagram is indeterminate at two points: at true,where it is

immaterial whether one tests the emptyness of |kx bx| or of |ky by|, and at
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kx < bx and ky < by, where one can perform either “Copy X’ or “Copy y»
when X(kx)=Y(ky). (Here we are ignoring the question of stability, dis.
cussed in Section 2.3.9.) In this form the transition diagram reveals the
symmetry between X and Y which is characteristic of the merging problem:
Interchanging X and Y, ax and ay, bx and by, and kx and ky has the same
effect as reflecting the transition diagram along a diagonal.

The diagram has been drawn so that every test arc moves further from
the central node marked true. This makes it evident that every loop containg
either “Copy X" or “Copy Y”. Thus termination is insured since both of

these operations decrease the sum of the sizes of and |ky by|.
After resolving the indeterminacies arbitrarily, it is staightforward to

translate the transition diagram into an Algol W program.

4.2.8 Another Caution

In Sections 4.2.5 to 4.2.7, we have presented a method of programming
based upon the enumeration of relevant assertions which eventually become
labels in the program. The method is systematic, and there are occasions
when its employment gives a worthwhile improvement in execution speed.

Nevertheless, experience shows that this method should be used with
great discretion. It usually yields a modest gain in execution speed at consid-
erable cost in program length, complexity, and opportunity for error. Execu-
tion speed is rarely that important. Even when the speed of a complete
program is vital, it is usually dominated by the speed of a small number of
key parts of the program. On the other hand, complexity always has its price,
which is usually underestimated.

One should never try to write the fastest program until one has written
the simplest program, and then examined it to find where speed is worth its
price in complexity.

Exercises

1. Without using goto statements or labels, write a program that is equivalent to the
fast exponentiation program given in Section 4.2.5, in the sense that for any
given input both programs execute the same sequence of tests and assignment
statements. You may need to use more than one occurrence of S_ or Sg;,. (The
author is indebted to D. Gries for showing him that this can be done.)

2. Show that the fast exponentiation program in Section 4.2.5 is free of redundant
testing. More precisely, show that for every path through the transition diagram
in Figure 4.4, there is an input value of n which will cause the program to execute
that path.
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Apply the methodology of Sections 4.2.5 to 4.2.7 to eliminate redundant testing
in the array partitioning program devised in Section 2.3.5. The relevant asser-
tions are built out of the conditions c<d, X(c)<r, and X(d)<r. You should be
able to take advantage of the fact that the statement d:=d — 1 cannot change the
outcome of the test X(c)<r.

The speed of the partitioning program discussed in the previous problem can be
further improved by using “stoppers”. Once c:=c+ 1 has been executed, {X 1

[Z:Ic} will be nonempty and will contain a “stopper”” whose value is less than or
equal to r. Thus X(d) will be well-defined, and if X(d)>r, |:__d| will be
nonempty. Similarly, once d:=d—1 has been executed X(c) will be well-
defined, and if X(c)=<r then will again be nonempty. As a consequence,

one can frequently avoid any explicit test of the emptiness of .

To take advantage of this situation, one must consider the conditions a<c,
c=d,d<b, X(c)=r, and X(d)=<r. The total number of possibly relevant asser-
tions is unworkably large, but the problem becomes tractable if one only consid-
ers assertions for labels that can be reached from the initial state, and if potential
indeterminacy is resolved as soon as it is encountered. Even so, this problem
represents an extreme case of complexity for the sake of speed, in which
«exhaustive reasoning” becomes a double-entendre. (It should be compared
with the much simpler use of stoppers in Exercise 1 after Section 3.2.3, where the
initialization insures the existence of stoppers.)






5 DATA REPRESENTATION
STRUCTURING

The programs developed in previous chapters have all been expressed
directly in terms of concepts that are provided by Algol W and most other
programming languages. In more complex and realistic programs, however,
this kind of direct expression is often unworkable, and one must consider
concepts that are germane to the problem being solved but are not provided
by the language in which the program must ultimately be written. For
example, in writing a program to perform geometric calculations, one would
expect to consider entities such as points and lines.

Such entities are data types, in exactly the same sense as integer, real,
and logical. Although they are not provided by our programming language,
itis conceptually straightforward to extend that language to include them. In
particular, everything we have learned about constructing and verifying
programs remains applicable to such an extended language.

At the outset, it should be emphasized that there are two complemen-
tary aspects to data types. On the one hand, for any data type there must be a
mathematically well-defined set that serves as the range of values of vari-
ables and expressions of that type. On the other hand, for any data type or
family of related data types, there must be a collection of primitive opera-
tions. For instance, for the data types integer and logical, Algol W provides
primitive arithmetic operations such as +, relational operations such as =,
and logical operations such as and. Similarly, for the data types point and
line, an extended language might provide primitive operations for finding
the line connecting two points or the point that is the intersection of two
lines.

297
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Our main thesis is that the introduction of “problem-oriented” or
“user-defined” data types separates the development of a program into two
phases. In the first phase one writes—and shows the correctness of—ap
abstract program in which the new types appear on the same footing as the
built-in types. For example, there might be point and line variables, whose
values are computed by connecting points and finding intersections. In the
second phase, one designs representations for the new data types, and then
uses these representations to transform the abstract program into a concrete
program in which the new types have been eliminated. For example, a point
might be represented by its x- and y-coordinates, so that each point variable
in the abstract program would be transformed into a pair of real variables in
the concrete program.

Over the last decade, data representation structuring has been the
subject of considerable research. The earliest roots of this work lie in the
design of specific programming languages, notably SIMULA 67 [Dahl 68]
and even Algol W (in the record and reference facilities, which are not
discussed in this book). However, as typified by [Dahl 72], [Hoare 72a], and
[Hoare 72c], the subject was soon viewed as a fundamental aspect of
programming methodology, independent of specific languages. More recent
work has included both language design to support this methodology, e.g.
[Liskov 75] and [Wulf 76], and language-independent developments, e.g.
[Guttag 77] and [Jones 80].

In this book, by using Algol W (indeed a subset of Algol W that excludes
the record and reference facilities) we perforce view data representation
structuring as a methodology, i.e. as a way of constructing programs. This
choice of language will not inhibit our development of programs, since we
are free in our thinking about programs to extend or modify a programming
language in any consistent way. But our final concrete programs will be less
clear in Algol W than they would be in a more modern language. In effect,
we will still develop programs in a structured manner, but the structure will
be less apparent in the final programs.

In compensation, we will be free to transform abstract programs into
concrete programs in ways that go beyond the work mentioned above. For
example, we will occasionally use distinct representations for different abs-
tract variables of the same type, compound representations that simultane-
ously represent more than one abstract variable, incomplete representations
that leave some abstract values unrepresented, and even ambiguous rep-
resentations that give the same representation to distinct abstract values. We
will also make considerable use of indeterminate abstract programs.

One small warning is needed to avoid getting off on the wrong foot. Just
because an abstract program is abstract does not imply that it is more
profound or difficult to write than a concrete program. In many cases the
intellectual heart of a program lies in an ingenious choice of data representa-
tion rather than in the abstract algorithm.
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5.1 FINDING PATHS IN DIRECTED GRAPHS

5.1.1 Directed Graphs

To illustrate data representation structuring, it is useful to explore a variety
of programs in the same problem area. Thus most of this chapter will be
devoted to several programs for finding properties of directed graphs. How-
ever, it should be emphasized that our primary purpose is to demonstrate a
methodology for constructing programs, and that we will only skim the
surface of the subject of direct-graph algorithms. A much more comprehen-
sive discussion of this subject is given in [Aho 74].

A directed graph consists of a set node whose members are called nodes,
and a set edge whose members are called edges (or sometimes arcs). Each
edge is an ordered pair (x, y) of nodes which is said to go from x to y. We will
only consider finite directed graphs. More specifically, we will assume that
the sizes of node and edge are bounded by integers N and E respectively.

Conventionally, a directed graph is pictured by using points to represent
nodes and arrows to represent edges. For example, Figure 5.1 illustrates the
directed graph such that

node={A, B, C, D, E, F, G},

edge:{(A’ B), <A’ D>’ (B’ B)’ (B’ C>’ (B7 E),
(C, A),(C, F),(D, E), (D, G)} ,
N=T7,
E=9.
A O = = O C

DO > OE O F

Figure 5.1 A Picture of a Directed Graph.
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A node y is said to be an immediate successor of x ifand only if there is an
edge from x to y. We write I' for the function from nodes to sets of nodes such
that ['(x) is the set of immediate successors of x. Thus y € I'(x) if and only if
(x, y) € edge.

For our purposes it will be convenient to regard the function I', rather
than the set edge, as the fundamental description of the edge structure of 3
directed graph. It will also be convenient to extend this function to accept
sets of nodes. When S is a set of nodes we write I'(S) for the set of nodes that
are immediate successors of some member of S. Thus, y € ['(S) if and only if y
€ I'(x) for some x € S. For example, for the graph in Figure 5.1, I'({A, B,
F})={B, C, D, E}.

A nonempty sequence (Xg, X1, ... , X,) Oof nodes is said to be a path of n
steps from xg to x,, if and only if each adjacent pair of nodes is an edge, i.e. if

x; € I'(x;—;) for each i in . For example, in Figure 5.1:

(A, B, C,F),is a path of three steps from A to F,
(B, C, A, B, B) is a path of four steps from B to B,
(B, E) is a path of one step from B to E,

(G) is a path of zero steps from G to G.

Notice that the step number is the number of edges in a path, which is one
less than the number of nodes, that the minimum step number is zero, and
that a path of one step is just an edge.

A node y is said to be reachable from a node x if and only if there is a
path (of any number of steps) from x to y, Just as the edge structure can be
represented by the function I, so reachability can be represented by the
function I'*, from nodes to sets of nodes, such that I'*(x) is the set of nodes
that are reachable from x. Thus y € I'*(x) if and only if there is a path from x
to y. (This use of the asterisk is unrelated to its use, in Section 2.2.8, for
indicating the pointwise extension of relations.) For example, I'* for the
graph in Figure 5.1 is given by

I*(x)

moA=P| %
>
=
>N oNeoNe!

G {G}

As with T, we will extend I'™* to act on sets of nodes by defining I'*(S) to be the
set of nodes that are reachable from some member of §.
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Exercise

1. The transition diagrams introduced in Section 4.2.6 are directed graphs, and
programs for finding their properties play an important role in compilers which
attempt to optimize machine code. Tabulate I' and I'* for the transition diagram
in Figure 4.4.

5.1.2 An Abstract Program for Reachability

As a first example of a program dealing with a directed graph, we consider
computing, for a given node x, the set I'*(x) of nodes that can be reached
from x. Such a computation is called single-source to emphasize that I'*(x) is
to be computed for a particular x rather than for all nodes in the graph. (Of
course, a multiple-source computation could be obtained by iterating a
single-source computation over different nodes, but this approach would be
inefficient. In fact, the best multiple-source algorithms [Warshall 62, Aho
74] are quite different from the single-source algorithms considered in this
chapter.)

In the abstract version of our program, we will use two new data types:
node, whose values are nodes of the graph, and set, whose values are sets of
nodes. The relevant primitive operations will be conventional mathematical
operations on sets and their members. The input will be the node x and the
function I that describes the edge structure of the graph. The output willbe a
set variable T whose final value will be I'*(x).

The basic idea of the algorithm is to “‘grow”” the set T by starting with the
set {x} and repeatedly adding nodes that can be reached from x. Thus T will
always satisfy the invariant

L T<T*x)andxe T

The growth will be carried out by repeatedly adding to T nodes that can be
reached in a single step from some node that is already in T, and the
algorithm will stop when such growth is no longer possible. This will occur
when I'(T) € T, i.e. when every node that can be reached in one step from a
member of T is already a member of T.

Thus an initial version of the abstract algorithm is
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node {exp} x; set procedure I" {node exp}; set {var} T;

{true}

begin

T:={x};

{geninv I: T< I'*(x) and x € T}

while 1 I'(7) < T do
begin node y;
y:=a member of T;
{geninv II: y € ™ (x)}
T:=T U TI(y)
end

end

{r=r*()} .

Since they describe input and output, the identifiers x, I', and T are not
bound in this program. We adopt the convention of specifying the phrase
types of such identifiers in a preface to the program.

As discussed in Section 4.2.5, the symbol geninv indicates that I and 1/
are general invariants. This means that each of these assertions holds con-
tinuously (at the present level of abstraction) from its point of occurrence to
the end of the immediately enclosing block.

The outer invariant / insures that the statement y := a member of T will
achieve the inner invariant /. In turn, I/ insures that 7:=T U I'(y) will
preserve I, since y € I'*(x) implies I'(y) < T'™*(x).

Notice that y := a member of 7 is an indeterminate operation, since it
does not specify which member of T is to become the value of y. This
indeterminacy will turn out to be useful when we transform our program into
concrete form, since it will provide a degree of freedom that will permit us to
construct a faster program.

When the program terminates, the invariant I will insure x € T and the
falsity of the while-statement test will insure I'(T) < T. It follows that I'*(x)<
T, i.e. that T contains every node that can be reached from x. The proof is by
induction on the number of steps. The only node that can be reached in zero
steps is x itself, whose presence in 7T is insured by x € 7. If a node w can be
reached in n+1 steps, then it can be reached in one step from some node z
that can be reached in n steps. By the induction hypothesis z belongs to T, so
that w belongs to I'(T), and the halting condition I'(T) £ T implies that w
belongs to T.

On the other hand, the invariant / insures T< [*(x), i.e. that every node
in T can be reached from x. In conjunction with I'*(x) < T, this implies the
desired consequent of the program.

The next step in developing an abstract algorithm is to express the
statement 7:=T U I'(y) in terms of more elementary operations. For this
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purpose, We introduce an extension of the for statement that describes
jteration over the members of a finite set. In general, we write for K € Sdo B
to indicate that B is to be performed once for each member of the set S, with
K denoting each member in turn. The order in which the members of S are
jterated over is left indeterminate.

This construct can be used to express the addition of I'(y) to T as an
jteration over I'(y) of a statement that adds individual nodes to T. Thus we
replace T:=T U I'(y) by

for z e I'(y)do T:=T U {z}

The virtue of this replacement is that it decouples the representations of
T and T. If we left T:=T U I'(y) in the abstract program, then in the
transformation to a concrete program the realization of the union operation
would depend upon both the representation of T and the representation of
T'(»)- Thus the choice of these representations would have to be made jointly
to ensure that the union could be performed efficiently. But in transforming
for z € I'(y) do T:= T U {z}, one can deal separately with the transformation
of T:= T U {z}, which only involves the representation of 7, and the trans-
formation of the iterative control mechanism for z € I'(y) do ... , which only
involves the representation of I'(y).

This decoupling is particularly advantageous since I is an input and T is
an output of our program. Although we will not consider the matter
explicitly when we choose representations, in the “real world” the represen-
tation of I' has to be suitable for some program segment that computesI', and
the representation of T has to be suitable for some other program segment
that uses 7. In this situation, anything which couples the choice of these
representations could complicate the programming task disastrously.

On the other hand, by replacing T:= T U I'(y) by afor statement, we are
excluding certain ways of implementing the union operation. Although it
will turn out that these implementations are not desirable, this is not evident
from the abstract algorithm. Our arguments for the replacement are merely
heuristic, and do not guarantee that it is a step in the right direction. More
generally, while data representation structuring is a systematic way of con-
structing programs, it is not a magic tool that insures optimal design choices.

At this point we must admit that, although the initial version of our
abstract algorithm is conditionally correct, it is possible that it may never
terminate. The difficulty is that y := a member of T may repeatedly set y to
the same member of T. But once for z € I'(y) do T:=T U {z} has been
performed for a particular y, it is a waste of time to repeat this operation for
the same y. Indeed if y is chosen to be the same node ad infinitum, the
program will never terminate.

To overcome this difficulty we will partition T into a set P of processed
nodes that have already been chosen as y, and a set U of unprocessed nodes
that have not yet been chosen. Then, by always choosing y to be an unpro-
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cessed node, we can guarantee that each execution of the while-statement
body will increase the number of processed nodes, so that termination must
occur within N steps.

The first step is to modify the abstract program by introducing P and 7
as local set variables, along with appropriate statements for maintaining
their values:

node {exp} x; set procedure I' {node exp}; set {var} T;

{true}
begin set P, U,
T:={x}; P:={}; U:={x};
{geninv I: T I(x) and x € Tand P U U=T and PNU={}}
{whileinv: T'(P) < T}
while 1 I'(T) < T do
begin node y;
y:=a member of T;
begin; P:=P U {y}; U:= U—{y} end;
{geninv II: y e T*(x) and y € P and ['(P—{y}) < T}
for z € I'(y) do
if iz ¢ T then
begin; T:=T U {z}; U:=U U {z} end
{r(y) e 1}
end
end

{T=r*@)} .

Since only the new variables P and U are affected by this modification, the
assertions in the original abstract program remain valid.

Initially x, which is the only member of 7, is unprocessed. Each time a
member of T is chosen as y, it becomes processed. Each time a new node z is
added to T, it is unprocessed. (Note the necessity of the qualification “new”,
which is reflected in the test z ¢ T in the body of the for statement. If z
already belongs to T, it may be a processed node.) It is easy to see that P and
U will always form a partition of T, so that PU U=T and P N U={} can be
added to the general invariant 1. However, this invariant is only continuously
true if the two blocks subscripted with I are regarded as indivisible actions.
As discussed in Section 4.2.5, we will subscript the beginning of a block with
the name of a general invariant whenever that invariant may be temporarily
falsified within the block.

Just prior to the for statement, y is placed in P, and neither y nor P are
changed by the for statement body. Thus y € P can be added to the general
invariant /1.

Initially I'(P) < T holds since P is empty. Assume that this condition



SEC. 5.1 FINDING PATHS IN DIRECTED GRAPHS 305

holds at the beginning of the while-statement body. Then T'(P—{y}) < T will
hold after y is added to P, and will continue to hold throughout the for
statement since y and P are never changed and T is only enlarged. Thus
r(P—{y}) = T can be added to II. Then since this condition still holds upon
completion of the for statement, and the for statement achieves I'(y) = T,
the condition I'(P) & T will again hold upon completion of the while-
statement body. Thus I'(P) € T'is an invariant of the while statement (but not
a general invariant).

If U is empty then the partition condition implies P=T, and the
invariant I['(P) < T implies I'(T) < T, which is a sufficient condition for
terminating the while statement. Thus we may replace

while 1 I'(T) € T do ...

by
while 1 empty(U) do ...

Of course, the old test 1 I['(T) < T may become false while U is still
nonempty, but this only means that our program may continue to loop
unnecessarily. Correctness is not affected, since we never used the assump-
tion that 1 I'(T) < T held at the beginning of the while-statement body.

At this stage, it is clear that U will be a nonempty subset of T when a
member of T is chosen as y. Thus we may replace

y:=a member of T
by
y:=a member of U

By restricting the choice of y to U, we insure that each execution of the
while-statement body will add a new node to P. Thus the number of such
executions cannot exceed the bound N on the number of nodes in the graph.

Each execution of the for-statement body iterates over the immediate
successors of y or, equally well, over the edges that emanate from y. Thus,
since the for statement is executed for distinct nodes y, the total number of
executions of its body cannot exceed the bound E on the number of edges in
the graph.

The body of the conditional statement within the for statement always
adds a new node to T, which initially contains the single member x. Thus the
total number of executions of this body cannot exceed N—1.

These bounds on the number of executions of various parts of our
program are as close as we can come to understanding efficiency on the
abstract level, since time and space requirements, even to an order of
magnitude, will depend upon the choice of representations and the realiza-
tion of primitive operations. In fact, since they determine the relative fre-
quency with which various primitive operations will be performed, the
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bounds on number of executions will be crucial for deciding which represep.
tations should be used to obtain an efficient concrete program.

The intermediate assertions have served their purpose in demonstrating
the correctness of our abstract program, and can now be discarded. Actually
there is a small but significant exception. Since P U U=T and z ¢ T will holq
just prior to T:=T U {z}, the assertion z ¢ U will hold afterwards, so that the
following statement U:=U U {z} will insert a new member into U. This fact
will turn out to be significant for the choice of the representation of .

At this stage the abstract program illustrates a concept that will reap.
pear in later sections and play a central role in the development of daty
representation structuring. Consider a variable that is local to a program (or
at least whose final value is not used outside of the program). Such a variable
is said to be auxiliary if all of its occurrences lie within statements whose only
effect is to assign to the variable. More generally, a set of variables is said to
be auxiliary if all of their occurrences lie within statements whose only effect
is to assign to members of the set.

The importance of this concept is that the value of an auxiliary variable
cannot affect the flow of control or the values of any nonauxiliary variable,
As a consequence, one can eliminate auxiliary variables, by deleting their
declarations and the statements that assign to them, without affecting the
behavior of the program.

(Auxiliary variables are defined in [Owicki 76]. However, the basic
concept goes back at least as far as [Lucas 68].)

The set variable P is easily seen to be auxiliary in our abstract program,
and can therefore be eliminated. Thus, stripped of the scaffolding used to
construct it, the abstract program is

node {exp} x; set procedure I' {node exp}; set {var} T;

{true}
begin set U;
T:={x}; U:={x};
while 1 empty(U) do
begin node y;
y:=a member of Uj;
U:=U—-{y};
for z € I'(y) do if z ¢ T then
begin
T:=T U {z};
{z ¢ U}
U:=U U {z}
end
end
end '

{T=r*@)} .
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Exercises
1. The call-by-name variant of the set-iterating for statement

for K € Sdo B
can be defined as

begin set S'; S':={};

while 1 empty(S—S) do
begin node K;
K:=a member of S—S';
B;

S:=S U {K}
end

end

where S’ is an identifier that does not occur in the original for statement. Use this
definition to derive the following inference rule of specification logic [Hoare
72b]:

Suppose

K and S’ are distinct identifiers of phrase types
node expression and set expression,

S is a set expression,

B is a statement,

I is an assertion,

3, is a finite set of specifications,

such that

K does not occur free in 3, S, or I,
S’ does not occur free in 2. S, or B.

Let {S; ..., Sp}=Fanike(B) and S, , ... , S, be any other identifiers distinct
from K and S'. Then
S&SHK& ... &S, #K& S #S & ... & S, #5 >
{Iand S < Sand KeS-S'} B{l| y_s, )}

S&S, #S&... &S, # S—{I| s} for KeSdo B{l|s_s} .

2. Weaken the inference rule given above to describe the more indeterminate
situation where B can be executed more than once (but at most a finite number
or times) for the same member of S. Show informally that the abstract program
given in the previous section remains correct with this more indeterminate kind
of for statement.

3. Transform the fast division program described in Exercise 4 after Section 1.3.5
to make n an auxiliary variable that can be eliminated from the program.

4. Write an abstract program to solve the “single-source single-sink” reachability
problem, i.e. write a program that accepts two nodes x and v and the function T,
and sets a logical variable reachable to true if and only if ve I'*(x). The simplest
approach is to modify the program developed in the previous section to termi-
nate with an appropriate goto when and if v is added to T.

A more complex but efficient approach is possible if the input also includes
an “immediate predecessor function” I't such that y € T'(x) if and only if (y, x) €
edge. Then one can alternate between generating the set of nodes that can be
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reached from x and generating the set of nodes that can be reached backwards
from v. Termination occurs when these sets intersect or when either set is
complete.

5.1.3 The Representation of Finite Sets

We have purposely chosen an algorithm involving finite sets since there is no
universally “best” way of representing such sets. Inevitably, choosing a
representation to make one primitive operation as efficient as possible will
force other primitive operations to be less efficient than in some other
representation. Thus a wise choice of a representation can only be made in
light of the particular needs of the abstract program, i.e. which primitive
operations are used and with what relative frequencies. Moreover, it is often
advantageous to choose distinct representations for different set variables.
The following are four fairly obvious ways of representing a set S:

(1) One can enumerate S with an array. Thus S might be the image of the
segment of an array W over the interval :

S={W 1 [a_b}

This representation has the advantage that one can insert an element into §
in constant time, i.e. in a time independent of the size of S, by simply
appending the element to the array segment at one end or the other. One can
also test whether S is empty in constant time by simply testing a>b.

However, unless there is some control over the number of times a set
member may occur in the array segment, the size of the segment can grow far
larger than the size of S. This is a sufficiently serious defect to make this
representation unsuitable for our purposes.

(2) One can enumerate S by an array segment without duplicate elements:

S={W 1 [a_b]} and ord, W 1 .

Prohibiting duplication insures that # M =# §, so that any bound on the
size of § provides a bound on storage requirements. Not only can the
emptiness of S be tested in constant time, as in (1), but more generally the
size of S can be determined in constant time. On the other hand, to test
whether a particular element belongs to S one must perform a linear search,
in time of order # S.

The price of avoiding duplication is the time required to insert an
element into S. In general, one must perform a linear search, in time of order
# S, to see if the element is already present. However, this search can be
avoided if it is known that the element being inserted does not belong to S, so
that a new element can be inserted in constant time. This is one of several



SEC. 5.1 FINDING PATHS IN DIRECTED GRAPHS 309

cases where a fine distinction in the nature of a primitive operation can have
a major effect on its efficiency.

Another case is deletion. To delete a specified element from S one must
perform a linear search to locate the element, in time of order # S. However,
to delete an unspecified member, i.e. to choose an arbitrary member of S and
delete it, one can simply remove an element from one end of the array
segment, in constant time.

Finally, consider iterating over the set S, i.e. executing for K € S do B.
Excluding the time required to execute B repeatedly # S times, the control
of this iteration will require an array scan taking time of order # §.

3) If an ordering relation can be defined for the type of elements in S, then
one can enumerate S by a strictly ordered array segment:

S={W1l|a b|}and ord. W1 |a b

Now binary search can be used in place of linear search, so that an element
can be tested for membership in time of order log # S. On the other hand,
when an element is inserted or a specified element is deleted, it may be
necessary to move a sizeable subsegment of the array to preserve the
ordering. Thus the time required to insert an element, even when it is known
to be new, is of order # S in the worst case. The order of magnitude times for
the other operations discussed in (2) remain unchanged.

(4) Suppose S is known always to be a subset of some fixed, finite universe
U (which would be node in the case of a set of nodes). Then S can be
represented by a logical array C with domain “ such that C(x) records
whether x belongs to S:

(VxeU) C(x)=(x€S)

Of course, Algol W does not permit the domain of an array to be an arbitrary
finite universe such as node, but conceptually this is a straightforward
extension of the language.

The number of elements in C is # %, which may be much larger than the
maximum size of S. In many cases, however, this is compensated by the fact
that an individual logical array element is much smaller than an array
element that must represent a member of S.

In general this kind of representation, called a characteristic vector, is
complementary to enumeration by an array. Testing membership, or insert-
ing or deleting a specified element can be done in constant time by testing or
setting a single array element. However, testing emptiness or deleting an
unspecified member requires searching C up to the first true element, which
needs time of order # U — # Sin the worst case and #9 / # S on the average.
(Note that the situation deteriorates as S becomes smaller.) Even worse,
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determining size or iterating over all members of S requires a scan of the
entire array, using time of order # %, regardless of the size of S.

There are many other useful representations of sets, often involving
tree or list structures. These include heaps, which will be introduced in
Section 5.2.3, hash tables [Morris 68], and binary search trees [Nievergelt
73]. Good general references are [Aho 74} and [Knuth 73].

Exercises

1. To each of the representations we have discussed, one could add an integer
variable recording the size of S. For each representation, how would this affect
the time requirements for the various primitive operations?

2. Suppose that a primitive operation is needed that replaces a set by its union with
another set, i.e. that achieves the effect of S := § U T. Assume that the same
representation is used for S and T. For each of the representations discussed
above, what would be an efficient method for realizing this operation, and what
would be the order of magnitude time requirement? In which cases would it be
seriously inefficient to expand S := S U T into for zeT do S := S U {z}?

3. Suppose that a set is represented redundantly by giving both an enumerating
array without duplicates and a characteristic vector. What are the order of
magnitude time requirements for the primitive operations discussed in the above
section?

5.1.4 Representation of the Set Variables T and U

Having discussed the general properties of several representations of sets,
we return to the specific problem of determining reachability in a directed
graph. We have established the correctness of the abstract program given at
the end of Section 5.1.2. Now we must choose representations for the
abstract variables in this program and use these representations to transform
the program into concrete form.

Fortunately, this kind of problem is not monolithic. In many cases, the
representations of different data types, or even of different variables of the
same type, can be considered in isolation from one another. In this case, we
will separately consider the representations of the set variables T and U, the
set function I', and finally the representation of nodes themselves.

