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PREFACE 

In 1972 I s tar ted teaching p rogramming to graduate s tudents in C o m p u t e r 
and Informat ion Science at Syracuse University. I began with the conviction 
that p rograms should work correctly and that p rog rammers should be able to 
explain clearly why they work correctly. This led to considerable emphas is 
on s t ructured p rogramming and the use of assertions. Gradual ly my own 
a t t i tudes and ideas crystal ized, p r o g r a m m i n g me thodo logy and proof 
methods became a m a j o r concern of my research, and the present book 
began to evolve. 

The m o d e r n compute r is so powerfu l tha t a casual knowledge of prog-
ramming suffices for most of its users. However , a variety of circumstances 
can abrupt ly require a much deeper unders tanding: the need to s tructure a 
program carefully to avoid being overwhelmed by its complexity, the need to 
insure reliability beyond what can be achieved by debugging, or the need to 
utilize comput ing resources efficiently. Beyond such practical considera-
tions, there is an inherent intellectual satisfaction in master ing the funda-
mental concepts of p rogramming. 

The aim of this book is to provide such mastery concept by concept . For 
example, the reader is expected to unders tand proofs of correctness and 
order-of-magni tude t ime requ i rements for simple integer algorithms—such 
as log n exponent ia t ion—before the concept of arrays is in t roduced. A 
similarly t h o r o u g h unde r s t and ing of array-manipulat ing a lgor i thms is 
expected be fore the int roduct ion of procedures . 

xi 



xii PREFACE 

The programming language used in this book is Algol W or, more 
precisely, the subset of Algol W that represents a ref inement of Algol 60. 
Originally the main factor determining this choice was the level of the 
language. It is sufficiently high-level to provide block structure, including 
dynamic arrays, and a powerful procedure mechanism, including recursion, 
call by name, and higher-order procedures. On the other hand, it is suffi-
ciently close to the machine to facilitate the estimation of time and storage 
requirements . In addition, it has an unusually elegant syntactic structure 
which permits clean subsetting, and an efficient and unusually error-free 
implementat ion. 

In retrospect , the advantages of Algol W seem even more compelling. It 
distinguishes clearly between the types of variables and the types of proce-
dure parameters , and, with a straightforward extension of its parameter 
specification facility, it can be made completely type-safe. Its procedure 
mechanism is based upon the copy rule, so that call by name is more 
fundamenta l than call by value. My own work, both in program proving and 
denotat ional semantics, has convinced me that these characteristics form a 
sounder conceptual basis for programming than those that underlie such 
languages as Pascal or Algol 68. In any event, much of what is said in this 
book, particularly in Chapter 3, would be difficult or impossible to say in 
such languages. 

This book reflects a conviction about the importance of program prov-
ing. Ideally at least, I believe that a p rogrammer should be able to specify the 
behavior of his program precisely, and to give a rigorous argument that the 
program meets its specifications. Of course, such an argument might not be a 
formal proof in the sense of logic, but it must be an adequate guideline for a 
formal proof. In o ther words, an adequately commented program should 
enable a competent reader to fill in the details of a formal proof in a 
straightforward manner . 

This implies that the programmer should master formal proof methods, 
not in order to give a formal proof of every program that he writes, but as a 
firm foundat ion for rigorous though informal reasoning about programs. 

In this connection, something needs to be said about the special prob-
lems of teaching experienced programmers to program. Such students are 
unlikely to be at t racted by either polemics or formalism, but they can be 
motivated by a sequence of programming problems of the right level of 
difficulty, given in an environment that precludes using the computer as a 
crutch. Most p rogrammers believe that they should be able to write a correct 
program for, say, binary search without using the computer . Once they have 
failed to do so and their errors have been pointed out, they are likely to 
become receptive to formalisms and methodologies that can help. 
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An even greater benefi t of having students program without using the 
computer is that it requires the instructor to read their programs, which is 
just as important in teaching programming as in teaching English composi-
tion. Moreover this is a reciprocal benefi t ; in my own case reading student 
programs has taught me profound lessons about programming style and the 
nature of useful comments . 

In the main text of this book, syntax is t reated informally to provide a 
reading knowledge of Algol W; the additional syntactic formalities needed 
to write programs, as well as a brief description of input and output facilities, 
are given in the appendices. Within the main text, sections marked with 
asterisks can be skipped without endangering the understanding of later 
material. 

Although this is primarily a textbook, I have not hesitated to include the 
results of my own research. [Reynolds 79, 81 and 78b] provide the source of 
much of Chapter 2, Section 3.3, and Sections 4.2.5 to 4.2.8, respectively. 
This research was partly supported by National Science Foundat ion Grant 
MCS 75-22002, R o m e Air Force Development Center Contract F30602-
77-C-0235, and the Science Research Council of Great Britain. 

I am thankful to the members of IFIP Working Group 2.3 for many 
specific ideas and, more importantly, for the basic outlook that underlies this 
book. In addition, Tony Hoare has provided much-needed encouragement 
for several years, and Edsger W. Dijkst ra and David Gries have each made 
numerous helpful suggestions af ter careful reading of a preliminary draft . I 
am also indebted to Lockwood Morris, Ernie Sibert, Nancy McCracken, and 
Otway Pardee, each of whom has used parts of the book in teaching at 
Syracuse University, to Rod Burstall and Robin Milner, who were my 
gracious hosts during a sabbatical at Edinburgh University, and to numerous 
students, who have taught me much about how to program, how to write, 
and even how to spell. Finally, I am deeply grateful for the encouragement 
and endless patience of my wife Mary and our children Edward and 
Matthew. 

J .C.R. 
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SIMPLE ITERATIVE PROGRAMS 

I 

1.1 COMPUTER PROGRAMS AS PATTERNS OF BEHAVIOR 

1.1.1 Patterns of Human Behavior: An Analogy 

A compute r p rogram is a pa t te rn of behavior for a machine tha t manipu la tes 
numbers or symbols. This implies tha t a clear unders tanding of even e lemen-
tary p rogramming requi res the mastery of two quite distinct concepts : 
behavior pa t te rns and the manipula t ion of number s or symbols. T o separa te 
these concepts , we will use a perspicuous idea taken f rom [Di jks t ra 71]: We 
will begin by considering behavior pa t t e rns for h u m a n s pe r fo rming everyday 
acts, and momentar i ly ignore the actual domain of compu te r activity. This 
will permit us to concent ra te upon the aspect of p rogramming that is usually 
called "con t ro l s t ruc tu re" . 

Consider my behavior on a part icular morning. A t a ra ther gross level of 
detail, I did the following: 

Ea t b reakfas t ; 

Put on clothes; 

Leave in car . 

However , each of these acts can be expanded into a sequence of acts at a 
more detai led level, and this expansion can be repea ted . For example : 

1 
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Gross 

Eat breakfast; 

Put on clothes; 

Leave in car 

Detailed 

Eat orange; 

Eat cereal; 

More Detailed 

Put milk on cereal; 

Put sugar on cereal; 

Eat bite of cereal; 

Eat bite of cereal; 

Eat bite of cereal; 

Eat bite of cereal; 

Eat toast; 

Put on heavy coat; 

Put on galoshes; 

Put on gloves; 

Open garage door; 

Start car; 

Get car out of garage; 

Drive car down driveway 

On a different day, I might have exhibited a behavior that was similar on 
a gross level, but different in its details, e.g. 

Gross 

Eat breakfast ; 

Detailed 

Eat orange; 

Eat pancakes; 

Put on clothes; { Put on light coat; 

Leave in car 

Start car; 

Get car out of garage; 

Drive car down driveway . 
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So far, we have two specific behaviors; we now want to abstract a 
common pattern that describes both of them, and possibly many others. 
There is no magic recipe for doing this, but two observations are obviously 
pertinent. First, my behavior differs from day to day because I perceive 
differences in my environment, e.g. what is on the breakfast table. (Note that 
we are ignoring anything like free will—this may not be appropriate for 
discussing human behavior, but hopefully it will be appropriate for machine 
behavior.) 

Secondly, patterns of behavior are intimately connected with the 
hierarchical structure of "levels of detail". In particular, specific behaviors 
that are similar on a gross level become more and more different as we 
examine finer levels of detail. 

At the most gross level, our pattern of behavior looks just like a 
particular behavior: 

begin 
Eat breakfast; 
Put on clothes; 
Leave in car 
end 

But at the next level of detail, something new happens: What I do when I eat 
breakfast depends upon how hungry I am and what is on the table, what I do 
when I put on clothes depends upon the weather, and what I do when I leave 
in the car depends upon whether the garage door is closed. 

To describe this kind of "conditional behavior", we must extend the 
language we have been using. First we need some terminology: A statement 
is a phrase that describes an action. (In English we would call it an imperative 
statement.) A logical expression is a phrase that describes a test of the 
environment. (The reason for using the name "logical expression" will 
become apparent later.) 

If L is a logical expression and 5 is a statement, then 

if L then S 

is a statement, called a conditional statement, that describes the following 
action: 

(1) Test whether L is true or false. 
(2) If L is true then do S, otherwise do nothing. 

We will also need a second kind of conditional statement: If L is a logical 
expression and both 5! and S2 are statements, then 

if L then Sx else S2 

is a statement that describes the following action: 
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(1) Test whether L is true or false. 
(2) If L is true then do 5j, otherwise do S2. 

These conditional statements allow us to describe a pattern of behavior 
that depends upon the environment: 

begin 
begin comment Eat breakfast; 
if hungry and orange on table then Eat orange; 
if hungry and cereal on table then Eat cereal; 
if hungry and toast on table then Eat toast; 
if hungry and pancakes on table then Eat pancakes 
end; 
begin comment Put on clothes; 
if cold then Put on heavy coat else Put on light coat; 
if snow then begin Put on galoshes; Put on gloves end 
end; 
begin comment Leave in car; 
if garage door closed then Open garage door; 
Start car; 
Get car out of garage; 
Drive car down driveway 
end 

end 

Here, in addition to the two forms of conditional statement, we are also using 
another kind of statement. If Sh S2, ... , Sn are all statements, then 

begin S^; S2; ... ; Sn end 

is a statement, called a block, that describes the following action: 

(1) Do Sv 

(2) Do S2. 

(n) Do Sn. 

The symbols begin and end can be used to group statements together, 
just as parentheses are used in elementary algebra to group expressions 
together. In the above example, this grouping is used to relate different 
levels of detail; each elementary statement at the gross level becomes a block 
of statements at the more detailed level. (Note that the entire pattern is 
grouped into a block of blocks—revealing a still grosser level of detail.) 

Blocks are also used to group statements within conditional statements. 
For example, we wrote 

if snow then begin Put on galoshes; Put on gloves end 
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instead of 

if snow then Put on galoshes; Put on gloves 

to show that neither galoshes nor gloves will be put on when there is no snow. 
Two other linguistic constructs have also been used. If C is any sequence 

of symbols that does not include a semicolon, then 

comment C; 

is a comment. Comments, which can occur anywhere in a program (except in 
the middle of "words") , have no effect on the machine (or human) that 
obeys the program, but are intended to help a reader to understand the 
program. For example, in the behavior pattern above, comments are used at 
the beginning of blocks to identify the gross structure from which the current 
level of detail is descended. 

Secondly, if Lx and L2 are logical expressions, then 

Lx and L2 

is a logical expression that is true if (and only if) both Lx and L2 are true. This 
is one of a number of constructions which will be used to build logical 
expressions out of simpler expressions, in the same way that the conditional 
and block constructions can be used to build statements out of simpler 
statements. 

At the next level of detail something new happens. The pattern for "Ea t 
cereal" might look like this: 

begin comment Eat cereal; 
Put milk on cereal; 
Put sugar on cereal; 
if cereal in bowl then Eat bite of cereal; 
if cereal in bowl then Eat bite of cereal; 
if cereal in bowl then Eat bite of cereal; 

end 

Presumably, we must have at least as many copies of "Ea t bite of cereal" in 
our pattern as the maximum number of bites in any cereal bowl. 

To avoid this foolishness, we introduce another kind of statement. If L 
is a logical expression and 5 is a statement, then 

while L do S 

is a statement, called a while statement, that describes the following action: 

(1) Test whether L is true or false. 
(2) If L is true then do S and go back to step (1), otherwise do 

nothing. 
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(Note that if the first test of L gives false, then S will not be performed at all.) 
Now we can write "Ea t cereal" as 

begin comment Eat cereal; 
Put milk on cereal; 
Put sugar on cereal; 
while cereal in bowl do Eat bite of cereal 
end 

The while s tatement is our first example of an iterative statement, i.e. a 
statement that can cause an action to be performed repeatedly. Such state-
ments are essential in computer programming in order to exploit the tre-
mendous disparity in speed between human program writing and mechani-
cal program execution. 

However, the power of repetition brings a concomitant danger: It is all 
too easy to write a while s tatement that never terminates, i.e. to write while L 
do S where doing S never makes L false. Perhaps 

while cereal in bowl do Eat bite of cereal 

is innocent, but 

while car stopped do Press ignition 

is a disastrous prescription for dealing with a dead battery. 
The language we are using to describe behavior patterns is a kind of 

pidgin Algol W whose similarity to natural English can be misleading. One 
particular warning must be sounded: Here and throughout this book, only 
sequential behavior is considered—two activities never occur simultane-
ously or overlap in time. Because of this, the while statement differs subtly 
from the use of "whi le" in English. In executing while L do S, the logical 
expression L is not tested during execution of the statement S. Thus, 
according to 

while hungry and pancakes on plate do 
begin 
Slice one pancake; 
while slice on plate do Eat slice 
end , 

I will always finish a sliced pancake, even though my appetite fails in the 
midst of eating it. A more rational (though perhaps less realistic) behavior 
would be specified by repeating the test of hungry in the inner while state-
ment: 
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while hungry and pancakes on plate do 
begin 
Slice one pancake; 
while hungry and slice on plate do Eat slice 
end 

This is as far as we will go in exploiting the analogy between human 
behavior and computation; we have managed to illustrate all the control 
mechanisms that will be used in this chapter. But one fundamental point 
deserves fur ther emphasis: The structure of levels of detail (or looking the 
other way round, levels of abstraction) is vital for imposing a pattern on a 
diversity of specific behaviors. To an observer f rom Mars, unfamiliar with 
human motivation, specific instances of the behavior we have described 
might appear to be unstructured sequences of very simple actions. But by 
virtue of this fact, such an observer would find it difficult or impossible to 
perceive any common pattern behind the diversity of instances. 

This naturally suggests that programs should be developed by beginning 
at a high level of abstraction and repeatedly refining the level of detail. This 
approach, often called structured programming, top-down programming, or 
programming by stepwise refinement, has received considerable emphasis in 
recent years [Dijkstra 71, 72, Wirth 71b]. Although it is not a panacea, it is 
an immensely powerful tool for attacking complexity, and its employment in 
various guises will be a recurring theme throughout this book. 