Consider T. In the abstract program it is subject to three operations: the
initialization T:={x}, which is only performed once, the membership test z ¢
T, which is performed at most E times, and the insertion 7:= T U {z}, which is
performed at most N—1 times. It is obviously more important to optimize
the membership test and insertion than the initialization. For this purpose,
the best of the four representations discussed in the previous section is
clearly the characteristic vector (4), which permits both a membership test
and an insertion to be performed in constant time.
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Actually, this conclusion is premature. Since T is an output variable, its
representation must be suitable, not only to the program we are writing to
produce its value, but also to some other program that will use this value.Ina
real application, this might cause us to choose a different representation for
T. or to simultaneously compute T in more than one representation (see
Exercise 1 below), or to convert T to another representation after it has been
computed. But to keep our example tractable we will assume that a charac-
teristic vector is suitable for the program that will use the value of 7.

Now we must transform our program to replace the abstract variable T
by a concrete variable representing its value. To do this, we will use the
following general method:

(1) One or more concrete variables are introduced to store the representa-
tion of one or more abstract variables.

(2) A general invariant called the representation invariant is introduced,
which describes the relationship between the abstract and concrete
variables.

(3) Each assignment to an abstract variable (or more generally, each
assignment that affects the representation invariant) is augmented with
assignments to the concrete variables that reestablish the representa-
tion invariant (or achieve it, in the case of an initialization).

(4) Each expression that contains an abstract variable but occurs outside of
an assignment to an abstract variable is replaced by an expression that
does not contain abstract variables but is guaranteed by the representa-
tion invariant to have the same value.

The last step will render the abstract variables auxiliary, so that their declara-
tions and assignments can be eliminated.

In the present case, the concrete variable will be a characteristic vector
whose domain is node:

logical array {var} C (node)

This array must be specified globally since it represents the output of our
program. The representation invariant is

CI: (Vzenode) C(z)=(z€T)
To achive CI the initialization T:={x} can be augmented with
for zenode do C(z):=(z=x)

The only other assignment to T is T:=T U {z}. To reestablish CI after this
assignment, we add C(z):=true.

The only occurrence of T in an expression outside of an assignment to T
isin the test z ¢ T. According to CI this test is equivalent to, and can therefore
be replaced by, 1 C(z).

The result of this transformation is
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node {exp} x; set procedure I {node exp};
set {var} T; logical array {var} C (node);

{true}
begin set U;
T:={x}; for zenode do C(z):=(z=x);
{geninv CI: (Vzenode) C(z)=(ze T)}
U:={x};
while 1 empty(U) do
begin node y;
y:=a member of U;
U:=U-{y}
for zeI'(y) do if 1 C(z) then
begin
beging; T:=T U {z}; C(z):=true end;
{z¢ U}
U:=UU{z}
end
end
end
{T=T*(x) and (Vzenode) C(z)=(ze*(x))}

Again we have used a subscript to indicate that a general invariant may be
temporarily falsified in the interior of a block. We have also extended the
consequent of the program to express the result I'*(x) in terms of the
concrete variable C.

At this stage T is an auxiliary variable and can be eliminated from the
program. The representation invariant CI can also be dropped, since it has
served its purpose in demonstrating the correctness of the program trans-
formation.

Next we consider the set variable U. Besides the initialization U:={x}, it
is subject to three operations, each of which will be performed no more than
N times: the emptiness test 1 empty(U), the choice and deletion of an
unspecified member y:=a member of U; U:=U—{y}, and the insertion
U:=U U {2}, in which z is guaranteed to be a new member by the preceding
assertion z ¢ U.

Because of the emptiness test and the choice of an unspecified member,
a characteristic vector would be an unsuitable representation for U. In fact,
of the representation methods discussed in Section 5.1.3, only enumeration
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py an array without duplicate elements (2) permits all three of the frequent
operations to be performed in constant time. (Since U is a local variable, we
do not need to consider the requirements of an external program.)

To implement this representation we introduce, at the same block level
as U, the concrete variables

node array W(1::N); integer a, b

and the representation invariant

WI: and U={W 1 [« b|}andord, W1 [a_b] .

(Here the partition diagram insures that 1 is a suitable lower bound for the
domain of W. The fact that N is a suitable upper bound will be established
later.) To achieve this invariant, the initialization U:={x} is augmented with
a:=1; b:=1; W(1):=x.

The transformation of the abstract operation of choosing and deleting
an unspecified member of U is somewhat complicated, since it involves both
replacing an expression containing U and augmenting an assignment to U,
and since indeterminacy must be resolved. The representation invariant
implies that the indeterminate expression “a member of U’ can be replaced
by W(k) for any value of k in (which must be a nonempty interval since
U is nonempty). Then after the next operation U:= U—{y}, the representa-
tion invariant can be regained by deleting the kth element from the segment
of W over |a_b|.

Clearly this deletion can be done more easily if W(k) is located at one
end or the other of the array segment. Thus we may either (1) replace “a
member of U”’ by W(a) and add a:=a+1 after U:= U—{y}, or (2) replace “a
member of U’ by W(b) and add b:=b — 1 after U:= U—{y}. Notice that the
freedom to make these especially efficient choices is a consequence of
leaving “a member of U” indeterminate at the abstract level.

The only other assignment to Uis U:=U U {z}. Here, since the prece-
dent z ¢ U insures that duplication will be avoided, WI can be regained by
appending z to the upper end of the array segment, i.e. by adding the
statements b:=b+1; W(b):=z. (Note that appending z to the lower end of

the array segment might violate the partition diagram -a bl.)
Finally, W1 implies that the test 1 empty (U) can be replaced by a<b.
Thus we have
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node {exp} x; set procedure I' {node exp};
logical array {var} C (node);

{true}
begin set U; node array W(1::N); integer a, b;
for zenode do C(z):=(z=x);
U:={x}; a:=1; b:=1; W(1):=x;
{geninv WI: and U={W1 [a_oiiand ord, W1 }
while a<b do
begin node y;
_[W) @1,
YT we) @f
beginy; U:=U—{y}; [Z;Zti %] end;
for zeI'(y) do if T C(z) then
begin
C(z):=true;
{z¢ U}
beginy,; U:=U U {z}; b:=b+1: W(b):=z end
end
end
end

{(Vzenode) C(z)=(zeT*(x))} .

The variable b is initialized to one and is only increased by the statement
b:=b+1, which can be performed at most N—1 times. Thus b < N will hold

throughout the program. This implies 1 b| = , which in conjunction
with [1 [a b implies < [1 M|, so that the declared bounds of W are

adequate to avoid subscript errors.
The circled numbers represent the alternative ways of implementing the
choose-and-delete operation. When option @ is used, nodes are added to

one end of W 1 and removed from the other. As a consequence,
W behaves as a queue, i.¢. its element values are removed in the same order
as they are entered. When option (2) is used, nodes are added and removed
from the same end of W 1 |a__ll|. As a consequence, W behaves as astack, i.e.
when a node is removed it is always the most recently entered node remain-
ing in the stack.

The difference between (@ and (2) has a profound effect upon the order
in which the members of I'*(x) are processed by our algorithm. When @ is
used, the nodes in IT'*(x) enter T in a breadth-first order, i.e. in increasing
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order of the minimum number of steps from x. When (2) is used, these nodes
enter Tin a depth-first order, i.e. after a node y has entered 7, all nodes that
can be reached from y (via a path which does not go through a member of T)
will enter T before any other nodes.

In our further development of the reachability program, we will only
consider option @), which causes breadth-first search. We will return to the
topic of depth-first search in Section 5.4.1.

At this stage, U is an auxiliary variable that can be eliminated, along
with the intermediate assertions.

The transformation method illustrated in this section is similar in spirit
to that of [Hoare 72c] and [Jones 80]. The relationship between abstract and
concrete variables that we call a representation invariant is divided by these
authors into two components: a function (called an abstraction function by
Hoare and a retrieve function by Jones) mapping concrete into abstract
values, and an invariant relationship that is limited to concrete values.

1. Suppose that the abstract variable T is retained while the concrete variables W,
a, and b are introduced, and option (@) is used so that W behaves as a queue. Show
that the representation invariant WI can be strengthened to

(1 Ja b|and U={W 1 [a_b]} and T={W 1 [1_b]}

and ord .W 1 |1 b|

This indicates that W, a, and b provide a compound representation of U and T,
where the representation of T is redundant since T is also represented by the
characteristic vector C (as in Exercise 3 after Section 5.1.3). By making W and b
nonlocal one can produce the redundant representation of T=I*(x) as output.

2. Since the abstract reachability<program never looks at nodes or edges that
cannot be reached from x, the bounds on the number of executions of various
operations can be tightened from N and E to # I'*(x) and the number of edges
that emanate from members of I'*(x). If these numbers are much smaller than N,
then the use of a characteristic vector to represent T becomes undesirable since
the slowest part of the program will be the initialization for z€node do
C(z):=(z=x). In this situation it is better to dispense with the characteristic
vector and to use W to enumerate both T and U, as discussed in the previous
exercise.

Transform the abstract program by using this representation.
(Hint: You will need to implement the test z¢ T by a linear search. This can be
accomplished by introducing a logical variable present and inserting a statement,
immediately before the conditional statement that tests z¢ T, to achieve the assertion
present=(z€T).)

3. Transform the abstract programs discussed in Exercise 4 after Section 5.1.2 to
introduce representations for the set variables. In the version that searches both
forward from x and backwards from v, you should be able to fit two enumerating
array segments within a single array with domain .
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5.1.5 Representation of the Function I'

Next we consider the representation of the input function I'. In this case the
abstract-to-concrete transformation will have a rather different flavor than
in the previous section, since I' is used but not changed by our program, and
since its usage controls an iteration. Once we have decided upon a represen-
tation and introduced appropriate concrete variables and a representation
invariant, there will be no assignments to be augmented, and our only task
will be to use the representation invariant to eliminate the single occurrence
of I in our program without changing its behavior.
This occurrence of I' controls the iteration in

for zeI'(y) do if 1 C(z) then
begin C(z):=true; b:=b+1; W(b):=z end

To clarify the way in which this statement depends upon T}, it is helpful to
define

procedure ifersucc(node {exp} y; procedure p {node exp});
for zeI'(y) do p(2)

Then the above statement can be replaced by the call

itersucc(y, A(node {exp} z).
if 1 C(z) then
begin C(z):=true; b:=b+1; W(b):=z end) .

The advantage of this transformation is that the dependence of our
program upon I is localized in the procedure itersucc, so that the effects of
the representation of I can be considered without reference to the rest of the
program. The unusual aspect of the transformation, which is typical of
the encapsulation of iterative constructs, is that itersucc is a higher-order
procedure. Indeed, the transformation of for z€ I'(y) do S into itersucc(y,
A(node {exp} z). §) is completely analogous to the transformation of for K:=
L until Udo Sinto iterate(L, U, \(integer {exp} K). S) which was discussed in
Section 4.1.1.

Frequently in this chapter we will call parameters by name, as in
itersucc, even when call by value would have the same effect. Although call
by value would be more efficient in the final executable version of the
program, it is even more efficient to eliminate the procedure from the final
version by using the copy rule, and for this purpose call by name is simpler.

Since T is a function from nodes to sets of nodes, its representation must
provide, for each node y, a representation of the set I'(y). Suppose we
choose to represent each I'(y) by a characteristic vector, which is a logical
array with domain node. Then T itself can be represented by an array of
characteristic vectors with domain node, which is equivalent to a two-



SEC. 5.1 FINDING PATHS IN DIRECTED GRAPHS 317

dimensional logical array with domain node X node. Thus we may represent
I by a concrete variable

logical array {exp} G(node, node) ,
with the representation invariant
(Vy, zenode) G(y, z)=(zel(y)) .
with this representation, an obvious realization of itersucc is

procedure itersucc(node {exp} y; procedure p {node exp});
for zenode do if G(y, z) then p(z)

This is a standard way of representing the edge structure of a graph; the
array G is often called an adjacency matrix in graph theory. Unfortunately, it
is seriously inefficient for the algorithm we are considering, as well as many
other algorithms for determining properties of graphs. As we have already
pointed out in Section 5.1.3, characteristic vectors can be an inefficient way
of controlling iterations over sets. In this case, a call of itersucc(y, p) will
execute p exactly # ['(y) times, but itersucc itself, since it must test G(y, z)
for each node z, will require a time of order N, which may be far larger than
# L(y).

As an alternative, suppose we represent each I'(y) by an enumerating
array without duplication. Since the size of these arrays will vary for different
y, it would be undesirable to collect them into an array of arrays. Instead we
will concatenate the array segments for different y into a single array G,
which will contain one element for each edge in the graph. Then we will
introduce two auxiliary arrays GL and GU such that GL(y) and GU(y)
delimit the segment of G that enumerates I'(y).

Thus we introduce the concrete variables

node array {exp} G(1::E); integer array {exp} GL, GU(node)

and the representation invariant

(Vy € node) (T(»)={G 1 [GL(y) GUM)|}
and ord, G 1 [GL(y») GU()|) *.

With this representation, itersucc can be realized by
procedure itersucc(node {exp} y; procedure p {node exp});
for i:= GL(y) until GU(y) do p(G@)) .

Now the time required by itersucc(y, p), exclusive of the time required for

executing p, is of order # |GL(y) GU(y)I =# I'(y). Itis easy to see that this
leads to an execution time for the entire reachability program of order N+ E.
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Exercises

1. Although the two transformations of itersucc given above have only been jus-

tified informally, a transformation similar to the second of these can be carried
out formally in the style of Section 5.1.4. We begin by rewriting the abstract
version of itersucc, using the definition of the set-iterating for statement given in
Exercise 1 after Section 5.1.2, as

procedure itersucc(node {exp} y; procedure p {node exp});
begin set §'; S := {};
while 1 empty(T'(y) - S') do
begin node z; z:=a member of I'(y) — S
p(z); S:=5 U {z}
end
end

Now suppose G, GL, and GU are introduced to represent I as a concate-
nated sequence of enumerating arrays, so that the representation invariant

(Vyenode) (T(»)={G 1 [GL(») GU()]}
and ord, G 1 leLy) GU(y)|)

holds throughout the body of itersucc. To represent S, introduce the concrete
integer variable i as a local variable of the procedure body, with the representa-
tion invariant

[6L(y) |i Gu(y)l and S'={G 1 |GL(y) |}

Then transform the body of itersucc, in the manner illustrated in Section 5.1.4,to
eliminate T’ and make S auxiliary.

What happens to the second realization of itersucc given in the above section if
the prohibition of duplicate elements is removed from the representation
invariant for I'? How does this affect the reachability program?
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5.1.6 Representing Nodes
At this stage, we have developed the following program:

node {exp} x; node array {exp} G(1::E);
integer array {exp} GL, GU(node); logical array {var} C(node);

{(Vyenode) (N(»)={G 1 [GLG) GUM)]}
and ord, G 1 |GL(y) GU(y))) }
begin
procedure itersucc(node {exp} y; procedure p {node exp});
for i:= GL(y) until GU(y) do p(G());
node array W(1::N); integer a, b;
for zenode do C(2):= (z=x);
a:=1; b:=1; W(l):=x;
while a<b do
begin node y;
y:=W(a); a:=a+1;
itersucc(y, \(node {exp} z).
if 1 C(z) then
begin C(z):=true; b:=b+1; W(b):=z end)
end
end
{(Vzenode) C(z)=(zeTl*(x))} .

Notice that, since it is a requirement to be met by the external program that
computes G, GL, and GU, the representation invariant for I occurs as the
precedent of this program.

Our final task is to represent nodes themselves. All that happens to
nodes in our program is that they are tested for equality and used to index
arrays. This reflects the fact that, as far as a directed graph is concerned,
nodes are anonymous objects with no structure or arithmetic.

In this situation an obvious and reasonable decision is to represent
nodes by integers. Indeed since N is a bound on the number of nodes, we can
represent nodes by integers in the interval ll_—ﬂl

We could carry out the kind of transformation used previously, in which
each node variable, node-valued array, and node-subscripted array would be
replaced by a corresponding concrete entity. But this would be formal

overkill. Since node is in one-to-one correspondence with a subset of ,
the logic of our program will be unaffected if we simply assume that node is a
subset of |1_1_VJ . Then node can be replaced by integer when it is used as the
data type of a variable, expression, or array element, and by @ when it is
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used as an array domain or as a set to be iterated over. (If node is smaller

than |1 N| then C will contain extra elements and the initializing for state-
ment will assign to these elements, but this will not affect the correctness of
the program.)

Thus the final concrete version of our program for reachability is

integer {exp} x; integer array {exp} G(1::E);
integer array {exp} GL, GU(1::N); logical array {var} c1 ::N);

{node < and (Vyenode) (T(y)={G 1 |GL(y) GU()}
and ord_ G 1 [GL(y) GU(y)|) }

begin
procedure itersucc(integer {exp} y; procedure p {integer exp});
for i:= GL(y) until GU(y) do p(G(i));
integer array W(1::N); integer a, b;
for z:=1 until N do C(z):= (z=x);
a:=1;b:=1; W(1):=x;
while a<b do
begin integer y;
y:=W(@); a:=a+1;
itersucc(y, \(integer {exp} 2).
if 7 C(z) then
begin C(z):=true; b:=b+1; W(b):=z end)
end
end
{(Vzenode) C(z)=(zel™*(x))}

Of course, to obtain a highly efficient version of this program one would
eliminate the procedure call and lambda expression by applying the copy
rule and beta reduction.

The reader may wonder why we did not take nodes to be integers at the
beginning of our development. The reason is not that it would have made
anything we needed to do more difficult, but rather the converse. The data
type integer has primitive operations, such as addition or the ordering
relation, that are meaningless for nodes. By keeping track of node as a
distinct data type, we have made it obvious that these operations are not to
be applied to the representation of nodes.

We leave it to the reader to check that the execution time of this
program is of order N+ E.
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Exercise

1. Implicit in the above discussion is the assumption that the representation of
nodes by integers in is suitable for the external programs which produce I
and use I"*(x). Assuming that the needs of the external programs require it, how
might one handle each of the following situations?

(a) Nodes are represented by pairs of integers in the block X |1—_N—|

(b) Nodes are represented by pairs (i, j) of integers such that i € and
je€ .

(c) Nodes are represented by a small set of integers that is not a subset of any
small interval.

5.1.7 The Computation of Paths

Although the program developed in the preceding sections determines the
set of nodes that can be reached from a given node, it does not compute the
paths by which these nodes can be reached. In this section we will extend this
program to record such paths. First we will extend the abstract program by
adding an abstract array of paths. Then we will transform the program to
replace this array by a more concrete and efficient encoding.

As defined in Section 5.1.1, a finite nonempty sequence (Xo, ... , X,) of
nodes is a path from xo to x,, if x; is an immediate successor of x;_; for eachiin
M. We wish to compute an array Path such that, for each node we I'*(x),
Path(w) is a path from x to w.

Thus we extend the abstract program developed in Section 5.1.2 by
introducing the abstract nonlocal array

node sequence array {var} Path(node) |,

where node sequence is a new data type whose values are finite sequences of
nodes. Each time a node is added to 7, a path from x to that node will be
recorded in Path. Thus the program will maintain the general invariant

PI: (WVweT) Path(w) is a path fromx tow ,

which will imply the desired property of Path when T=I"*(x) at the conclu-
sion of the program.

Initially, since T is set to {x}, PI can be achieved by setting Path(x) to (x).
Each time a new node is added to T, this node will be an immediate successor
of y, and y will already belong to T. Thus Path(y) will be a path from x to y,
and the concatenation Path(y) @.q(z) Will be a path from x to z, so that the
assignment Path(z):= Path(y) ®seq (z) Will regain PI. Thus our extended
abstract program is
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node {exp} x; set procedure I’ {node exp}; set {var} T;
node sequence array {var} Path(node);

{true}
begin set U; T:={x}; Path(x):=(x);
{geniny PI: (Vwe T) Path(w) is a path from x to w}
U:={x}
while 7 empty(U) do
begin node y; y:=a member of U; U:=U—{y};
for zeI'(y) doif z ¢ T then
begin
{xeT and ye T and zeT'(y) and z¢ T}
Path(z):= Path(y) @seq (2); T:=T U {z};
{z¢ U}
U:=UU {z}
end
end
end
{T=T*(x) and (VweT*(x)) Path(w) is a path from x to w}

Here the assertion x€ Tand ye T and ze€I'(y) and z ¢ T is a consequence of
the reasoning in Section 5.1.2 that will be needed to establish the correctness
of the transformation of our path-recording extension into a more concrete
form. To simplify the exposition of this transformation, we have chosen the
order of the two assignment statements following this assertion so that the
general invariant P/ will hold continuously.

It would be straightforward to represent Path by a two-dimensional
array with a row for each path, but this would be grossly inefficient in both
space and time. A much more compact representation can be obtained by
taking advantage of the fact that each path stored in Path consists of a
previously stored path plus a single additional node. Thus Path can be
represented by an array of “back links”,

node array {var} Link(node) ,

such that each Path(w), except the initial Path(x)=(x), consists of the previ-
ously stored Path(Link(w)) plus the single node w.
More precisely, we add to PI the representation invariant

Path(x)=(x) and (Vwe T—{x})
(Link(w)€e T and Path(w)= Path(Link(w)) @seq (W)) .
To maintain this invariant it is sufficient to assign Link(z):=y each time z is

added to 7. Thus
Path(z):= Path(y) @geq (2); T:=T U {z}
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becomes
Link(z):= y; Path(z):= Path(y) ®seq (2); T:=T U {z}

Actually, the reason why PI is preserved by these assignments is more
subtle than it might appear at first glance. It depends critically upon the fact
that, since z is a new node being added to T, the assignments to Link(z) and
Path(z) do not overwrite previously stored information.

Assume that

Pland xeT and ye T and zeIl'(y) and z¢ T

holds before executing Link(z):=y. Since z ¢ T, the assignment Link(z):=y
will not affect Link(w) for any we T—{x}, so that PI will remain true and
Link(z) :=y will give

Pland xeTand ye T and zei(yv) and z¢ T and Link(z)=y

Then, since z¢ Tand x € T and y € T, the assignment Path(z) := Path(y) ®seq
(z) will not affect Path(x), or Path(y), or Path(w) for any we T—{x}, or
Path(Link(w)) when Link(w) € T. Thus PI will remain true and the assign-
ment to Path(z) will give

Pland xeT and ye T and z€I'(y) and z¢ T
and Link(z)=y and Path(z) = Path(y) @®;eq (2)

At this point Path(z) will be a path from x through y to z, and Link(z) € T and
Path(z) = Path(Link(z)) @geq (z) Will hold. In conjunction with PI, this
implies that PI will continue to hold after z is inserted into the set T.

The representation of Path by Link is unusual in being incomplete.
There are arrays of paths such that no value of Link would make the
representation invariant true. However, such arrays never occur as the value
of Path, so that the incomplete representation is adequate for this particular
program. Indeed, this incompleteness is the underlying reason why we can
obtain such a compact representation.

At this stage Path is an auxiliary variable in our program and can be
eliminated. The rest of the transformation into concrete form follows Sec-
tions 5.1.4 to 5.1.6.

Since Link is an output variable and the way in which it represents Path
is rather implicit, it is useful to give a procedure which will make any
particular path explicit. A convenient approach is to give a higher-order
procedure iterpath such that, after our path-finding program has been
executed to obtain Link, the call iterpath(y, p) for any y € I'*(x) will cause the
execution of p(xg), p(xy), ... , p(x,) for some path (xq. x:. ... ,x,) fromxtoy.

It is difficult to formulate iterpath iteratively since the back links in Link
lead from y towards x rather than x towards y. Fortunately, the problem can
be solved by a straightforward use of recursion:
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procedure iterpath(node value y; procedure p {node exp});
if y=x then p(x) else
begin iterpath(Link(y), p); p(y) end

Exercises

1. Using the logic of Chapter 1 and the rule for array assignment given in Section

2.3.2, give a formal proof of
{PI and xe T and ye T and zeT'(y) and z¢ T}
Link(z):=y; Path(z):= Path(y) @ (2); T:=T U {z}
{PE} .

2. Introduce the recording of paths into the single-source single-sink programs
derived in Exercise 4 after Section 5.1.2. In the version that searches both
forward from x and backward from v, you will obtain backward links from some
intermediate node to x and forward links to v. This will lead to a more interesting
version of iterpath.

5.2 FINDING SHORTEST PATHS

5.2.1 Directed Graphs with Edge Lengths

So far, we have been concerned with finding paths in directed graphs. We
now turn to a more difficult but closely related problem: finding shortest
paths in directed graphs whose edges have lengths.

In addition to the set node and the function I' which have been used to
describe a directed graph, we will assume that there is a function 6 from
edges to nonnegative real numbers. Specifically, if yeI'(x), we say that
8(x, y)=0 is the length of the edge from x to y.

For example, Figure 5.2 illustrates the same graph as Figure 5.1, with
the addition of edge lengths given by the function & such that

xx A A B B B CCDD
y . B D B C E A F E G

dx,y: 3 4 1 2 3 7 3 1 2

. Fora path (xg, ... , x,,), we define the length of the path to be the sum
Y 8(x;_1, x;) of the lengths of its edges. Then if y is reachable from x the
1=1

minimum of the lengths of all paths from x to y is called the minimum
distance from x to y and is written 8*(x, y).

For example, in Figure 5.2 there are an endless number of paths from A
toE: (A, D, E) with length 5,(A, B, E) with length 6, (A, B, B, E) withlength 7,
etc. The minimum distance §*(A, E) is the length of the shortest of these
paths, which is 5.
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Figure 5.2 A Directed Graph whose Edges have Lengths.

Since edge lengths are nonnegative, path lengths and minimum dis-
tances are also nonnegative. However, the length of a path will be zero
(which is obviously a minimum distance) if either the path contains zero
steps or all of its edges have zero length.

5.2.2 An Abstract Program for Minimum Distances

We now consider the obvious extension of the problem posed in Section
5.1.2: Given a directed graph with edge lengths, to determine the minimum
distance from a given node x to each node that can be reached from x. At the
abstract level, the input to our program will be the node x, the function I’
from nodes to sets of nodes, and the function 8 from pairs of nodes to reals.
The output will be a set variable T whose final value, as before, will be I'*(x),
and a real array D with domain node, whose final value will be D(z) =8*(x, z)
for all ze I'*(x).

The single-source abstract algorithm we are going to describe was
originally given in [Dijkstra 59]. However, we will begin with an intuitive
explanation that is based on a conversation many years ago with R. W. Floyd
(who is also responsible for an efficient multiple-source algorithm [Floyd
62]).

Imagine the directed graph being traversed by racing amoebas. Initially
there is a single amoeba at node x. The amoebas travel at a fixed speed (of
one distance unit per time unit), and whenever an amoeba reaches a node it
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fissions into enough amoebas to traverse all of the outgoing edges. Intui-
tively, it is evident that the first amoeba to reach a node will have traversed
the shortest path from x to that node in a time equal to the minimum
distance.

For example, suppose the amoeba race occurs in the graph of Figure
5.2, starting at node A. Figure 5.3 shows the state of the race 3.5 time units
after the start. At time zero, two amoebas left A moving towards B and D.
The latter amoeba is still enroute, but the former has arrived at B and
fissioned into three descendents which are now traversing the edges emanat-
ing from B.

Our abstract program will simulate such an amoeba race. The program
will keep track of the instantaneous state of the race by executing a sequence
of state changes reflecting the events that would change the state of an actual
race. Most critically, these state changes will be executed in the same order
as the corresponding events would occur in an actual race.

For our purposes, the state of the amoeba race can be characterized by
four variables:

(1) The set P of nodes that have already been reached by amoebas.
(2) The set U (disjoint from P) of nodes that have not yet been reached,
but have amoebas racing towards them.
(3) The set T, which is the union of P and U.
(4) A real array D with domain node, such that:
(a) For all ye P, D(y) is the time node y was first reached by an
amoeba.
(b) Forallye U, D(y) is the future time at which node y will first be
reached by an amoeba that is currently racing towards it on an
incoming edge.

For example, the state of the race shown in Figure 5.3 is

P={A, B}

U={C, D, E}

T={A, B, C, D, E}

y: A B CDE F G
D(y): 0 3 5 4 6 - -

For the nodes in P, the array D records the first time of arrival, which is
the minimum distance from x. However, this may not be the case for nodes in
U. For example, in the above state D(E)= 6, reflecting the fact that the first
currently existing amoeba will reach E at time 6. But as the race unfolds, a
descendent of the amoeba currently racing towards D will reach E at time 5.

The state does not specify the status of losing amoebas, i.e. of amoebas
that will not reach their target node until after some other currently
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o

Figure 5.3 An Amoeba Race 3.5 Time Units after Starting at Node A.

existing amoeba. Ultimately we are only interested in the arrival times of
winners, and a loser or its descendents can never catch up with a winner since
all amoebas travel at the same speed.

If U is empty, then there is no amoeba racing towards a previously
unreached node, so that the race is over except for the irrelevant behavior of
losers. Otherwise, the next state-changing event will be the next arrival of an
amoeba at a previously unreached node. This node y will be the member of U
for which D(y) has the smallest value, and it will be reached at time D(y).

When the node y is reached, it leaves U and enters the set P. Then, for
each zeI'(y), a descendent amoeba is created which will reach z at time
D(y) +8(y, z). If zisnot in T, then the new descendent is the first amoeba to
move towards z, so that z must be added to T and to U, and D(z) must be set
to D(y) +8(y, z). If z is already in U, then some other amoeba is already
racing towards z and will arrive there at time D(z), so that D(z) should only
be reset to D(y) + 8(y, z) if this new arrival time is less than the current value
of D(z). Finally, if z is in P then z has already been reached, and the new
descendent is clearly a loser who will not affect the state.

To start the race, we can use the initial state P={}, U={x}, T={x},
D(x)=0, in which a single amoeba is scheduled to arrive at node x at time
Zero.

This argument leads to the following abstract program:
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node {exp} x; set procedure I' {node exp};
real procedure & {node exp, node exp};
set {var} T; real array {var} D(node);
{(Vyenode)(VzeI(y)) 8(y, 2)=0}
begin set P, U;
T:={x}; P:={}; U:={x}; D(x):=0;
while 1 empty(U) do
begin node y;
y:=a member of U for which D(y) is a minimum;
begin P:=P U {y}; U:=U—{y} end;
for zeIl'(y) do
if z¢ T then
begin T:=T U {z}; U:=U U {z};
D(z):=D(y) + 8(y, 2)
end
else if ze U and (D(z)> D(y) + 8(y, z)) then
D(z):=D(y) +3(y, 2)
end
end
{T=T*(x) and (VzeT*(x)) D(z)=8%(x, 2)}

A program of this kind, in which events within the computer mimic
events in the “real” world, is called a simulation program. The development
of such programs is an important and intensely studied subject which goes
far beyond the scope of this book. Two good introductory texts are [Fishman
78] and [Pritsker 79].

In the present instance, however, our real goal is to find minimum
distances rather than to simulate amoebas. Since the connection between
these goals is only intuitive, it is desirable to buttress this intuition with
assertions.

The minimum-distance program is closely related to the abstract
reachability program given in Section 5.1.2 (before the removal of the
auxiliary variable P). The only difference is that the minimum-distance
program keeps track of the array D and uses this array to constrain the
indeterminate choice of amember of U. Since constraining an indeterminacy
cannot destroy the validity of assertions, all of the assertions in the reacha-
bility program are equally valid for the minimum-distance program. But
now we must augment these assertions with appropriate properties of the
array D:
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node {exp} x; set procedure I’ {node exp};
real procedure & {node exp, node exp};
set {var} T; real array {var} D(node);

{(Vyenode)(VzeI(y)) 8(y, z)=0}

begin set P, U;

T:=ix}: P:={}; U:={x}; D(x):=0;

{geninv I: T< I'*(x) and xe Tand PU U=T and P N U={}

and (VzeT) D(z) = 6*(x, z) 1)

and D(x)=0 2)

and (Vve P) (VweU) D(v)<D(w) } 3)
{whileinv: [(P) < T

and (Vve P) (VzeT'(v)) D(z)<D(v) +8(v, z) } (4)

while 1 empty(U) do
begin node y;
y:=a member of U for which D(y) is a minimum;
begin; P:=P U {y}; U:= U—{y} end;
{geninv II: yeT*(x) and ye P and I'(P—{y}) = T
and D(y)=8*(x, y) (1)
and (Vve P) D(v)<D(y) and (Vwe U) D(y)<D(w) (3)
and (Vve P—{y}) (Vzel'(v)) D(z)<D(v)+8(v, 2) } (4)
for zeI'(y) do
if z¢ T then
begin, ; T:=T U {z}; U:=U U {z};
D(z):= D(y)+&(y, z)
end
else if ze U and (D(z)>D(y) + 8(y, z)) then
D(z):= D(y) +8(y, 2)

{rner
and (VzeT(y)) D(z)<D(y)+8(y, 2) } 4)
end
end
{T=T*&)
and (VzeT*(x)) D(z)=8*(x,2) } . (5)

Here the lines containing new parts of assertions are numbered. These
numbers refer to the following arguments:

(1) Upon initialization, (Vze T) D(z) = &*(x, z) holds since T={x},
D(x)=0, and the minimum distance from x to itself is zero. Assume this
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condition holds at the beginning of an iteration of the while-statement body.
Then, since y is chosen from a subset of T, D(y)=8*(x, y) will hold when the
for statement begins. Moreover, this condition will continue to hold
throughout the execution of the for statement, since y will be a member of
P=T—U, so that D(y) will not be assigned to. Thus for each zeT(y),
D(y) + 8(y, z) will be at least 8*(x, y) + 8(y, z), which is the length of a path
from x through y to z, and therefore at least 8*(x, z). Thus the assignments
D(z):= D(y) +8(y, z) will preserve (VzeT) D(z) = 8*(x, z), which will con-
tinue to hold throughout the iteration of the while-statement body.

(2) Initially D(x)=0. Since no element of D is ever increased or made
negative, this condition is preserved throughout the program.

(3) Initially, (VveP) (VweU) D(v) = D(w) holds since P is empty.
Assume this condition holds at the beginning of an iteration of the while-
statement body. Then the choice of y to be a member of U for which D(y)isa
minimum gives (Vv e P) D(v) < D(y) and (Vwe U) D(y) < D(w), and since
this condition is preserved by moving y from U into P, it will hold at the
beginning of the for statement.

Within the for statement, since y € P and the for statement does not
change P or D(z) for any z€ P, the condition (Vve P) D(v)=<D(y) will
continue to hold. Moreover, since the for statement does not change D(y)
and never sets an element of D to a value less than D(y), the condition
(Vwe U) D(y)< D(w) will also continue to hold. Finally, since these two
conditions imply (Vve P) (WweU) D(v) < D(w), this condition will continue
to hold throughout the iteration of the while-statement body.

This argument is illustrated in Figure 5.4.

(4) Initially (Vve P) (VzeT(v)) D(z) = D(v)+8(v, z) holds since P is
empty. Assume that this condition holds at the beginning of an iteration of
the while-statement body. Then at the beginning of the for statement, after
y has been added to P, the condition (VveP-— {yh) (VzeT(v))
D(z) < D(v) + 8(v, z) holds. Moreover, this condition is preserved since the
for statement does not change P or y or D(v) for any ve P—{ y}, and never
increases D(z) for any z.

Each execution of the for-statement body achieves D(z) < D(y) + 8(y,
2) in one of the following ways:

(a) If z¢ T, then D(z) will be set to D(y)+8(y, 2).

(b) If ze U, then D(z) will be set to D(y)+ 8(y, z) unless it already
possesses a smaller value.

(c) If ze P, then D(z) < D(y) +8(y, z) is assured by the condition
(VveP) D(v)<D(y) in II.
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Once D(z) < D(y) + 8(y, 2) has been achieved for some z it will remain
true since the for statement does not change D(y) and never increases D(z)
for any z. Thus when the for statement terminates every z € I'(y) will satisfy
D(z)<D(y)+8(y, z). In conjunction with (VveP—{y}) (VzeT(v))
D(z)<D(v) + 8(v, 2), this implies that (VveP) (VzeT'(v)) D(z)<
D(v) + 8(v, z) will again hold at the end of the while-statement body.

(5) When the program terminates U will be empty, so that P will be equal
to T=T*(x). Then the invariant of the while-statement implies
(vve I*(x)) (VzeT'(v)) D(z) <D(v)+8(v, 2)

Moreover, the general invariant I insures that D(x)=0. It follows that
(VzeT*(x)) D(z) <8*(x, z), i.e. that every path from x to a reachable z will
have a length at least D(z). The proof is by induction on the number of steps.
The only path of zero steps goes from x to itself, and its length is given exactly
by D(x)=0. Any path of n + 1steps from x to z can be divided into a path of n
steps from x to v and an edge from v to z, for some v such that ve I'™*(x) and
zeI'(v). The length of the n-step path is at least D(v) by the induction
hypothesis, and the length of the edge is 8(v, z). Thus the length of the
(n+1)-step path is at least D(v) + 8(v, z), which is in turn at least D(z).

In conjunction with the condition (VzeT) D(z)> 8*(x, z) in I and
T=T*(x) in the consequent of the program, the above result implies
(VzeT*(x)) D(z)=8*(x, 2).

As with the reachability program, the body of the while statement can
be performed no more than N times, since it adds new nodes to P, the body
of the for statement can be performed no more than E times, since it
processes distinct edges, and the statement following if z¢ T then can be
performed no more than N—1 times, since it adds new nodes to T, which
starts with one member. However, the second occurrence of
D(z):= D(y) + &(y, z) can be performed up to (almost) E times.

In addition to establishing the correctness of the abstract program, the
assertions we have developed indicate a useful simplification. Consider the
test ze Uand (D(z)>D(y) + 8(y, z)). When this test is executed, the general
invariant II insures that (Vv € P) D(v) < D(y), the general invariant I insures
P U U=T, and the prior test in the conditional statement insures z € T. Thus
D(z)>D(y) + 8(y, z) implies z ¢ P, and therefore z€ U. It follows that the
test z€ U is unnecessary and can be eliminated.

Our intermediate assertions have served their purpose and can now be
deleted, with the exception of two assertions about membership in U that
will influence the transformation to concrete form. As in the reachability
program, P is an auxiliary variable and may be eliminated. Thus the final
form of the abstract program is
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node {exp} x; set procedure I {node exp};
real procedure 5 {node exp, node exp};
set {var} T; real array {var} D(node);

{(Vy enode) (VzeT(y)) 8(y, z)=0}
begin set U,
T:={x}; U:={x}; D(x):=0;
while 1 empty(U) do
begin node y;
y:=a member of U for which D(y) is a minimum;
U:=U—-{y}
for zeI'(y) do
if z¢ T then
begin
T:=T U {z};
{z¢ U}
U:=U U {z};
D(z):=D(y) +8(y, 2)
end
else if D(z)> D(y) + 8(y, z) then
{ze U}
D(z):= D(y) + &(y, 2)
end
end
{T=T*(x) and (Vz el*(x)) D(z)= 8% (x, 2} .

Exercises

1. Where does the reasoning in the above section depend upon the precedent that
edge lengths must be nonnegative?

2. Extend the abstract minimum-distance program to compute shortest paths from
x to each member of I'*(x) by adding an array Path satisfying the general
invariant

(VweT) Path(w) is a path from x to w of length D(w)

Show that the resulting program can be transformed into a more concrete form
by representing Path by an array of back links satisfying the representation
invariant

Path(x)=(x) and (Vwe T—{x})
(Link(w) € P and Path(w)= Path(Link(w)) ®eq (W) -
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3. Write an abstract single-source single-sink minimum-distance program, i.e. one
which determines whether a specific node v can be reached from x and, if so,
computes the minimum distance 8*(x, v). As in Exercise 4 after Section 5.1.2,
one can either develop a straightforward modification of the program given
above or, if an immediate predecessor function I'tis supplied as input, develop a
more complex program that searches both forward from x and backwards from
v. The latter version can be thought of as a simulation of a race with amoebas
running forward from x and backwards from v, so that the shortest path from x to
v will be traversed by a pair of amoebas that meet at an intermediate point.
(Note, however, that this meeting point might not be a node.)

5.2.3 Representing U by a Heap

Since the usage of the set variable T in the abstract minimum-distance
program is the same as in the reachability program, the representation of T
by a characteristic vector, as discussed in Section 5.1.4, will permit all the
primitive operations on T except its initialization to be executed in constant
time. Similarly, the usage of I is the same as in the reachability program, so
that the argument in Section 5.1.5 in favor of a representation by enumerat-
ing arrays remains valid.

However, the usage of U in the minimum-distance program is changed
by the fact that y must be chosen to be the (usually) specific member of U for
which D(y) is a minimum, rather than an arbitrary member of U. If we were
to represent U by an enumerating array without duplicates this choice and
deletion operation would require a time of order N, and the entire program
would require a time of order N2. A similar problem would arise with the use
of a characteristic vector.

On the other hand, the choice and deletion operation could be done in
constant time if U were represented by an enumerating array that was
ordered in accordance with the values of D. But the primitive operation of
inserting a new element into U would require a time of order N and, even
worse, each change in the value of an element of D would necessitate
rearranging the enumerating array in time of order N. Thus the entire
program would require time of order E - N.

A way out of this dilemma is to represent U by an entity called a heap,
which was invented by [Williams 64] and refined by [Floyd 64]. The basic
idea is to arrange the nodes in U as an almost-balanced binary tree such that
D(y) < D(z) whenever z is a subnode of y in the tree. In this representation it
is possible to delete the node with minimum D, to insert a new node, or to
alter the value of D at a given node all in time of order log N. Thus the entire
program will require a time of order (N + E) - log N. This will be better than
the alternatives discussed above as long as the graph is reasonably sparse.
(However, when E comes close to its maximum possible value N2, the use of
an enumerating array without duplicates, with total time of order N2,
becomes superior.)
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A heap is considerably more complex than the kinds of representations
discussed previously. As a first step in its formulation we must define binary
trees. Conventionally, such trees are defined to be directed graphs of a
certain kind. For our purposes, however, it is simpler to regard all binary
trees as subsets of a particular directed graph called the completely infinite
binary tree, which is illustrated in Figure 5.5.
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Figure 5.5 The Completely Infinite Binary Tree and its Primitive Operations.
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To avoid confusion with the directed graph that is being examined by
our program, we will call the nodes of the completely infinite binary tree
positions, and we will introduce the data types position and position set to
range over positions and sets of positions respectively. Each position p has
exactly two immediate successors, called leftson(p) and rightson(p). A par-
ticular position called root has no immediate predecessors, while every other
position p has exactly one immediate predecessor called father(p).

We write p £ g if the position g is reachable from the position p (i.e. if
g€T*(p)). The use of the symbol = emphasizes that this relation is a partial
ordering, i.e. that it obeys the laws

(1) Transitivity: (p € q and g < r) implies p £ 1,

(2) Reflexivity: p = p,

(3) Antisymmetry: (p € q and g £ p) implies p=gq.

(Only the first two laws hold for arbitrary directed graphs, but antisymmetry
holds for the completely infinite binary tree since it contains no cyclic paths.)
The special position root can be characterized in terms of reachability:
It is the only position from which every position can be reached, i.e. such that
(Vp € position) root € p.
Let S be a set of positions. If every finite path that ends in § belongs
entirely to S, then S is called a tree. More formally, we define

Tree(S)=(VreS) (Vqe position) g = 7 implies g€ S

It is easy to see that a nonempty tree must contain root, and that ifpisatree
member other than root, father(p) must also belong to the tree.

The idea of arranging the nodes in U to form a binary tree can be
formalized by saying that there must be a one-to-one correspondence bet-
ween U and a finite set S of positions that is a tree. Thus we will augment our
program by introducing

position set S
along with two arrays for keeping track of the correspondence between U
and S:

node array nodeof(position);
position array posof(node)

The relationship between U and these concrete variables is asserted by the
representation invariant

TI: Tree(S)
and {nodeof 1 S}="U and {posof 1 U}=S
and (Vp € S) posof (nodeof(p))=p
and (Vy € U) nodeof (posof(y)) =y

Here the last three lines define the concept of a one-to-one correspon-
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dence. This concept can also be expressed in terms of the notions of inverse
and bijection described in Section 2.3.4: The second line implies that there is
a function nodeof’ from S to U such that (Vp € S) nodeof'( p) = nodeof(p),
and a function posof’ from U to § such that (Vy e U) posof’ (y)=posof(y).
Then the last two lines imply that nodeof” and posof  are inverses of one
another, and therefore bijections.

The main primitive operation to be performed upon this representation
is the interchange of the nodes associated with two positions. This operation
is accomplished by the following procedure, which exchanges the array
elements nodeof( p) and nodeof(q) and then modifies posof to reestablish the
one-to-one correspondence:

procedure swap(position {exp} p, g);
{pa: nodeof # p & nodeof # q & posof # p & posof # q}
{TI and p, qe S}
begin node m, n;
m:= nodeof(p); n:= nodeof(q);
nodeof(p) := n; nodeof(q) := m;
posofin) := p; posofim):=q
end

{r1} .

We must now formalize the relation of the heap to the array D. As a first
step, we note that the value of D that “occurs” at a tree position p is
D(nodeof(p)). This composition of nodeof with D will be used so often that
it is useful to declare it as a functional procedure:

real procedure V(position {exp} p); D(nodeof(p))

Henceforth, we will call V(p)= D(nodeof(p)) the weight of p.

Since swap exchanges nodeof(p) and nodeof(q) without changing D, it
has the effect of interchanging the weights V(p) and V(q). In effect, we can
think of swap as an exchange operation for the ‘abstract array” V that
preserves the invariant T1. More precisely, if a is a ghost parameter of type
assertion procedure(real procedure(position exp)), then swap satisfies

procedure swap(position {exp} p, q);

{pa: nodeof # p & nodeof # q & nodeof # o
& posof # p & posof # q & posof # a }

{TI and p, ge S and o([V | p: V(g) | ¢: V(p)])}

begin node m, n;

m:=nodeof(p); n:= nodeof(q);

nodeof(p) .= n; nodeof(q) .= m;

posofin):= p; posofim):=q

end

{TI and a(V)}
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The relationship of the heap to D is that, whenever g =r holds between
two positions in S, the weight of g is at most the weight of r. This heap
property is expressed by the representation invariant

HI: Heap(S, V) ,
where Heap is defined by

assertion procedure Heap
(position set {exp} S; real procedure V {position exp});
(Vq, re S) (g=r implies V(q) < V(7))

More succinctly, Heap(S, V) asserts that V { S is a monotone function, as
defined in Section 2.3.4. (However, some of the consequences of monoton-
icity discussed in that section hold only for total, rather than partial order-
ings.)

Notice that Heap(S, V) is meaningful even when S is not a tree. Also
notice that although HI, in conjunction with T, describes the representation
of U by S, nodeof, and posof, it also involves the array D via the procedure
V, so that D can be thought of as a “parameter” of the representation of U.

The invariant HI expresses the heap property by relating arbitrarily
distant positions in S. An alternative is to focus on the relationship between a
member of S and its immediate neighbors. Suppose we define

logical procedure upgood
(position {exp} p; real procedure V {position exp});
if father(p) € S then V(father( p)) < V(p) else true;
logical procedure downgood
(position {exp} p; real procedure V {position exp});
(if leftson(p) € S then V(p) < V(lefison(p)) else true)
and (if rightson(p) € S then V(p) < V(rightson(p))
else true);
logical procedure goleft
(position {exp} p; real procedure V {position exp});
leftson(p) € S and (V(leftson(p)) < V(p)) and
(if rightson(p) € S then V(leftson(p)) < V(rightson(p))
else true);
logical procedure goright
(position {exp} p; real procedure V {position exp});
rightson(p) € S and (V(rightson(p)) < V(p)) and
(if leftson(p) € S then V(rightson(p)) < V(leftson(p))
else true

Then, as the reader may verify, the following properties hold:
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Heap(S, V) and pe S implies

upgood(p, V) and downgood(p, V) |,
Heap(S, V) implies Heap(S—{p}, [V | p: w]) , 2)
upgood(p, V) and V(p) <w implies upgood(p, [V | p: w)) , (3)
downgood(p, V) and w= V(p) implies e

(1)

downgood(p, [V | p: w]) , )
1 downgood(p, V) implies (goleft(p, V) or goright(p, V), ()
upgood(root, V) . (6)

A much less trivial property is:

Theorem 1 If Tree(S) and Heap(S—{p}, V) and upgood(p, V)
and downgood(p, V), then Heap(S, V).

Proof: We assume p€ S since otherwise the theorem is obviously true.
Suppose g€ S and re § and g=r. Then we must show V(q) < V(r).

(a) If neither g nor r is p, then Heap(S—{p}, V) gives V(q) = V(r).

(b) If both g and r are p, then trivially V(q)=V(p)=V(r).

(c) Suppose g#p and r=p. Then there must be a path of at least one
step from q to p, and this path must contain father(p), so that
q = father(p) = p. Moreover, since p belongs to S, which is a tree,
father(p) must belong to S. Since g and father(p) belong to S,
neither is p, and qcfather(p), Heap(S—{p}, V) implies
V(q) < V(father(p)). Since father(p) belongs to S, upgood(p, V)
implies V(father(p)) < V(p). Thus V(q) < V(father(p)) < V(p)
=V(r).

(d) Suppose g=p and rxp. Then there must be a path of at least ohe
step from p to r, and this path must contain either leftson(p) or
rightson(p). We assume the first case (the argument for the second
case is completely analogous), so that p=leftson(p)=r. Then since r
belongs to S, which is a tree, leftson(p) must belong to S. Since
leftson(p) and r belong to S, neither is p, and leftson(p)cr,
Heap(S—{p}, V) implies V(leftson(p)) <V(r). Since leftson(p)
belongs to S, downgood(p, V) implies V(p) < V(leftson(p)). Thus
V(g)=V(p) < V(leftson(p)) = V(1).

In this theorem, Heap(S —{p}, V) can be thought of as asserting that S is a
heap with a “hole” at p, and the theorem as saying that such a hole will
vanish if it satisfies both upgood(p, V) and downgood(p, V).

The next theorem shows how a hole in a heap can be removed by
changing its weight to that of a neighboring position:
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Theorem 2 Suppose Tree(S) and Heap(S—{p}, V). Then:

(a) If 1 upgood(p, V) then Heap(S, [V | p: V(father(p))])
(b) If goleft(p, V) then Heap(S, [V| p: V(leftson(p))])
(c) If goright(p, V) then Heap(S, [V | p: V(rightson(p))]).

Proof: We assume p € S, since otherwise the theorem is obviously true.

(a) Suppose 7 upgood(p, V), and let V' =[V| p: V(father(p))]. From
Heap(S—{p}, V) we have Heap(S—{p}, V'). Then by Theorem 1,
to show Heap(S, V') we need only show upgood(p, V') and
downgood(p, V'). To show upgood(p, V'), we note that
V' (father(p)) = V(father(p)) = V'(p). To show downgood(p, V'):
(i) Suppose leftson(p) belongs to S. From 71 upgood(p, V) we
know that ‘father(p) also belongs to S. Moreover, since
father(p) and leftson(p) are both distinct from p, these posi-
tions belong to S—{p}. Thus Heap(S—{p}, V) implies
V(father(p)) < V(leftson(p)), which implies V'(p)=
V'(leftson(p)).

(ii) Suppose rightson(p) belongs to S. By an argument analogous
to (i), we have V'(p) <V'(rightson(p)).

(b) Suppose goleft(p, V) and let V'=[V|p: V(leftson(p))]. Again
Heap(S—{p}, V) implies Heap(S—{p}, V'), so that by Theorem 1
we need only show upgood(p, V') and downgood(p, V).

To show upgood(p, V'):
Suppose father(p) belongs to S. From goleft(p, V) we know
that leftson(p) also belongs to S. Moreover, since father(p) and
leftson(p) are both distinct from p, these positions belong to
S—{p}. Then Heap(S—{p}, V) implies V(father(p)) <
V(leftson(p)), which implies V'(father(p)) <V'(p).

To show downgood(p, V'):

(i) V'(p)=V(leftson(p))=V'(leftson(p)).

(i) Suppose rightson(p) belongs to S. From goleft(p, V) we have
V(leftson(p)) < V(rightson(p)). Then V'(p) < V'(rightson(p)).

(c) The argument here is analogous to (b). O

From this theorem, we can go on to determine when a hole in a heap can
be moved by exchanging its weight with that of an adjacent position:
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Theorem 3 Suppose Tree(S) and Heap(S—{p}, V). Then:

(a) If 1 upgood(p, V) then
father(p) € S and Heap(S—{father(p)}, V")
and downgood(father(p), V"),
where V"=[V| p: V(father(p)) | father(p): V(p)].
(b) If goleft(p, V) then
leftson(p) € S and Heap(S— {leftson(p)}, V")
and upgood(leftson(p), V"),
where V"=[V| p: V(leftson(p)) | leftson(p): V(p)].
(c) If goright(p, V) then
rightson(p) € S and Heap(S—{rightson(p)}, V")
and upgood(rightson(p), V"),
where V"=[V| p: V(rightson(p)) | rightson(p): V(p)].

Proof:

(a) Since 1 upgood(p, V), we know father(p)e S and V(father(p))
> V(p). From Theorem 2a, we have Heap(S, [V | p: V(father(p))])
and, by property (1), downgood(father(p), [V | p: V(father(p))]).
Then by property (2) we have Heap(S—{father(p)},V") and by
property (4) we have downgood(father(p), V").

Parts (b) and (c) are left to the reader. 1

Now suppose we have a heap with a hole that satisfies downgood. If
upgood is also satisfied, then Theorem 1 shows that the hole vanishes.
Otherwise, Theorem 3a permits us to move the hole upwards by exchanging
weights with its father and insures that the new hole will also satisfy
downgood. Thus we can repeatedly.move the hole along an upward path
until it vanishes.

On the other hand, suppose we have a heap with a hole that satisfies
upgood. If downgood is also satisfied, then Theorem 1 shows that the hole
vanishes. Otherwise, property (5) insures that either goleft or goright is
satisfied, so that Theorem 3b or 3¢ permits us to move the hole downwards
by exchanging weights with one of its sons, and insures that the new hole will
also satisfy upgood. Thus we can repeatedly move the hole along a down-
ward path until it vanishes.

This reasoning leads to the following pair of procedures for eliminating
holes from heaps:
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procedure ascend(position {var} p);
{pa: nodeof # p & posof # p}
{TI and pe S and Heap(S—{p}, V) and downgood(p, V)}
{whileinv: TI and p€ S and Heap(S—{p}, V)
and downgood(p, V) }
while 1 upgood(p, V) do
begin swap(p, father(p)); p:=father(p) end
{TI and Heap(S, V)};
procedure descend(position {var} p);
{pa: nodeof # p & posof # p}
{TI and pe S and Heap(S—{p}, V) and upgood(p, V)}
{whileinv: TI and pe S and Heap(S—{p}, V)
and upgood(p, V) }
while 1 downgood(p, V) do
if goleft(p, V) then
begin swap(p, leftson(p)); p:= leftson(p) end
else {goright(p, V)}
begin swap(p, rightson(p)); p:= rightson(p) end
{TI and Heap(S, V)}

In each of these procedures the successive values of p trace out a path
within the finite set S. Thus termination is insured by the fact that a finite set
of positions cannot contain an infinite path.

The condition p € S is needed in the precedents of ascend and descend to
insure that pe S will hold for the first call of swap.

At this point it is convenient to use the copy rule to eliminate the calls of
upgood, downgood, and goleft. In the procedure ascend, the presence of
p € S and Tree(S) in the invariant implies that father(p) € S can be replaced by
p#root:

procedure ascend(position {var} p);
{pa: nodeof # p & posof # p}
{TI and pe S and Heap(S—{p}, V) and downgood(p, )}
while (p>root) and (V(father(p))>V( p)) do
begin swap(p, father(p)); p:=father(p) end
{TI and Heap(S, V)}

A similar treatment of descend reveals redundant testing that can be elimi-
nated by using goto’s and labels. The reader may verify that descend can be
transformed into
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procedure descend(position {var} p);
{pa: nodeof # p & posof # p}
{TI and pe S and Heap(S—{p}, V) and upgood(p, V)}
begin
loop: if leftson(p) € S then
begin
if rightson(p) € S and (V(rightson(p)) < V(leftson(p)))
then goto tryright else goto tryleft
end
else if rightson(p) € S then goto tryright else goto quit;
tryleft: if V(leftson(p))<V(p) then goto left else goto quit;
tryright: if V(rightson(p))<V(p) then goto right else goto quit;
left: {goleft(p, V)}
swap(p, leftson(p)); p:= leftson(p); goto loop;
right: {goright(p, V)}
swap(p, rightson(p)); p:= rightson(p); goto loop;
quit: {downgood(p, V)}
end
{TI and Heap(s, V)} .

Having developed these procedures, we may now transform the abs-
tract minimum-distance program of Section 5.2.2 by using a heap to repres-
ent U. We introduce the concrete variables

position set S;
node array nodeof(position); position array posofinode);
and the representation invariants

TI: Tree(S)
and {nodeof 1 S}=U and {posof 1 U}=S
and (Vp € S) posof(nodeof(p))=p
and (Vye U) nodeof(posof(y))=y

and
HI: Heap(S, V)
To achieve these invariants initially we augment the assignments

U:={x}; D(x):=0
with

S:={root}; nodeof(root) := x; posofix) := root
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As a consequence of the one-to-one correspondence expressed by
TI, the sets U and S have the same size. Thus the while-statement test
7 empty(U) can be replaced by 1 empty(S).

Next we consider the abstract deletion operation

y:=a member of U for which D(y) is a minimum,;
U:=U—{y}

Since § is a nonempty tree, it must contain the node root. Then the heap
property Heap(S, V) implies (Vg€ S) V(root) < V(q), the definition of V
implies (Vg€ S) D(nodeofiroot)) < D(nodeof(q)), and the fact that nodeof
is a one-to-one correspondence from S to U implies (VzeU)
D(nodeof(root)) < D(z). Thus we can take y to be nodeof(root). However, if
we try to maintain the one-to-one correspondence by augmenting
U:= U—{y} with S:= S—{root}, then unless root is the only member of S its
deletion will cause S to cease being a tree.