More precisely, we will say that a program is structured when it reveals a 
variety of levels of detail to the reader, and we will reserve the term 
top-down for the process of creating such a program by proceeding from the 
abstract to the concrete. Occasionally the opposite order of attack, which 
might be called bottom-up programming, is called for, particularly when the 
ultimate goal of the program is ill-defined or changeable. 

We are left with the question of when the repeated expansion of 
patterns into more detailed patterns should stop. Since the patterns are 
intended to be instructions, the pragmatic answer is to stop at a level of detail 
that can be understood by the recipient of the instructions. In particular, if 
the recipient is a computer then one stops when all instructions belong to the 
fixed repertoire of the programming language being used. 

1.1.2 Flowcharts 

Flowcharts are one of the oldest methods for describing the control structure 
of computer programs. Although their serious limitations have curtailed 
their popularity in recent years, they are still useful for illuminating the 
concepts introduced in the previous section. 
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A flowchart is a collection of boxes containing statements and logical 
expressions which are connected by arrows showing the order in which the 
boxes are to be executed. A statement is contained in a rectangular box with 
a single outgoing arrow, which points to the box to be executed next: 

A logical expression is contained in a diamond-shaped or hexagonal box 
with two outgoing arrows, one pointing to the box to be executed next if the 
logical expression is t rue, and the other pointing to the box to be executed 
next if the logical expression is false. The outgoing arrows are labeled true 
and false to distinguish them: 

Special boxes marked enter and exit are used to indicate the beginning 
and end of execution: 

As an example, the flowchart in Figure 1.1 describes the pattern of 
behavior for " E a t breakfas t" . It is evident that flowcharts are much less 
compact than the linguistic representat ion of behavior patterns, and that 
they obscure the basic hierarchical structure of the patterns (although one 
could use boxes containing smaller boxes as a kind of pictorial block). For 
these reasons, we will largely avoid their use (although the closely related 
concept of transition diagrams will be used in Sections 4.2.6 and 4.2.7). 

5 
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enter 

hungry and 
orange on table 

u false 

hungry and 
cereal on table 

false 

true 

true 

false 

Eat orange 

- Put milk on cereal 

Put sugar on cereal 

cereal 
in bowl 

true Eat bite 
of cereal 

hungry and 
toast on table 

false 

hungry and > 
pancakes on table. 

' false 

exit 

true 

true 

Eat toast 

Eat pancakes 

Figure 1.1 A Flowchart for the Behavior Pattern "Eat Breakfast' 

However, it is helpful to use flowcharts to describe each of the linguistic 
constructions introduced in the previous section. In Figure 1.2, each of these 
constructions is defined by a simple flowchart. Indeed, one could almost say 
that these constructions have been chosen to correspond to the simplest 
possible ways of constructing flowcharts f rom individual s ta tements and 
logical expressions. 
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if L then 5 

if L then Si else S2 

while L do S 

begin S S„ end 

Figure 1.2 The Basic Control Constructions Defined by Flowcharts. 

Exercise 

1. Write some behavior patterns. Try to include several levels of detail and to use 
each of the linguistic constructs discussed in this section. Translate the patterns 
into flowcharts. 

1.1.3 Syntax 

T h e analogy be tween h u m a n and compu te r behavior b r eaks down in one 
respect . In reading a p rog ram, a c o m p u t e r lacks the h u m a n ability to correct 
cer ta in kinds of minor e r ro r s and ambiguit ies. (More precisely, this ability is 
lacked by the compi l e r—the system program that t rans la tes a p rogramming 
language into the m o r e e l emen ta ry language used by the machine . Indeed , 
most compilers , including the Algol W system, fall considerably short of 
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the present state-of-the-art of mechanical error correction [Morgan 70, 
Graham 75].) 

As a consequence, programs to be executed by a computer must adhere 
to a rigid set of rules defining the syntax of the programming language being 
used. The behavior patterns we have presented adhere to these rules (except 
for the use of natural English for elementary statements and logical expres-
sions), but it is all too easy to write statements that violate these rules yet 
remain intelligible to the human reader. For example, each of the following 
statements is syntactically erroneous: 

if hungry and orange on table do Eat orange 
if snow then Put on galoshes; Put on gloves else 

Put on light overcoat 
begin Put on galoshes; Put on gloves; comment It is cold end 

A further problem is ambiguity. Some statements, like puns in natural 
language, can be interpreted in more than one way. For example, 

if warm then if rain then Put on raincoat else Put on heavy coat 

could reasonably mean either 

if warm then 
begin if rain then Put on raincoat else Put on heavy coat end 

or 

if warm then 
begin if rain then Put on raincoat end 

else Put on heavy coat . 

A human reader will use his entire understanding of context and meaning to 
resolve such ambiguities, often without becoming conscious of their exis-
tence. But the computer simply follows the syntax rules, even when the 
resulting interpretation would be unnatural for a human. For instance, in the 
above example, the Algol W compiler would choose the first interpretation. 

Because of these problems, there is a great difference between the 
ability to read a programming language and the ability to write it for 
computer consumption. (The first encounter with this difference is often a 
traumatic experience for novice programmers.) In organizing this book, we 
have tried to separate material that is directed towards these two abilities. In 
the main text, syntax is treated informally to provide a reading knowledge of 
Algol W. The additional information needed to write programs is provided 
in the appendices: Appendix A presents a general notation for describing 
the syntax of programming languages, which is used in Appendix B to 
describe the portion of Algol W used in this book. Further information can 
be obtained from the Algol W Reference Manual [Sites 72]. 
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T h e disparity b e t w e e n h u m a n and mechanical reading has o the r effects . 
In contras t to pr int ing or handwri t ing, compu te r input is usually restr icted to 
a small, f ixed vocabulary of symbols that can be unna tu ra l fo r the h u m a n 
reade r . T o alleviate this constra int , we will follow the practice, almost 
universal for Algol-l ike languages , of using a larger vocabulary for pr in ted 
p rog rams than for c o m p u t e r input . In part icular , we will use lower-case 
let ters freely, and will use bo ldface type for reserved words, i.e. words such 
as if, then, begin, and end tha t have fixed meanings and special syntactic 
roles. W e will also use a f ew mathemat ica l symbols, such as < , that are not 
available for c o m p u t e r input (with the I B M 3 6 0 implementa t ion of Algol 
W) , and we will use a variety of fo rma t s for var ious kinds of comments . 

1.2 VARIABLES, EXPRESSIONS, AND ASSIGNMENT 

1.2.1 The State of the Computation 

W e now turn f r o m h u m a n behav io r pa t te rns to real c o m p u t e r p rograms . Just 
as a h u m a n acts u p o n and is a f fec ted by his env i ronment , so the compu te r 
(actually the centra l processing unit of the c o m p u t e r ) acts upon and is 
a f fec ted by the state of the computation. (See Figure 1.3.) As be fore , prog-
r ams conta in two f u n d a m e n t a l kinds of phases: s ta tements , describing 
act ions tha t change the state , and expressions (logical and o the r types) 
descr ibing in fo rmat ion abou t the state tha t will inf luence the computa t ion . 

T h e main novelty is the na tu re of the state . T h e state is a collection of 
variables, each of which possesses a current value. For example , 

x 
tl 
cost 

0 
- 7 
84 

depicts a s tate conta ining variables, n a m e d x, t2, and cost, in which x has 
the cur ren t value 0, t2 has the cur ren t value - 7 , and cost has the current 
value 84. 

T h e basic s t a t emen t fo r describing e lementa ry changes in the state is the 
assignment statement, which affects the state by changing the current value of 
a single var iable . It has the f o r m 

V := E 

where V is a var iable and E is an express ion. T h e effect of an ass ignment 
s t a t emen t is first to eva lua te the expression on its right to obta in an integer 
(or o t h e r type of value) , and then to m a k e this in teger the new current value 
of the var iable n a m e d on the lef t . T h e cur ren t values of all o the r var iables 
r emain unchanged . 
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Human 
Agent Environment 

Human 
Agent Statements ^ 

Environment 

Behavior 
Pattern 

^ Program 

Figure 1.3 The Analogy between Human and Computer Behavior. 

For example, af ter executing the three s tatements 

x := 1; y := x + 1; x := x + 2 , 

the current value of x is 3 and the current value of y is 2. 
As a less trivial example, the following statement finds the quotient and 

remainder of two positive integers: 

begin 
r : = x; q := 0; 
while r>y do 

begin r := r-y\ q := <7 + 1 end 
end 

Specifically, if before this s tatement is executed the current values of x and y 
are integers such that * > 0 and y > 0 , then af ter execution the values of x and 
y will be unchanged, and the values of q and r will be integers such that 
x = qxy + r and 0 < r and r<y. 

Consider performing this s ta tement , starting with an initial state in 
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which x has the value 7 and y has the value 3. The following table depicts the 
state of the computation after each execution of an assignment statement: 

jc 7 7 7 7 7 7 7 
y 3 3 3 3 3 3 3 
r _ 7 7 4 4 1 1 
q 0 0 1 1 2 

1.2.2 Variables and Expressions 

Within a program, variables are denoted by identifiers, which are strings of 
letters and possibly digits that must begin with a letter, e.g. x, tl, or cost. 
(Notice the distinction between variables, which are part of the state of the 
computation, and identifiers, which are phrases of a program that denote 
variables. Eventually, we will introduce other ways of denoting variables, 
and other uses for identifiers.) A variable that always possesses integer 
values is called an integer variable. 

An integer expression is a phrase that describes the computation of an 
integer whose value depends upon the state of the computation. It may have 
any of the following forms: 

(1) An integer constant, i.e. a nonempty string of digits, 

(2) An identifier denoting an integer variable, 
(3) One or two integer subexpressions combined with an arithmetic 

operator, i.e. + , x , div, rem, or abs. 

(Other possible forms for integer expressions will be introduced later.) For 
example: 

73 
x 
-xXy 
U + y ) div 2 
( * x 3 ) rem (y +1) 
— abs x 

Most of the operators have the familiar meanings of elementary 
arithmetic, but some mention should be given to the operators div and rem, 
which indicate the quotient and remainder under integer division. Specifi-
cally, if x and y are integers, then x div y and x rem y are integers such that 

JC = (JC div y) x y + (x rem y) , 
When x > 0, 0 < (x rem y) < abs y , 
When JC < 0, - abs y < (x rem y) < 0 , 

where abs y denotes the absolute value of y. 
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Some expressions with more than one operator are potentially ambigu-
ous. For example, x-y-z might conceivably mean either (x-y)-z or 
x - ( y - z ) . Such ambiguities are resolved by the syntax rules given in Appen-
dix B. By and large, these rules follow customary mathematical usage (for 
example, x-y-z means (* - y ) - z ) , but in unfamiliar cases it is a kindness to 
human readers to put in extra parentheses. 

We can now see the relationship between integer and logical expres-
sions. In general an expression is a phrase that describes the computation of a 
value that depends upon the state of the computation; for an integer expres-
sion this value will be an integer, while for a logical expression, it will be a 
logical value, i.e. either true or false. Terms such as " integer" and "logical", 
which denote certain sets of values, are called data types. 

A logical expression may have any of the following forms: 

(1) The logical constant true or the logical constant false, 
(2) An identifier denoting a logical variable, i.e. a variable that always 

possesses logical values, 

(3) Two integer subexpressions combined by a relational operator, i.e. 
= , ^ , < , < , > , or > (or two logical expressions combined by = or 

A logical expression of this form is called a relation, 
(4) One or two logical subexpressions combined with a logical 

operator, i.e. and, or, or "1 (denoting logical negation), 

(5) odd(E), where E is an integer expression. 

(Other possible forms will be introduced later.) For example, 

true 
P 
x=y + l 
( 0 < JC) and (x<y) 
(p and "I q) or (q and 1 p) 
1 oddix) , 

where p and q are logical variables and x and y are integer variables. 
The relational operators have the familiar meanings of elementary 

arithmetic. The meanings of the logical operators are given by the following 
table: 

P q p and q p or q 11 
false false false false true 
false true false true true 
true false false true false 
true true true true false 
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The expression odd(x) has the value true if x is an odd integer and has the 
value false if x is an even integer. 

Again, the potential ambiguities of expressions containing several 
operators are resolved by the syntax rules given in Appendix B. 

The parallel treatment of the types integer and logical extends to 
assignment statements. An assignment statement can have the form V := E, 
where V and E are a variable and an expression of the same data type, i.e. 
where either 

(1) V is an integer variable and E is an integer expression, 

or (2) V is a logical variable and £ is a logical expression. 

It is important to understand the distinction between an assignment 
statement such as x := y + 1 and an equality relation such as x=y +1. The 
former denotes an action that changes the value possessed by x, while the 
latter denotes a computation that produces the value true or false without 
changing the state of the computation. It is not even true that an assignment 
statement will always " m a k e " the corresponding equality relation true, for 
example, x := x + 1 will not produce a state in which x = x + l has the value 
true. (This distinction holds for almost all programming languages, although 
it is unfortunately obscured in languages such as P L / I where the same 
symbol = is used both as the assignment operator and the relational operator 
for equality.) 

We have already seen the conditional statement if L then Si else S2, 
which performs a "b ranch" on the value of the logical expression L. Algol W 
also provides a conditional expression, which performs a similar branch 
within the evaluation of an expression. If L is a logical expression and Ex and 
E2 are both integer expressions (or both logical expressions), then 

if L then Ex else E2 

is an integer (or logical) conditional expression that is evaluated as follows: 

(1) Evaluate L to obtain true or false. 
(2) If L is true then evaluate Ex to obtain the value of the conditional 

expression, otherwise evaluate E2 to obtain the value of the condi-
tional expression. 

(There is no "one-way" conditional expression analogous to the conditional 
statement if L then 5 .) For example, the expression 

2 x (if x < y then x else y) 

produces twice the minimum of x and y. (Notice the mixture of types—this is 
an integer expression containing the logical expression x < y, which in turn 
contains the two integer expressions x and y.) 
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Exercises 

1. Execute the statement for finding quotients and remainders by hand for a few 
cases. What happens when 
(a) x is negative? 
(b) y is zero or negative? 

2. Execute the following statement by hand for a few values of x: 

while x>l do 
x :— if odd(x) then 3x;c + l else x div 2 . 

As far as is known, this statement will eventually terminate for any initial value 
of x, but no one has been able to prove this fifty-year-old conjecture [Terras 76, 
Crandall 78]. 

1.3 TOP-DOWN PROGRAM CONSTRUCTION 

1.3.1 Computing Factorials 

We have now in t roduced enough of our p rogramming language to consider 
the construct ion of a simple p rogram. Given an integer n, we want to write a 
s ta tement whose execut ion will cause the computa t ion of n\, i.e. the factorial 
of n. Specifically, the s t a t emen t should, while leaving the value of n 
unchanged, set the variable / to the factorial of n. 