In this case we must proceed in a more roundabout manner. We begin
by taking p to be a terminal member of S, i.e. a position whose deletion will
preserve Tree(S). Next we perform swap(p, roof) to make p the member of §
with least weight. Then, after setting y to nodeof(p) and deleting y from U
and p from S, both the one-to-one correspondence and Tree(S) will remain
true.

However, the swap operation will leave holes in the heap at the posi-
tions root and p, and the hole at root will remain after p is deleted. Since
property (6) insures upgood(root, V), this hole can be eliminated by using
the procedure descend.

Thus the representation invariants will be preserved if we transform the
abstract choice and deletion operation into

if S={root} then
beginy; y:=nodeof(root); U:= U—{y}; S:={} end
else
begin;; position p;
{Heap(S, V) and # S = 2}
p:=a member of S such that Tree(S—{p});
{Heap(S, V) and roote S and p€ S and psroot
and Tree(S—{p}) }
swap(p, root);
{Heap(S—{root, p}, V)and V(p)<*{V 1 S}
and roote S and pe S and p>root and Tree(S—{p}) }
y:=nodeof(p);
beging; U:=U—{y}; S:=S—{p} end;
{Heap(S—{root}, V) and root € S and upgood(root, )}
p:=root; descend(p)
end
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Next we consider the abstract operation
U:=U U {z}; D(z):=D(y)+8(y, 2)

which inserts a new member into U and initializes the corresponding value of
D. Let p be a nonmember of S such that S U {p} is a tree. If we augment
U:= U U {z} by inserting p into S and setting nodeof and posof to put z and p
into correspondence, then the one-to-one correspondence between U and §
will be preserved and S will remain a tree.

Moreover, before the insertion of p, Tree(S) and p¢ S will imply that
leftson(p) and rightson(p) do not belong to §. Since these positions are
distinct from p they will still not belong to § after the insertion of p, so that
downgood(p, V)will hold. This insures that the hole in the heap at p can be
eliminated by calling ascend(p). Thus the abstract insertion operation can be
transformed into

’

beginy; position p;

{Heap(S, V) and z ¢ U}

p:=a nonmember of § such that Tree(S U {p});

{Heap(S, V) and z¢ U and p ¢ S and Tree(S U {p})

and leftson(p), rightson(p)¢ S U {p} }

beging; U:=U U {z}; S:=S U {p};
nodeof(p):=z; posof(z):=p
end;

D(z):=D(y) +8(y, 2);

{Heap(S—{p}, V) and pe S and downgood(p, V)}

ascend(p)

end

Finally, we consider the second occurrence of
D(z):=D(y)+8(y, 2) ,

which decreases the value of D for a node in U. This operation creates a hole
in the heap by decreasing the weight of the position p=posofiz). However,
property (4) insures that p will still satisfy downgood(p, V), so that the hole
can be eliminated by calling ascend(p). Thus the above operation can be
transformed into

begin;; position p;

{Heap(S, V) and z€ U and D(z) > D(y) +8(y, 2)}
D(z):=D(y) +8(y, 2);

p:=posof(z);

{Heap(S—{p}, V) and pe S and downgood(p, V)}
ascend(p)

end
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At this stage, the representation invariants and other intermediate
assertions have served their purpose, and U has become an auxiliary variable
which can be eliminated. This leads to the following program:

node {exp} x; set procedure I" {node exp};
real procedure & {node exp, node exp};
set {var} T; real array {var} D(node);

{(Vyenode) (VzeT(y)) 8(y, z)=0}
begin position set S;
node array nodeofi position); position array posof(node);
... Declarations of swap, V, ascend, and descend ...
T:={x}; D(x):=0;
S:={root}; nodeof(root) := x; posofix):= root,
while 1 empty(S) do
begin node y;
if S={root} then
begin y:=nodeof(root); S:={} end
else
begin position p;
p:=a member of S such that Tree(S—{p});
swap(p, root); y:= nodeof(p); S:=S—{p};
p:=root; descend(p)
end;
for zeI'(y) do
if z¢ T then
begin 7:=T U {z};
begin position p;
p:=a nonmember of S such that Tree(S U {p});
S:=S U {p}; nodeof(p):=z; posofiz) := p;
D(z):= D(y)+8(y, z); ascend(p)
end
end
else if D(z)> D(y) + 8(y, z) then
begin position p;
D(z):=D(y) +8(y, z);
p :=posof(z); ascend(p)
end
end
end
{T=T*(x) and (VzeI*(x)) D(z)=58*(x, 2} .



SEC. 5.2 FINDING SHORTEST PATHS 347

Exercises

1. Use specification logic to derive the following procedure assumption for the
procedure swap:

(V position exp p) (¥ position exp q)
(V¥ assertion procedure(real procedure(position exp)) @)
(nodeof # p & nodeof # q & nodeof # «
& posof # p & posof # q & posof # a =>
{1 and p, g€ S and o([V|p: V(9)| q: V(p)D}
swap(p, q) {TI and a(V)})
& (V exp-like €) (nodeof # e & posof # e => swap # e)

In this derivation you will need to use global assumptions (2’ in rule (R26) for
procedure declarations) including the static assertion {V = nodeof - D}, which
describes the meaning of the function procedure V, as well as various noninter-
ference assumptions about global identifiers.

2. Show that Heap(S—{p}, V) implies (upgood(p, V) or downgood(p, V)). Then
use this result to write a procedure satisfying
procedure eliminatehole(position {var} p);
{pa: nodeof # p & posof # p}
{TI and p € S and Heap(S—{p}, V)}

{TI and Heap(S, V)} .

Although the need for this procedure does not arise in the minimum-distance
problem, it can occur in other simulation problems where the time of a future
event such as arrival at a graph node may be changed arbitrarily rather than just
decreased.

5.2.4 Representing Trees by Intervals

Since the positions of the completely infinite binary tree form a countably
infinite set, we can represent them by positive integers, i.e. we can take
position to be the set of integers that are larger than zero. One particular
choice for this representation is to number the positions in the order
obtained by scanning successive levels from left to right, as shown in Figure
5.6. The advantage of this choice is that the primitive operations on positions
can be computed easily:

integer procedure root; 1;

integer procedure /eftson(integer {exp} p); p X 2;
integer procedure rightson(integer {exp} p); px2+1;
integer procedure father(integer {exp} p); p div 2

Notice that father(root) =0 ¢ position.
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Figure 5.6 Representing Positions by Integers.

Beyond the definition of these procedures, the only effect of introduc-
ing this representation into our program is to replace the data type position
by integer and the data type position set by integer set. (The domain of the
array nodeof must be an interval containing every integer that can ever
belong to S. The size of this interval will become apparent later.)

We are left with the problem of representing the integer set S. Here we
will find that it is not necessary to provide a representation for arbitrary
finite sets of integers. In fact, by resolving the indeterminacy in our program
appropriately, we will be able to constrain S so that its value is always an
interval beginning with 1.

Thus to represent S we introduce the concrete variable

integer slim;
and the representation invariant

SI: S=1_slim|

As illustrated in Figure 5.7, the interval will always be an almost-
balanced tree. Of course, there are trees (even almost-balanced ones) that
are not intervals, but this only means that our representation is incomplete,
i.e. that some members of the range of the abstract variable are unrepresent-
able. If we can transform our program in a way that preserves the invariant
S1, we will have insured that such unrepresentable values are never assigned
to S. As an added benefit this will imply that S is always almost-balanced, so
that ascend and descend can be executed in time of order log N.
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rool

Figure 5.7 Representing Trees by Intervals.

The transformation to concrete form involves the following steps:

(1) Inthe procedure descend, since leftson(p) and rightson(p) are never
less than one, the tests leftson(p) € S and rightson(p) € S can be replaced by
leftson(p) <slim and rightson(p) <slim respectively. Moreover, since
leftson(p) <rightson(p), rightson(p)€ S implies leftson(p)€S. In other
words, the invariant SI limits S to trees in which every position with a
rightson also has a leftson. Thus the conditional expression

if leftson(p) € S then ...
else if rightson(p) € S then goto tryright else goto quit

can be simplified to
if leftson(p) € S then ... else goto quit

(2) In the main program, the assignment §:= {root} must be
augmented with slim:=root.

(3) The test 1 empty(S) can be replaced by slim>0.

(4) The test S={root} can be replaced by slim=root.

(5) The assignment S:={} must be augmented with slim:=0.

(6) The indeterminate assignment p:=a member of S such that
Tree(S—{p}) can be replaced by p:= slim. When the indeterminacy is resol-
ved in this way, SI can be preserved by augmenting S:=S —{p} with
slim:=slim—1.
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(7) The indeterminate assignment p:=a nonmember of S such that
Tree(S U {p}) can be replaced by p:=slim +1. When the indeterminacy is
resolved in this way, SI can be preserved by augmenting S:=S U {p}
with slim :=slim + 1.

Since S = has the same size as U, it is always a subinterval of
. Thus, since the elements of nodeof( p) are only accessed when pe §,
the domain of nodeof can be taken to be .

At this stage the invariant SI has served its purpose, and S has been
transformed into an auxiliary variable which can be eliminated. Our prog-
ram has the form:

node {exp} x; set procedure I {node exp};
real procedure & {node exp, node exp};
set {var} T, real array {var} D(node);
{(¥y € node) (Vz € I'(y)) &(y, z)=0}
begin integer slim;
node array nodeof(1::N); integer array posof(node);
integer procedure root; 1;
integer procedure leftson(integer {exp} p); p X 2;
integer procedure rightson(integer {exp} p); px2+1;
integer procedure father(integer {exp} p); p div 2;
procedure swap(integer {exp} Ps q);
begin node m, n;
m:= nodeof(p); n:= nodeof(q);
nodeof( p) := n; nodeof(q) := m;
posofin) := p; posofim):=gq
end;
real procedure V(integer {exp} p); D(nodeof(p));
procedure ascend(integer {var} p);
while (proot) and (V(father(p)) > V(p)) do
begin swap(p, father(p)); p := father(p) end;
procedure descend(integer {var} p);
begin
loop: if leftson(p) <slim then
begin
if (rightson(p) <slim) and (V(rightson(p)) < V(leftson(p)))
then goto tryright else goto tryleft
end
else goto quit;
tryleft: if V(leftson(p)) < V(p) then goto left else goto quit;
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tryright: if V(rightson( p)) <V( p) then goto right else goto quit;
left: swap(p, leftson(p)); p:= leftson(p); goto loop;
right: swap(p, rightson(p)); p := rightson(p); goto loop;
quit: end;
T:={x}; D(x):=0;
slim:= root; nodeof(root) := x; posof(x) :=root;
while slim >0 do
begin node y;
if slim=root then
begin y:= nodeof(root); slim:=0 end
else
begin integer p;
p:=slim; swap(p, root); y:=nodeof(p); slim:=slim—1;
p:=root; descend(p)
end;
for zeI'(y) do
if z¢ T then
begin T:=T U {z};
begin integer p;
p:=slim+1; slim:=slim+ 1;
nodeof(p) := z; posof(z) := p;
D(z):=D(y) +8(y, 2);
ascend(p)
end
end
else if D{(z) > D(y) + 8(y, z) then
begin integer p;
D(z):=D(y)+8(y, z);
p:=posof(z); ascend(p)
end
end
end
{T=T*x) and (VzeTI*(x)) D(z)=38%(x, 2)}

To produce a fully concrete program, representations must be introduced
for the variable T, the procedure I', and the data type node. The appropriate
transformations are the same as those discussed in Sections 5.1.4 to 5.1.6.

*5.3 USING A HEAP TO SORT

In this section we digress from the topic of directed graphs to show how a
heap can be used to sort an array segment. Historically, this was the first use
of the concept of a heap [Williams 64, Floyd 64].

(
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The basic idea is to construct a heap by inserting each array element,
and then to construct an ordered array by repeatedly removing the smallest
member of the heap. Since both insertion of an arbitrary element and
deletion of the smallest member can be performed in time of order log n, the
entire sort requires time of order n-log n.

*5.3.1 An Abstract Program

As in Section 5.2.3, the heap will be a set of positions of the completely
infinite binary tree:

position set S

Now, however, there is no analogue of the one-to-one correspondence
between S and a set of graph nodes. Instead, the weights of the positions in §
are specified directly by an array:

real array Vv (position)
(We assume that the elements of the array to be sorted have data type real.)
Since there is no one-to-one correspondence, the invariant 77 is simply

TI: Tree(S)

The procedure swap is now simply a procedure for exchanging two
elements of the array V. However, except for the simpler form of 77 and the
change of V from a procedure to an array, this new version of swap has the
same abstract behavior as in Section 5.2.3:

procedure swap(position {exp} p, q);
{pa:VH#p&V#q&V#a}
{T1and p, g€ S and o([V| p: V()| ¢: V(p)])}
begin real £; t:= V(p); V(p):=V(q); V(q):=t end
{TI and «(V}} ,

where a is a ghost parameter of type assertion procedure(real array {exp}

(position)).
As before, the invariant HI is

HI: Heap(S, V)

Aside from the change in the type of V, the definitions of Heap, upgood,
downgood, goleft, and goright are the same as before, and the theorems
about these procedures remain valid. Thus, since swap has the same abstract
behavior, the definitions and specifications of ascend and descend remain the
same.

The sorting program performs two iterations over the array segment to
be sorted. The order of the first iteration has no effect on the abstract
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algorithm, but we will eventually find that descending order will lead to a
more efficient concrete program. In each step of the first iteration a new
position p is added to S, in a way which preserves Tree(S), and V(p) is set to
the current element of X. Then, since p is a hole in the heap that satisfies
downgood(p, V) (because leftson(p) and rightson(p) do not belong to S),
ascend(p) is called to eliminate the hole.

The second iteration scans X in ascending order. Each step removes the
member p of S for which V has the minimum value and assigns this minimum
value to the current element of X. Thus the processed segment of X will be in
increasing order and the values in this segment will all be smaller or equal to
the values remaining in the heap. Asin Section 5.2.3, Heap(S, V) insures that
the minimum of V occurs at root but, unless it is the only member of S, root
cannot be removed from S without falsifying Tree(S). Again the solution is to
take p to be a position whose removal will preserve Tree(S) and to swap the
values V(p) and V(root) before removing p. Then after p has been removed,
the heap will have a hole at root that satisfies upgood(root, V) (because root
has no father), so that descend can be called to eliminate the hole.

This argument leads to the following abstract program:

{@ € dom X and X=X}
begin position set S; real array V(position); integer k;
... Declarations of swap, ascend, and descend ...
S:={}
{geninv TI: Tree(S)}
{geninv HI: Heap(S, V)}
k:=b+1;
{geninv I1: and X1 [a Jk@®@V1S~X1la bf}
while a <k do
begin;; position p;
p:=some nonmember of S such that Tree(S U {p});
begin, k:=k—1; S:=S U {p}; V(p):= X(k) end;
{Heap(S—{p}, V) and downgood(p, V)and p € S}
ascend(p)
end;
{lo_Je=03}
{geninv 12: ord= X 1 [a_Jk and {X 1 [a ]k} =*{V 1 S}}
while k<b do
if S={root} then
begin;; p X(k):=V(root); 5:={}; k:=k+1 end
else
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begin;;; position p;
p:=some member of S such that Tree(S—{p});
swap(p, root);
{Heap(S—{root, p}, V) and V(p) <*{V 1 S}
and root€ S and p€ S and p#root
and Tree(S—{p}) }
begin;; , X(k):=V(p); S:=S—{p}; k:=k+1 end,;
{Heap(S —{root}, V) and roote S and upgood(root, V)}
p:=root; descend(p)
end
end

{x1a b~ X¢1 andord<X1 @}

Here we have used the general invariants 71 and I2 to convey informa-
tion that would otherwise have to be repeated in invariants of the while
statements and intermediate assertions. Notice that, within the rearrange-
ment condition

X1la k®V1S~X,1 ,

the general concatenation operator @, defined in Section 2.3.7, is applied
to a function V 1 S whose domain is not a set of integers.

Before transforming the abstract program into concrete form, we note
two properties of the program that will be relevant to this transformation.
The first is that whenever swap(p, q) is called, the positions p and g will be
distinct members of S. The second is that the dependency upon X of the
invariants /1, I2, and 71, which must be preserved by calls of swap, is limited

to the segment of X over the interval Ek.

‘5.3.2 A Concrete Program

The transformation of the abstract sorting program into concrete form is
similar to that described in Section 5.2.4. Again, we represent positions by
integers as in Figure 5.6, so that root, leftson, rightson, and father have the
definitions given in Section 5.2.4. Then we represent the set S by the integer
variable slim, with the representation invariant

SI: S=[1_slim

Again, the indeterminacy in the two assignments to p can be resolved in a
way that preserves this invariant. We replace p:=some nonmember of S
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such that Tree(S U {p}) by p:=slim + 1, and we replace p := some member of
S such that Tree(S—{p}) by p:=slim.

The following program is the result of these transformations. In it we
have applied the copy rule to eliminate the procedures ascend and descend.

The domain of V is taken to be since # : #S=

# = #[1 b—a+l],s0o that [I sliml< [I b—a+1].

{@ € dom X and X=X}

begin real array V(1::b—a+1); integer k, slim;

... Declarations of root, leftson, rightson, and father ...
procedure swap(integer {exp} p, q);

{pe and g€ and p=q}
begin real ¢; 1:=V(p); V(p):=V(q); V(q):=t end;
slim:=0; k:=b+1;
while a <k do
begin integer p;
p:=slim+1; k:=k—1; slim:=slim+1; V(p):= X(k);
while (p>roof) and (V(father(p)) > V(p)) do
begin swap(p, father(p)); p:=father(p) end
end;
while k<b do
if slim=root then
begin X(k) := V(root); slim:=0; k:=k+ 1 end
else
begin integer p;
p:=slim; swap(p, root);
X(k):=V(p); slim:=slim—1; k:=k+1, p:=root;
loop: if leftson(p) < slim then
begin
if (rightson(p) <slim)
and (V(rightson(p)) < V(leftson(p)))
then goto tryright else goto tryleft
end
else goto quit;
tryleft: if V(leftson(p)) < V(p) then goto left else goto quit;
tryright: if V(rightson(p)) < V(p) then goto right else goto quit;
left: swap(p, leftson(p)); p:=leftson(p); goto loop;
right: swap(p, rightson(p)); p:= rightson(p); goto loop;
quit: end
end

{x1[a b~ X41 la_b| and ord_ X 1 la b} .
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'5.3.3 Further Transformations to Improve Efficiency

The program given in the previous section is fully concrete, in the sense that
all of its data types and primitive operations are provided by Algol W.
Nevertheless, further transformations can be used to improve its efficiency.

Consider the sequence of calls of swap that occur during a single
iteration of either outer while statement. The last assignment in each call of
swap (except the final call) will set an element of V that will be immediately
reset during the next call of swap. This is an obvious inefficiency that can be
eliminated by transformation.

To represent the array V we introduce two concrete variables:

real array V1(1::b—a+1)
in the main program and
real z

in each of the blocks in which the integer variable p is declared. Of course,
these variables are really no more concrete than V itself; we are only calling
them “concrete” to emphasize the parallel with the transformations dis-
cussed previously. In fact, V1 and V will have the same values except that
within the blocks in which p and z are declared the value of V{(p) will be given
by z rather than by V1(p).

More precisely, the general invariant

VE VA [1slim]=V11

will hold during the main program. During the bodies of the blocks where p
and z are declared, however, this invariant will be in abeyance and, after
initialization, the general invariant

VIE VA (1 stim|=[V1]| p: 2] 1

will hold instead.

The invariant VII will hold at the beginning of each call of swap(p, q). If
the body of swap is augmented with the assignment V1(p):= V1(q), thenit is
straightforward to see that

V11 slim|=[V1]g: z]1

will hold when the body of swap is completed. It follows that each of the
following blocks will preserve VII:

beginy,;; swap(p, father(p)); p:= father(p) end;
beginy;; swap(p, root);
X(k):=V(p); slim:=slim—1; k:=k+1; p:=root end;
beginy; swap(p, leftson(p)); p := lefison(p) end;
beginy;; swap(p, rightson(p)); p := rightson(p) end
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In the main program, the initialization will achieve VI by making
empty. Then in the first block where p and z are declared, VII will be
achieved if we augment V(p):= X(k) with z:= X(k); V1(p):= X(k). (Actu-
ally V1(p) := X(k) is not needed to achieve VII, but it will serve to simplify
later developments.) At the end of this block, VI can be regained by the
assignment V1(p):=z.

In the second block where p and z are declared, VII will be achieved if
p:=slim is augmented with z:= V1(slim). Again, at the end of the block VI
can be regained by the assignment V1(p):=z.

At this stage we have

{@ C dom X and X= X,}
begin real array V, V1(1::b—a+ 1); integer k, slim;
... Declarations of root, leftson, rightson, and father ...
procedure swap(integer {exp} p, q);
{pe[1 slim| and g€ and p>q and VII}
begin real ¢;
t:=V(p); V(p):=V(g; V(g):=1
Vi(p):=V1(q)
end;

{v1 |1 slifn|=[V1|q: z] 1 }

slim:=0; k:=b+1;
{geninv VI: V 1 =V11 [1_stim|}
while a <k do
beginy; integer p; real z;
p:=slim+1; k:=k—1; slim:=slim+1; V(p):= V(k);
z:= X(k); V1(p):= X(k);
{geninv VII: V1 [1_slim|=[V1| p: z] 1 }
while (p<root) and (V(father(p))> V( p)) do
beginy;; swap(p, father(p)); p:=father(p) end;
Vi(p):=z
end;
while k< b do
if slim=root then
begin X(k):= V(root); slim:=0; k:=k+1 end
else
beginy; integer p; real z;
p:=slim; z:= V1(slim);
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{geninv VII: V1 [1_slim|=[V1| p: 211 [1_stim|}

begillv"
swap(p, root);

{v1 |1 slim|=[V1] root: z] 1 |1 slim|
and ps#root }
X(k):=V(p); slim:=slim—1; k:=k+1; p:=root
end;
loop: if leftson(p) < slim then
begin
if (rightson(p) <slim)
and (V(rightson(p)) < V(leftson( P)
then goto tryright else goto tryleft
end
else goto quit;
tryleft: if V(leftson(p)) < V(p) then goto left else goto quit;
tryright: if V(rightson(p)) < V(p) then goto right else goto quit;
left: beginy;; swap(p, leftson(p)); p:= leftson(p) end;
goto loop;
right: beginyy swap(p, rightson(p)); p:= rightson(p) end;
goto loop;
quit: V1(p):=z
end
end

{x1[a b|~X,1la b and ord< X 1 la B} .

To make V auxiliary we must replace all expressions containing V that
occur outside of assignments to V by equivalent expressions that do not
contain V. In the cases where VII holds, we may replace V(p) by z and, since
leftson(p), rightson(p), and father(p) are all distinct from p, we may replace
V by V1 in V(leftson(p)), V(rightson(p)), and V(father(p)).

There are two other cases. For the assignment X(k):= V(root), the
invariant VI shows that V(root) can be replaced by V1(root). For the assign-
ment X(k):= V(p), the preceding assertion shows that V(p) can be replaced
by Vi(p).

Once V has been made auxiliary, its declaration and assignments may
be eliminated. In particular, the body of swap reduces to

begin real t; t:=z; V1(p):=V1(qg) end

Here ¢ has also become auxiliary, so that the body of swap can be reduced
further to V1(p):= V1(g).
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The elimination of V and ¢ leads to the following program:

{la_ bl < dom X and X=X,}

begin real array V1(1::b—a+1); integer k, slim;

... Declarations of root, leftson, rightson, and father ...
procedure swap(integer {exp} p, q);

{pe and qe and p>q}
Vi(p):=V1(g);

slim:=0; k:=b+1;

while a<k do
begin integer p; real z;
p:=slim+1; k:=k~—1; slim:=slim+1;
z:= X(k); V1(p):= X(k);
while (p#root) and (V1(father(p))>z) do

begin swap(p, father(p)); p:= father(p) end;

Vi(p):=:z
end;
while k<b do
if slim=root then

begin X(k):= V1(root); slim:=0; k:=k+1 end

else

loop:

tryleft:

tryright:
left:
right:
quit:

end

begin integer p; real z;
p:=slim; z:= V1(slim); swap(p, root);
X(k):=VI1(p); slim:=slim—1; k:=k+1; p:=root;
if leftson(p) <slim then

begin

if (rightson(p) <slim)

and (V1(rightson(p)) < V1(leftson(p)))
then goto tryright else goto tryleft

end
else goto quit;
if V1(leftson(p)) <z then goto left else goto quit;
if V1(rightson(p)) <z then goto right else goto quit;
swap(p, leftson(p)); p:=leftson(p); goto loop;
swap(p, rightson(p)); p:= rightson(p); goto loop;
Vi(p):=z
end

{x1 ’\-Xo'] @andord<X1 |a_——b|} s

A final transformation can be used to reduce the storage requirements
of this program. In the first part of the program the active portion of V1,

359
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which is the segment over |1 slim|, grows at the same rate as the inactive

portion of X, which is the segment over |k  b|.Similarly, in the second part of
the program the active portion of V1 shrinks at the same rate as the inactive
portion of X. Thus it should be possible to use the inactive portion of X to
represent the active portion of V1, so that the program will only use a
constant amount of local storage.

Since the inactive portion of X varies at its left end while the active
portion of V1 varies at its right end, it is necessary for the elements of V1 to
occur in X in reverse order. The situation is described by the representation
invariant

XI: k=b+1-slim and (Vqe[L_slim|) V1(g)=X(b+1—q)
If we regard the statement pairs

slim:=0; k:=b+1

k:=k—1; slim:=slim+1

{slim=root} slim:=0; k:=k+1

slim:=slim—1; k:=k+1

as indivisible, then the first part of X! is already maintained by our program.
To maintain the second part we add assignments to X as follows:

(1) In the body of swap, V1(p):=VI1(q) is augmented with
X(b+1-p):=Vi(g).
(2) The assignment VI1(p):=X(k) is augmented with
X(b+1-p):= X(k).
(3) Both of the assignments V1(p):=z are augmented with
X(b+1-p):=z.
Here we are adding assignments to the array X, which is already used by our
program. However, it is easily seen that each of the added assignments only
%cts X1 , while the rest of the program only depends upon X 1
a |k.

Now V1 can be made auxiliary by replacing V1(g) by X(b+1—¢q)
outside of assignments to V1. Similarly k can be made auxiliary by replacing
k by b+ 1—slim.

Some further simplifications occur. The assignments X(b+1—p)
:=X(b+1-slim) and X(b+1—slim):= X(b+1-p) can be eliminated
since they both occur in contexts where p=slim. The assignment
X(b +1—slim) := X(b + 1—root) can be eliminated since it occurs in a con-
text where slim=root.

After the auxiliary variables and the above assignments have been
eliminated, the second outer while statement has the form

while b+ 1—slim=<b do
if slim =root then begin slim := 0 end
else ...
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Since root=1, this is equivalent to

while slim =1 do if slim=1 then slim:=0 else ...

b4

which can clearly be replaced by
while slim>1 do ...
Our final program is

{la_b| = dom X and X=X}
begin integer slim;
... Declarations of root, leftson, rightson, and ‘father ...
procedure swap(integer {exp} p, q); X(b+1-p):=X(b+1—¢q);
slim:=0;
while a <b +1—slim do
begin integer p; real z;
p:=slim+1; slim:=slim+1; z:= X(b + 1—slim);
while (p 5 root) and (X(b + 1— father(p))>z) do
begin swap(p, ffather(p)); p := father(p) end;
X(b+1-p):=z
end;
while slim>1 do
begin integer p; real z;
p:=slim; z:= X(b +1—slim); swap(p, root);
slim :=slim—1; p:=root;
loop: if leftson(p) < slim then
begin
if (rightson(p) <slim)
and (X(b + 1— rightson(p)) < X(b + 1 leftson(p)))
then goto tryright else goto tryleft
end
else goto quit;
tryleft: if X(b+1— leftson(p)) <z then goto left else goto quit;
tryright: if X(b+1- rightson(p)) <z then goto right else goto quit;
left: swap(p, leftson(p)); p:= leftson(p); goto loop;
right: swap(p, rightson(p)); p:=rightson(p); gote loop;
quit: X(b+1-p):=z
end
end

{x1a b~ Xy1 la_b| and ord_ X 1 la b} .

Like mergesort in Section 3.2.2 and quicksort in Section 3.2.3, this
program will sort an array segment of 7 elements in time of order - log n. Its
advantage over mergesort is that it requires only a constant amount of
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storage. Its advantage over quicksort is that the time bound of n -log n
extends to the worst case.

Exercises

1.

The program for sorting by repeated insertions, described in Exercise 4 after
Section 2.3.3, involves successive exchanges of array elements similar to the calls
of swap whose efficiency was improved by the transformation discussed in the
above section. Improve the efficiency of the insertion-sorting program by a
similar transformation. The basic idea is to “represent” the nonlocal array X by
another nonlocal array X1 that satisfies the general invariants X=X1 in the
outer block of the program and X=[X1| c: y] in the inner block, where ¢ and y
are appropriate local variables of the inner block. The result of the transforma-
tion will be a program that sorts X1 instead of X.

The inefficiency caused by successive calls of swap also occurs in the program for
finding minimum distances in a directed graph. Show that this inefficiency can be
eliminated by a transformation similar to that described in the above section.
One begins by using the copy rule to expand the calls of ascend and descend in the
version of the program developed in Section 5.2.3. In the main block of this
program, one declares the concrete variables

node array nodeof1(position); pesition array posofi(node);
and the procedure
real procedure Vi(position {exp} p), D(nodeofl(p)) .

Then in each subsidiary block in which the position p is declared, one declares
the concrete variable

node ¢;
In the main program, the general invariant

NI: nodeof 1 S=nodeofl | §
and posof 1 U=posofl 1 U
and V] S=V11 $

is imposed. In the subsidiary blocks where p and ¢ are declared, NI is held in
abeyance, and

NII: nodeof 1 S=[nodeof1|p: {11 S

and posof |1 U=[posofl|t. p]1 U
and V1 S=[V1|p: D@®]1 §

is imposed. The procedure swap is augmented to satisfy

{NII and pe S and g€ S and p#q}
swap(p, q)
{nodeof {1 S=[nodeof1|q: {]1 S
and posof 1 U=[posofl|t: q] 1 U
and V1 S=[V1|q: D®]1S} .

Then these invariants can be used to make nodeof and posof auxiliary, and also
to replace calls of V by V1.
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5.4 FINDING STRONGLY CONNECTED COMPONENTS

As a final example, we apply the methodology of data representation struc-
turing to an unusually difficult and ingenious algorithm [Tarjan 72] for
finding the strongly connected components of a finite directed graph. Our
development was inspired by an unpublished presentation of this algorithm
by D. E. Knuth.

Twonodesx and y in a directed graph are said to be strongly connected if
and only if yeT'™*(x) and xeI'*(y), i.e. if each node is reachable from the
other. The set of nodes that are strongly connected to x is called the strongly
connected component generated by x.

In the graph shown in Figure 5.1, for example, each of the nodes A, B,
and C generates the strongly connected component {A, B, C}. Each of the
remaining nodes generates the strongly connected component that is the
singleton set containing that node.

Itiseasy to see that y € I'*(x) and x € I'*(y) is an equivalence relation. As
a consequence, the strongly connected components generated by two nodes
are either the same or disjoint, and the union of the strongly connected
components generated by all nodes is the set of all nodes. In other words, the
strongly connected components form a partition of the set of all nodes in the
graph. A further consequence is that a strongly connected component is
generated by each of its members.

Our development will progress through three stages. We will begin with
an abstract recursive program for performing depth-first search. Then by
introducing additional abstract variables and operations upon these vari-
ables, we will obtain an abstract program for finding strongly connected
components. Finally, we will introduce representations for the abstract
variables and transform the program into concrete form.

Although this presentation will show why Tarjan’s algorithm works, it
will hardly make it obvious. Data representation structuring, indeed prog-
ramming methodology in general, cannot provide the ingenuity that is
needed to invent this kind of algorithm. But it can provide a clear retrospec-
tive explanation.

5.4.1 Recursive Depth-First Search

In Section 5.1 we developed a program that, when the set of unprocessed
nodes was represented by a stack, would sequence through the nodes that
were reachable from a given node in depth-first order. We now want to
accomplish the same task with a recursive procedure.

The set ['*(x) of nodes that are reachable from x is the union of {x} with
the sets of nodes that are reachable from each of the immediate successors of
x. Thus one might expect that, if initially T is the empty set, then the
procedure
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procedure search(node {exp} x);
begin 7:=T U {x}; for yeI'(x) do search(y) end

would reset T to I'*(x). But in fact this procedure will never terminate if it
encounters a cyclic path in the graph. To avoid this problem, it is sufficient to
make the procedure ignore nodes that are already present in T:

procedure search(node {exp} x);
if x¢ T then
begin T:= T U {x}; for y € I'(x) do search(y) end

However, to prove the correctness of this procedure we must describe its
behavior when T is not initially empty, and to do so we must formalize the
idea of one node being reachable from another via a path that avoids some
part of the graph.

Let T be a set of nodes, and consider a path (x, ... , x,) such that none
of the nodes xg, ... .x.._1 belongs to T. We call such a path T-free (despite the
fact that the final node may belong to T). It is easy to see that a path of zero
steps is T-free for any T, and that an edge is a 7-free path if and only if its
initial node does not belong to 7. More interestingly, if a path is viewed as a
composition of subpaths, then it is 7-free if and only if all of the subpaths are
T-free.

We write I'*(x, T) for the set of nodes that can be reached from x via
T-free paths. We also write I'*(S, T) for the set of nodes that can be reached
from some member of § via 7-free paths. These definitions are a straightfor-
ward generalization of the ['*-notation introduced in Section 5.1.1, in which
I'*(x) reappears as the special case I'*(x, {}).

Our argument about the procedure search will depend upon two rather
subtle properties of 7-free paths. First consider the set

I—"ll‘(Sla T) U F*(SZ’ TU F*(Sla T))

Since a T U I'*(S;, T)-free path s also a T-free path, every member of this set
must belong to I'*(S; U S5, T). More surprisingly, the converse also holds.
For suppose there is a T-free path from some member © of Sy U S; toa node x.
If any member y of I'*(S;, T) occurs on this path, then there is a T-free path
from some s€5; to y and a T-free path from y to x:

so that the composition of these paths shows that x e I'*(S;, T). On the other
hand, if no member of ['*(S;, T) occurs on the path from u to x, then this path
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is T U ['*(S;, T)-free and begins with a member of S5, so that xe ['*(S,,
T U T'*(S;, T)). Thus

IS, Y uI*(S,, Tu I*(Sy, T))=T*S; U S,, T) . )]
Secondly, suppose x ¢ T, and consider the set
pur(rx), Tu {x}) .

If ze{x} then the zero-step path from x to z, which is T-free, establishes
zel™(x, T). If zeT*(I'(x), T U {x}) then there is an edge from x to some y,
which is T-free since x ¢ T, and a T-free path from y to z. Thus the composite
path

X————»y —— — —>»Z

is T-free. so that zeI'™*(x, T).

Conversely, suppose z € ['*(x, T), so that there is a T-free path from x to
z. If z=x then z € {x}. Otherwise, the last occurrence of x on the path must
occur before z, so that the path can be decomposed into a path from x to the
last occurrence of x, an edge from x to some distinct node y, and a T U {x}-free
path from y to z:

T-free

A
(s —

r———— s — ) — ——— 7

——

last occurrence of x./ T U {x}-free

Then.the edge from x to y gives yeI'(x) and the path from y to z gives
zel™*(y, T U {x}), so that ze*(I'(x), T U {x}). Thus

If x¢ T then {x} U I*(T'(x), T U {x})=T*(x, T) . 2)

We can now show that the procedure call search(x) will increase T by
adding the nodes that can be reached from x via 7-free paths. More pre-
cisely, search will satisfy

{T=T,} search(x) {T=T, U T*(x, Ty)} ,

where T is a ghost parameter of type set expression and it is assumed that T
does not interfere with x or 7.

As is typical with recursive procedures, we assume this specification
about calls of search in proving a similar specification of the body of
the declaration of search. The first step is to show that, for any node sets 7
and S,

{T=T,} for y€e S do search(y) {T=T; U T*(S. T,)} .

This is most easily shown by induction on the size of S. It is trivial
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when S is empty. Otherwise, there will be a smaller set S" and a node yg,,
such that S=S U {Ygina} and for y€S do search(y) is equivalent to
for yeS' do search(y); search( Ysinal)- Then if T=T; beforehand, the
induction hypothesis shows that for ye S’ do search(y) will achieve
T=T; UT*(, T1), and the assumption about recursive calls, with x replaced
by Ygina and Ty by T1 U I'*(S', T,), shows that search(ygna) Will achieve

T=T; UT*S, TY) U T*(Vtina, T1 U T*(S', T1)) -
By property (1), this implies
T=T; U T*(S' U {yinar}, TD=T1 U T*(S, T})

Now suppose that the body of the declaration of search is executed with
T, as the initial value of T.If x € To then I'*(x, Ty) ={x}, since the only To-free
path beginning with x € T is the zero-step path. Thus T= T, U I'*(x. Tj) will
hold without any assignment to 7. On the other hand, suppose x ¢ Ty. Then
T:=T U {x} will achieve T=T, U {x}, and the specification we have shown
about the for statement, with T, replaced by Ty U {x} and S replaced by I'(x),
implies that for y € I'(x) do search(y) will achieve

T=T, U {x} UT*T(x), To U {x}) .

By property (2), this implies T=T, U I'™*(x. Ty).
Thus we have

procedure search(node {exp} x);
{r=T1y}
if x¢ T then
begin T:=T U {x}; for yeI'(x) do search(y) end
{T=T, U T*(x, To)} .

Strictly speaking, the annotation of this procedure declaration should
include the parameter assumptions T# x & T# T,. For simplicity, however,
we will omit the obvious and often lengthy parameter assumptions of the
procedures developed in this and later sections.

If search(x) is called with T= T, then the set of nodes to which search
will be applied, either directly or recursively, will be I'*(x, To). For later
developments, we will need to have this set available just after execution of
the for statement in the body of search. It cannot be obtained from the
current value of T, which combines I['*(x, Ty) with T¢. Thus we will introduce
a second global set variable M and extend search so that M=I"*(x, To) holds
just after the for statement.

The overall effect of the call search(x) upon M will be to increase M by
I'*(x, T,). Upon entrance, if x € T then x will be inserted into M. Otherwise
the initial value of M will be saved as a local variable and M will be reset to
{x}, so that the for statement will achieve M={x} U F*(F(x), To U {x}) =T*(»,
T,). Then M will be reset to the union of its current value and its initial value:
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procedure search(node {exp} x);

{T=T, and M=M,}

ifxeT then M:=M U {x} else
begin set Msave; Msave:= M;
T:=T U {x}; M:={x};
for yel'(x) do search(y);
{T=T, U T*(x, Ty) and M=T*(x, To) and Msave= Mo}
M:= Msave U M
end

{T=T, U T*(x, To) and M=M, U T*(x, To)} .

The justification of the assertions that appear here is basically the same
as before. Beginning with the assumption that recursive calls satisfy

{T="T, and M= My} search(x)
{T=T, U T*(x, To) and M=M, U T'*(x. Ty)} ,

one can use property (1) to show

{T=T, and M=M,} for ye S do search(y)
{T=T; U T*(S, T)) and M=M, U T*(S, T)} .

Then property (2) can be used to show that the body of the declaration of
search satisfies the same specification as was assumed for the recursive calls.
The details are left to the reader.

Our main program will initialize T and M to be the empty set and then
apply search to each node of the graph. The overall effect will be to set T (and
M) to I'*(node, {}) =I"*(node)=node:

{true}

begin set T, M; T:={}; M:={};
begin
... Declaration of search ...
for y € node do search(y)
end

{T=node}

end

(The reason for enclosing the declaration of search in a subsidiary block will
become apparent later.)

It should be emphasized that the purpose of this program is not just to
achieve the trivial final assertion, but to produce a sequence of states
satisfying the intermediate assertion within the body of search. In particular,
in the next section we will add more statements to the program whose
correctness will depend upon the validity of the assertion T=T, U I'*(x, To)
and M=T*(x, T,) that occurs after the for statement in the body of search.
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However, further developments will not change the calling tree of our
program. Thus at this stage we can express the total execution time of the
program in terms of the execution time of individual calls. Suppose we refer
to a call search(x) as terminal if x€ T and nonterminal if x¢T. Since a
nonterminal call adds the new node x to T, and T grows from the empty set to
the entire set of nodes, there will be exactly one nonterminal call search(x)
for each node x, and the number of nonterminal calls will be # node.

Terminal calls will not perform subcalls, and each nonterminal call
search(x) will perform # I'(x) immediate subcalls. Thus the total number of
calls from within the body of search will be Y ycpode® I'(x)=#edge. In
addition, there will be # node calls from the main program, so that the total
number of calls will be # node + # edge, and the number of terminal calls will
be # edge.

Now suppose there are constants a, 8, and 8 such that the time required
by a call search(x), exclusive of the time for subcalls, is bounded by « if the
call is terminal and by 8 + & - # I'(x) if the call is nonterminal. Then the total
time for the program will be bounded by

a: #edge+ zxenode (ﬁ+8 3 #r(x))

=q - #edge + '#n0d9+8'(2xenode#r(x))
=5 - #node + (o + ) - #edge
<B-N+(a+d)-E |,

which is of order N+ E.

Of course, this result depends upon our ability to produce a concrete
program in which a terminal call can be performed in constant time and a
nonterminal call search(x) can be performed in time of order # I'(x). We will
eventually achieve this goal by introducing an unusual data representation.

Exercise

1. Use specification logic to formalize the correctness argument for the program
developed in the above section. In your proof you will need to use rule (R26) for
proper procedure declarations with

2 oroc= (Vnode exp x) (Vset exp Ty) (Vset exp M)
(T#x&TH T & THMy&M#x&M#Ty&M# My=>
{T=T, and M=M,}
search(x)
{T=T, U T*x, Ty) and M=M; U ['*(x, To)})
& (Vexp-like e) (T # e & M # e = search # e)

and
S=gv(T) & gv(M) &« M# T& T#T & M#T

You will also need to use the rule for the abstract for statement given in Exercise
1 after Section 5.1.2.
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5.4.2 An Abstract Program for Strongly Connected Components

We now want to extend the program developed in the previous section to
compute the set of strongly connected components. We introduce an output
variable SCC, of type set of sets (of nodes), which is initialized to the empty
set. Within the procedure search(x), immediately after execution of the for
statement, we will be able to determine whether a certain subset of T is the
strongly connected component generated by x and, if so, we will insert this
component into SCC.

We will also introduce a set variable U to keep track of the members of
T which have not yet been placed in SCC. Since the strongly connected
components are disjoint and we do not wish to output the same component
more than once, each time a component is inserted into SCC it will be a
subset of U which will then be deleted from U. In fact, the component will
consist of the members of U that were not present in U when the current call
of search began execution.

Thus we have

set procedure I' {node exp};
set of sets {var} SCC;

{true}
beginset T, U, M; SCC:={}; T:={}; U:={}; M:={};
{geninv UI: SCC is a set of strongly connected components
and T-U =U SCCand U< T }
begin
procedure search(node {exp} x);
if xeT then M:=M U {x} else
begin set Usave, Msave;
Usave := U, Msave:= M,
beginy; T:=T U {x}; U:= U U {x} end;
M:={x};
for yeI'(x) do search(y);
{T=Ty U T*(x, To) and M=T*(x, To)}
if U— Usave is the strongly connected component
generated by x then
begin ;
SCC:=SCC U {U— Usave}; U:= U—(U— Usave)
end;
M := Msave U M
end;
for y € node do search(y)
end
{T=node}
end
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Whenever a new member is added to T it is also added to U. The only other
operation affecting U is the removal and output of a subset that is a strongly
connected component. Thus as indicated by the general invariant UI, U will
always be a subset of T such that T— U is the union USCC of the strongly
connected components that have been placed in SCC. By placing this gen-
eral invariant before the block in which search is declared, we indicate that it
is a global invariant, i.e. that it holds throughout the execution of search at all
recursive levels.

~ Of course, the test “U— Usave is the strongly connected component
generated by x” begs the question of how one finds strongly connected
components. However, we will eventually be able to replace it with a more
constructive test. '

~ Next, we want to show that a call search(x) will increase both of the sets
Uand T-U,ie. that

{T=T, and U= Up} search(x) {Uy=U and To— Uy =T—-U} .

As usual we will assume this specification about recursive calls while proving
that it is met by the body of the declaration of search.

Consider an execution of the procedure body beginning with a state in
which T=Tyand U= U,. If x€ T then the procedure body will not change T
or U and will obviously meet the above specification. On the other hand, if
x¢ T then the assignment Usave:= U will achieve the general invariant

Ull: Usave=UsSUand To— Uy T-U

Assignments to M will obviously preserve UlL. Since x is not a member of T
or its subset U, the assignments T:=T U {x}; U:= U U {x} will preserve Ull
and also achieve x € U— Uj. Since each recursive call is assumed to increase
U and T— U, the sequence of such calls performed by for y € I'(x) do search(y)
will also preserve UIl and xe€ U—Uy,. Finally Usave < U implies that
U:=U—-(U- Usave) is equivalent to (and can be replaced by) the simpler
statement U:= Usave, which obviously preserves UlL
Thus we have
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set procedure I' {node exp};
set of sets {var} SCC;

{true}
begin set 7, U, M; SCC:={}; T:={}; U:={}; M:={};
{geninv UI: SCC is a set of strongly connected components
and T-U=U SCCand U< T}
begin
procedure search(node {exp} x);
{T= TO and U= Uo}
if xe T then M:=M U {x} else
begin set Usave, Msave; Usave:= U,
{geninv UII: Usave=Uy< U and Ty—Uy< T— U}
Msave:= M,
beging; T:=T U {x}; U:=U U {x} end;
M:={x};
{xe U-Uy}
for yeI'(x) do search(y);
{T=Ty U T'*(x, To) and M=T*(x, To) and xe U— Uy}
if U—Usave is the strongly connected component
generated by x then
beginy; SCC:=SCC U {U-Usave}; U:= Usave
end;
M := Msave U M
end;
{Uys U and T,— U, < T- U}
for y € node do search(y)
end
{T=node}
end

Notice that UII is a local invariant of the procedure search, since it contains
the local variable Usave and the ghost parameters Ty and U,. Thus it
describes a particular level of recursion, in contrast to the global assertion Ul
which holds for all levels of recursion.

Finally we come to the crux of the behavior of the abstract program. We
will show that, if x is reachable from every member of U before a call of
search(x), then there will be a path from every member of U after the call to
some member of U before the call. In other words, we will show that the
specification of search can be strengthened to

{T=T, and U=U, and (Vue U) xeT*(u)}

search(x)
{Uys Uand Ty— Uyc T— Uand (Y ue U)(A ve Uy veT*w)}
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In proving this specification, we will also be able to find a constructive
equivalent of the test that U— Usave is the strongly connected component
generated by x.

Suppose T=Tyand U= Ujand (V ue U) xeI'*(u) holds before execu-
tion of the procedure body. If xe T, then U will not be changed, so that
(V ueU) (3 ve Uy) veI™(u) will hold since there is a path from every
member of U to itself.

On the other hand, suppose x¢ T. Then we can show that (Vue U)
x€*(u) holds throughout the execution of the procedure body and can
therefore be added to the local invariant UZI. This condition is preserved by
adding x to U since x is reachable from itself, and it is obviously preserved if
U is replaced by its subset Usave. The critical point is to show that it is
preserved by the recursive calls of search(y) within the for statement.

Let Upefore and U,ge; be the values of U before and after such a call, and
suppose x is reachable from every member of Upegore- Then its immediate
successor y € I'(x) will also be reachable from these members, so that the
assumption about recursive calls implies that from every u € Uy, One can
reach some v € Upsore- By path composition it follows that x can be reached
from every member of U,ge,:

€ Uafter € Ubefore € l(x)

Now consider the situation immediately after execution of the for
statement. From Ul, Ull, the assertion following the for statement, and the
argument given above, we know that the following conditions will hold:

SCC is a set of strongly connected components

and T-U=USCCand US T

and Usave = Uy € Uand Ty—UyS T-U

and T=T, U I'*(x, Ty) and M=T*(x, Ty) and xe U—- U,
and (Vue U)xel™*(u)

Let z be any member of U— Uj,. Since z belongs to U, it does not belong
to T— U, nor to its subset Ty— U,. Then since z does not belong to Uy, it does
not belong to T,. Thus Ty is disjoint from U—U,. Moreover, since
zeUS T=Ty U T*(x, T))=Ty U M, we have ze M. Thus U— U, is a subset
of M.

Since M=T*(x, Ty), every node in M is reachable from x. On the other
hand, since (Vue U) xe*(u), x is reachable from every node in U. Thus
every node in M N U is strongly connected to x, so that M N U is a subset of
the strongly connected component generated by x.

Since Uy < U, M n U is the union of the disjoint subsets M N (U— Uj)
and M n Uy. Moreover, since U— Uy< M, the first of these subsets is U— Up.
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Thus every node in U—Uj is strongly connected to x, and if U— U is the
entire strongly connected component generated by x then M N Uy is empty.
On the other hand, if U-Uj is not the entire strongly connected

component generated by x, then there must be a cyclic path from xe U= Uj .
back to x which passes outside of U— Uj. Let v be the first node on this path _

which lies outside of U= Uy. Then there is a path from x to v in which every.
nonfinal node lies in U— Ug and, since Ty is disjoint from U— Uj, this path is
To-free. Thus v belongs to I'*(x, Ty)=M, and since I'*(x, To) < T, v also
belongs to T. But v cannot belong to T— U, since this would violate the fact
that 7— U is the union of a set of strongly connected components by establ-
ishing a strong connection between a member of T— U and x, which lies in
U-U, and therefore outside of T—U. Moreover, v does not belong-to
U-Uy. Thus v belongs to T—(T—U)—(U— Uo) Up and also to M, so that
M n Uy is nonempty.
Thus the test of whether U— Usave = U—Uj is the strongly connected
d by x isequi to, and can bereplaced by; a test of
whether Mn Up=M n Usave is empty. Moreover, if these tests are false then

there is a path from x to a node v in U that in conjunction with the existence

of a path from any node in U to x, implies the desired consequent of
search(x): e e

(Vue ) @ veUy) vel*w) .

On the other hand, if the tests are true then the consequent will obviously be

achieved by the assignment U:— Usave.
As a special case of the specification we have pwved for search 1( U is

empty before ing search(x) thenthe p dent will be satisfied and the
consequent will imply that U will again be emp(y after execution. Thus each
execution of search in the main program will satisfy the speci for this

procedure and will leave U empty At the conclusion of the program we will
have U={} and T=node, so that the set T— U, which is the union of the
strongly connected components which have been placed in SCC, will be the
entire set of nodes.in-the graph. = - =

Thus our abstract program is
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set procedure I" {node exp};
set of sets {var} SCC;

{true}
begin set T, U, M; SCC:={}; T:={}; U:={}; M:={};
{geninv UI: SCC is a set of strongly connected components
and T-U =U SCCand UC T}
begin
procedure search(node {exp} x);
{T=T, and U=U, and (Vue U) xeI'*(u)}
if xe T then M:=M U {x} else
begin set Usave, Msave; Usave:= U,
{geninv UII: Usave=Uy< U and To—Uy< T—U
and (Vue U) xeT*u) }
Msave:= M;
beging; T:=T U {x}; U:=U U {x} end;
M:={x};
{xe U-U,}
for yeI'(x) do search(y);
{T=T, U T*(x, T;) and M=T*(x, T,) and x€ U— Uy}
if empty(M N Usave) then
{U- Usave is the strongly connected component
generated by x }
beging; SCC:=SCC U {U— Usave}; U:= Usave
end;
M:= Msave U M
end;
{Upc U and T,—U,c T-U
and (Vue U) (3 ve Uy vel*®u) }
for y enode do search(y)
end
end
{8CC is a set of strongly connected components
and U SCC=node } .

5.4.3 Transformation to a Concrete Program

In preparation for the transformation of our abstract program into concrete
form, we omit the intermediate assertions, which have served their purpose,
except for the occurrence of U € T in the global general invariant Ul. We
also move the assignment M:= Msave U M backward into both branches of
the preceding conditional statement:
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set procedure I' {node exp};
set ofi sets {var} SCC:

{&ue}
begin set T, U, M; SCC:={}; T:={}; U:={}; M:={};
{geninv UI: U< T}

begin
procedure search(node {exp} x);
iffi xeT then M:=M U {x} else
begin set Usave, Msave; Usave:= U;
Msave := M; T:=T U {x}; U:=U U {x}; M:={x};
for yeI'(x) do search(y);
if empty(M N Usave) then
begin SCC:=SCC U {U— Usave};
U:= Usave; M:= Msave U M

end
else M:= Msave U M
end;
for y enode do search(y)
end
end

{SCC is a set of strongly connected components
and U SCC=node } .

To represent U we introduce the concrete variables
node array A(1::N); integer p

The segment of A over |1 p| will enumerate the members of U without
duplication. This leads to the global representation invariant

AL [1 p| #T| and U={A 1 [1_p|}and ord, A 1

(where the partition diagram precludes subscript errors, since # T<N).

To achieve this invariant initially, when U is empty, we set p to zero. To
maintain the invariant we augment the assignment U:=U U {x}, which
inserts anew member into U, with p:=p +1; A(p) := x. We also augment the
assignment U:= Usave with p:=psave, where psave is a local variable of
search used to save the value possessed by p when search began execution.

The argument that the latter augmentation preserves the representa-
tion invariant is more subtle than it might seem at first glance. It depends
upon the fact that the recursive calls of search performed by the for statement
will not decrease the interval |1 p| nor alter the segment of A over the initial
value of this interval. To demonstrate this, we must show that search satisfies
the specification
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{A=A; and p=po}
search(x)

{[1 po] pland A1 [1 p=A401[1 pol} .

As usual, we will assume this specification about recursive calls in proving
that it is met by the body of search.

Suppose A = Ay and p =p, holds before execution of the body of search.
If xe T this condition will obviously be preserved, since there will be no
assignments to A or p, and it will imply the consequent of the above
specification. Otherwise, the assignments Usave:= U; psave:=p will
achieve the local general invariant

Al and A1 [1 p=401[1 py

and Usave={A ] [1 p,|} and psave=p,

It is easy to see that this invariant is preserved by the only assignments
within its scope which interfere with it:
p:=p+1; A(p):=x
and
p:=psave
Less trivially, it is also preserved by the recursive calls of search in the for

statement. To see this, let Apctores Poefores Aafter, ad Pager be the values of A
and p before and after such a call. If AIl holds beforehand, then

and Apesore 1 =AO 1

and Usave ={Apesore 1 |1 Pol} and psave=p,

The specification of recursive calls gives

1 Pretorel Parted and
Aafter 1 =Abefore 1 |1 pbeforel

From these conditions, we may infer

and Agpiee 1 [1_pol =401
and Usave={Aqser 1 [1_po} and psave=p, ,

which shows that AII will hold after the call of search.
The local invariant Al implies the desired consequent of the body of

search:
(1 p pland A 1[1 pof=401 :

It also implies that the global invariant AI will be preserved by the assign-
ments U:= Usave; p:= psave.
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Next, we introduce the concrete variable
integer array Q(node)

This array will provide two items of information. In the first place, if ue U
then Q(u) will give the position of u in the array A, i.e. Q(u) € and
A(Q()) =u. In the second place, for any node u, Q(u) will indicate whether
ubelongs to T— U, U, or neither set. For this purpose, if u ¢ T then Q(u) will
be zero, and if u € T— U then Q(u) will be some integer that is so large that it
cannot occur in m In practice, a sufficiently large integer is N + 1, but to
show the logic of our program more clearly, we will write « for this integer.
Thus we introduce the global representation invariant

QI: (Vuenode) if u¢ T then O(u)=0
else if ue U then Q(u)e|1 p| and A(Q()) =u
else Q(u)=

Since T is empty initially, Qf can be achieved by setting all elements of O to
zero. To preserve QI when a new node is added to T and U, we must
augment U:=U U {x}; p:=p+1; A(p) :=x with Q(x):=p. To preserve QI
when U is reset to its subset Usave, we must reset Q(u) to o for each u in the

set U— Usave, which is equal to the set {A ] psave] g_l} as a consequence of
Al and AllL
At this stage, we have

set procedure I {node exp};
set of sets {var} SCC;

{true}
begin set 7, U, M;
node array A(1::N); integer array Q(node); integer p;
SCC:={}; T:={}; U:={}; M:={}
{geninv UL: U< T}
p:=0;
{geninv AL
and U={A 1 [1_pltandord, 41 [ p|}
for yenode do Q(y):=0;
{geninv QI: (Vuenode) if u¢ T then Q(u)=0
else if ue U then Q(u)€ and A(Q(u)=u
else Q(u)=x }
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begin
procedure search(node {exp} x);
{A=A, and p=py}
if xeT then M:=M U {x} else
begin set Usave, Msave; integer psave;
Usave:= U; psave:= p;

{geninv AII and A1 |1 py|=Ag1
and Usave={A 1 |1 p,|} and psave=p, }

Msave:= M,
beging, o; T:=T U {x};
U:=U U {x}; p:=p+1; A(p):=x; Q(x):=p;
M:={x}
end;

for y e I'(x) do search(y);

if empty(M N Usave) then
begin,; o; SCC:=SCC U {U— Usave};
U:= Usave;
for k:=psave + 1 until p do Q(A(k)) :=;
p:=psave; M:= Msave U M
end

else M:= Msave U M

end;

([ _pd 7l and 41 [ zd=Ao 1 [}
for y e node do search(y)
end
end
{SCC is a set of strongly connected components

and U SCC=node} .