We first no te the following " f a c t s " about the factorial funct ion which 
may be useful in writing the p rogram: 

(I) 0! = 1 . 
( II) n! = « x ( n - l ) ! when n > 0 . 

(I) tells us the factorial of a par t icular n u m b e r , zero, while (II) shows how to 
find the factorial of a new n u m b e r if we already know some factorial . This 
suggests the fol lowing line of a t tack: 

(1) Use (I) to c o m p u t e the factorial of 0. 

(2) Repea ted ly use ( I I ) to c o m p u t e factorials of larger number s until 
we find the factor ial of the n u m b e r we are interested in, i.e. n. 

Suppose we use the var iable / to save the last factorial we have com-
puted, and an addi t ional var iable k to keep track of the n u m b e r such that 
f=k\. Then the above plan becomes : 

(1) Achieve / = k\ by set t ing A: to 0 a n d / t o 1. 

(2) As long as k is d i f fe ren t f r o m n , increase A: and c h a n g e / i n a way that 
will maintain the relat ion f=k\. 

or in Algol W: 
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begin 
k : = 0 ; / : = 1; 
while k^n do "Increase k while m a i n t a i n i n g / = kV 
end 

This "program skele ton" is typical of the use of a while s tatement. 
Obviously, the body of a useful while s tatement (i.e. the substatement 
following do) should cause some change in the state of the computa-
tion—otherwise the while s tatement could never terminate. But, paradoxi-
cally, the key to understanding a while s tatement is not what its body changes 
but what it leaves unchanged—in this case, the re la t ion/=&!. Such a relation 
is called an invariant of the while s tatement. 

Our remaining task is to replace the specification "Increase k while 
maintaining f=kV by an actual s tatement that will satisfy this specification. 
It is evident that if f=k\, then we can use (II) to find the factorial of the 
integer that is one larger than k. If we decide to change k first, we get 

begin k := k +1; " S e t / t o reestablish / = k\" end . 

Now consider the state of the computa t ion just a f te r the assignment 
s tatement k := k +1. Since we have increased k by one, the relation / = k\ 
will no longer be t rue ; instead we will have f—(k— 1)L But by (II), 
k\ = kx(k-l)\ = k x f . Thus to reestablish f=k\ we w r i t e / : = k x f . 

The complete statement for computing the factorial of n is thus 

begin 
k := 0; / := 1; 
while k ^ n do 

begin k := k + \\ f := A:x / end 
end 

However , the argument we have made to justify the construction of this 
s tatement is still seriously incomplete. In essence, the argument shows t h a t / 
will be the factorial of n when and if execution of the statement is finished. 
However, since the statement contains a while construction, we must con-
sider the possibility that its execution might never terminate. In particular, 
the fact that the body of the while s tatement increases the value of A: does not 
automatically insure that k will eventually become equal to n. 

To see that the program terminates, we note that k is initially set to zero, 
and is then incremented by one during each execution of the body of the 
while s ta tement . Thus the test k ^ n will be applied successively to the 
integers A: = 0, 1, 2 Eventually, k ^ n will be false, the while s tatement 
will terminate , and therefore the entire program will terminate—providing 
n>0. In the case of the factorial function, n>0 is a reasonable restriction, 
since the factorials of negative integers are not defined. 
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However, termination considerations do not always work out so hap-
pily. By substituting (II) into itself, we can obtain the fact 

(III) n\ = nx(n-l)x(n~2)\ when n>l , 

which provides an alternative method of finding new factorials from old 
ones. Using (III) instead of (II) we can develop a factorial-computing 
program which increases k in steps of two: 

begin 
k := 0;/:= 1; 
while k # n do 

begin k := k + 2;f: = kx(k-l) xf end 
end 

Except for termination, this program is just as valid as the previous one, but 
it only terminates when n is an even nonnegative integer. 

Overall, our construction of the factorial program is a microscopic 
example of top-down programming or programming by stepwise refine-
ment. The basic idea is to progress in small, easily understood stages from an 
abstract specification of the program to a concrete realization. A more 
explicit description is the following rubric: 

(1) Take an unwritten portion of the program whose purpose is pre-
cisely and completely specified. 

(2) Replace this portion by a statement which may in turn contain 
portions that are unwritten but precisely and completely specified. 

(3) Prove (or at least convince yourself) that the new statement will 
meet its specifications if its unwritten portions meet their specifica-
tions. 

(4) Repeat the above process until the entire program is written. 

This methodology dominates the whole area of modern, systematic 
programming, and it has proven invaluable for the development of large 
programs. But its success depends critically on the use of "precise and 
complete specifications". Most errors in complex programs can be traced to 
ambiguous or inadequate specifications. 

So far our specifications have been informal and a bit vague. A remedy 
is provided in the next section. 

1.3.2 Specification by Assertions 

To provide "precise and complete specifications" for programs, we intro-
duce the concept of assertions. An assertion is simply a description of 
possible states of the computation. For example, the assertion x<y describes 
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the states in which the variable x has a smaller current value than the variable y. 
To specify the behavior of a statement S, we give an assertion P 

describing possible states before the execution of S, and a second assertion Q 
describing possible states after the execution of 5. More precisely, we write 
the specification 

{P}S{Q} 

to specify that, if one executes S beginning with any state described by P, and 
if S terminates, then 5 will produce a state described by Q. For example, 

{jt<_y} x := ;c + l 

specifies that if x<y, then executing x := JC + 1 will produce a state in which 
x<y. In the specification {P} S {<2}, the assertions P and Q are called the 
precedent and the consequent of 5. 

The idea of using assertions for specification in this manner is due to 
C. A. R. Hoare [Hoare 69, 71a]. (In Hoare 's original notation statements, 
rather than assertions, are bracketed, so that one writes P {5} Q rather than 
{P\ S {Q}. However, we prefer the latter notation since it gives assertions the 
appearance of parenthetical remarks.) 

It should be emphasized that, although they must be precise, assertions 
may be written in a variety of languages. Initially our assertions will be 
logical expressions (which take on the value true for the states they 
describe), but later we will use a variety of mathematical and logical symbol-
ism, and occasionally we will fall back on ordinary English. 

Specification by assertions can be used to make top-down programming 
rigorous. To illustrate, we will recapitulate our development of the factorial 
program. 

We want to construct a statement "Compute Factorial" that meets the 
specification 

{ n > 0 } "Compute factorial" { / = « ! } , 

without changing the value of n. As before, we are going to achieve the 
invar ian t /= k\ and then use a while statement to repeatedly increase k while 
maintaining this invariant, until k = n. With a little foresight, however, we 
know that we are going to need range information about k to insure termina-
tion, and also to insure that k never takes on negative values, for which the 
factorial is undefined. Since k will start at zero and increase until it is equal to 
n, we expect that 0<k<n. By adding this range information, we get the 
invariant 

f=k\ and 0 < & < n . 

Thus we replace "Compute factorial" by 
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begin 
"Achieve invariant"; 
while k ^ n do "Increase k while maintaining invariant" 
end , 

which will meet its specification if the unwritten substatements meet the 
specifications 

{ « > 0 } "Achieve invariant" {f=k\ and 0 < & < « } 

and 

{ / = £ ! and 0 < k < n and k^n} 
"Increase k while maintaining invariant" 
{f=k\ and 0 < / c < « } . 

Notice that the invariant itself does not contain the test k ^ n ; indeed 
when the while s ta tement terminates the invariant will still be true but the 
test ky^n will be false, which permits us to i n f e r f = n \ . On the other hand, just 
before each execution of the body of the while s tatement, both the invariant 
and the test will be t rue, so that we can include k ^ n in the precedent of the 
body "Increase k while maintaining invariant". The situation is clearly 
illustrated by the flowchart for the while s tatement: 

Only invariant 
is known to be 
true here. "Increase k while 

maintaining invariant" 

Invariant is true and k ^ n . 

Invariant is true and k = n. 

Since 0! = 1, we can meet the specification of "Achieve invariant" by 

k : = 0; / : = 1 . 

(Strictly speaking, we should enclose this statement sequence in begin ... end 
to make it a s ta tement , but this kind of parenthesization is a purely syntactic 
concern which we can ignore in writing specifications.) 

For "Increase k while maintaining invariant", we write 

begin k := k +1; " S e t / t o reestablish f=k\" end . 

S i n c e / = k\ and 0 < k < n and k^n will be true before executing k := k +1, 
the assertion f=(k-1)! and 0 < k < n will be true afterwards. Thus our 
remaining unwritten subprogram must meet the specification 
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{ / = ( * - 1 ) ! and 0<A:<n} 
" S e t / t o reestablish f=k\" 
{/=*:! and 0 < k < n ) . 

Since k\=kx(k —1)! when A;>0, we can complete our program by replacing 
" S e t / t o r ee s t ab l i sh /= A:!" by 

/ : = kxf . 

In summary, by using assertions to specify each part of our program 
during its development, we have demonstrated the specification 

{«> 0} 
begin 
k : = 0 ; / : = 1; 
while k ^ n do 

begin k := k + 1; f : = kxf end 
end 
{/="!} , 

i.e. if n > 0 then executing the above program will, if the program terminates, 
produce a state in which / = « ! . 

As before, however, we must still make sure that the program termi-
nates. Each execution of the body of the while statement increases k without 
changing n, yet produces a state in which the invariant, and therefore k<n, is 
still true. Since k cannot be increased forever without eventually growing 
larger than the unchanging value of n, the while statement must terminate. 

In general, a specification of the form {p} S {Q} does not specify that S 
terminates. In technical terms, such a specification shows the conditional 
correctness, as opposed to the total correctness, of a program. (For a specifi-
cation method which shows total correctness, see [Dijkstra 75, 76].) This 
reflects the fact that, although the need for termination must be kept in mind 
when constructing a program, the actual argument that the program will 
terminate is separate from the argument that it will behave correctly if it does 
terminate. 

However, the termination argument will usually be straightforward if 
the assertions are adequate. (Exercise 2 after Section 1.2.2 is an exception.) 
Typically, a termination argument is said to be based on some quantity that is 
always increased (or decreased) by the body of while statement, yet cannot 
be increased (or decreased) indefinitely. For example, the termination of the 
factorial program is based on k. 

Another important property that cannot be specified in the form {P} S 
{Q} is that a program leaves certain variables unchanged. For example, in 
our original specificat'on of the factorial program we had to stipulate "with-
out changing the value of informally. We will continue to treat such 
stipulations informally until Section 3.3. 
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T h e factorial example is typical of the use of the while s ta tement . T h e 
key point is tha t one should dec ide on an invariant be fo re writing the while 
statement, no t a f te rwards . Indeed , one can give a general recipe fo r using the 
while s t a t emen t to mee t the specification {P} S {{?}: 

(1) Choose an invariant I and a logical expression L . 

(2) Replace S by: 

" In i t i a l i ze" ; 
while L do " C h a n g e " ; 
"F ina l i ze" . 

(3) Wri te subs ta tements to mee t the specifications 

{P} " In i t ia l ize" {/} , 
{ / and L } " C h a n g e " {/} , 
{ / and "1 L} "F ina l i ze" {Q} . 

H e r e " In i t ia l ize" may be omit ted if P implies / . Similarly, "Fina l -
ize" may be omi t ted if / and "1 L implies Q—as in ou r factorial 
example . " C h a n g e " may never be omi t ted—it must have some 
effect on the s tate or t e rmina t ion cannot occur. 

(4) Show te rmina t ion—usual ly by showing that " C h a n g e " increases or 
decreases some quant i ty in a way that cannot be r epea t ed fo rever 
wi thout mak ing I false (or making L false). 

Exercise 

1. Replace "Increase k while maintaining invariant" by 

begin k := k + 2\ f : = fcx(fc-l)x/end , 

and find out where the program construction argument breaks down. See if you 
can save the situation by adding even(n) to the precedent of the program and 
even(k) and even(n) to the invariant. 

1.3.3 Assertions as Comments 

In this section we turn o u r a t ten t ion f rom p rog ram writing to p rogram 
reading. T h e r e is a vast d i f fe rence be tween a p r o g r a m being executable and 
being unde r s t andab l e—info rma t ion sufficient to de te rmine the behav ior of 
a compute r will se ldom be sufficient to reveal the genera l na ture of that 
behavior . For example , it is clear tha t the p rogram deve loped in the previous 
section will s e t / t o 6 if n is 3. But in the absence of c o m m e n t s it is hardly clear 
that this p rogram will set / t o the factor ial of n whenever n is nonnegat ive . 

For tuna te ly , the assert ions used to specify par ts of a p rog ram can also 
be used as commen t s . T h e essential idea is to add the asser t ions to the 



2 4 SIMPLE ITERATIVE PROGRAMS CHAP. 1 

program, as though they were extra statements, in such a way that each 
specification {P} S {Q} appears as part of the program. For example, asser-
tions would be added to our factorial example as follows: 

{«>()} 
begin 
k : = 0 ; / : = 1; 
{f=k\ and 0<A:<n} 
while k ^ n do 

begin 
{f—k\ and 0<k<n and k^n) 
k := k + 1; 
{f—(k — l)\ and 0 < k < n } 
f:= kxf 
{f=k\ and 0 < & < « } 
end 

end 
{/="!} • 

Unfortunately, the curly bracket convention is not part of Algol 
W—instead of {P} one must write the more cumbersome form comment P\. 
Throughout this book, however, we will use curly brackets for comments 
that are assertions, and eventually for other kinds of comments that provide 
a formal specification of program behavior. It should also be mentioned that 
we are not following the syntax of Algol W logical expressions within our 
assertions. It is not necessary to do so within comments but, for example, if it 
were an executable part of the program, we would have to rewrite 0 < k<n as 
(0<fc) and (k<n). 

Now something slightly mysterious appears. The assertions in a prog-
ram like the one above can be interpreted in either of two ways: 

(1) Whenever a statement S is surrounded by assertions, i.e. {P} S {0}, 
it meets the specification implied by these assertions. For example, 
k := k + 1 meets the specification 

{f=k\ and 0<A:<n and k^n} 
k := k + 1 {f=(k-l)\ and 0<k<n} . 

At the opposite extreme, the entire program meets the specifica-
tion 

{/2>0} begin ... end { / = « ! } • 

(2) If the program is executed, beginning with any initial state which 
satisfies (i.e. is described by) the initial assertion, then whenever 
any assertion is "passed through", it will be a true description of the 
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current state of the computation. For example, if one begins with a 
state in which n>0, then each time execution of A: := k + 1 is 
completed, the current state will satisfy / = (k-1)! and 0 < k < n . 

This is not an accidental coincidence; we will see in Section 1.4.1 that a 
correct usage of assertions can always be interpreted in both of these ways. 