Finally we must deal with the set M. To represent M we introduce the
concrete variable

integer mp ,
whose value will be the smallest integer in such that A(p) e M, or = if
no such integer exists. (Again, © can be taken to be any integer, such as

N+ 1, that is too large to ever belong to |1 p|.) Thus we introduce the global
representation invariant

MI: mp=Min M, A1 1 p|)



SEC. 5.4 FINDING STRONGLY CONNECTED COMPONENTS 379

Here Min S denotes the smallest integer in the set S if S is nonempty, or ® if
is empty. As defined in Section 2.3.8, (M, X ) denotes the preimage of M

under X, i.e. the set of members of dom X that are mapped by X into
members of M.

Notice that the variable mp gives an ambiguous representation of M,
i.e. we cannot express M in terms of mp and the other concrete variables.
Nevertheless, we will see that mp provides just the information about M that
is actually needed by the algorithm.

Since M is empty initially, we can achieve MI by setting mp to . Within
search, when xe€ T, QI implies

Min P({x}, A1 [1_p)=0)

(even when x€ T—U), which with MI implies that

Min P(M U {x}, A1 [1_p))
is the minimum of mp and Q(x). Thus MI will be preserved if M:=M U {x}is
augmented with if Q(x) <mp then mp:= QO(x).
On the other hand, if x¢ 7 then augmenting Msave:=M with

mpsave:= mp, where mpsave is a local integer variable, will achieve the local
invariant

MII: mpsave=Min P(Msave, A 1 1 po)

which will be maintained by the rest of the body of search since, by All, the
segment of A over will not be changed.

The global invariant MI may be falsified by p:=p + 1; A(p):=x, butit
will be regained if we augment M:={x} with mp:=p.

Now consider the test whether M N Usave is empty. Since
Usave={A 1 _1|___p_0_|}, law (4) in Section 2.3.8 shows that M N Usave will be
empty if and only if (M, A 1 @) is empty. But MI and imply
that this set will be empty if and only if mp > p.

Thus if M N Usave is empty then Min P(Msave UM, A 1 fl_j) will be
Min P(Msave, A 1 ll_—ﬂ), which is mpsave according to MII: Since
Ppo=psave, it follows that MI will be preserved if p := psave; M:= Msave UM
is augmented with mp:= mpsave.

On the other hand, suppose M N Usave is nonempty, s0 that mp < py.
The integer Min #(Msave U M, A 1 ) is the minimum of the three
quantities

Min P(Msave, A | (1 _p,|)=mpsave ,
Min P(Msave, A PODI) ,
Min #(M, A1 |1 _pl)=mp .
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However, since mp < p,, the second of these quantities must be larger than
the third. Thus MI will be preserved if M:= Msave U M is augmented with
the assignment to mp of the minimum of mpsave and mp.

Thus we have

set procedure I {node exp};
set of sets {var} SCC;

{true}
begin set T, U, M,
node array A(1::N); integer array Q(node); integer p, mp;
SCC:={}; T:={}; U:={}; M:={};
{geninv UI: U< T}
p:=0;
{geninv AI
and U={A 1 [1_p|} and ord A 1 }
for y enode do Q(y):=0;
{geninv QI: (Vuenode) if u¢ T then Q(u)=0
else if ue U then Q)€1 p| and A(Q(u))=u

else Q(u)= }

mp ;= ;

{geninv MI: mp=Min P(M, A ] Epl)}
begin

procedure search(node {exp} x);

{A=A4, and p=pe}

if xe T then
beginy; M:=M U {x};
if O(x) <mp then mp:= Q(x)
end

else
begin set Usave, Msave; integer psave, mpsave;
Usave:= U; psave:= p;
{geninv AII and A 1 =A0 1

and Usave={A 1 [1_p,|} and psave=p, }

Msave:= M; mpsave:= mp;
{geninv MII: mpsave=Min P(Msave, A 1 )}
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beging; grm T:=T U {x};
U:=UU {x}; p:=p+1; A(p):=x; Q(x):=p;
M:={x}; mp:=p
end;
for yeI'(x) do search(y);
if empty(M N Usave) then
beginA,,QI’MI SCC:=8SCC U {U_ Usave};
U:= Usave;
for k:=psave +1 until p do Q(A(k)):==;
p:=psave; M:= Msave U M; mp .= mpsave
end
else
beginy;,; M:= Msave U M;
if mpsave<mp then mp .= mpsave
end
end;

{{L_p] pland A1 [1 pd=401 [1_pd}
for y € node do search(y)
end
end
{SCC is a set of strongly connected components
and U SCC=node }

Now we can replace the expressions involving abstract variables that
occur outside of assignments to these variables by equivalent expressions
involving concrete variables. By QI, the test x€ T can be replaced by
Q(x)%0. By AIl and MI, as we have already seen, the test empty(M N Usave)
can be replaced by mp > psave. Finally, by Al and All, the set expression
U-Usave in the assignment to SCC can be replaced by {A 1 psaveD]}.

These replacements render the abstract variables T, U, M, Usave, and
Msave auxiliary. After their elimination, we have

set procedure I' {node exp};
set of sets {var} SCC;

{true}
begin node array A(1::N); integer array Q(node); integer p, mp;
SCC:={}; p:=0; for y€cnode do Q(y):=0; mp:=22;

begin
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procedure search(node {exp} x);
if Q(x)#0 then
begin if Q(x) <mp then mp:= Q(x) end
else
begin integer psave, mpsave,
psave:=p; mpsave:=mp;
p:=p+1; A(p):=x; Q(x):=p; mp:=p;
for y e I'(x) do search(y);
if mp > psave then
begin SCC:=SCC U {{A 1 psave| p|}};
for k:=psave +1 until p do 0(A(k)):=;
p:=psave; mp:=mpsave

end
else if mpsave <mp then mp:= mpsave
end;
for y € node do search(y)
end
end

{SCC is a set of strongly connected components
andU SCC=node} .

Representations for the function I" and for nodes can be provided as in
Sections 5.1.5 and 5.1.6. (Note, however, that if node is a proper subset of
1 N| then the iteration for y € node do search(y) must exclude integers in
1 N|that do not represent nodes.) A possible representation of the output

SCC is left to the reader as an exercise.

If we assume that the output of a strongly connected component via
SCCrequires a time proportional to its size then, since each node belongs to
exactly one component, the total time required for output statements will be
of order N. A similar argument applies to the for statement that sets Q(A(k))
to o for each k in the outputted component. The rest of the program obeys
the timing restrictions discussed in Section 5.4.1, and therefore requires a
time of order N+ E.

Exercise

1. Transform the above program to represent the output variable SCC by an array
out, with domain node, using the representation invariant

Se SCC if and only if (3 x € U SCC) S=P({out(x)}, out)

This is a standard method for representing a partition of a finite set.



APPENDIX A
NOTATION FOR SYNTACTIC DEFINITION

A.1 BACKUS-NAUR FORM

One of the most significant aspects of the development of Algol 60 [Naur 60,
63] was the use of a precise and formal notation, called Backus normal form,
Backus-Naur form, or simply BNF, to specify syntax. Although the concept
underlying BNF was already known in mathematical linguistics [Chomsky
56], it was independently discovered by J. Backus, who first suggested its
application to the definition of programming languages [Backus 59]. Since
then, with occasional extensions or modifications, BNF has become the
standard tool for describing the syntax of programming languages. In this
appendix we give an explanation of this notation, including several exten-
sions that will be used in Appendix B.

The underlying idea is best seen through simple examples (which are
not meant to describe the actual syntax of Algol W). Consider the fragment
of a programming language used in Section 1.1. Its syntax might be
described in English as follows:

(1) A statement can be:

(a) An action,
or (b) if L then S, where L is a logical expression and S is a

statement,

or (c) if Lthen S, else S, where L is a logical expression and S: and
S, are statements,

or (d) while L do S, where L is a logical expression and S is a
statement,

or (¢) begin Q end, where Q is a statement sequence.

383
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(2) A statement sequence can be:
(a) A statement,
or (b) S; Q, where S is a statement and Q is a statement sequence.
In BNF, the above description becomes

(statement) ::= (action)
(statement) ::= if (logical expression) then (statement)
(statement) ::= if (logical expression) then (statement)
else (statement)
(statement) ::= while (logical expression) do (statement)
(statement) ::= begin (statement sequence) end
(statement sequence) ::= (statement)
(statement sequence) ::= (statement) ; (statement sequence)

The names in angular brackets, such as (statement) and (logical expression),
are called nonterminal symbols or phrase class names, and denote sets of
language phrases that have the same syntactic behavior. On the other hand,
symbols such as if and then and the semicolon, which actually belong to the
language being described, are called terminal symbols. A syntax description
is given by a set of formulas, called productions, with the form N ::= S, where
N is a nonterminal symbol and §'is a string that can contain both nonterminal
and terminal symbols. Roughly speaking, a production of the form N ::= §
means that S is a possible form for a phrase in the set denoted by N.
More precisely, every syntactically correct phrase p in the set denoted
by the nonterminal symbol N can be derived by the following process:

(1) Letp be N.

(2) As long as p contains one or more nonterminal symbols,
replace some nonterminal N in p by the right side of some
production whose left side is N.

For example, a derivation of a phrase in the set denoted by (statement) might
consist of the following steps:

(statement)

if (logical expression) then (statement) else (statement)

if (logical expression) then begin (statement sequence) end
else (statement)

if (logical expression) then begin (statement) ;
(statement sequence) end else (statement)

if (logical expression) then begin (statement) ;
(statement) end else (statement)

if (logical expression) then begin (action) ;
(statement) end else (statement)

if (logical expression) then begin (action) ;
(action) end else (statement)



SEC. A.1 BACKUS-NAUR FORM 385

if (logical expression) then begin (action) ;

(action) end else while (logical expression) do (statement)
if (logical expression) then begin (action) ;

(action) end else while (logical expression) do (action)

Of course, to complete this derivation we would have to replace the remain-
ing nonterminals, using productions for (logical expression) and (action) that
would be available if we had a description of a complete language instead of
just a fragment. Ultimately, we would obtain a string of terminal symbols
that, by definition, would be a syntactically correct statement.

The derivation of a phrase can be displayed more perspicuously by a
derivation tree, in which nonterminal symbols occur as nonterminal nodes,
terminal symbols appear as terminal nodes, and the subnodes of each
nonterminal node describe the replacement of that node. The tree for the
above derivation is given in Figure A.1. (Of course, to complete the deriva-
tion tree we would have to add subtrees below the five remaining nontermi-

nal nodes.)
(statement)

if (logical expression) then (statement) else (statement)

e RS

begin (statement sequence) end  while (logical expression) do (statement)

statement) ; (statement sequence (action
q
(action) (statement)
(action)

Figure A.1 Derivation Tree for if (logical expression) then begin (action) ;
(action) end else while (logical expression) do (action) .



386 NOTATION FOR SYNTACTIC DEFINITION APPDX. A

A derivation tree provides a proof that the string obtained by reading its
terminal nodes from left to right is a syntactically correct phrase. Beyond this
however, it displays the way in which a phrase is divided into its immediate
subphrases, which obviously affects its meaning (at least, if we make the
plausible assumption that the meaning of a phrase is a function of the
meanings of its subphrases). For example, the tree in Figure A.1 shows the
following decomposition into subphrases:

if (logical expression) then begin (action) ; (action) end

else while (logical expression) do (action)

At this point, the problem of ambiguity arises. Consider the statement:

if (logical expression) then if (logical expression)
then (action) else (action)

For this phrase, there are two distinct derivation trees, shown in Figure A.2,
which describe two different decompositions into subphrases:

if (logical expression) then

if (logical expression) then (action) else (action),

and
if (logical expression) then

if (logical expression) then (action)

else (action),

which in turn imply different meanings. The existence of more than one
derivation tree for the same phrase (from the same nonterminal) is called
ambiguity, and is normally a defect in a language design.

In this particular case, one way of removing the ambiguity is to limit the
forms of statements that can occur between then and else to a phrase class
called (simple statement). The following productions give an unambiguous
syntax:

(statement) ::= (simple statement)

(statement) ::= if (logical expression) then (statement)

(statement) ::= if (logical expression) then (simple statement)
else (statement)

(statement) ::= while (logical expression) do (statement)

(simple statement) ::= (action)

(simple statement) ::= begin (statement sequence) end

(statement sequence) ::= (statement)

(statement sequence) ::= (statement) ; (statement sequence)
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(statement)

if (logical expression) then (statement)

if (logical expression) then (statement) else (statement)

(action) (action)

(statement)

‘-\_\
if (logical expression) then (statement) else (statement)

if (logical expression) then (statement) (action)

(action)

Figure A.2 Two Derivation Trees for if (logical expression) then
if (logical expression) then (action) else (action)

In this syntax, the only permissible subphrase decomposition is
if (logical expression) then
if (logical expression) then (action) else {action),

which is described by the derivation tree in Figure A.3.
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(statement)
if (logical ckprcxsion) then (statement)
if (logical expression) then (simple statement) else (statement)

(action) (simple statement)

(action)

Figure A.3 Derivation Tree for if (logical expression) then
if (logical expression) then (action) else (action)
with an Unambiguous Set of Productions.

To explore further the relation between syntax, subphrase decomposi-
tion, and meaning, consider a simple language in which expressions are
sequences of identifiers separated by + or —. Both of the following produc-
tion sets describe the correct set of phrases:

(expression) ::= (identifier)

(expression) ::= (expression) +(identifier)

(expression) ::= {(expression) —(identifier)
or

(expression) ::= (identifier)

(expression) ::= (identifier) +(expression)

(expression) ::= (identifier) —(expression)

But there is a difference in subphrase decomposition, as can be seen for
the expression x —y+z. Under the two production sets, this phrase is given
the distinct derivation trees shown in Figure A.4. According to the first
set of productions, the operators + and — associate to the left,
e.g. x—y+z=(x—y)+z, while according to the second set of productions,
these operators associate to the right, e.g. x—y+z=x—(y+2z).
Since + and — are left-associative in conventional mathematical
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notation (and in Algol W), only the first set of productions describes sub-
phrase decomposition correctly.

Now suppose that we wish to add a multiplication operator. To reflect
conventional notation we want decompositions such as XxXv+zandx+yXz,
i.e. we want multiplication to “bind more tightly”’ than addition or subtrac-
tion. The solution is to say that an expression is a sequence of terms
separated by + or —, where a term is a sequence of identifiers separated
by X:

(expression) ::= (term)
(expression) ::= (expression)+ (term)
(expression) ::= (expression) —(term)

(term) ::= (identifier)
(term) ::= (term) X (identifier)

Next, to add the use of parentheses, we want to say that a parenthesized
expression can occur anywhere that an identifier can. If we introduce
(primary) to denote “anywhere an identifier can occur”, we get:

(expression) ::= (term)
(expression) ::= (expression) +(term)
(expression) ::= (expression)—(term)

(term) ::= (primary)

(term) ::= (term) X (primary)
(primary) ::= (identifier)
(primary) ::= ((expression))

Nonterminal symbols like (expression), (term), and (primary), that are
used to show the subphrase decomposition of various operations, are often
called levels of precedence. In the description of Algol W in Appendix B, six
such nonterminals are needed to describe the syntax of expressions.

This general method of describing syntax has been studied extensively
in theoretical computer science, where finite sets of productions of the form
N ::= Sare called context-free grammars[Hopcroft 69]. The subject is also of
considerable practical importance, since a major component of any compiler
is a procedure, called a parser, that converts the input program into its
(hopefully unique) derivation tree [Aho 72, Gries 71, Backhouse 79].

Exercise

1. The following set of productions describes an unorthodox language of expres-
sions which is quite different from either Algol W or conventional mathematical
notation, despite the fact that the same symbols are used:
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(expression) ::= (term)
(expression) ::= — (expression)
(term) ::= (factor)

(term) ::= (factor)+(term)
(term) ::= (factor) X (term)
(factor) ::= (primary)

(factor) ::= / (primary)

(primary) ::= a
(primary) ::= b
(primary) ::= ¢
(primary) ::= ( (expression) )

Determine which of the following strings are syntactically correct according to
this set of productions, i.e. which strings can be derived from the nonterminal
symbol (expression). Give derivation trees for the correct strings.

—a+b+c

atb—c

axb+/c

——Jc

=//c

(a+b) / c

A.2 EXTENSIONS OF BACKUS-NAUR FORM

Although Backus-Naur productions can be used to describe a real prog-
ramming language such as Algol W, an extremely large number of produc-
tions is required. Indeed, to describe precisely the rules for parameter and
subscript matching it is necessary to use an infinite number of productions.
Thus we introduce several extensions of our notation to permit a single
production to stand for a set of productions.

To condense a group of productions with the same left side, we write

Nez=.8 0. ]ISk
as an abbreviation for

N:=§,

N == §,

For example, the productions used in the previous section to describe a
simple language of expressions can be written as

(expression) ::= (term) | (expression)+(term)
| (expression)—(term)

(term) ::= (primary) | (term) X (primary)

(primary) ::= (identifier) | ((expression))
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More generally, to indicate several alternatives within part of the right
side of a production, we write
N ::= S(] I[SI I odt I Sn]] Sn+l
(where some of the strings S, may be empty) as an abbreviation for
N = SOSlSn+1

N .= S()S"S,H.l
For example,

"I | +1—1] (integer number)

(scale factor) ::

abbreviates

(scale factor) ::
(scale factor) ::
(scale factor) ::

" (integer number)
'+ (integer number)
'—(integer number)

It is also useful to introduce a notation for repetition. We write [S]*,
where k is a nonnegative integer, to stand for the string SS ... S containing k
occurrences of S. For example,

(identifier) ::= (letter) [(letter or digit)]>
is an abbreviation for

(identifier) ::=
(letter) (letter or digit) (letter or digit) (letter or digit)

A slight extension of this notation is particularly useful for describing
languages, such as Algol W, in which lists of items separated by commas play
a major role. For k=1, we write |[S]]’(‘D to stand for the string S,S, ... ,S con-
sisting of k occurrences of S separated by commas. For example,

(real variable) ::= (real array variable (|[t]]29)) ([¢subscript)] ;)
is an abbreviation for

(real variable) ::= (real array variable (*, *, *))
({subscript), (subscript), (subscript))

(Here (real array variable (*, *, *)) is the name of a class of phrases that
denote three-dimensional real arrays.) Note that repetition can occur either
inside or outside of the angular brackets that enclose nonterminal symbols.

Finally, we introduce the concept of production schemas. A production
schema looks like a production except that it contains occurrences of one or
more special symbols called metavariables. The schema also gives a descrip-
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tion of the ranges of these metavariables. It stands for the set of those
productions that can be obtained by replacing all occurrences of each
metavariable by some member of its range.

Numeric metavariables will be used to indicate varying numbers of
repetitions. For example, the schema

(identifier) ::= (letter) [(letter or digit)]’
where 0 <i<255

stands for the 256 productions

(identifier) ::= (letter)
(identifier) ::= (letter) (letter or digit)
(identifier) ::= (letter) (letter or digit) (letter or digit)

Similarly,

(real variable) ::= (real array variable (E319); ([(subscript)]7,)
where n=>1

stands for the infinite sequence of productions

(real variable) ::= (real array variable (*)) ((subscript))

(real variable) ::= (real array variable (*, *))
((subscript), (subscript))
(real variable) ::= (real array variable (*, *, *))

((subscript), (subscript), (subscript))

We will also use symbolic metavariables, denoted by Greek letters,
which range over sets of symbol strings. For example, the schema

(t term) ::= (7 factor)
where 7 € {integer, real, long real, logical}

stands for the four productions

(integer term) ::= (integer factor)
(real term) ::= (real factor)

(long real term) ::= (long real factor)
(logical term) ::= (logical factor)

It is important to notice that, when forming an instance of a production
schema containing several metavariables, occurrences of distinct metavari-
ables may be replaced by different integers or symbol strings, but occurrences
of the same metavariable must be replaced by the same integer or symbol
string.
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A few metavariable ranges will be used in many schemas. For this
reason, we introduce the following standard metavariables, whose ranges
will be fixed throughout the description in Appendix B:

m: ranges over integers at least one.

n: ranges over integers at least one.

7: rangesover the data types, i.e. integer, real, long real, and logical.
ranges over the numeric data types, i.e. integer, real, and long
real.

a: ranges over dimension lists, i.e. lists of one or more asterisks,
separated by commas.

6: ranges over phrase types (defined in Section B.3.1).

ranges over lists of one or more phrase types, separated by
commas.

Exercise

1. The following productions and production schemas appear in Appendix B. In
each case describe the set of productions being abbreviated.

(real number) ::= (unscaled real)

| [(unscaled real) | (integer number) | ] (scale factor)
(unscaled real) ::= [(digit)]* . [(digit)}V

where >0, j=0, and i +j>1

(simple variable declaration) ::= 7 [(r variable binder)] ¢
(elementary 7,,, expression) ::= [+] =1 (Taum term)
(1o term) ::= (7, term) / (7, factor)

where 7, 7;, and 7, are given by column 6 of Table B.1
(array declaration) ::=

7 array [(r array variable ([*]7) binder)] 5

([(lower bound) :: (upper bound)]7)



APPENDIX B
THE SYNTAX OF A SUBSET OF ALGOL W

This appendix describes the syntax of the portion of Algol W used in this
book. It also includes a few additional facilities for input-output and real
arithmetic that are likely to be needed in simple programs. As much as
possible, we have used the notation discussed in Appendix A, but a few
constraints on the syntax are stated in informal English. The order in which
language features are presented follows the division of the book into chap-
ters.

In order to emphasize programming methodology rather than a particu-
lar programming language, we have purposely avoided many interesting and
useful aspects of Algol W. These include complex numbers, character and
bit strings, references and records, subarray designators, expression blocks,
certain forms of the for statement, case statements, assert statements,
character-oriented input-output, exception handling, and a miscellany of
implicitly declared procedures and variables. Those aspects of interest to a
language designer are discussed in [Wirth 66]. However, this reference is a
preliminary description differing in many details from the actually
implemented language, which is thoroughly described in [Sites 72].

Our productions frequently deviate from those given in either [Wirth
66] or [Sites 72]. We have tried to choose nonterminal names that match the
terminology used in the main text, to unify the description of several con-
structs, to make the behavior of types and binders as explicit as possible, and

395
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to formalize the parameter and subscript matching rules. For the last pur-
pose, we have used the extended parameter specifiers which were intro-
duced in Section 3.1.2.

Our description assumes that a complete program is a single string of
characters, although in reality this string is broken up by a division into
individual punched cards. However, the breaks between cards are ignored
by the compiler, except that the last eight columns of each card are skipped.
(For large or important programs, it is convenient to place sequential card
numbers or identifying symbols in these columns as a protection against
missing or out-of-order cards.) Thus the first column of each card immedi-
ately follows the 72nd column of the preceding card.

It is unwise to try to pack a program onto a minimal number of cards;
line breaks and indentation should be used to reveal the structure of the
program as clearly as possible to human readers. However, one must
remember that these visual cues, which do not influence the Algol W
compiler, can mask syntactic errors. The omission of a semicolon or comma
is especially hard to perceive at the end of a line. Even harder is a missing
blank at the end of a line that runs all the way to column 72 and is followed by
a line beginning in column one.

We continue to show reserved words in lower-case boldface and
implicitly declared identifiers in lower-case italics, although these words are
actually punched in upper case. Aside from this convention, and the use of
extended parameter specifiers, the symbols in the productions are those
used for the IBM 360/370 implementation of the language (with an 029
keypunch). However, in many cases one or more alternative symbols, not
used in the actual implementation, are shown below the correct symbol. For
example,

(logical factor) ::= 71 (logical primary)
not

Some of these alternative symbols, such as lower case letters, #, <, =, X, {,
and } are used in this book, the others occur frequently in the computing
literature or in other Algol-like languages. Hopefully this will pro-
vide—without confusion—a limited ability to read Algol-like languages in
general.

It should be emphasized that the symbols (, ), ::=, |, [, and ], Greek
letters (symbolic metavariables), and superscripts (numeric metavariables)
are part of the syntactic notation and do not occur in Algol W programs.
(Actually the symbol | is used as an operator in a part of Algol W not used in
this book.)
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B.1 SYNTAX FOR CHAPTER 1

B.1.1 Basic Symbols

(letter) := A|B|C|D|E|F|G|H| 1| J|K|L
a b ¢c d e f g h i j k I
IMI|N|O|P|QIRIS|ITIUIVIWIX|Y]|Z
AN EINO) BUDHEG | T atses NN UV BOESTRYASEZ

(igity = 0] 1]2]|3|4|5/6]7]8]9
(letter or digit) ::= (letter) | (digit)
(reserved word) ::= true | false | integer | real | logical

| long | array | procedure | begin | end | if | then
| else | div | rem | abs | short | and | or | go | to
| goto | for | until | do | while | comment | value
| result | step | (extra reserved word)
(extra reserved word) ::= null | complex | bits | string
| reference | record | case | of | shr | shl | is
| assert | algol | fortran
(identifier) ::= (letter) [(letter or digit)]*
where 0 <i <255
(integer number) ::= [(digit)]*
where i =1
(unscaled real) ::= [(digit)]'. [(digit)]/
where i =0, ]?0 and i+j=1
(scale factor) ::= " [ | + | —] (integer number)
10
(real number) ::= (unscaled real)
| [(unscaled real) | (integer number) | ] (scale factor)
(long real number) ::= (real number) L | (integer number) L
(string character) ::= (normal string character) |5*7
(string) ::= " [(string character)]' "
where 1 <i=256
(comment) ::= comment (comment body) ;

(comment body) ::= [(comment character)]’
where i =0

An identifier must not be the same as any reserved word, including the
extra reserved words, which are used in full Algol W but not in the sublan-
guage used in this book.
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Strings denote sequences of characters. Although we will not discuss the
string-manipulation facilities of Algol W (in which strings are an additional
data type), we will use strings as constant parameters in output statements,
(See Section C.2.)

A (normal string character) is any keypunch character except the quota-
tion mark ”. A (comment character) is any keypunch character except the
semicolon.

Blanks (unpunched card columns) can be interspersed freely in an
Algol W program, without changing its syntactic structure or meaning,
except for the following restrictions:

(1) Blanks must not occur within reserved words, identifiers, or num-
bers.

(2) Blanks occurring within strings are meaningful components of the
strings.

(3) When a reserved word, identifier, or number is immediately fol-
lowed by a reserved word, identifier, number, or comment body,
they must be separated by at least one blank.

Comments may be interspersed freely in a program, without affecting
its syntactic structure or meaning, except in the middle of a reserved word,
identifier, number, string, or comment.

B.1.2 Simple Variable Declarations

(declaration) ::= (simple variable declaration)

(simple variable declaration) ::= 7 [(r variable binder)]
(v variable binder) ::= (7 variable identifier)

(7 variable identifier) ::= (identifier)

The last three productions are schemas in which 7 is a standard symbolic
metavariable ranging over the four data types integer, real, long real, and
logical. (However, note that reserved words such as integer are not written in
boldface when they occur within the names of nonterminal symbols.) In the
second production, n is a standard numeric metavariable ranging over the
integers 1, 2, 3, ... .

The scope of a declaration and its binders is the immediately enclosing
block (excluding lower and upper bounds of array declarations that are
immediately enclosed by this block). Two binders with the same scope must
be distinct identifiers. Except for implicitly declared identifiers, every iden-
tifier occurrence in a complete program must be bound.

Each binder establishes the (phrase) type of the identifier occurrences
that it binds. For example, any occurrence of x that is bound by the declara-
tion real x must appear in a derivation tree as
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(real variable identifier)
I
(identifier)
I
(letter)
|

X

B.1.3 Variables and Expressions

(v variable) ::= (7 variable identifier)
(7 expression) ::= (simple 7 expression)
| (conditional 7 expression)
(conditional 7, expression) ::= if (logical expression)
then (7, expression) else (7, expression)
where 7¢, 71, and 7, are given by column 1 of Table B.1

(simple 7 expression) ::= (elementary 7 expression)
(simple 7( expression) ::= (elementary 7, expression)
[ = | 1= ] (elementary 7, expression)
=

where 7, 71, and 7, are given by column 2 of Table B.1
(simple 7o expression) ::= (elementary 7; expression)
[<| <=| >| >= ] (elementary 7, expression)
= =

where 7, 71, and 7, are given by column 3 of Table B.1

(elementary 7 expression) ::= (7 term)
(elementary 7, expression) ::= [ + | — ] (Tqum term)
(elementary 7 expression) ::=

(elementary 7, expression) [ + | — ] (r; term)

where 7, 71, and 7, are given by column 4 of Table B.1
(elementary logical expression) ::=
(elementary logical expression) or (logical term)

V
(7 term) ::= (7 factor)
(1o term) ::= (7] term) * (7, factor)
X

where 7, 71, and 7, are given by column 5 of Table B.1
(1o term) ::= (7, term) / (7, factor)

where 7, 71, and 7, are given by column 6 of Table B.1
(integer term) ::= (integer term) [ div | rem ] (integer factor)
(logical term) ::= (logical term) and (logical factor)

A
(7 factor) ::= (v primary)
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(long real factor) ::= (7,,, factor) ** (integer primary)

(logical factor) ::= 1 (logical primary)
not
(t primary) ::= (7 constant) | (r variable) | ((r expression))
(Tnum Primary) ::= abs (7,,m primary)
(real primary) ::= short (7,,, primary)
(long real primary) ::= long (7,,n primary)
(Toum constant) ::= (r;,, number)
(logical constant) ::= true | false

The standard metavariable 7,,, ranges over the three numeric data
types integer, real, and long real. When a production schema contains the
metavariables 7, 71, and 75, it stands for the set of productions that can be
obtained by replacing these metavariables in accordance with the appropri-
ate column of Table B.1, which expresses 7 as a function of 7; and 7,. An
occurrence of “—’ in Table B.1 indicates that the corresponding values of 7,
and 7, are not permitted.