Now consider the use of the while statement in a program with asser-
tions as comments. It will always have the form 

w 
while L do 

begin {Qx} 5 {1} end 
{Q2} 

or, in terms of a flowchart, 

false 

02 

Here 1 is the invariant of the while statement, Qx is an assertion that is 
implied by / and L (i.e. it must be true for any state in which I and L are both 
true), and Q2 is an assertion that is implied by I and 1 L. Notice that the 
invariant occurs (and must be true) at two points in the program: before the 
entire while statement and after each execution of the body S. These points 
correspond to the two arrows leading into the test in the flowchart. 

This situation is such a commonly occurring cliche that it is worth 
adopting an abbreviation for it. We write 

{whileinv: /} 
while L do S . 

Specifically, we label the invariant of the while statement with the symbol 
whileinv and only write it once, immediately before the while statement. We 
also omit Qx and Q2 unless they are nontrivial consequences of / and L or of 
I and 1 L. 

With this convention, the factorial program reduces to: 
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{ « > 0} 
begin 
k := 0;/: = 1; 
{whileinv: f=k\ and 0<k<n} 
while ky^n do 

begin 
k := fc + 1; 
{ / = ( * - l ) ! and 0 < £ < n } 
f : = k x f 
end 

end 
{/=«!} 

We will eventually see that even this is an excessive level of detail. For a 
simple program like this, it is sufficient to give just the initial and final 
assertions and the invariant of the while s tatement. However, it is vital that 
the given assertions should provide enough information. For instance, omis-
sion of the range information 0 < k < n would make the above program much 
harder to unders tand. 

In general, the use of assertions as comments is important because it 
reveals the statics of the program. The statements of the program themselves 
reveal the dynamics, i.e. the changes that occur, so that a comment like 

comment increase x; x := x + 1 

is simply redundant . But assertions reveal what the statements of ten hide— 
the unchanging aspects of the computat ion. 

Exercises 

1. Complete the following partially written programs for performing exponentia-
tion. The programs should not change n or x. (Assume that x° = l, even when 
x=0.) 

(a) {n>0} 
begin 
"Achieve invariant"; 
{whileinv: y=xk and 0 < & < n } 
while k ^ n do 

"Increase k while maintaining invariant" 
end 
{y=x"} . 
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(b) { " ^ 0 } 
begin 
"Achieve invariant"; 
{whileinv: yXjc* = x" and &>0} 
while k^ 0 do 

"Decrease k while maintaining invariant" 
end 
{y=x"} . 

2. Complete the following partially written programs for performing multiplica-
tion. The programs should not change JC or y. (Do not use the "built-in" 
multiplication operator x . ) 

(a) { y s 0} 
begin 
"Achieve invariant"; 
{whileinv: z=xxk and k<y} 
while k ^ y do 

"Increase k while maintaining invariant" 
end 
{z=xxy} . 

(b) { y ^ o } 
begin 
"Achieve invariant"; 
{whileinv: z=x*k and k>y} 
while k ^ y do 

"Decrease k while maintaining invariant" 
end 
{z=xXy} . 

3. Combine the two programs in Exercise 2 to obtain a program satisfying 
{true} 
"Compute product" 
{z=xxy} . 

Note that the assertion true describes the set of all possible states of a computa-
tion. 

1.3.4 Integer Division 

A s a s e c o n d e x a m p l e of p r o g r a m c o n s t r u c t i o n , we c o n s i d e r a s t a t e m e n t t h a t , 
g iven t w o pos i t ive i n t e g e r s JC a n d y , will se t q a n d r t o t h e q u o t i e n t a n d 
r e m a i n d e r of JC d i v i d e d by y . Speci f ica l ly , t h e s t a t e m e n t s h o u l d sa t i s fy t he 
spec i f i ca t ion 

{ J C > 0 and y > 0 } 

" C o m p u t e q u o t i e n t a n d r e m a i n d e r " 
{JC = <7 X y + r and 0 < r < y } 

w i t h o u t c h a n g i n g JC o r y . 
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One way to find possible invariants is to ask how much of the final 
assertion can be achieved directly. In this case, we can get x = q x y + r simply 
by setting r to x and q to zero. This also gives 0 < r for f ree . Thus we will try 

x=qxy+r and 0 < r 

as the invariant of a while s ta tement that tries to achieve r<y. 
This gives us the partially written program 

{ x > 0 and y > 0 } 
begin 
r := x; q := 0; 
{ w h i l e i n v : x = q x y + r and 0 < r } 
while r>y do 

"Decrease r while maintaining invariant" 
end 
{x-q x y + r and 0 < r < y } , 

where the body of the while s tatement must satisfy the specification 

{x = q x y + r and y < r } 
"Decrease r while maintaining invariant" 
{x = q x y + r and 0 < r } . 

(In the precedent of this specification, we do not need to include 0 < r , since it 
is implied by y < r when y > 0 . ) 

With a little algebraic juggling, we can see that before the body of the 
while s ta tement is executed 

x = qxy + r = (q + l)xy + (r-y) 

will hold, so that decreasing r by y and increasing q by one will maintain the 
r e l a t ionx = qxy + r. Moreover , since b e f o r e h a n d y < r , decreasingr byy will 
give 0 < r . Thus the s ta tements 

r : = r - y ; q := q +1 

meet the specification for "Decrease r while maintaining invariant". 
The finished program is 

{ x > 0 and y > 0 } 
begin 
r := x; q :— 0; 
{whileinv: x = qxy + r and 0 < r } 
while r > y do 

begin r := r—y; q := q +1 end 
end 
{x-q x y + r and 0 < r < y } . 
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Termination is based on r. Since y > 0 , each execution of the body of the 
while statement decreases r. (Notice that this argument would fail if y = 0 
were permitted.) Yet at the completion of each execution of the body, the 
invariant shows that 0 < r . Since one cannot indefinitely decrease r without 
falsifying 0 < r , the while statement must terminate. 

So far all the programs we have constructed have set one or more output 
variables to values that depend upon one or more input variables, without 
changing the values of any input variables. For example, the above program 
sets q and r to values that depend upon x and y, without changing x or y. Such 
programs are said to be input-preserving. 

However, consider the effect of deleting the initial assignment r := x. 
The resulting program is not input-preserving; it sets q and r to the quotient 
and remainder of the initial value of r divided by y, while destroying the 
initial value of r in the process. 

A significant difficulty arises when we try to state this specification with 
assertions. It is a relationship between values in different states of the 
computation, but assertions can only relate values in the same state of the 
computation. 

Fortunately, there is a standard method for overcoming this difficulty. 
One introduces an identifier, say r0, that does not occur in the program being 
specified, and adds the equality r = r0 to the precedent of the specification. 
Then since the program clearly does not change the value of r0, this identifier 
can be used in assertions throughout the program to denote the initial value 
of r: 

{r>0 and y > 0 and r = r0} 
begin 
q:= 0; 
{whileinv: r0 = qXy + r and 0 < r } 
while r>y do 

begin r := r-y; q : = <7 + 1 end 
end 
{ro = q X y + r and 0 < r < y } . 

An identifier, such as r0 , that occurs in the specification of a program (or 
in intermediate assertions) but does not occur in the program itself is called a 
ghost identifier of the specification. (Some authors, e.g. [Gries 80], call ghost 
identifiers "logical variables", which is a completely different usage of the 
latter term than in this book.) In specifying programs that do not preserve 
certain inputs, we will usually denote such inputs by ghost identifiers with the 
subscript zero. 

Actually, almost all of the programs in Chapter 1 will be input-
preserving. Such programs are obviously more flexible for their users, who 
may need to reference input values after the program has been executed. 
Moreover, the cost of preserving simple inputs such as integers or logical 
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v a l u e s is m i n o r . T h i s cos t will e s c a l a t e , h o w e v e r , w h e n w e c o n s i d e r a r r ay 
i n p u t s in C h a p t e r 2 . 

Exercises 

1. In the program constructed in the above section, the relationship x=qxy+r 
would be preserved by a while-statement body of the form r := r —(axy) ; q : = 
q + a, where a might be any integer. Show that a = l is the only choice of a that 
gives a correct program. 

2. Complete the following partially written program for computing square roots. 
You may use multiplication by two but not by other numbers. (This is a reason-
able restriction, since multiplication by two can be implemented by shifting on a 
computer with binary arithmetic.) The program should preserve the value of x. 

begin 
"Achieve invariant"; 
{whileinv: x-y2 + r and r > 0 and y > 0 } 
while r > 2 x y + l do 

"Decrease r while maintaining invariant" 
end 
{y^x<(y + l)2} . 

(The algebraic juggling will involve the identity ( y + l ) 2 = y 2 + 2 x y + 1 . ) 

3. From the program developed in the previous exercise, delete the initial assign-
ment which preserves the input. Use a ghost identifier to specify the resulting 
program. 

1.3.5 Fast Exponentiation 

S o f a r t h e h e a r t of all t h e p r o g r a m s w e h a v e c o n s t r u c t e d has b e e n a while 
s t a t e m e n t w h o s e b o d y i n c r e a s e s or d e c r e a s e s s o m e v a r i a b l e by a c o n s t a n t 
a m o u n t . W e n o w w a n t t o e x p l o r e s o m e m o r e s o p h i s t i c a t e d c o m p u t a t i o n a l 
b e h a v i o r . 

C o n s i d e r t h e p r o b l e m of c o m p u t i n g xn f o r n> 0. In Exe rc i s e 1 a f t e r 
Sec t i on 1 .3 .3 , we h a v e a l r e a d y s e e n t w o so lu t i ons t o th is p r o b l e m , b u t n o w 
w e will c o n s t r u c t a m u c h f a s t e r p r o g r a m to m e e t t h e s a m e spec i f i ca t ion . W e 
b e g i n wi th t h e so lu t ion t o t he s e c o n d p a r t of E x e r c i s e 1: 

{ n > 0 } 
begin 
k := n;y := 1; 
{whileinv: yxxk=xn and & > 0 } 
while 0 do 

begin k := k — 1; y : = y x x end 
end 

{y=*n} • 
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In contrast to ou r factorial p r o g r a m , or to the first par t of Exercise 1, the 
variable k in this p r o g r a m is repea ted ly decreased ra ther than increased, and 
serves to k e e p t rack of the n u m b e r of mult ipl icat ions remain ing to be done , 
ra ther than the n u m b e r of mult ipl icat ions a l ready done . 

To try to improve this p rog ram, we look for a more genera l invariant 
that will still imply the goal y=xn when k = 0. O n e possibility is to in t roduce 
an addit ional var iable z, and use yxz

k=xn instead of yxxk=xn. T h e new 
invariant is almost as easy to achieve as the old one (if we also set z to x), bu t 
it gives us the extra f r e e d o m of changing z in the body of the while s t a tement . 
We will see that this extra f r e e d o m allows us to write a much fas ter p rogram. 

A t this stage our p r o g r a m is 

begin 
k := n; y := 1; z := x; 
{whileinv; yxzk=xn and 
while k ^ 0 do 

" D e c r e a s e k while main ta in ing invar ian t" 
end 
{y=x"} , 

where the body of the while s t a t emen t must satisfy the specification 

{yxzk=xn and A:>0} 
" D e c r e a s e k while mainta in ing invar ian t" 
{yxzk=xn and / : > 0 } . 

Since zk=zXzk~l when k>0, the p receden t here implies 

xn=y xzk = (yxz)xzk~l . 

Thus decreasing k by one and multiplying y by z preserves the relat ion 
y x zk =x". Also, if k>0 b e f o r e h a n d , then decreas ing k by one will give k>0. 
Thus we can replace " D e c r e a s e k while mainta in ing invar ian t" by 

k := k-1; y := yxz . (S_) 

But this r ep lacemen t t akes no advan tage of o u r m o r e genera l invariant , 
and gives a p rog ram tha t is essentially the same as the second par t of 
Exercise 1. We can do be t t e r by taking advan tage of the f r e e d o m to change 
z, and using the exponent ia l law 

X2xm = (xxx)m when m>0 . 

Thus ifk is even b e fo r e execut ing " D e c r e a s e k while mainta in ing invar ian t" , 
we will have 

xn=yXzk=yx(zXz)kAiv 2 , 
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so that dividing & by two and squaring 2 will mainta iny Xzk=xn. Also, if £ > 0 
(or even just k>0) beforehand, then dividing k by two will give k>0 
afterwards. 

This suggests a version of "Decrease k while maintaining invariant", 

k k div 2; z := z X z , (Sdiv) 

that is potentially much faster than (since repeated division by two will 
obviously make k decrease much more rapidly than repeated subtraction of 
one). But unfortunately the version 5d iv only works when k is even. 

There are at least two ways around this dilemma. The obvious solution 
is to branch on whether k is odd or even, doing Sdiv when it is even and falling 
back on the slower S i when it is odd: 

if odd(k) then 
begin k := k-1; y := y x z end ,„ . 

else * Wbranch J 

begin k := k div 2; z := z X z end . 

A more subtle approach [Dijkstra 72] is to always do 5d iv , but to 
precede it by a s ta tement that will make k even: 

" M a k e k even while maintaining invariant"; 
{yXzk = xn and k>0 and even(k)} 
k := k div 2; z : = z X z . 

Then S_ provides an obvious method for fulfilling " M a k e k even while 
maintaining invariant": If k is odd do otherwise do nothing. This leads to 
the following version of "Decrease k while maintaining invariant": 

if odd(k) then begin k := k - \ \ y : = yXz end; 
{yxz

k = xn and k>0 and even(k)} (SmakeeVen) 
k :— k div 2; z : = z X z . 

Thus we have three possible versions, S_, Sb r a n c h , and Smakeeven' 
"Decrease k while maintaining invariant". For each version, termination is 
based on k. (The reader should check that Stanch and Smakeeven actually 
satisfy their specification and decrease k. Note that these s tatements would 
not always decrease k if their precedent permit ted £ = 0.) 

Next, we consider the execution speed of the three ways of computing 
xn. In all three cases, the program consists of a sequence of initialization 
s ta tements followed by a single while s tatement. Thus the execution time will 
be smaller or equal to a + (3 • /, where a is the maximum time required for 
the initialization statements, (3 is the maximum time required for the body of 
the while s ta tement , and / is the number of times the while s tatement body is 
executed. Notice that the bounds a and (3 only exist because: 
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(1) Nei ther the initialization s ta tements nor the while-statement body 
contain while s ta tements (or other iterative constructs). 

(2) All the assignment s ta tements and tests require a constant amount 
of time, or at least an amount of time that is bounded by some 
constant. (With slight exceptions which are irrelevant here, all the 
basic opera t ions of the port ion of Algol W used in this book have 
this property. In effect , the language is sufficiently " low-level" that 
there are no hidden iterations.) 

When is used, k begins with the value n and is decreased by one each 
time the while-statement body is executed, until it is equal to zero. Thus l = n. 

When S m a k e e v e n i s u s e d > e a c h execution of the while-statement body will 
reduce k to no more than half its previous value. Since initially k = n = 2lo^n, 
the successive values of k will be bounded by 

Let [log2 n\ denote the largest integer that is smaller or equal to log2 n. Then 
it will take at most [log2 n\ i terations to reduce k to no more than 

which is less than two. Then since k is an integer, it must be zero or one, 
so that at most one more i teration will complete the algorithm. Thus 

/ < [log2 n j + l < log2 n +1. 

The situation is slightly more complicated for S b r a n c h . By considering 
even and odd k separately, it is easy to see that at most two iterations will be 
enough to reduce k to no more than half its previous value. Then the above 
argument shows that / < 2 • log2 n + 1. 

In summary, the t ime required by each of our programs to compute xn is 
bounded by 

Of course, the constants a and are different in each case. Nevertheless, 
since the function log2 n grows more slowly than n, it is clear that for 
sufficiently large n using ei ther 5m a k e e v en or S b r a n c h will be faster than using 
S_. Indeed, for any multiplier m, there will be sufficiently large n such that 
using 5 m a k e e v e n or b r a n c h

 w i n b e m t i m e s a s f a s t a s u s i n 8 5 - -
This kind of asymptotic behavior can be clarified by introducing the 

concept of order of magnitude. In general , a numerical func t ion / (n ) is said to 

2log2 «-L'og2 n\ ? 

a + (3 • n 
a + p • (log2 n + 1) 
a + (3 • (2 • log2 n + 1) . 



3 4 SIMPLE ITERATIVE PROGRAMS CHAP. 1 

be of order g(n) if there is a constant c such that , for all sufficiently large n, 
f(n)<c • g(n). In part icular , 

et + (3-n 1 U 
a + (3 • (log2 n +1) 1 is of o rder < log n 
a + /3 • (2 • log2 n + 1) J [ log n . 

Note that we need not state the base of the logari thm explicitly, since 
choosing ano the r base would only lead to a di f ferent value of the constant c. 
In o ther words, for any bases b and b' a funct ion of o rde r logfc n is also of 
o rde r log^ n. 

(Strictly speaking, any funct ion , such as a + /3 • (log2 n + 1), tha t is of 
o rde r log n is also of o rde r n, but the lat ter fact provides less informat ion 
than the fo rmer . The real point is tha t the p rogram using S m a k e e v e n o r S b r a n c h 

requires t ime of o rde r log n, while the p rogram using S_ requires t ime that is 
not of the o rde r of any funct ion which grows less rapidly than n.) 

In many comput ing applicat ions, the size of the computa t ion is so large 
that o rde r -o f -magn i tude considera t ions complete ly domina te the quest ion 
of efficiency. Exponen t i a t ion is a marginal case, since one usually computes 
xn for only m o d e r a t e sized values of n, but more vivid examples will appea r 
in later chapters . 

Finally, we must compare S b r a n c h and S m a k e e v e n - He re , since the execu-
tion t imes are the same order of magni tude , the choice is less clearcut . The 
use of S b r a n c h has the disadvantage of r edundan t testing: When k is odd , it will 
be decreased by one and then tested again to see whe ther it is odd, despite 
the fact tha t it must be even. O n the o ther hand, 5 m a k e e v e n has the disadvan-
tage that the last execut ion of k : = k div 2 ; z : = z x z is always unnecessary , 
since k will a l ready be zero. T h e t ime lost is not significant, but the final value 
of z can be much larger t h a n * " , and this can cause overf low prob lems . (See 
Section 1.6.1.) 

It is na tura l to ask whe the r one can construct an exponent ia t ion prog-
ram which avoids the d isadvantages of e i ther S b r a n c h or S m a k e e v e n . We will 
re turn to this quest ion in Section 4.2.5. 

Exercises 

1. What is wrong with the following expansion of "Decrease k while maintaining 
invariant"? 

if odd(k) then begin k := k-1; y : = yXz end; 
while 1 odd(k) do 

begin k : = k div 2; z := zXz end . 

2. For any positive integer n, let £ be the number of bits in the binary representation 
of n, and let 17 be the number of such bits that are 1. For example, when 
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n = 13 = 1101binary, £ = 4 and 17 = 3. Show that the number of multiplications used 
to compute xn is £ + 17-1 when the program with Sb r a n c h is used, and £ + when 
the program with Sm a k e e v e n is used. 

3. Complete the following partially written program for multiplication in such a 
way that it will require a time of order log y. Within the program, you may use 
multiplication and division by two, but not by other numbers. (As noted earlier, 
this is a natural restriction, since multiplication and division by two can be 
implemented by shifting on a computer with binary arithmetic.) The program 
should preserve x and y. 

0} 
begin 
"Achieve invariant"; 
{whileinv: z+wxk-xxy and &>0} 
while kT̂ O do 

"Decrease k while maintaining invariant" 
end 
{z=JtXy} . 

4. Complete the following partially written program for division in such a way that 
it will require a time of order log (jt divy). Again, you may use multiplication and 
division by two, but not by other numbers. The program should preserve x and y. 

{x>0 and y > 0 } 
begin 
"Achieve first invariant"; 
{whileinv: z=yx2" and n>0 and jc>0} 
while z < * do 

"Increase z while maintaining invariant"; 
"Achieve second invariant"; 
{whileinv: x = q*z + r and 0 < r < z and z=yx2" and « > 0 } 
while n ^ 0 do 

"Decrease n while maintaining invariant" 
end 
{x-qxy + r and 0 < r < y } . 

5. Complete the following partially written program for computing square roots 
in such a way that it will require a time of order log x. The program should 
preserve x. 

{*>0 } 
begin 
"Achieve first invariant"; 
{whileinv: 2 = 2" and n>0 and * > 0 } 
while z X Z < J C do 

"Increase z while maintaining invariant"; 
"Achieve second invariant"; 
{whileinv: y2<x<(y + z)2 and z = 2" and « > 0 } 
while n^O do 

"Decrease n while maintaining invariant" 
end 
{y^x<(y +1)2} . 
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1.3.6 Fibonacci Numbers 

So far our programs have all had the form 

"Initialize"; while L do "Change" . 

The following example suggests that the situation does not always work out 
so simply. 

We want to write a statement that, when given a nonnegative integer n, 
will s e t / t o the «th Fibonacci number. Specifically, we want a statement that 
will satisfy the specification 

{ « > 0 } "Compute Fibonacci" {f=fib(n)} , 

where fib is the function that satisfies 

fib( 0) = 0 
fib( 1) = 1 
fib(n) =fib(n -1) +fib(n -2) . 

We will use the same basic plan of attack as with the factorial function, 
but now we must keep track of two "ad jacen t" Fibonacci numbers. To do so, 
we will use three variables / , g, and k satisfying the relationship 

f=fib(k)Smdg=fib(k-l) . 

Since we intend to increase k until it is equal to n, we add the appropriate 
range information k<n to the invariant. 

At this stage our program has the form 

{ « > o } 
begin 
"Achieve invariant"; 
{whileinv: f=fib(k) and g=fib{k-\) and k<n} 
while ky^n do 

"Increase k while maintaining invariant" 
end 
{f=fib(n)} . 

Now consider the expansion of the while statement body. If we change k 
first, we have 

{f=fib(k) and g=fib(k-1) and k<n} 
k := k +1; 
[f—fib{k-\) and g=fib(k-2) and k<n} 
"Change / and g to reestablish invariant" 
{f=fib(k) and g=fib(k-l) and k<n} . 

To complete this program, it is evident that we must make the new value o f / 
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be the sum of the old values o f / a n d g, and make the new value of g be the old 
value of / . 

But now we encoun te r a small d i lemma: If we s e t / f i r s t , we will lose the 
old value o f / a n d will be unable to set g, but if we set g first, we will lose the 
old value of g and be unable to set / . T h e simplest way out is to use an 
addit ional " t e m p o r a r y " variable t to save the informat ion that will be 
needed . T h e n " C h a n g e / a n d g to reestablish invar ian t" can be replaced by 

t:=f+g;g:=f;f:=t , 

or equally well by 

t : = f . f . - f + g . g : = t . 

A n o t h e r p rob lem occurs when we consider "Ach ieve invar iant" . The 
obvious rep lacement is 

* : = l ; g : = 0 ; / : = l , 

which will achieve f=fib{k) and g=fib(k-l). But this initialization will not 
achieve k<n when w = 0 — r e f l e c t i n g the fact that the while s t a tement will 
run on fo rever when n— 0. 

This is slightly surprising. Usually, when a funct ion is well-defined for 
zero, a r easonab le p rogram which works for all larger values will also work 
for zero. But the re are except ions, and the Fibonacci n u m b e r s are one of 
them. T h e most obvious solution is to use the p rogram we have designed 
when n> 1, and to handle n — 0 separately: 

{ / i > 0 } 

if n = 0 then / : = 0 else 
begin 
{ « > l } 
k : = l ; g | = 0 ; / : = 1; 
{whileinv: f=fib{k) and g=fib{k-1) and k<n} 
while k n do 

beg in / : := k + 1; t := f+g; g := f ; f := t end 
end 

{f=fib(n)} . 

Exercises 

1. A more elegant solution to the problem discussed above arises f rom the fact that 
the function fib can be consistently extended to - 1 . In particular, we can define 
fib(-l) = l , and still have fib(n)=fib(n-l)+fib(n-2). Show that this extension 
permits one to write a program satisfying 

{ « > 0 } "Compute Fibonacci" {f=fib{n)} 

without including a special branch for n = 0. 
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2. The greatest common divisor gcd(a, b) of two integers is the largest integer that 
divides both a and b. (This definition is meaningless when a and b are both zero, 
but by convention gcd(0, 0) = 0.) It is easily shown that 

gcd(a, b)=gcd(b, a rem b) , 
gcd(a, 0) = a when a > 0 . 

Use these properties to construct a program (Euclid's algorithm) that will 
compute the greatest common divisor of any two nonnegative integers. 

1.4 ASSERTIONS AND PROGRAM PROVING 

In this section we will investigate the underlying na tu re of assert ions, and 
show that they can be used to construct fo rmal p roofs that p rog rams mee t 
their specifications. 

1.4.1 Assertions with Flowcharts 

The na tu re of asser t ions is easily seen in the context of f lowcharts , whe re 
they were originally in t roduced by R . W. Floyd [Floyd 67a], and indepen-
dent ly by P. N a u r [Naur 66]. In a f lowchar t , each assert ion is a t t ached to an 
ar row, and is m e a n t to be a t rue descript ion of the state of the computa t ion 
wheneve r the a r row is t raversed in moving f rom one box to ano the r . ( W h e n 
several a r rows join to lead to the same box or all lead to exit boxes, they must 
have the same asser t ion a t tached . ) This is i l lustrated in Figure 1.4, where 
asser t ions are a t t ached to a f lowchar t for the fac tor ia l -comput ing p rog ram. 

Floyd 's discovery was tha t , if adequa t e asser t ions are a t t ached to a 
f lowchar t , then the correc tness of the ent i re f lowchar t can be infer red f r o m 
the correc tness of its individual parts . By the correc tness of the individual 
par ts we m e a n tha t , fo r each box in the f lowchar t , the fol lowing verification 
conditions must hold: 

(1) If the box contains a s t a tement S and has assert ions P and Q 
a t t ached to its incoming and outgoing ar rows, 

r P 

5 

v e 
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then, for any state in which P is t rue, executing S must change that 
state into a state in which Q is true. In other words, S must meet the 
specification {P} S {<2}. 

(2) If the box contains a logical expression L , has an assertion P 
attached to its incoming arrow, and has assertions Q\ and Q2 

attached to its outgoing arrows marked true and false, 
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then Qx must be true for any state in which both P and L are true 
and Q2 must be true for any state in which P is true and L is false. In 
o ther words, P and L must imply Qx, and Pand 1 L must imply Q2. 

Now consider executing a flowchart in which every box satisfies these 
verification conditions (as is the case in Figure 1.4). If, at any time during this 
execution, the current state satisfies the assertion attached to the arrow that 
is being traversed, then the verification condition for the next box insures 
that , af ter execution of the s tatement or test in that box, the new state will 
satisfy the assertion at tached to the new arrow being traversed. It is evident 
(by induction on the number of boxes that are executed) that this situation 
will continue throughout fur ther execution. Thus the flowchart is "cor rec t" 
in the following sense: 

If every box of a flowchart satisfies the verification conditions, and 
if execution of the flowchart begins with an initial state that satisfies the 
assertion at tached to enter, then as each arrow is traversed, the current 
state will satisfy the at tached assertion, and when and if the program 
terminates, the final state will satisfy the assertion attached to exit. 

In effect , the assertions at tached to enter and exit are the precedent 
( n > 0 in Figure 1.4) and consequent ( f = n \ in Figure 1.4) of the entire 
program, and the intermediate assertions provide enough information so 
that a reader can check (by using the verification conditions) that the 
program meets its specification. 

Essentially, Floyd's discovery explains the "myster ious coincidence" of 
Section 1.3.3, since the use of assertions as comments is tan tamount to 
attaching them to arrows in a flowchart. 

Again, the qualification "when and if the program terminates" should 
be noticed. As with our earlier informal arguments, the use of assertions 
does not insure te rminat ion , but only shows condit ional correctness. 
Nevertheless, it is usually easy to show termination separately if the asser-
tions include enough range information about the relevant variables. 

One other point deserves emphasis. Each arrow in a flowchart is both an 
outgoing arrow from one box and an incoming arrow to another box, so that 
the at tached assertion must satisfy two verification conditions. The verifica-
tion condition for the preceding box prevents the assertion f rom being too 
strong, i.e. f rom being an incorrect description of the current state. On the 
other hand, the verification condition for the succeeding box prevents the 
assertion f rom being too weak, i.e. f rom being an inadequate description of 
the current state. 

For example, consider the circled assertion in the following portion of 
Figure 1.4: 
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1 r 

k := k + 1 

i «. 

/:= kxf 

\ r 

f—k\ and 0 < k < n and k^n 

f=(k-1)! and 0<A:<n 

f=k\ and 0<k<n . 

The verification condition for k := k + \ prevents us f rom strengthening this 
assertion to the point of incorrectness—for instance, we could not add the 
condition k^n. On the other hand, the verification condition f o r / : = kxf 
prevents us f rom weakening this assertion to the point of inadequacy—for 
instance, we could not remove the condition k<n. 

Here the notions of strengthening and weakening assertions involve 
implication. The following four s tatements are different ways of expressing 
the same relationship between two assertions P and Q: 

(1) P is stronger than Q. 

(2) Q is weaker than P. 
(3) P implies Q. 
(4) Every state described by P is also described by Q. 

If P implies Q and also Q implies P, then P and Q are said to be equivalent. 
The assertion true is weaker than any assertion, since it describes every state. 
At the opposite extreme, the assertion false is stronger than any assertion, 
since it describes no state. 

The adequacy of assertions can be described in another way. Let P be an 
assertion attached to some arrow in a flowchart, and imagine the following 
process: 

(1) Execution of the flowchart begins with an initial state satisfying the 
assertion at tached to enter. 