The syntax of logical expressions in Algol W is somewhat different than
conventional mathematical notation. There are no multiple relations, and
relations must be parenthesized when joined by and or or. For example,
x <y <z must be written as (x <y) and (y <z). In this book we have not
followed this syntax in the logical expressions that occur within assertions.

The operators short and long can be used to convert any type of number
to a single or double precision floating-point representation.

B.1.4 Statements

(complete program) ::= (statement)

(statement) ::= (simple statement) | (conditional statement)
| (while statement)

(simple statement) ::= (empty statement) | (block)
| (assignment statement)

(empty statement) ::=

(block) ::= begin [(declaration) ;] (statement sequence) end
where i =0

(statement sequence) ::= [(statement) ;]* (statement)
where i =0

(assignment statement) ::= (7, variable) := (7, expression)

where 7, and 7, are given by column 7 of Table B.1
(conditional statement) ::=
if (logical expression) then (statement)
| if (logical expression) then (simple statement)
else (statement)
(while statement) ::= while (logical expression) do (statement)
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As discussed in Section A.1, the distinction between statements and
simple statements is made to avoid ambiguities involving conditional state-
ments. The only context that requires a statement to be simple is the part of
the two-way conditional statement between then and else.

The empty statement is simply an empty string of characters. Its execu-
tion leaves the state of the computation unchanged.

A block (excluding lower and upper bounds in immediately enclosed
array declarations) is the scope of the binders in the declarations and label
definitions that it immediately encloses. Since these binders have the same
scope, they must be distinct identifiers.

In the schema describing assignment statements, the permissible values
of the metavariables are described by column 7 of Table B.1. When 7. and 7,
are permitted in this schema, 7, is said to be assignment compatible with 7.

It is important to distinguish the three symbols =, :=, and ::=. The first
is the relational operator of equality, the second is the assignment operator,
and the third is a symbol of the syntax-defining notation, which never occurs
in Algol W programs.

Probably the most common trivial syntactic error in Algol W is a
misplaced semicolon. Aside from its use within procedure declaration head-
ings, the semicolon plays two distinct roles: it marks the end of comments
and it separates adjacent declarations and statements in a block. In the latter
role, it behaves more like a comma in English than a period.

To check that the usage of semicolons in a program is correct, first
eliminate all comments, including the semicolons that terminate the com-
ments. Then there should be a semicolon after every declaration, and after
every statement that is followed by another statement (or a label definition),
but not after those statements that are followed by end, else, a comma, or a
right parenthesis.

B.1.5 Implicitly Declared Procedures

(simple statement) ::=
[ read | readon | ([(read parameter)]?)
| [ write | writeon ] ([{write parameter) ] )

| iocontrol ((integer expression))
(read parameter) ::= (7 variable)
write parameter) ::= (v expression strin

p g

(integer primary) ::=

[ entier | truncate | round ]| ((tpum €Xxpression))
(real primary) ::=

[ sqrt | exp |In | log | sin | cos | arctan |

({(Tnhum €xpression))
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(long real primary) ::=
[ longsqrt | longexp | longin | longlog | longsin
| longcos | longarctan | ((tnum €xpression))
(logical primary) ::= odd ({(integer expression))

The identifiers read, readon, write, writeon, and iocontrol are implicitly
declared procedure identifiers denoting built-in procedures for input and
output (whose meaning is described in Appendix C). Thus the first produc-
tion above is actually a special case of the general syntax for procedure
statements, which will be given in Section B.3.5. Similarly, the remaining
identifiers above are implicitly declared function-procedure identifiers, and
the last four productions are special cases of the general syntax for function
designators.

The functions entier, truncate, and round provide three methods for
converting real numbers to integers. entier(x) gives the unique integer i such
that i<x <i+1. Then

truncate(x) = if x = 0 then entier(x) else —entier(—x)
round(x) = if x =0 then truncate(x + 0.5) else truncate(x — 0.5).

Most of the remaining functions are single-precision and double-precision
versions of common elementary functions from mathematics. In and longin
produce logarithms to the base e, while log and longlog produce logarithms
to the base 10.

Exercise

1. In each of the following cases, we give a nonterminal symbol of Algol W along
with a phrase that is supposed to be derivable from the nonterminal symbol, but
that in fact contains one or more syntactic errors. In each case, correct the
syntactic errors without changing the intuitive meaning, and without changing
the form of the phrase more than necessary. In the first two cases, give a
derivation tree for the corrected phrase from the designated nonterminal.
Assume that nonlocal identifiers behave as though declared by integer k, n; real
x, y. (Note that Greek letters, superscripts, and the symbols [, ], and | are all
part of notation for abbreviating sets of productions, and should not appear in
derivation trees.)

(logical expression) 0<k<n

(statement) begin real z; z := x/—y; end
(real expression) —3x'—3x-3
(statement) n:=n#**n
(statement) if n>0 then
whilen20don :=n—1;
elsen :=1
(statement) begin integer i, real z;

begini:= 0;z := 1 end
begin i :— i+1; z := z div 2 end
end
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B.2 SYNTAX FOR CHAPTER 2

B.2.1 Array Declarations

(declaration) ::= (array declaration)
(array declaration) ::=
7 array [(7 array variable ([*];) binder) [,

([{lower bound) :: (upper bound)])

(lower bound) ::= (integer expression)

(upper bound) ::= (integer expression)

(7 array variable (a) binder) ::= (7 array variable («) identifier)
(7 array variable (a) identifier) ::= (identifier)

It is a syntactic error to use an n-dimensional array in an array desig-
nator with the wrong number of subscripts. To make this explicit in our
syntax, we must include dimensionality as part of the type of an array
identifier. For this purpose we will use a dimension list, which is a listof n = 1
asterisks separated by commas. (This rather unusual notation is chosen
because of its similarity to specifiers for array parameters.) The standard
symbolic metavariable a ranges over dimension lists.

B.2.2 Variables and Expressions Involving Arrays

(7 variable) ::= (7 array variable ([*]',)) ([(subscript)]7)
(subscript) ::= (integer expression)

(7 array variable (a)) ::= (7 array variable (&) identifier)

(r primary) ::= (r array expression ([*]'y)) ([(subscript)]7)
(r array expression (a)) ::= (7 array variable (a))

These productions introduce an intentional ambiguity. For example,
Figure B.2 shows two derivation trees for a (real primary) of the form
(real array variable (*)) ((subscript)). The first tree reflects the view that the
value of the primary is the value of a variable that is obtained by applying the
array to a subscript. The second tree reflects the view that the value of the
primary is obtained by applying to a subscript the function that is the value of
the entire array.

This ambiguity is permissible since both derivation trees give rise to the
same meaning. It must be included to permit the full variety of parameters
discussed in Section B.3.
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(real primary)

(real variable) (1)

(real array variable (%)) ((subscript))

(real primary)

(real array expression (#)) ({subscript)) )

(real array variable (*))

Figure B.2 Two Derivation Trees for a (real primary) of the
Form (real array variable (*)) ({subscript)).

B.3 SYNTAX FOR CHAPTER 3

In Section 3.1.2, we claimed that the use of extended specifiers insures that
the copy rule will preserve syntactic correctness. In this section, we give a
syntactic description that is sufficiently formal to permit this claim to be
demonstrated. In this description we use production schemas containing
metavariables whose ranges are in turn described by productions. This kind
of two-level grammar was invented by A. van Wijngaarden and first used
extensively in the definition of Algol 68 [van Wijngaarden 69].

To orient the reader to the details that follow, we begin with an explana-
tion of why the copy rule preserves syntactic correctness. In this explanation
we will ignore call by value and result.

The set of phrase types, which is the range of the metavariable 0, is
defined by the productions in Section B.3.1. For each phrase type 0, there is
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a nonterminal (6 binder) describing binders that establish 6, a nonterminal
(0 identifier) describing identifier occurrences that are bound by a (6 binder),
and a nonterminal (6) describing phrases of type 6. In Section B.3.5 , we show
that syntactic correctness is preserved by a type-correct substitution, which is
a substitution that replaces free occurrences of (@ identifier), after appropri-
ate parenthesization, by phrases that can be derived from (6). Thus we must
show that the substitution prescribed by the copy rule is type-correct.
Consider a declaration procedure P(FL); S, where the formal parame-
ter list FL binds the formal parameters Fy , ... , F,. By the syntax of formal
parameter lists, the type information in FL determines unique 6y, ..., 6, such
that the occurrence of each F; in FL is a (6, binder), so that the binding
structure insures that each free occurrence of F; in Sis a (6, identifier). At the
same time, this syntax also establishes that (excepting the anomalous
behavior of call by value) FLis a (6, , ... , 6, formal parameter list). Then the
syntax of procedure declarations establishes that P is a (procedure(6; , ...,
6,) binder), so that the binding structure insures that each occurrence of P
bound by the procedure declaration is a (procedure(6, , ..., 6,) identifier).
Now suppose P(4,, ..., A,) is a procedure statement containing such
an occurrence. Then the syntax for procedure statements establishes that
Ay,..., A isa(6,, ..., 0, actual parameter list), and the syntax of actual
parameter lists establishes that each A; must be a (6y). Thus the substitution

SI Fly coey Fyp=2 Ay, oo , Ay

prescribed by the copy rule is type-correct.

B.3.1 Phrase Types

(phrase type) ::= 7 variable | 7 expression
var exp
| 7 array variable ((dimension list))
var
| 7 array expression ((dimension list))
exp
| statement | procedure ((phrase type list))
| = procedure ((phrase type list))

(phrase type listy ::= [(phrase type)]]’(‘D
(dimension list) ::= |[=u]]'éj

The standard metavariables 6, 7, and o respectively range over the sets of
phrase types, phrase type lists, and dimension lists which are described by
these productions. The phrase type statement includes parameterless proper
procedures, since the two notions are equivalent in Algol W. Similarly, the
phrase type 7 expression includes parameterless = function procedures.
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B.3.2 Formal Parameter Lists

([0];, formal parameter list) ::= ([8], specifier)
(m, [017 formal parameter list) ::=
(m formal parameter list) ; ([6]specifier)
([ 7 variable ]¢ specifier) ::=
7 [ {var} | result | value result ] [(r variable binder)]
([ = expression i_ specifier) ::=
7 [ {exp} | procedure ] [(r expression binder)]
([ = expression |7 specifier) ::=
7 value [(r variable binder)]7
([ = array variable () ], specifier) ::=
7 array {var} [(r array variable () binder)]g ()
([ 7 array expression (a) ] specifier) ::=
7 array {exp} [(r array expression () binder)]g (a)
([ statement |7 specifier) ::=
procedure [(statement binder)]g
([ procedure () ], specifier) ::=
procedure [(procedure () binder)]]g){qr}
([ 7 procedure () Jg, specifier) ::=
7 procedure [(7 procedure () binder)]]z){‘rr}

The schemas given above are complicated by the need to describe
compound specifiers. The reader who has difficulty should first try to under-
stand the productions that are obtained by taking n=1; these productions
describe a sublanguage in which each specifier contains a single formal
parameter.

When n is restricted to one, the first two schemas imply thata(6;, ..., 0,
formal parameter list) has the form (6, specifier); ... ; (8, specifier), and the
remaining schemas imply that each (6, specifier) contains a (6, binder), along
with appropriate information determining 6,. The only exception is 7 value F,
which is a (r expression specifier) containing a (r variable binder). This
reflects the fact that a formal parameter called by value can be used as a
variable, e.g. on the left of an assignment statement, while the corresponding
actual parameter can be an expression, e.g. a constant or compound expres-
sion.

As an illustration of the description of compound specifiers, consider
deriving the formal parameter list integer {exp} i, j; real {var} x, y from the
nonterminal symbol (integer expression, integer expression, real variable,
real variable formal parameter list). The necessary productions are obtained
from the following substitutions:
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— integer expression, integer expression
— real variable

-2

— integer expression
—2

— integer
—2
— real
—2

in the second
schema

} in the first schema

} in the fourth schema

T A3y

} in the third schema

The scope of the binders in a formal parameter list consists of the formal
parameter list itself and the immediately following procedure body. Since
binders with the same scope must be distinct identifiers, the same identifier
must not occur more than once in the same formal parameter list.

Although the parts of specifiers in curly brackets are used throughout
this book, they are not actually part of Algol W and must be replaced by
comments in real programs. Because of their omission from Algol W, certain
syntactic errors are only detected during program execution.

B.3.3 Procedure Declarations

(declaration) ::= (procedure declaration)
(procedure declaration) ::=
procedure (statement binder) ; (statement)
| procedure (procedure () binder)
(( formal parameter listy) ; (statement)
| = procedure (v expression binder) ; (v expression)
| 7 procedure (7 procedure () binder)
((7r formal parameter list)) ; (7 expression)

In general, a proper procedure declaration establishes the phrase type
procedure(r) for the identifier that it binds, and a 7 function procedure
declaration establishes the phrase type 7 procedure (), where in each case 7
is determined by the formal parameter list. However, a parameterless
proper procedure declaration establishes the phrase type statement, and a
parameterless 7 function procedure declaration establishes the phrase type
T expression.

B.3.4 Binders and Identifiers
(6 binder) ::= (6 identifier)
(6 identifier) ::= (identifier)
These production schemas show that identifiers and their binders are

classified by phrase type. Several particular instances of these schema have
occurred in previous sections.
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Without additional restrictions, the second schema would lead to ambi-
guity. This ambiguity is resolved by the proviso that the phrase type of an
identifier occurrence is determined by the type of the binder which binds it.
More precisely, for each phrase type 6, the production (6 identifier) ::=
(identifier) can only be used to described identifier occurrences that are
bound by binders which are described by the production (8 binder) ::=
(@ identifier).

In a complete program, all free identifier occurrences must be implicitly
declared identifiers. The type of such occurrences is given in Table B.3. The
types of read, readon, write, and writeon are special cases, since these
identifiers stand for “generic” procedures that can accept a variety of
number and types of actual parameters. In the context of calls of write and
writeon, string is an additional data type, so that strings can be used as
constant write parameters, 1.€.

(string expression) ::= (string)

Implicitly declared identifiers cannot be used as actual parameters.

Identifier Phrase Type
entier
truncate integer procedure(real expression)
round
sqrt |
exp
In
log + real procedure(real expression)
sin
cos
arctan
longsqrt i
longexp
longin
longlog *  long real procedure(long real expression)
longsin
longcos
longarctan
odd logical procedure(integer expression)
procedure(r; variable, ... , 7, variable)
read
d where n=1and 7, ... ,7, €
reagary {integer, real, long real, logical}
: procedure(r, expression, ... , 7, expression)
write :
: where n=1and 7, ... , 7, €
WriEon {integer, real, long real, logical, string}
iocontrol procedure(integer expression)
intfieldsize integer variable (See Section C.2)

Table B.3 Phrase Types of Implicitly Declared Identifiers.
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B.3.5 Procedure Statements and Function Designators

(simple statement) ::= (statement identifier)
(7 primary) ::= (7 expression identifier)
(7 array expression (a)) ::= (7 array expression («) identifier)
(simple statement) ::= (procedure statement)
(procedure statement) ::=

(procedure (7)) ({7 actual parameter list))
(procedure (7)) ::= (procedure () identifier)
(7 primary) ::= (7 function designator)
(7 function designator) ::=

(7 procedure (7)) ((7 actual parameter list))
(r procedure (m)) ::= (v procedure (7) identifier)
(0 actual parameter list) ::= (6)
(m, 6 actual parameter list) ::=

(7 actual parameter list), (6)

The first two productions show the contexts in which statement and =
expression identifiers can occur; such occurrences can be viewed as calls of
parameterless procedures. The third production shows that array expression
identifiers can occur as array expressions in much the same way that simple
expression identifiers can occur as primaries. (The analogy would be better if
we could view these occurrences as calls of parameterless ‘“‘array” proce-
dures, but Algol W does not permit procedures that return array values. In
fact, array expression identifiers are the only kind of identifiers that can be
bound by specifiers but not by declarations.)

The remaining productions describe procedure calls that contain actual
parameters.

We can now show that type-correct substitutions preserve syntactic
correctness:

(1) Let6 be any phrase type other than 7 expression or statement, and
consider any occurrence of a § identifier that is not a binder. Among all
the productions we have given, the only production that can describe
such an occurrence has the form

(0) ::= (0 identifier)

Thus syntactic correctness will be preserved if the occurrence is
replaced by any phrase that can be derived from the nonterminal (6).

(2) Consider an occurrence of a 7 expression identifier that is not a
binder. The only production that can describe such an occurrence has
the form

(T primary) ::= (7 expression identifier)
Thus the production

(t primary) ::= ({7 expression))
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shows that syntactic correctness will be preserved if the occurrence is

replaced by (E), where E is any phrase that can be derived from
(r expression).

(3) Consider an occurrence of a statement identifier that is not a
binder. The only production that can describe such an occurrence is

(simple statement) ::= (statement identifier)
Thus the productions

(simple statement) ::= (block)
(block) ::= begin (statement sequence) end
(statement sequence) ::= (statement)

show that syntactic correctness will be preserved if the occurrence is

replaced by begin S end, where S is any phrase that can be derived from
(statement).

In summary, any nonbinding occurrence of (8 identifier) can be replaced by
any phrase derived from (6), providing that the phrase is parenthesized if 6 is
7 expression, enclosed in begin ... end if 6 is statement, and left unchanged
otherwise.

In real Algol W, the parameter matching rules for call by value and
result are slightly more relaxed than is indicated by this syntactic description.
Consider a procedure statement or function designator beginning with an
identifier that is bound by a procedure declaration containing the specifier 7,
value. Then the corresponding actual parameter may be a phrase of type 7;
expression, where 7, is assignment compatible with 7, (i.e. where 7, and 7,
are permitted by column 7 of Table B.1). Similarly, for the specifier 7, result
the corresponding actual parameter may be a phrase of type 7, variable
where 7, is assignment compatible with 75, and for the specifier 7, value
result the corresponding actual parameter may be a phrase of type 7,
variable, where 7; and 7, are each assignment compatible with the other. The
general intent is that 7; and 7, must insure the syntactic correctness of the
initial and final assignment statements in the expansion of the procedure
body caused by call by value or result.

In our formal syntactic description, we have ignored this relaxation of
the parameter matching rules, since its formulation would introduce exces-
sive complications.

Exercise
1. Give a derivation tree for the following block:

begin real array X(1::10);

procedure P(real array {exp} Y(*); real {var} Z); Z := Y(1);
P(X, X(2))

end
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B.4 SYNTAX FOR CHAPTER 4

B.4.1 The for Statement

(statement) ::= (for statement)
(for statement) ::= for (integer expression binder) :=
[(lower bound) until (upper bound)
| (upper bound) step —1 until (lower bound)]
do (statement)

The scope of the binder in a for statement is the for statement itself,
excluding lower and upper bounds. Note that, since the identifier occur-
rences bound by this binder have type integer expression, they cannot be
assigned to within the body of the for statement.

B.4.2 Labels and goto Statements

(statement sequence) ::= (statement)

| (statement) ; (statement sequence)

| (label definition) (statement sequence)
(label definition) ::= (label binder) :
(label binder) ::= (label identifier)
(label identifier) ::= (identifier)
(simple statement) ::= (goto statement)
(goto statement) ::= [ goto | go to ] (label)
(label) ::= (label identifier)

The first production replaces the production for (statement sequence)
given in Section B.1.4.

The scope of a label binder is the immediately enclosing block, with the
usual exclusion of array bounds.

The syntax permits a label to be attached to the end of a block, so that
jumping to the label from within the block causes an exit from the block, e.g.

begin ... finish: end

Strictly speaking, finish labels an empty statement that is the last statement
in the block.

Although it is consistent to regard label as an additional phrase type,
Algol W is anomalous in this regard. Although labels are represented by
identifiers, they cannot be used as formal or actual parameters. In practice,
this limitation does not cause difficulties since, in any situation where a label
parameter would be useful, one can use a goto statement as a statement
parameter instead.



APPENDIX c
INPUT AND OUTPUT IN ALGOL W

In this appendix we describe enough of the input and output facilities of
Algol W to permit the writing of complete programs for testing and using
simple algorithms. Input-output is the main aspect of Algol W that, although
adequate for teaching purposes, is insufficient to support many practical
programming applications. Except for the possibility of combining Algol W
programs with FORTRAN or machine-language subroutines, the only input
which can be read by an Algol W program is a sequence of punched cards,
and the only output which can be written is a sequence of printed pages. (Of
course, the program really reads images of cards and writes images of pages
which are stored on magnetic disks or tapes, but this fact is irrelevant to the
programmer.)

There are two fundamentally different facilities for reading cards. One
method treats the input as a sequence of data items, each of which denotes a
numerical or logical value. The other method, not described here, treats the
input as a sequence of individual characters. There is a similar dichotomy of
output facilities; in this case we will say enough about character-oriented
output to permit the printing of titles and headings.
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C.1 INPUT

The input to be read by an Algol W program must be contained on a deck of
punched cards that is separate from the program itself. In contrast to the
program, all 80 card columns are used. For most purposes, the separation
between cards is ignored; for example, a data item can start on one card and
finish on the next.

Except for string-oriented input, the input data is a sequence of items
denoting numerical or logical values. The format for each data item is exactly
the same as for numerical or logical constants in a program, except that
numerical items can be prefixed with an optional + or — sign:

(data item) ::= [ | + | — ] (7oum constant) | (logical constant)

Adjacent data items must be separated by one or more blanks, while
individual data items must not contain blanks.

The data items in the input sequence are read, in order, by a succession
of read operations. Within the program, the statement

readon ([(read parameter)] )

where

(read parameter) ::= (7 variable)

performs one read operation for each parameter, from left to right. Each
operation reads one data item from the input and makes it the current value
of the corresponding parameter. Corresponding data items and parameters
must be assignment compatible, i.e. their types must satisfy the following
relationship:

read parameter data item

integer integer

real integer, real, or long real
long real integer, real, or long real
logical logical

The implicitly declared identifier read may be used instead of readon.
The only difference is that, before the first data item is read, the input
medium will be advanced to the first column of the next card, unless it is
already positioned at the first column of a card. This facility has a potential
for inadvertently skipping data items, which makes its use inadvisable.

If a program attempts to read beyond the end of the input data card
deck, it is terminated with an error message. Regrettably, there is no way in a
program to test whether the input has been exhausted.
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C.2 OUTPUT

A statement of the form

[ write | writeon ] ([(write parameter)] )
where

(write parameter) ::= (1 expression) | (string)

causes the value of each parameter, from left to right, to be printed as a data
item.

Suppose that the printed representation of a data item uses n characters.
Then, according to the type of the corresponding write parameter, this
printed representation will be preceded and followed by blanks:

type  number of blanks on left number of blanks on right

integer intfieldsize —n 2
real 14—-n 2
long real 22-n 2
logical 6—n 2
string 0 0

Here intfieldsize is an implicitly declared integer variable that can be set by
the program to determine the width of printed integer data items; if it is not
reset its value will be 14. Note that, aside from the possibility of resetting
intfieldsize, the total width of the character sequence printed by a nonstring
write parameter is determined by the parameter itself, independently of the
data being printed. An attempt to print an integer data item such that
n > intfieldsize will cause an asterisk to be printed.

Scale factors are only used in the printing of real and long real numbers
with very large or very small magnitudes. Strings are printed exactly as
written, except that the enclosing quotation marks are removed, and the
pairs "'"" are replace by single quotation marks .

For example, the statement

write(""""TEST" "' =", 25, =25.0, 25'9, true)
would print the following sequence of characters:
"TEST'= @ 25 (?) -25.00000 @ 2.500000'+10 @) TRUE @

where the circled integers indicate numbers of blank spaces.

In printing, characters are divided into lines of up to 132 characters, and
lines are grouped into pages of up to 60 lines. The following rules determine
when a data item (including its preceding blanks) will begin a new line or
page:

(1) A data item will begin a new line if the item (including the
blank spaces placed on its right) will not fit into the remain-
ing space of the current line.
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(2) A new line will begin a new page if it will not fit into the
remaining space of the current page.

(3) The first data item printed by each execution of a write
statement (as opposed to writeon) will begin a new line.

(4) An execution of the statement iocontrol(2) will cause the
next data item to be printed to begin a new line.

(5) An execution of the statement iocontrol(3) will cause the
next data item to be printed to begin a new page.

The use of iocontrol(2)is illustrated by the following complete program
for printing the squares of the integers 1 to 100:

begin integer n;

write('THE FIRST HUNDRED SQUARES"');
iocontrol(2);

n:= 0;

while n % 100 do begin n := n+1; writeon(nxn) end
end

Performing iocontrol(2) forces the first execution of writeon(n X n) to begin
a new line. Thereafter, the lines are filled out with integers.

C.3 AN EXAMPLE OF A COMPLETE PROGRAM

Consider writing a complete program for testing a statement that computes
factorials. More specifically, the program is to execute some number of
“cases”, where each case consists of reading an integer, computing its
factorial, and printing the integer and its factorial. Even though this is a
rather vague specification, it is useful to construct the program in a top-down
fashion.

The first step is to determine the number of cases and iterate over them.
The simplest approach is to require the first input item to be a count of the
number of cases. Then we have

begin integer cases;
readon(cases);
“Write heading”’;
{whileinv: cases is the number of cases yet to be done}
while cases> 0 do
begin
cases := cases — 1,
“Process one case’
end
end
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We have included a step that prints a heading for the output, but we
postpone the details until we see what the output for each case will be like.
Note that the concept of an invariant assertion is still valid, even though the
assertion has been written in English.

At first sight, one might expect the following form for “Process one
case’’:

“Read input”;
“Compute Factorial”’;
“Write output”

But this neglects the possibility that the factorial may be undefined for the
input value. A better plan for “Process one case” is:

begin integer n;

readon(n);

if n <0 then “Process invalid input”
else “Process valid input”

end

Then “Process valid input” expands easily into

begin long real f;
“Set fto n!”’;
write(n, short f)
end

Here we have chosen to make f a long real variable, since the factorial
function can easily exceed the range of an integer variable. To insure
adequate accuracy, we compute f in double precision, but print it in single
precision. Then “Set f to n!” is simply the program given in Section 1.3.1,
except that f is a long real variable rather than an integer variable. (Of
course, we are lucky that we do not have to modify this program to accompl-
ish the change in arithmetic.)

Next we fill in “Process invalid input”:

write(n,”’  (6) UNDEFINED")

The circled integer indicates the number of blanks; it is chosen to make
UNDEFINED line up (on the right) with the values of f printed for valid
cases. Finally “Write heading” can be filled in with

write("’ ® N ® FACT(N)");
write(" ')
The blanks in the first statement are chosen to line up N and FACT(N) with

the values of n and f printed for valid cases. The second statement inserts a
blank line between the heading and the lines for each case.
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The complete program is

comment Test Program for Factorial Computation;
begin integer cases;

readon(cases);

comment write heading;
write("' ® N ® FACT(N)");
write(" "');

{whileinv: cases is the number of cases yet to be done}
while cases >0 do
begin
cases := cases — 1;
begin integer n;
readon(n);
if n<0 then
comment process invalid input;
write(n,’’ (5 UNDEFINED")
else comment process valid input;
begin long real f;

{n=0}
begin integer k;
k:=0;f:=1;

{whileinv: f=k! and 0<k=n}
while k£ % n do
begin k := k+1; f:= kXfend

end;

{f=nt}

write(n, short f)

end

end
end
end
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Exercises

1. Write a complete program to read the number of cases to be performed and then,
for each case, read a real number x and an integer n, and output

(a) The values of x and n.

(b) x", computed by evaluating the expression x**n.

(c) x", computed by one of the slow algorithms in Exercise 1 after
Section 1.3.3.

(d) x", computed by one of the fast algorithms in Section 1.3.5.

(e) A count of the number of multiplications performed by the fast
algorithm.