(2) Execution is halted temporarily at some instant when the computa-
tion is traversing the arrow to which P is at tached. 
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(3) A " d e m o n " is permi t ted to m a k e an arbi t rary a l terat ion in the 
cur ren t state of the computa t ion , provided the al tered state still 
satisfies the assert ion P. 

(4) Execu t ion is r e sumed and permi t ted to cont inue to comple t ion . 

If there is no th ing the d e m o n can do that will lead to an incorrect final result , 
then the assert ion P is adequa t e . If, in addi t ion, the re is noth ing the d e m o n 
can do that will lead to non te rmina t ion (a l though his act ions might increase 
the n u m b e r of s teps to be executed) , then P is also adequa t e for showing 
te rmina t ion . 

1.4.2 Inference Rules for Specifications 

So far , we have rel ied upon our intuit ion to m a k e sure that our p rog rams 
actually satisfied their specifications. This is o f t en sufficient, but it is hardly 
foo lproof . Intui t ion can easily go wrong when one is dealing with a complex 
or subtle p rog ramming si tuat ion, and it can also go wrong if the exact 
mean ing of the p rog ramming language is misunders tood . In these cases one 
needs a m o r e r igorous m e t h o d of proving that a p rog ram mee t s its specifica-
t ion. 

The deve lopmen t of such me thods has been a significant a rea of 
research in the last decade . It is a m a j o r (and controvers ia l ) thesis of this 
book tha t this deve lopmen t has progressed to the point where the serious 
p r o g r a m m e r should be expec ted to prove his p rog rams in the same sense 
tha t a ma themat ic i an is expec ted to prove his t heo rems . 

Howeve r , one should carefully distinguish be tween the ma themat i -
cian 's concept of proof and the logician's concept of formal p roof . A fo rmal 
proof is a sequence of s t a t ements each of which is infer red f r o m a subset of its 
p redecessors according to a f ixed and explicit set of rules of inference. In 
contrast , a ma themat i c i an ' s proof can be regarded as an a d e q u a t e collection 
of hints fo r p roduc ing a fo rma l proof . Specifically, a clear mathemat ica l 
proof is one which provides just enough in format ion to permi t a well- trained 
r eade r to const ruct a fo rma l proof wi thout any t r ia l -and-error . For example , 
the ma themat i c i an might write q xy + r = (q + l) x y + (r-_y) wi thout f u r t h e r 
detai l , conf iden t tha t his r e ade r unders tands the rules of ar i thmet ic well 
enough to see how they could be used to infer this equa t ion . 

In a similar sense, an adequa te ly c o m m e n t e d program should provide 
just e n o u g h in format ion to permi t a well- trained reader , wi thout t r ial-and-
er ror , to const ruct a fo rma l proof that the p rogram mee t s its specification. 
This is the f u n d a m e n t a l reason for studying fo rma l m e t h o d s for proving 
p rograms . O n e does not need to give a fo rma l proof of an obviously correct 
p rogram, bu t one needs a t ho rough unders tand ing of fo rmal proof m e t h o d s 
to know when correc tness is obvious. 
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In the first two chapters of this book, we will construct formal proofs 
using rules for inferring conditional-correctness specifications which were 
originally devised by C. A. R. Hoare [Hoare 69]. (A more elaborate formal 
system, capable of dealing with procedures, will be introduced in Section 
3.3.) These inference rules represent a translation of Floyd's discovery about 
flowcharts into a form that is applicable to programs in an Algol-like lan-
guage. Roughly speaking, for each way in which a statement can be con-
structed from simpler statements, there is a rule for inferring a specification 
of the constructed statement from specifications of its component state-
ments. 

Each inference rule consists of a sequence of zero or more specifica-
tions, called premisses, which are separated by a long bar from a single 
specification called the conclusion: 

y i 
: Premisses 

} Conclusion . 

Within these specifications upper case letters, called metavariables, will 
occur in place of various types of phrases such as assertions, statements, 
variables, or expressions. An instance of an inference rule is obtained by 
replacing each metavariable by a phrase of the appropriate type, with the 
restriction that all occurrences of the same metavariable must be replaced by 
the same phrase. (A few rules will be prefaced by further restrictions on the 
permissible replacements.) 

The meaning of an inference rule is that, for any instance, if the 
premisses are true specifications then the conclusion is a true specification. 
Thus in writing proofs, once the premisses of an instance have been proved, 
one may infer the conclusion of the instance. 

We begin by developing a rule for the assignment statement. Suppose 
we have an assignment statement X: = E, and that we wish an assertion P to 
be true after the assignment statement is finished. (Here X, E, and P are 
metavariables denoting an arbitrary variable identifier, expression, and 
assertion respectively.) What has to be true before the assignment statement 
begins? If we regard P as asserting that X has some property, then 
beforehand E must have the same property. To assert this, we can simply 
write down P and then replace each occurrence of X in P by E. More 
precisely, we must substitute E for X in P. (Eventually, when we encounter 
the phenomenon of identifier collisions in Section 2.2.6, we will adopt a more 
complex definition of substitution.) 

Let us write P| X-+E t o stand for the result of substituting E for X in P. 
Then the following inference rule describes assignment: 
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Simple Assignment: 

{P\x^E}X:= E{P} . 

Although this rule is " just i f ied" by the previous paragraph, the justification 
is only informal. Strictly speaking, one should regard the rule as a definition 
of the meaning of the assignment statement. 

To obtain an instance of the assignment rule, we must replace the 
metavariables P, X, and E by a particular assertion, variable, and expres-
sion, and then carry out the indicated substitution. For example, suppose we 
replace Pbyy<4,Xbyy, and E by yxy. Then the substitution y< 41 y->yXy 

gives yxy<4, so that we get the instance 

{yxy<4} y := yxy {y<4} . 

Similarly, if we replace P by yxy<4, X by y, and E by y—z, we get the 
instance 

{(>>—z)xCy—z)<4} y := y-z {y*y<4} , 

Like the assignment rule itself, these instances contain no premisses. Thus, 
without proving anything beforehand, we may infer their conclusions. 

Next, consider a compound statement of the form Sj; S2. Suppose that 
whenever P is true executing S t will make Q true, and whenever Q is true 
executing S2 will make R true. Then whenever P is t rue executing S2 will 
make R true. Thus we have the rule 

Statement Compounding: 

M Si ( G ) 
{<Q} s2 M 

{P}S1-,S2{R} . 

For example, if we make the replacements 

P: (y-z)x(y-z)<4 Sx: y := y-z 
Q:yxy<4 S2: y := yxy , 
R: y<4 

we obtain the instance 

{(y-z)x(y-z)<4}y := y-z {yxy<4} 
{yxy<4}y := yxy {y<4} 

{(y — z) x (y — z) <4} y := y-z; y := yxy {y< 4} . 

Here the two premisses are the specifications that we proved by using the 
rule for simple assignment. Thus we may infer the conclusion. 
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Next suppose that P implies Q (i.e. that Q is true in any computational 
state for which P is t rue) , and that whenever Q is true executing S will make 
R true. Obviously, whenever P is t rue executing S will make R true. Thus we 
have 

Strengthening Precedent: 

If P implies Q then 

{Q} s M 

W s W • 
For example, since - 2 < y - z < 2 implies ( y - z ) x ( y - z ) < 4 , 

P: - 2 < y - z < 2 S: y : = y - z ; y : = y x y 
Q: ( y - z ) x ( y - z ) < 4 R: y<4 

is a permissible replacement . Since the premiss of the resulting instance was 
inferred by the rule for s tatement compounding, we may infer the conclusion 

{ - 2 < y - z < 2 } y : = y - z ; y : = y x y { y < 4 } . 

On the other hand, suppose that whenever P is true executing S will 
make Q true, and that Q implies R. Obviously, whenever P is true executing 
S will make R t rue. Thus: 

Weakening Consequent : 

If Q implies R then 

M 5 { Q } 

M 5 M • 

For example, y < 4 implies y < 3 . This permits an obvious replacement that 
produces an instance whose premiss was proven in the previous paragraph. 
Thus we may infer the conclusion 

{ - 2 < y - z < 2 } y : = y - z ; y : = y x y { y < 3 } . 

At first sight, the last two rules seem too obvious to be worth mention-
ing. But although they are obvious, they are vital, since they are the essential 
mechanism that allows static mathematical facts to be used in proving 
program correctness. Notice that the specification 

{ ( y - z ) x ( y - z ) < 4 } y : = y - z ; y : = y x y { y < 4 } 

is purely concerned with programming; it depends upon the nature of the 
assignment s tatement and the operator " ; " , but has nothing to do with the 
fact that the values involved are a particular kind of mathematical entity 
called integers. On the other hand, 
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— 2<y — z<2 implies (y — z)x(y — z)<4 , 
y < 4 implies y < 3 

are purely mathemat ica l facts which have noth ing to d o with p rogramming , 
bu t which describe the na tu re of integers. (For example , the second fact 
holds fo r integers but not for real numbers . ) In o rde r to combine these two 
kinds of knowledge we must use the rules for s t rengthening p receden t s or 
weaken ing consequents . 

It is evident tha t the explicit application of the rules for s t a t emen t 
c o m p o u n d i n g , s t r eng then ing p receden t s , and w e a k e n i n g c o n s e q u e n t s 
involves a good deal of mechanical detail . For tuna te ly , there is a simple way 
of " a u t o m a t i n g " this detail . 

Cons ider the fol lowing sequence of assert ions and s ta tements : 

{-2<y-z<2} 
{(y-z)x(y-z)< 4} 
y •= y-z; 
{yxy<4} 
y := yxy 
{ y < 4 } 

Such a sequence is called a tableau. In general , a tableau is a sequence of 
in te rmixed asser t ions and s t a t ements tha t begins and ends with assert ions. 

A t ab leau is valid if: 

(1) W h e n e v e r a triple of the fo rm {P} S {Q}, where 5 is a s t a tement or 
sequence of s ta tements , occurs in the tab leau , the triple is a t rue 
specif icat ion, and 

(2) W h e n e v e r a pair of the fo rm {P} {Q\ occurs in the tab leau , the 
assert ion P implies the assert ion Q. 

Thus , fo r example , the tab leau given above is valid. 
N o w suppose a subsequence of the f o r m {p} { Q } S2 {P} occurs in a 

valid t ab leau . T h e n {P} Sx { Q } and { Q } S2 { P } are t rue specifications, so tha t 
the rule fo r s t a t emen t compound ing can be used to infer {P} Sx; S2 {P} . T h u s 
the t ab leau will r emain valid if the in te rmedia te assert ion Q is de le ted . 
Similarly, a subsequence of the fo rm {P} {Q} 5 { P } can be r educed to 
{P} S { P } by the rule for s t rengthening precedents , and a subsequence of the 
f o r m { P } 5 {Q} {P} can be r educed to {P} S { P } by the rule for weaken ing 
consequen t s . Finally, a subsequence of the fo rm {p} {q} {P} can be r educed 
to {P} { P } since, if P implies Q and Q implies P , then P implies P . 

T h e repet i t ion of this a r g u m e n t shows that a t ab leau will r emain valid if 
all its in t e rmedia te asser t ions are de le ted . But a valid tab leau wi thout 
in te rmedia te asser t ions is simply a t rue specification. Thus any valid t ab leau 
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constitutes a proof of the specification obtained by deleting its intermediate 
assertions. For example, since the tableau given above is valid, it is a proof of 
the specification 

{-2<y-z<2}y := y-z;y := y x y { y < 3 } . 

As a second example, we give a tableau which describes part of a real 
program: the body of the while statement in the Fibonacci number example 
of Section 1.3.6: 

1- {f=fib(k) and g=fib(k-l) and k<n and k^n) 
{f+g=fib(k+1) and f=fib(k + l — l) and k + l^n} 
k := k + 1; 
{f+g=fib(k) and f=fib(k-1) and k<n} 
t:=f+g; 
{t=fib(k) and f-fib(k-l) and k<n} 
g •= / ; 
{t=fib(k) and g=fib(k-1) and k<n) 
f:=t 
\f=fib(k) and g=fib{k-1) and k<n} . 

Each specification in this tableau may be inferred from the assignment rule, 
and the implication that validates the pair of adjacent assertions is a conse-
quence of elementary properties of the integers and the Fibonacci equation 
fib(n) =fib(n -1) +fib(n - 2 ) . Thus the tableau is valid, so that we may infer 
that the body of the while statement satisfies the specification 

{f=fib(k) and g=fib(k-1) and k<n and k^n} 
k := k + 1; t := f+g; g :=/;/:= t 
{f=fib(k) and g=fib(k-1) and k<n} . 

At this point it is natural to ask how, given a specification to be proved 
about a sequence of statements, one can determine the intermediate asser-
tions needed for a valid tableau. In general there is no answer (which is why 
adequately commented programs must contain certain intermediate asser-
tions). However, an answer can be given for the simple case where the 
statements in the tableau are all assignment statements. 

The rule for simple assignment has no premisses, and the consequent of 
its conclusion is a single metavariable. Thus, when inferring a specification 
about an assignment statement, one is free to choose an arbitrary conse-
quent. Hence, a tableau for a sequence of assignment statements can be 
constructed by working backwards, i.e. by generating the intermediate 
assertions in reverse order. 

Suppose we wish to prove 

{P} XY := Ex; X2 := E2; ... ; := En {Q} . 
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Let Qn be Q, be Qn\x„^En, Qn-i be Qn-1| xn-i->En-v and so forth-
Then each specification in the tableau 

{/>} too} Xi :=Eu tell := E2; ... ; { 0 * - i } Xn:=En {Q} 
will be inferable from the assignment rule, so that the tableau will be valid if 
P implies Q0. 

Of course it is possible that P may not imply Q0, but it can be shown that 
in that case the specification one is trying to prove is false. 

The reader may verify that the tableau for the Fibonacci while-
statement body can be constructed by this method of working backwards. 

Exercises 

1. Use the method of working backwards to construct a valid tableau, different 
f rom that given in the above section, for the specification 

{-2<y-z<2}y y-z; y := yxy {y=s3} . 

2. For the while-statement body in the Fibonacci program one can use 

k := k + l;f:= f+g; g : = f~g • 
Show that this alternative meets the same specification as was proved in the 
above section for the original while-statement body. 

3. In the solution of Exercise 2 after Section 1.3.4, the while statement body can be 
either 

begin y := y + 1; r := r-2xy+l end 

or 

begin r : = r — 2 x y —1; y •.— y + 1 end . 

Show that both of these statements meet the appropriate specification. More 
generally, show that these two statements are equivalent by showing that for any 
consequent P, repeated application of the assignment rule will produce equival-
ent precedents for the two statements. 

1.4.3 More Inference Rules 

We now introduce some more rules of inference, which will permit us to 
prove the correctness of the rest of the Fibonacci example. 