Provision should be made for giving an error message if n<0.

2. Write a procedure for producing a readable table of a real function of two
arguments. The procedure should have the form

procedure printtable(integer value nx, ny;
real value minx, miny, stepx, stepy;
real procedure f {real exp, real exp} ); ... .

The procedure should tabulate f(x, y) for

x=minx +i X stepx where i € |0 nx—1
and

y =miny +j X stepy where j € |0 ny—1

The table should be organized into rows and columns so that each value of x
corresponds to a row, and appears at the left of the row, and each value of y
corresponds to a column, and appears at the head of the column.

This problem becomes harder if ny is so large that the table is wider than the
paper on which it is printed. In this case, one can print out the table as a sequence
of vertical strips which can be pasted together.
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tree.
Based on (termination), 22.
begin, 4, 401.
Behaviorpattern, 1-7.
Betareduction,244,244-47,
320.
Bijection,119,120,120-22,
133-34,139-40,
336-37.
Binary search, program,102-9,
181,3009.
Binary tree,195,334-43,
335-36,347-49.
Binder, 56, 406,408-9.
Binding, 55-58,75-76,89-92,
159,162-65,182-83,
203,207,211,244,
260-61,272-73,
398-99,406,408-9,
412.
Binding occurrence, 56.
Blank,396,398,414,415.
Block,4,10,53,56,75-76,
226-28,272,284,285,
287,401-2,seealso
Compound statement,
Parenthesization,
expression,180-81,395.
Block (setofinteger
sequences), 150.
Blockstructure, 203,226.
BNE 383-94.
Body,18,158,226,261.
Boldface,12,396.
Bottom-up programming, 7.
Bound, lowerand upper, 74,
75-76,149,260-61,
404,412.
Bound occurrence, 56,159.
Bracket, curly, 20, 24,98,
100,161,167,182,
396,408.
Breadth-first,314,347-48.
Built-in procedure, 16, 395,
402-3,409,414-16.

Call,158.

Callby address,171-72,203.

Call by name, 169,170-73,203,
240-43,262,266-69,
316.

Callby reference,171-72,
203.



Call by value orresult, 169-70,
171-73,177,181-83,
203,237-40,244,262,
266-69,316,407,411.

Callingtree,189,189-94,198,
200,368.

Cartesian product, 131, 149,
149-50.

Category,121,136.

Characteristic vector, 309-10,
310-12,315-17,334.

Chomsky,N.,383.

Chooseand delete, see
Deletion.

Clint,M.,275.

Closedsubroutine, 160.

cod, 95,96,98,112.

Codomain, 95,96,98,112.

Collision, 91-92,159,163-65.

Column, 149,150,396,414.

Combining assumptions,
inference rule, 218.

Comma, 162,392,396.

Comment, 5,23-26,167,182,
397-98,402.

Commutivity,134.

Compiler, 10,61,160-61,201.

Complete program, 55,401,
409,416-19.

Componentinterval, 81.

Composition,119,119-21,123,
124,133,138.

Compound specifier, 162,173,
182,407-8.

Compoundstatement, 206, see
also Block,

inference rule, 44, 220.

Concatenation, 130-36,131,
139-42,146,354,see
also Sequence
concatenation.

Conclusion, 43, 217.

Concrete program, 298, see
also Transformation.

Concurrentcomputation, 168,
289-90.

Conditional correctness, 22,
40,43,51.

Conditional expression, 16, 80,
100,128-30,399-401.

Conditional statement,3-4, 10,
287,386-88,401-2,

inference rules, 49, 220.

Congruence,134.

Conjunction of assumptions,
213-14,218.

Conjunction of specifications,
inferencerule, 52,221,

Consequent, 20.

Constancy, inference rule, 223,
234

Constant, 14-15,69-70,
397-98,401.

Context-free grammar, 390.
Continuation semantics, 210,
275.
Controlstructure, 1, 7,259,
272,281,286.
Coproduct,136.
Copyrule,158-60,159,
163-65,172,180,
182-85,202,208-9,
247,316,320,342,355,
405-6.
Counting zeroesin array,
program,78.
Currentvalue, 12, 96.
Cyclicpath,336,364,373.

Dahl, O.-).,298.
Datarepresentation
structuring, 60,289,
297-98,297-382.
Datetype,15,16,69-71,144,
162,204,213,297-98,
320,394,398,409.
Declaration, 53-55,162,
182-83,226,401,
array, 74,149,194,404.
inference rule, 256.
binding by 56,75-76,159,
162,182-83,398-99,
406,408,
function procedure, 157,180,
181,408,
inferencerule, 257,258,
generalinference rule, 55,

proper procedure, 157-60,
181,207-10,406,408,
inferencerule,228-43,
231-32,246-50,249,
347,368,
simple variable, 53-54, 69,
398

inferencerule, 226-27,

251.

Decreasingorder, 103, 144.

Deletion, 308-9,313-14,334,
344,

Depth,189-90.

Depth-firstsearch, 315,

recursive program, 363-68.

Derivation, 384, see also
Inferencerule.

Derivationtree, 222,385,
385-91,398-99,403,
404-5,411.

descend (procedure), 342-43,
349.

Describes, 205.

Diagram,78-85,286-90.

Difference,see Subtraction.

Differentiation, 68—69.

Dijkstra, E. W.,1,7,22,32,185,
271,272,289,325.
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Dimensionlist,172,182-83,
404, 406.

Direct semantics, 210.

Directsubstitution, 84.

Directed graph, 299-301,
324-25,335-36.

Discharging assumptions,
227.

Disjoint, 81.

Disjoint union,131,131-34,
136,139.

Disjunction of specifications,
inferencerule, 52, 221.

Distance,see Minimum
distance.

div,14,59,70,107,399.

Dividingline, 83.

Division, 14,59,70,107,
399-401,

programs,13-14,27-30, 35,
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do, 5,259,401,412.
dom, 79,95,see also Domain.
Domain:

ofarray, 74,75, 79,149,256,

309,
offunction,95,96-98,112.
Domainconstancy, inference
rule, 256.
Double precision, 63-65,
69-71,401, 417.
downgood (procedure), 338.
Duplicate values, 103,308,
318,
program forremoving,118.
Dynamicarray allocation,

Dynamicscope, 54.

Edge,299,324-25.

Efficiency,see Execution time,
Storage.

Element, ofarray, 74.

Elementary function, 402-3,
409.

eliminatehole (procedure),
347,

else,3,16,399,401.

van Emden, M. H., 281.

Emptyarray, 75,97.

Empty function,97,98,134,
141-42.

Emptyset,80,82,90,97-98,
150,218.

Emptystatement, 51,272-73,
401-2,412,

inference rule, 51, 221.

end, 4,401.

Endline, 83.

entier (procedure), 402-3, 409.

Enumeration,308-9, 310,
312-15,317-18,334,
37s.
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Environment,203-10, 204,
221,275.

Equality, 15-16, 74,95,
399-401,402.

Equivalence, 41,100,122,363.

Erasure, 83.

Error, 61,

input, 65-68,414,417-19,

numerical, 61-69,71,

parameter matching,
160-61,167,

propagation, 65-69,

subscript,61,74-75,77,
87-88,112,128,171,
251,375,

syntactic,10-11,396, 403,
408.

Evaluation, avoided or
repeated, 129-30,
170-71,181,240-43.

Exchange,114,115-17,119,
122-23,125-26,146,
174,362,seealso swap.

Execution time, 32-34,107,
114,160,170,172,173,
177,187,189-95,
197-99,200-1,286,
291,294,305,308-10,
313,316-17,332,334,
348,356,361-62,368,
382.

Existential quantifier,see
Quantifier.

exp,161-63,173,180,182-83,
406-7.

Exponential function, 402-3,
409,
program, 71.
Exponentiation, 70,401,
program,26—27,166-67,
265,419,
fast,30-35,201,281-86,
288-90,294,419,
proof,226,228,239.
Expression,12,14-16,15,
70-71,161-63,180,182,
205,214,388-91,
399-401,404-5,406,
410,seealso
Conditional expression,
Function designator,
Lambdaexpression,
Relation,
array, 114,173,183, 216,
404-6,410,
block,180-81, 395,
logical, 3,15, 20,24,212,
401.
Expression-like, 21§,215-16,
222.
Extendedspecifier, 161,173,
177-78,180,182,202,
396,405,408.

Factorial,programs,17-22, 89,
109-10,201,264-65,
416-18,

procedures, 163-67, 168-69,
172,184-85,

proof,113,224-25,227,
232-39,253-56.

Factors, program for finding,

18

118.
false, 8,15,41,219-20, 401.
father (procedure), 336,
347.

Fibonaccinumbers, programs,
36-37,111,187,
proof,47,48,49-51.
Finalstate, 205.
Fixed point representation,
61-62.
Fixed-pointtheory, 210,
250.

Floating point
representation,
62-65,69.

Flowchart, 7-10,38-42,286.

Floyd,R.W.,,38,43,155,290,
325,334,351.

for statement, 259-62,259-71,
280,412,

binding by,182,260-61,412,
bound-altering, 266-67,
descending, 270-71,
inferencerules,262-71,263,
267,270,
invariant,262-66,264,271,
set-iterating, 303, 316,
365-66,
inferencerule,307,368,
variants, 262, 266-69.
forinv, 262-66,264,271.

Formal definition, 172,
204-10,213-17.

Formal parameter, 158-59,
160-70,181-83,207,
278,406,407-8,412,

binding by,159,182-83,244,
406,408.

FORTRAN, 148,171,260,
413.

Free occurrence, 56,159,213,
222,302,409.

Free substitution, inference
rule,211,219,221.

Function, 95,95-98,102-3,
108,112-14,119-24,
130-34,136,137-42,
150,204,

asarray value, 95-96,
112-14,149,404.

Function designator, 180, 182,
402-3,410.

Function procedure, 157,
180-83,201,216,
402-3,406-10,

inferencerule,257,258.

Gadbow, W.J.,137,195.

Generalinvariant, 283,284,
285,302,304,311,
354.

Genericprocedure, 409.

geninv, 284, see also General
invariant.

Gentzen, G.,214.

Ghost identifier,see Identifier.

Ghost parameter, 230, 232,
237-38,241-43,337,
352,365.

Globalinvariant, 370.

Global occurrence, 159,
164-67,182,215-16,
232,239,245.

goleft (procedure),338.

Good array designators,
inferencerule, 252,
252-55.

Good variable, 216-17,223,
226,233,251,

inferencerule,248,252.

goright (procedure), 338,

got0210,272,272-95,307,
342,412,

inferencerule,276-81,

277-178.

Grammar, 390.

Graph, 95,see also Directed
graph.

Greatest common divisor,
program, 38.

Greek letter, 393, 396.

Gries,D.,29,203,294,306.

Group, 121

gv, 216-17,see also Good
variable.

Heap,310,334,334-54.
Heap (assertion procedure),
338

Higher-order procedure,
177-81,179,183,187,
203-4,240-43,316-18,
323-24.

Hoare,C.A.R.,20,43,60,
112,195,198,203,
240,262,275,298,
307,315, 395.

Hole,110,124,339-42,
344-45,353.

IBM 360/370,59,63-65,396.
Idealized computer, 60-61.
Identifier, 14,163,204-5,213,
222,397-99,406,
408-9,
collision,91-92,159,
163-65,
control, 261,



ghost,29,110,123,230,232,
237,241,
implicitlydeclared, 55, 395,
396,398,402-3, 409,
primed, 164.
Identity function,119,119-20,
121,138.
if,3,16,399,401.
Image, 97,97-100,114,120,
123,133,138,141-42.
Immediate successor, 300,
316-18.
Implication, 41, 52,103,210,

213-14,218-19,223-24.

Implicitdeclaration,see
Identifier.

implies, 103,171,180, 214,
219-20

Inclusion, of re'lations, 99,100,

4.
Increasing order, 102-3, 212.
Increasing zero, program,
8-9.

Independence, of assertions,
283,292.

Indeterminacy, 289,289-90,
292-94,298,302,303,
307,313-14,328,348,
354,

ofspecifications,95,145-46.

Indivisible action, 283, 285,
304.
Induction,ontree depth,
191-93.
Infer,43.
Inferencerule,42-52,55,58,
112,150,
inspecificationlogic,
217-24,226-217,
231-32,246,248-49,
251-53,256,257,263,
267,270,277-78,307,
derivation, 219,223-24,
248-52,256,258,
267-69,307.
Infinity, 377.
Injective,108,120,121.
Input,402-3,409,413-14,
416-19.
Input-preserving program, 29,

Insertion,308-9,313,334,
345.
Instance, 43,217.
Integer,14-16,54,58-60,394,
397-98,414-15.
integer set (data type),213,
253,263,348.
Integration, notation, 91.
Interchange,see Exchange.
Interference, 166,166-73,
176-77,188,203-6,
210-11,seealso

Specification of
noninterference.
Intermediate line, 82, 83.
Intersection, 66,131,138,141,
ofarray withinterval,
program, 142-43,
of arrays, program, 137,143,
of function with set, 140,
140-43,146.
Interval,78,124,259-60,
262

diagram, 78-80,79, 81-82,
85-88,213,253,
262-63.

Invariant,281.

of for statement,262-66,
264,271,

general,283,284,285,302,
304,311,354,

globalandlocal,370-71,

representation, 311, 315,

of whilestatement, 18,
20-21,23,25,31,48-49,
51,417

Inverse,120,120-22,337.
Irregular, 80, 87,262,264.
iterate (procedure),178-79,
243-45,262.
Iteration, 5,199-200,259-60,
271,seealso Set.

Jensen’sdevice,171,241-43,
246-47.
Jones, C.B.,298,315.

Key, ordering by,144-48,201.
Knuth,D.E.;200,363.

L-value,204.
Label, 210,272,272-95,342,
412,
binding,272,412,
inference rule,276-81,
277-78.
Lambda calculus, 56,244.
Lambdaexpression, 243-47,
244,316,320.
Landin, P J.,202,204.
Left shift,program,110,114,
124,136.
leftson (procedure), 336,347,
Length,130,324.
Lessthan,108.
Levin, G.,29,203.
Lexicographicordering,132,
136.

Linearsearch, program,100-2,
273-75,278-81,308.

LISP, 56,130,201,245.

Localinvariant, 371.

Local variable, 52-55, 53,168,
172,194.

Logarithm, 34,402-3,409.
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logical, 15,54,394.
Logical word, 59.
London,R.L.,203

long, 401.

long real, 69-71,394.
Longestrun, program, 109.
Lower-caseletter,12,396.
Lucas, P,306.

McCarthy,J.,112,155,201.
Macro,157,160.
Map, 95.
Mathematical facts, 45-46,
219-20,
inference rule for
introducing, 219.
Maximum finding, program,
93-95,99-100,102,
115-17,174-75,
265-66.
Meaning,162,203-10,
213-17,275,386-88.
Membership,308-9.
Memory, 58,seealso Storage.
Merging, programs, 127-30,
176-77,187-89,
291-94,
withkeys, 145,
with overwriting,137,195,
proofs,135,146-48,
strict,137.
Metavariable, 43,217, 392-94,
396,405.
Min, 379.
Minimax of an array, program,
150-55.
Minimum and maximum
finding, program, 95.
Minimum distance, 324,
program,325-51,362.
Modus ponens, inference rule,
218, 221.
Monoid,121,134.
Monotone, 108,121,121-22,
338.
Monotonicity argument, 107,
108,189,197.
Morris,EL., 82,95.
Multidimensional array,
148-49,148-50.
Multiple-source, 301, 325.
Multiplication, 14,68, 70-71,
399-401,
programs,27,35.
Myhrhaug, B.,298.

Naur, P,38,157,383.
Negation,logical, 15, 90, 214,
401

Node, 299,301, 319-21.

Noninterference decompo-
sition, inferencerules,
222.
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Nonterminal symbol, 384,392,
396

Normalization, 63.
Numeric metavariable,
393-94,396.
Numerical analysis, 69.
Nygaard,K.,298.

odd (procedure), 15-16, 213,

One-dimensional array, 74.

One-to-one correspondence,
see Bijection.

Opensubroutine, 160.

Operator,14-15,399-401.

or,15,129-30,214,399-401.

ord, 103,seealso Ordered
function.

Order of magnitude, 33-34,
107,160,198.

Ordered array,see Ordered
function.

Ordered function, 102-4,103,
108,120,123-24,133,
144,212,309.

Orderingrelation, 15,82, 98,
100,102-4,108,132,
136,144,336,396,
399-401.

Output,402-3,409,413,
415-16,416-19.

Overflow, 34,59, 60-61, 65,
261,280.

Owicki, S., 306.

pa,167,seealso Parameter
assumption.

Painter,J.,112.

Pair, 131.

Parallel computation, 168,
289-90.

Parameter, 158-59,158-83,
278,405-10.

Parameterassumption, 166-67,
176,226,229,233,240,
366.

Parameter matching,160-63,
180,202,391,396,
405-6,411.

Parameterless procedure, 178,
180,182-83,406,408,
410.

Pardee,0.O’M., 144.

Parenthesization,4-5,21,92,
410-11.

Parser,201-2,390.

Partial order, 100, 336.

Partition, 81, 82-83,303-4,
363,382,

diagram, 79-88,80-81,
103-4,134,262,

program,125-26,148,175,
196-97,200,271,295.

Pascal, xii, 148,157,178.
Path, 300,321, 324-25,
cyclic,336,364,373,
T-free,364,364-65.
Path finding, programs,
321-24,333.
Permissible,275,288.
Permutation, 121.
Phrase classname, 384.
Phrase type 162—63,182-83,
204-5,211-13,217,278,
302,405-6.
Physical word, 59.
PL/1,16,56,114,171.
Pointwise extension, 98,
98-100,103-4.
Position, 336, 347-48.
Precedence, 390.
Precedent, 20.
Predecessor,immediate,
307-8,334.
Predicate calculus, 89.
Preimage,137,137-43,146,
379.

Premiss, 43,217.

Preorder, 100.

Primitive operation, 297,
308-10,320.

Problem-oriented type, 144,
213,297-98, 301,320,
321,336,369.

Procedure,157-202,158-60,
181-83,203-4,207-10,
212,215-16,243-45,

405-11,
built-in, 16,395,402-3, 409,
414-16,
implementation, 160,172,
inferencerules,228-43,
231-32,246-50,249,
257,258.

Procedure assumption,

Procedure parameter, 177-79,
180,182-83,243,407,
409.

Procedure statement, 157,
158-60,182,207-10,
233-34,402-3,406,
410.

Product,131,149-50,171,

ofinterval, program, 89.

Production,384,396.

Productionschema, 392-94,
405.

Program proving, xii, 42,
51,172,181,201,
203-4.

Propagationoferrors, 65-69.

Proper procedure, 157-60,
181-83,207-10,
215-16,402-3,
405-10,

inferencerule,228-43,
231-32,246-50,249,
347,368.
Punchedcard, 396,413-14.

Quantifier, 78,89, 89-93,
162-63,
binding by, 89,162-63,
introduction and removal,
inference rule, 219,
ofspecification, 214, 216,
219,223-24.
Queue, 314-15.
quicksorgt (procedure),
1

Quotation mark., 398,415.
Quotient,14,134.

Radix, 58.
Range information, 20, 26, 40,
264

Reachability, 300,336,363,
364,364-65,
program, 301-8,310-24,
328

real, 69-71,394.

Realnumber, 61-71,397-98,
414-15.

Real-time programming, 60,
198

Realignment, 119,122,122-24,
130,132,133-36,139,
141-42.

Rearrangement, 119,122,
122-23,131,133-35,
139-42,

stable,146,146—48,195,198.

Record, 144,201,298, 395.

Recursion, 160,184,184-202,
209-10,231-32,
235-36,239,250,258,
280-81,323-24,
363-82,

mutual,195,232.

Recursive function, 201.

Redex, beta,244,246.

Reductioad absurdum,
inferencerule, 219.

Redundant testing, 34,130,
282,292,294.

Reflexivity, 100,104,108,122,
336.

Regular, 80,82,262,269.

Relation,15,98-100,102-4,
396,399-401.

Relative error, 62,66—68.

rem, 14, 59,70,399.

Remainder, 14,see also
Division.

Removing duplicate values,
program,118.

Removlingsquares, program,

44.



Renaming,see Alpha
conversion.

repeat (procedure),178,
2 1

Repetition, in productions,
392,394,396.

Replication, 83.

Representation,298,319-21,
322-24,347-49,382,

ambiguous, 298,379,
compound, 298,315,377,
decoupling,303, 310,
incomplete, 298,323,348,
invariant, 311, 315,

of numbers, 58-65,
redundant, 310, 315,377,

of sets,308-18,334,375-82.

Reserved word, 12,396,
397-98.

Restriction, 96,96-100,103—4,
114,120,131-34,
138-42.

Result, of function, 95.

result, (specifier),169-70,407.

Retrieve function, 315.

Reynolds, J.C., 78,203,250,
281

rightson (procedure), 336, 347.

Rimkus, C.J.,108-9.

rnd, 61.

root, 336,347.

round (procedure), 402-3,409.

Roundoff, 61-62.

Row, 149,150.

Rule of inference,see Inference
rule.

Run, program for finding
longest,109.

S-expression, parser, 201-2.

Satisfies, 205.

Scale factor, 70,397, 415.

Scaling, 62.

Schema, 392-94,405.

Scope,53-54,56,75-76,see
also Binding.

Search, see Binary search,
Depth-firstsearch,
Linearsearch.

Segment, 76, 80, 96,150.

Self-implication, inference
rule, 218.

Semantics, 172,204-10,
213-17.

Semicolon, 162,396,398,402.

Separating assumptions,
inferencerule, 218.

Sequence,130,148,205-6.

Sequence concatenation, 130,

131-33,136.
Set:
iteration over, 303, 308-10,
316-18,

representation, 308-18,334,
375-82.

set (datatype),301.

setof sets (datatype), 369.

Shift, 124, see also Left shift.

short, 401.

Side effect,181.

Simple assignment, inference
rule,44,47-48,91,
111-12,223, 226, 248.

Simple parameter, 162,170,
182,407.

Simple statement, 386-88,
401=

Simple variable declaration,
53-54,69,398,

inferencerule,226-27, 251.

SIMULA 67,298.

Simulation, 32628, 328,347,

Single-argument function
variation, 112-14,120,
122-23,150.

Single precision, 63-65, 69-71,
401,417,

Single-source, 301, 325.

Single-source single-sink,
307-8,315,324,334.

Singletonset, 79,98-99,103,
122

Sites,R.L.,180,261,395.
Size,79-80, 82-83,98,103,
131,140,150, 308-10,
of problem, 185,186,187,
195, 200.
Smallest factors, program,
118.
SNOBOL, 56.
Sorting, programs:
usinga heap, 351-62,
byinsertion, 118,123,148,
362,
by maximum finding,
115-18,119,123,124,
148,174-75,271,
by merging,187-95,
by partitioning,195-200,
byrange partitioning, 200-1.
Specification,19-23,24,
39-40,203-4,206,
210-17,seealso
Inferencerule,
ofgood variable, 216-17,
223,226,233,248,251,
252,
implication, 210, 213-14,
218,223-24,
indeterminate, 95,145-46,
limitations of,22,87-88,
251,
of noninterference, 166—67,
176,206-7,210, 214-16,
221-23,226,230-31,
234,251,252-53,
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quantified, 214, 216,219,
223-24,

of statement, 20, 24,39, 206,
213,275-76,

ofstaticassertion, 213,219-20,
241-43,253,257,

universal, 203, 210, 210-11,
217,220.

Specificationlogic, 2034,
210-58,263-64,
266-71,275-81,307,
347,368.

Specifier,160,160-63,167,169,
172-73,177-78,
180-83,207,226,
407-8,

binding by, 159,182-83,244,
,408.

Square, program for finding
largest,155.

Squareremoval, program, 144.

Squareroot, 402-3, 409,

programs, 30, 35.

Stability, 146,146-48,195,198.

Stack,314.

Standardform, 79, 81.

Standard metavariable, 394,
406.

Standard ordering, 98, 108,
132,136.

State, 12-14,24-25, 204,
204-10,275.

Statement,3,3-6,12,20, 51,
158,178,183,205-6,
214,259,272,383-88,
401-2,406,410,412.

Statementcompounding,
inferencerule,44,220.

Statement-like, 215, 215-16,
222,234,

Statementparameter, 178,183,
203,240,407

Staticassertion, 213,219,241,
253,257

Staticimplication, inference
rule, 219.

Staticscope, 54.

step,270,412.

Step (of path), 300.

Stepwise refinement, 7,19, 20,
416.

Stopper, 198, 295.

Storage, 54,55, 58,60-61,75,
114,157,160,173,177,
194-95,199-200, 305,
308-9,322-23,359-60,
361-62.

Store, 204.

Strachey, C.,204.

Strengthening precedent, in-
ferencerule, 45, 220.

Strictorder,103,108,121.

Strictlymonotone,108,121.
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Strmg,202 395,397-98,409,
Stronger(relatmgassemons)
40-41.

Strongly connected
component, 363,
program for finding, 369-82.
Structured program, 7,157,
272,286,298.
Subphrase, 92, 385-90.
Subrdutine, 157,160.
Subscript:
ofarray,74,114,149,216-17,
404,
of block, 285,304,
error, 61,74-75,77,87-88,
112,128,171,251, 375,
ofidentifier, 29.
Subset, 79,90, 98,131,138,
150
Subsmutlon 43-44,90-93,
92,159,163—64,207.
211,219,244,
of partitiondiagrams, 84,
type-correct, 182, 406,
410-11.

Substitutionlaw, 207,207-9,

11.
Subtraction,14,399-401,
ofarrays,program, 143,
of set from function, 142,
142-44,
ofsets,114,131,138,142.
Successor,immediate, 300,
316-18.
sum (procedure),171,241-43,
246-47,

Summation, 76, 85, 91.
ofarray, programs, 76-78,
85-88,179,243-45,
247,260,262-63,272,
proofs, 87-88,264.

Surjective, 120.

swap (inheap), 337,347,352,
358

swap (valués of variables), 240,
256.

Symbolic metavariable,
393-94,396,405.

Symmetry, 100,122,294,

Syntax, 1 —12 163, 167 201-2,
383-412.

T-free, 364,364-65.
Table of two-argument
function, program, 419.

Tableau, 46,4648, 50-51,225.

Tarjan,R.,363.

Temporaryvariable, 37,53.

Terminalnode, 189, 344.

Terminal symbol, 384.

Termination, 6,18-19,22, 40,
42,51,87-88,184,200,
201,205-6,261,285,
294,303,342

then, 3,16,399,401.

Top-down programming, 7,19,
20,416.

Total correctness, 22.

Total interval, 81.

Total order, 100.

Totality,100,108.

Towersof Hanoi, program,
185-87.

Transformation:

into concrete program, 60,
289,298,310-21, 311,
322-24,343-51,
354-55,374-82,
toimprove efficiency,

356-62

Transition diagram, 286,
286-90,292-94,301.

Transitivity,99,100,108,122,
136,336.

Transposition, program, 155.

Tree,189-95,310,334-43,
347-49,385-91.

Tree (assertion procedure),
336.

Trigonometric functions,
402-3,4009.

true, 8,15,41,401.

truncate (procedure), 402-3,
409.

Type,162-63,297-98,see also
Datatype, Phrase type,
Problem-orientated

type.

Underflow, 65.

Union, 90, 98,131,138,150,
218,303, 310,seealso
Disjoint union,

ofset of sets, 370.

Universal quantifier,see
Quantifier.

until, 259,412.

upgood (procedure), 338.

User-defined type,see
Problem-orientated

type.

V (procedure),337,352.
Vacuously true, 90, 99.
Valid tableau, 46, 225.
Value, 12,15,204-5, 414,
array, 95-96,96,112-14,
149,404-5.
value (spec1f|er) 169-70,

var,161—63 173,175,182,
406—
Variable,12,14—16,52—55,69,
73-74,149,161-63,182,
204-5,209,214-15,
216-17,226-28,
398-401,404-6,
abstractand concrete,
310-11,356,
array, 95,173,175,182,215,
4

]

auxiliary, 306,307,311,
good216-17,223,226,233,
251,
inferencerule, 248,252,
local,52-55,53,168,169,
172,194,
logical, 15,29,
temporary, 37,53.
Variation, 112-14,120,122-23,
150.
Vector groduct ,program, 171,

Verification condition, 38—40.

Weakening consequent,
inferencerule,45,220.

Weaker (relating assertions),
40-41.

Weight, 337.
while statement, 5, 5-7,10,
20-21,23,25,78,187,
243,259,262,287,401,
inferencerule,49,211-12,
220,
invariant, 18,20-21,23, 25,
51,417
whiledo (procedure), 187,243.
whileinv, 25,seealso while
statement.
van Wijngaarden, A.,161,405.
Williams, J. Wi J.,334,351.
Winograd, S.,108.
Wirth,N.,7,112,148,203,395.
Word length, 58-59.
Workmg backwards, 4748,

Worst- case 198,199,309,362.
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