Consider a while statement of the form while L do 5, and suppose that S 
satisfies the specification { /and L} 5 {/}. (/ obviously stands for "invariant".) 
If I is true before execution of the while statement begins, then (by induction 
on the number of executions of S) I will be true every time an execution of S 
is completed, so that / and 1 L will be true if the while statement ever finishes 
its execution. Thus we have the inference rule 
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while Statement: 

{/ and L} S { / } 

{/} while L do S {/ and ~l L} . 

This rule illustrates that knowledge of the invariant is the key to reason-
ing about the while statement. Once I is known to be the invariant of while L 
do S, it is evident that one must prove {/ and L} S {/} about the body, and 
then infer {/} while L do S {/ and 1 L}. 

Next consider a conditional statement of the form if L then else S2, 
and suppose that Si and S2 satisfy the specifications {P and L} St {Q} and 
{Pand "I L\ S2 {Q}. If P i s true before the conditional statement begins, then 
either P and L will be true before Si is executed, or P and "I L will be true 
before S2 is executed. Either way, when the conditional statement is finished 
Q will be true, so that we have 

Two-way Conditional Statement: 

{P and L} Sx {Q} 
{P and 1 L} S2 {Q} 

{P} if L then else S2{Q) . 

A similar line of reasoning justifies 

One-way Conditional Statement: 

If (P and "1 L) implies Q then 

{P and L} 5 {Q\ 

{P} if L then S {Q} . 

These additional rules are sufficient to complete the proof of the 
Fibonacci program. We begin with the specification of the while-statement 
body that was established by Tableau 1 in the previous section: 

{f=fib(k) and g=fib(k-1) and k<n and k^n) 
k := k+l;t:=f+g;g:=f;f:= t 
{f=fib(k) and g=fib(k-1) and k<n) . 

Then, if we take / to be " f = f i b { k ) and g =fib(k -1) and / : < « " (the invariant) 
and use the rule for the while statement, we get 

{f=fib(k) and g=fib(k-1) and k<n} 
while ky^n do 

begin k := k +1; t := f+g; g :=/;/:= f end 
{f=fib(k) and g=fib(k-1) and k<n and 1 k^n} . 
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from 
Tableau 1 
by while-
statement 
rule 

From this specification, one can develop a tableau for the entire second 
part of the main conditional statement by working backwards through the 
initial assignment statements: 

2. {n > 0 and 1 n = 0} 
l} 

[l=fib{l) and 0=fib(l-l) and 1 < « } 
k := 1; 
{ l =fib(k) and 0=fib(k-l) and k<n} 
g : = 0; 
{1 =fib(k) and g=fib(k-1) and k<n} 
/ : = l ; 
{f=fib(k) and g=fib(k-1) and k<n} 
while k ^ n do 

begin k := k + 1; t := f+g; g := f ; f := t end 
{f=fib(k) and g=fib(k-1) and k<n and 1 k^n} 
{f—fib(n)} . 

A more trivial tableau handles the first part of the main conditional state-
ment: 

3. { « > 0 and n = 0} 
{n = 0} 
{0 =fib{n)} 
/ : = 0 
{f=fib(n)} . 

Finally, from the specifications for the two parts of the main conditional 
statement, an application of the rule for the two-way conditional proves that 
the entire program meets its specification: 

4. { « > 0 } 
if n = 0 then / : = 0 else 

begin 
k:= l;g:= 0;/:= 1; 
while k ^ n do 

begin k := k + 1; t := f+g; g := /; /:= t end 
end 

{f=fib(n)} . 

from 
Tableaus 
2 and 3 
by two-way 
conditional 
statement 
rule 

The formal proof is completely conveyed by the tableaus numbered 1 to 
4, along with marginal comments showing how steps in one tableau are 
inferred f rom the results of other tableaus. Each step in the proof is either an 
instance of some inference rule or an implication that is a consequence of the 
static mathematical nature of the data used by the program. At present, we 
have not formalized the proofs of these implications since only the familiar 
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mathematics of integer arithmetic is involved. This situation will change, 
however, when arrays are introduced in Chapter 2. 

The final inference of the proof is a conditional-correctness specifica-
tion of the Fibonacci program. Thus the proof does not, by itself, insure that 
the program terminates, nor does it show the obvious but essential property 
that the program preserves the value of n. 

Although our presentat ion has demonstrated that our proof is correct, 
i.e. that it is built out of instances of the rules of inference, it has not said 
much about how such proofs can be found. In fact, when a program is 
constructed f rom the top down, it is simplest to construct its proof in a similar 
manner, so that the tableaus are generated in the reverse of the order in 
which they are to be read. 

In the present example, the overall specification to be proved com-
pletely determines tableau (4), whose body is a single two-way conditional 
statement. The need to apply the rule for the two-way conditional s tatement 
in turn determines tableaus (2) and (3), except for their intermediate asser-
tions. Since (3) contains only assignment statements, it can be completed by 
working backwards, as discussed in the previous section. 

On the other hand, (2) is less trivial to complete since it contains a while 
statement. However , knowledge of the invariant of this statement deter-
mines the instance of the rule for the while s tatement that must be used, 
which in turn determines the precedent and consequent of the while state-
ment in (2) and the specification to be proved in (1). Then the rest of (2) and 
all of (1) can be filled in by working backwards through assignment state-
ments. 

Beyond the program itself and its overall specification, the one item of 
information needed to construct the formal proof is the invariant of the while 
statement. This pinpoints the invariant as the one intermediate assertion 
that should appear as a comment in the program. 

In conclusion, we give three more inference rules which will be occa-
sionally useful. The first describes a feature of Algol W which has not been 
discussed previously, the empty s tatement. In any context that permits a 
statement one can place an empty sequence of characters (i.e. a sequence of 
blanks or even nothing at all). The effect of executing such a statement is to 
leave the state of the computat ion unchanged. For example, 

The empty s ta tement is succinctly characterized by the following rule of 
inference: 

Empty Sta tement : 

if L then S else 
if L then else S 
begin ; S2; end 
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Finally, two rules give me thods for combining d i f ferent specifications 
abou t the same s ta tement : 

Specification Con junc t ion : 

to} ̂  {gj 
to} S { Q

2
} 

{ P , and P
2
} S { Q

x
 and Q

2
} . 

Specification Dis junc t ion : 

to} ^ { Q
x
} 

to} S { Q
2
} 

{Pi or P
2
} S { Q

x
 or Q

2
} . 

Addi t iona l in ference rules for new language f ea tu res will be given in 
Sections 1.5.1, 2.3.2, and 2.4.2. With these addi t ions, the rules are sufficient 
to deal with the p rog rams in Chap te r s 1 and 2. Howeve r , the rules cannot 
encompass cer ta in aspects of the p rocedure mechanism in t roduced in Chap-
ter 3. In Section 3.3 we will resolve these difficulties by developing a system 
of inference based u p o n a more complex not ion of specification. 

Exercise 

1. Give formal proofs that some of the programs in this chapter meet their specifi-
cation. The fast exponentiation program in Section 1.3.5 and the programs in 
Exercises 3 to 5 after that section are excellent candidates. 

Be careful not to let the mathematics of the data creep into applications of 
the inference rules. In applying the while-statement rule, for example, if L is to 
be replaced by r > y , then 1 L becomes 1 r>y rather than r<y. Strictly speaking, 

r>y implies r < y " is a mathematical fact about the integers. 
Also be careful not to get implications backwards. This is a surprisingly 

common error in first attempts at formal proof, perhaps because many (though 
hardly all) of the implications used in such proofs are actually equivalences. 

1.5 DECLARATIONS AND BINDING 

1.5.1 Local Variables and Simple Variable Declarations 

In the p rog ram for comput ing Fibonacci numbers , the body of the while 
s ta tement mee t s the following specification: 

{f=fib(k) rnd g=fib(k-1) and k<n and k^n) 
k •= k + 1; t f+g; g : = / ; / : = t 
{f=fib(k) and g=fib(k-1) and k<n} . 



SEC. 1 .5 DECLARATIONS A N D BINDING 5 3 

Moreover this specification, along with the requirements that k be increased 
and n not be changed, is a complete description of the properties of the 
while-statement body needed to make the overall program correct. 

Neither the precedent nor the consequent of this specification contain 
any occurrence of the integer variable t. This indicates that t has two 
important properties: 

(1) The value possessed by t when the statement begins execution has 
no significant effect on its execution. 

(2) The value possessed by t when the statement completes execution 
has no significant effect on the rest of the program. 

When a variable possesses both of these properties with respect to a state-
ment, it is said to be a local variable of the statement. 

The importance of this concept is twofold. If the statement to which a 
variable is local is indicated explicitly in a program, then the identifier 
denoting the variable can be used for other purposes outside of that state-
ment, and the storage used to hold the value of the variable can be used for 
other purposes when the statement is not being executed. 

In Algol W, the fact that a variable is local to a statement can be 
indicated by declaring the variable, i.e. by mentioning the identifier denoting 
the variable in a simple variable declaration at the beginning of the state-
ment. For example, the fact that t is a local integer variable of the above 
statement can be indicated by using the declaration integer t as follows: 

begin integer t; 
k : = k+1; t := f+g; g :=/;/:= t 
end 

In general, a declaration describes the meaning that will be attached to 
one or more identifiers in a particular block that is called the scope of the 
declaration. (The definition of the scope of a declaration will be modified 
slightly in Section 2.1.) The declarations whose scope is a given block appear 
as a sequence at the beginning of that block. Thus the general form of a block 
is 

begin Dx\ ... ; Dm; Sx; ... ; Sn end 

where Dx to Dm are zero or more declarations and Si to Sn are one or more 
statements. (Notice that all declarations in the block precede the first state-
ment. Also notice that any statement can be made into the scope of a 
declaration by enclosing it in "statement brackets", e.g. begin D; S end.) 

Eventually we will introduce a variety of declarations for giving differ-
ent kinds of meaning to identifiers. Our present concern, however, is only 
with simple variable declarations, which indicate that identifiers denote 
variables. Specifically, if ... , In are distinct identifiers then 



5 4 SIMPLE ITERATIVE PROGRAMS CHAP. 1 

integer l u ... , ln 

or 

logical / j , ... , In 

is a simple variable declaration indicating that ... , /„ denote distinct 
integer or logical variables. These variables will belong to the state of the 
computation during execution of the scope of the declaration. 

Notice that the scope of a simple variable declaration such as integer t 
plays two roles. One role, which is common to all kinds of declarations (as 
well as other kinds of binding mechanisms) is that of a static scope, which is 
the program region in which the identifier t denotes a certain variable; 
outside this region t can be used for other purposes. The second role, which is 
specific to variable and array declarations, is that of a dynamic scope, which 
is the statement during whose execution the variable denoted by t belongs to 
the state of the computation. 

The importance of the second role is that almost all implementations of 
Algol-like languages allocate storage for the value of a variable only during 
execution of the scope of its declaration, and use the same storage for other 
purposes at other times. As a consequence, when execution of the scope of 
integer t begins the value of t will be unpredictable, and when execution is 
completed the value of t will be lost. However, if t is local to the scope of its 
declaration then properties (1) and (2) given above insure that this behavior 
will not affect program correctness. 

If we look at the outer block of the Fibonacci program (the second 
substatement of the conditional statement) we see that the variables k and g 
occur in neither the precedent nor the consequent {f=fib(n)}. Thus 
these variables are local and can be declared in the outer block. When all 
local variables are declared, the program has the form 

{ « > 0} 
if n = 0 then / : = 0 else 

begin integer k, g\ 
{n> 1} 

{whileinv: f=fib(k) and g=fib(k-1) and k<n} 
while k ^ n do 

begin integer t; 
k:=k+l,t:=f+g;g:=f;f:=t 
end 

end 
{f=fib(n)} . 

As is evident f rom the surrounding assertions, the variables n and / are 
not local to the program and therefore cannot be declared in it. This is due to 
the fact that the program is not complete—to actually run it on the computer 
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one must precede it by statements that will produce a value of n and follow it 
by statements that will use the value of / . 

A complete program is a statement that is sufficiently self-contained to 
describe an entire computation to be performed by the computer. In Algol 
W, as in most Algol-like languages, every identifier used in a complete 
program must be declared—the only exception is a small set of implicitly 
declared identifiers (such as odd) whose meanings are "built into" the 
language. Although this requirement can occasionally be tedious for the 
program writer, it is a considerable convenience for the reader, and also 
provides a helpful safeguard against accidental misspellings of identifiers. 

Although it would be permissible to declare every identifier in the 
outermost block of a complete program, it is good programming style to 
place each declaration as "far in" as possible, i.e. to indicate explicitly for 
each variable the statement to which it is local. While this practice is slightly 
pedantic for small programs, it is vital for large programs, which may contain 
hundreds of declarations, since it minimizes the number of identifiers the 
reader (or writer) must consider at any particular point in the program. A 
secondary benefit is the minimization of storage requirements; this consid-
eration is usually unimportant for the simple variables considered in this 
chapter, but it can be vital for the efficient treatment of large arrays, as will 
be illustrated in Section 3.2.2. 

As with previous language features, there is a rule of inference for 
proving specifications of statements containing declarations: 

Declarations: 

If D is a simple variable (or array) declaration of identifiers 
/ j , . . . , /„, and if / i , . . . , ln do not occur (free) in P or Q then 

M 5 {<2} 

{p} begin D; S end {<2} . 

Note that the requirement that Ilt . . . , / „ do not occur in P or Q is tantamount 
to saying that these identifiers denote local variables of S. 

Exercise 

1. Examine the illustrative programs and exercises given so far. Determine which 
variables are local, and where and how they should be declared. 

1.5.2 Binding and Alpha Conversion 

Declarations are our first encounter with the phenomenon of binding, which 
will reoccur with several other constructions in Algol W and also in the 
language we use for assertions and specifications. In the statement 
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begin integer t; 
k:= k + 1 ;t:=f+g;g:=f;f:=t 
end , 

for example, the occurrences of t are all bound by the occurrence in the 
declaration integer t. As a consequence, the meaning of this statement does 
not depend upon the particular choice of the identifier t. Indeed, we could 
replace the occurrences of t by any identifier other than k, f , or g without 
changing the meaning of the statement. 

This kind of invariance under changes of bound identifiers, which is 
called alpha convertibilty, insures that the user of any phrase of a program 
can safely ignore the particular identifiers that are bound in the phrase. 
Although it is hardly important for the tiny programs in this book, it is vital 
for large programs which can contain hundreds of bound identifiers. 

Indeed, alpha convertibility is the fundamental property of identifier 
binding in a well-designed language. This is an intentionally controversial 
assertion; although alpha convertibility holds for Algol 60 and most of its 
descendents, including PL / I and (fortunately) Algol W, it does not hold for 
such popular languages as LISP, SNOBOL, or APL. However, its failure in 
these languages, which only occurs in rather complex situations involving 
procedures, is a rich source of programming error. 

(The term "alpha convertibility" comes from the study of a simple 
logical language called the lambda calculus, in which binding and substitu-
tion play major roles.) 

In general, binding is caused by certain identifier occurrences called 
binding occurrences, or more briefly, binders. For each binder, there is an 
enclosing phrase called its scope, which is the extent of the program over 
which the binder has an effect. 

In declarations, the binders are the occurrences of the identifiers being 
declared, e . g . / 1 ? . . . ,ln in integer/! , . . . , / „ , and their scope is the scope of the 
declaration itself, which is the immediately enclosing block (subject to a 
minor exception which will be discussed in Section 2.1). 

Binders and their scopes can be used to define the concepts of free and 
bound identifier occurrences. Consider an occurrence of an identifier / in a 
phrase S. If S does not contain any binder of I whose scope contains this 
occurrence of I, then this occurrence is said to be free in S. 

On the other hand, suppose S contains one or more binders of I whose 
scope contains the occurrence of I . Then one of these binders—call it 
B—will be innermost, i.e. its scope will not include the scope of any of the 
others. (It is a syntactic error to have two binders of the same identifier with 
the same scope.) In this case the occurrence of I is said to be bound by B in S. 
More loosely, we will sometimes say that the occurrence is bound by the 
declaration (or other phrase such as specifier, formal parameter list, or 
quantifier) that contains the binder B. 
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For example, in the statement 

begin integer x-
** r~ 

x := ®; 

. . $ begin integer y; 

r 
y := x+1; 

^ 
begin integer^; 

f 
x := y x 2 ; 

V, 

end 
end 

end 
the single free identifier occurrence is circled, and bound occurrences are 
connected by arrows to the binders that bind them. It is evident that the same 
identifier, e.g. y, can have both free and bound occurrences in the same 
phrase. Moreover, the same occurrence can be bound in a phrase and free in 
a subphrase, e.g. the last occurrence of y is bound in the statement above, but 
free in the innermost block. 

Now suppose 5 is a phrase containing the scope of a binder B of an 
identifier I , and let / ' be some other identifier that does not occur at all in the 
scope of B. Let S' be obtained from S by replacing every occurrence of I 
bound by B in S (including B itself) by / ' . Then 5' is called an alpha variant of 
5, and the process of converting S to S' is called alpha conversion, or 
sometimes renaming. The principle of alpha convertibility is that alpha 
conversion always preserves meaning. 

For example, S might be the while statement in the Fibonacci program, 

while ky£n do 
begin integer t; 
k := k + 1; t :=f+g; 
end , 

:=/;/:= t 

whose body is the scope of a binder of t. Since n does not occur in this scope, 
we can alpha convert S into 

while k # n do 
begin integer n; 
k := k + 1; n := f+g; g 
end 

/ ; / : = n 
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On the other hand, s ince/occurs in the scope of the binder of t, the result of 
replacing t by / , 

while ky^n do 
begin integer / ; 
k:= k + l;f:=f+g;g :=/;/:=/ 
end , 

is not an alpha variant of 5; the change of the bound identifier from t to / 
causes the original occurrences of / in S to change from free to bound 
occurrences and thereby changes the meaning. 

Since alpha conversion preserves meaning, it can be used in proving 
program specifications, i.e. f rom a specification one can infer an alpha 
variant of that specification. This is sometimes necessary in applications of 
the rule for declarations given in the previous section. For example, one 
cannot use that rule directly to infer 

{x = 0} begin integer x; x := 1 end {x = 0} , 

since the declared variable occurs in the precedent and consequent. But one 
can use the rule to infer 

{* = ()} begin integer y \ y := 1 end {^ = 0} , 

and then alpha-convert this specification to replace y by Jt. 

1.6 NUMBER REPRESENTATIONS 

1.6.1 Integers 

So far, we have assumed that the range of possible values of an integer 
variable is the entire set of integers. In fact, in a real computer this range 
must be limited to some finite subset of the integers. In this section we will 
explore the consequences of this limitation and then go on to consider the 
representation of numbers that are not restricted to be integers. We will 
consider general methods of number representation as well as the specific 
representations provided by the implementation of Algol W. 

The memory (or storage) of a computer is composed of a large number 
of elementary memory elements, each of which can be in any of several 
states. The number r of possible states of a single memory element is called 
the radix of the computer; in practice, it is always either two (for a binary 
computer) or ten (for a decimal computer). 

A variable is implemented by a group of memory elements called a 
word. The number w of elements in the word is called its word length, and is 
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the same for all variables of the same type. (The term "word" is actually used 
in a variety of ways in the computer literature. The concept used here is 
sometimes called a logical word, in contrast to a physical word, which is a 
group of memory elements that can be read or changed simultaneously.) 

Now suppose a variable is to range over a set S of possible values. Then 
each member of S must be represented by one or more configurations of the 
states of the memory elements in a word, so that the size of S cannot exceed 
rw, the number of state configurations. Clearly S must be finite. 

Thus the range of a so-called integer variable can only be some finite 
subset of the integers. Normally it is a set of consecutive integers, i.e. the set 
of integers i such that minint<i< maxint, where minint and maxint are the 
smallest and largest representable integers, and maxint—minint + 1 is the 
total number of representable integers, which must be no larger than rw. 
When only non-negat ive integers are needed, the obvious choice is 
minint = 0 and maxint = rw -1. 

When negative integers must be included, the choice of representation 
is less clearcut. For simplicity, one would like to have minint = - maxint, so 
that the set of representable integers is symmetric about zero. But then the 
number of representable integers will be 2 x maxint + 1, which is odd, while 
the number of possible representations rw is even, at least when the radix is 
two or ten. Thus one must either waste a possible representation (usually by 
providing two representations for zero) or choose an asymmetric represen-
tation in which minint is slightly different than -maxint. 

In the implementation of Algol W for the IBM 360 or 370, an asym-
metric representation is used for integer variables. Specifically, 

r = 2 
H> = 32 
maxint = 231 - 1 = 2147483647 
minint = - 231 = - 2147483648 . 

Roughly speaking, an integer is representable if its magnitude is less 
than about two billion. This choice of representation is actually a property of 
the computer, rather than the programming language, since the representa-
tion is used by the computer circuitry which performs the elementary opera-
tions of integer arithmetic. 

Obviously, it is possible for an integer operation to yield a non-
representable result when applied to representable arguments. Such an 
occurrence is called an overflow. In Algol W, the occurrence of any over-
flow, or a division by zero, will terminate computation and produce an error 
message. (Actually, the language provides an exceptional condition facility, 
not discussed in this book, which permits one to alter this response to 
overflows.) 
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1.6.2 Programming for an Idealized Computer 

T h e finite range of n u m b e r represen ta t ions is one of several l imitat ions that 
distinguish real compu te r s f r o m idealized machines which would be far 
easier to p rogram. A n o t h e r obvious l imitation is the finite total size of the 
c o m p u t e r m e m o r y . In deal ing with such limitations, it is best to begin by 
p rog ramming for an idealized compu te r , taking the l imitations into account 
in only a qual i tat ive way. 

For example , one deals with the l imitat ions of f ini te-range integer 
ar i thmet ic by p re tend ing that all integers are represen tab le , yet taking care 
to avoid n u m b e r s with unnecessari ly large magni tudes . (This is the advan-
tage of S b r a n c h over S m a k e e v e n discussed in Section 1.3.5.) T h e resulting 
p rogram will be sat isfactory if the integer range of the compu te r is normal ly 
adequa t e fo r the p rob lem at hand , and if one can to lera te an occasional 
fai lure of the c o m p u t e r to produce an answer (which is usually much less 
ser ious than producing a wrong answer) . 

Somet imes , however , the integer range of the compu te r will be intrinsi-
cally inadequa te to carry out the desired computa t ion . In this s i tuat ion, one 
must t rans la te the abstract p rogram for the idealized compu te r into a con-
crete p r o g r a m for the real machine , in which large integers are r ep resen ted 
by ar rays (or lists) of mach ine- represen tab le integers. This is basically an 
instance of da ta r ep resen ta t ion structuring, discussed in C h a p t e r 5, bu t the 
specific p rob lem of p rog ramming basic ar i thmet ic opera t ions fo r mult iple-
word in teger r epresen ta t ions is a specialized topic. 

A similar s i tuat ion arises f r o m the l imited a m o u n t of m e m o r y available 
in a real compu te r . O n e begins by p rog ramming fo r an idealized machine 
with infini te m e m o r y , while taking care to avoid unnecessary s torage usage. 
Occasional ly, the a m o u n t of memory available will be intrinsically inadequ-
ate fo r the p rob lem, and it will be necessary t o t ransla te the p rogram into one 
for the real compu te r by using techniques such as overlays or virtual m e m o r y 
m a n a g e m e n t , which permi t the subst i tut ion of secondary m e m o r y (e.g. disks 
or t apes ) fo r p r imary m e m o r y . 

H o w e v e r , the l imitat ions of the real compu te r requi re special a t ten t ion 
in cer ta in kinds of real- t ime p rog ramming (for example , process control ) , 
whe re fa i lure to calculate an answer—usual ly within a specified t ime 
l imit—can be as disas t rous as a wrong answer . Even here , one should begin 
by p r o g r a m m i n g fo r an idealized compute r , but then one must deduce safe 
b o u n d s on the t ime, s torage, and ar i thmet ic range requ i red by the p rogram, 
and show tha t these b o u n d s do not exceed the capacity of the machine to be 
used. 

T h e deduc t ion of such bounds is qui te d i f ferent f r o m proving that a 
p rog ram is correct . ( A n extens ion of correc tness p roofs tha t takes overf low 
into account has b e e n provided by [Hoa re 69], but it leads to ex t raord inary 
complex proofs . ) Some of the f lavor of such deduct ions is given by the 
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discussion of the speed of fast exponentiation in Section 1.3.5, and by similar 
discussions of searching and sorting algorithms in Sections 2.2.10 and 3.2. A 
more thorough introduction to this methodology, which is part of the 
research area called "Analysis of Algorithms", is given in [Aho 74]. 

In summary, the main point is the value of the idealized machine as a 
tool for subdividing the programming task. The most severe limitation in 
real computing is the finiteness of the programmer's mind, which can only 
encompass simple problems without some kind of subdivision or structuring. 
A second point is the importance of an environment (the combination of 
language implementation and machine) in which overflows, storage exhaus-
tion, and other actions where the real computer deviates f rom the ideal are 
always detected as errors—this point will reoccur with subscript errors in 
Chapter 2. 

*1.6.3 Fixed-Point Representation of Real Numbers 

Unfortunately, not all numbers are integers. When we need a variable to 
range over the real numbers, we must face the problem of approximation as 
well as the problem of limited range. Suppose that we wish a variable to 
range over the real interval from minreal to maxreal. Since we can only 
represent a finite subset of the uncountably many numbers in this interval, it 
is hopeless to try to represent every number that might occur in an exact 
calculation, and the best we can hope for is that every number in the interval 
will be near to some representable number. 

A fixed-point representation for an interval of real numbers is one in 
which the representable numbers are equally spaced. If the spacing is a , then 
the representable numbers will be 

minreal, minreal + cr, ... , maxreal-cr, maxreal . 

(For simplicity, we assume that maxreal - minreal is an exact multiple of cr.) 
Then the number of representable numbers is (maxreal-minreal)/a+ 1, 
which must be no greater than rw, where r is the radix of the computer and w 
is the word length of the real variable. In essence, fixing the word length 
imposes an upper bound on the ratio between the interval size and the 
spacing. 

Any nontrivial calculation involving real numbers will obviously be 
approximate. In general, when x is approximated by the absolute error of 
the approximation is the quantity ex = \x-x' | , i.e. the absolute value of the 
difference between x and x . 

Now let rnd(jc) denote the representable number nearest to x (or one of 
the nearest representable numbers, if x is halfway between two represent-
able numbers). Then, even when x is precisely known, its best representable 
approximation is rnd(x), which has an absolute roundoff error e™d satisfying 
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cr/2 whenever minreal<x<maxreal. (The superscript 
rnd is meant to distinguish roundoff from other sources of error, such as will 
be considered in Section 1.6.5.) 

In other words, there is a constant bound on the absolute roundoff error 
over the entire range of x. This fact is characteristic of a fixed-point represen-
tation. 

Real variables with a fixed-point representation are not provided in 
Algol W; indeed, in most areas of computation, the use of fixed-point 
representation has been supplanted by floating-point representation, which 
is described in the next section. When necessary, a fixed-point real variable x 
with spacing cr can be represented by an integer variable xn such that 
x=xn-a. (For example, dollars with a spacing of .01 can be represented by 
an integer variable giving cents.) The use of this kind of representation, and 
the problem of choosing appropriate spacings for each variable, is called 
scaling. 

*1.6.4 Floating-Point Representation of Real Numbers 

Suppose an approximate real number denoting a distance is known to have 
an absolute error of no more than a hundred feet. If the distance is several 
million miles, this is an extraordinary accuracy which should be sufficient for 
any reasonable purpose, but if the distance is a few inches, the approxima-
tion is unusably crude. In certain kinds of calculations, where the gross 
magnitude of a quantity x is unknown or variable, the absolute error e^ is an 
inadequate measure of accuracy. A better measure is the relative error. 

which is the ratio between the absolute error and the magnitude of the 
quantity being approximated. 

In this situation, a fixed-point representation will be inappropriate, 
since its relative roundoff error will grow in inverse proportion to the 
magnitude of x. What is needed is a representation in which the spacing 
decreases a s * decreases, in such a way as to provide a constant bound on the 
relative roundoff error. 

This requirement is met by floating-point representation, in which a real 
number is represented as the product of another real number with a very 
limited range times an integral power of a fixed integer R>\ called the base. 
Specifically, let / be a fixed-point real variable with range — 1 < / < 1 and 
spacing a (note the exclusion of the extreme v a l u e s / = ± 1 ) , and let e be an 
integer variable with range minexp<e<maxexp. Then the pair of values 
(e, f ) is a floating-point representation of the number x=f • Re. 
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The pairs (e, f ) , <e + 1, f / R ) , (e+2, f/R2), ... all represent the same 
number. To remove this multiplicity, we impose the normalization require-
ment that | / | > 1 / R . However, since this requirement excludes any rep-
resentation for zero, a special representation is introduced for zero. 

An illustration (for an unrealistically large cr and small range of e) is 
given in Figure 1.5. The general situation is that, for each value of e between 
minexp and maxexp, the pairs 

(e, R-1), (e, R~l + o), ... , (e, 1 -a), <e+l, R-1) 

represent a sequence of equally spaced numbers from Re~l to Re inclusive, 
with a spacing of cr • Re. (We will neglect the fact that the last number will be 
missing when e = maxexp.) There is a similar sequence from — Re to —Re~x. 

Now suppose x is a real number such that RminexP~l<\ x\ <RmaxexP. 
Then there will be an e such that | <Re, and thus there will be a 
representable number rnd(jt) no further than cr • Re/2 from x. In other 
words, the absolu te roundoff e r ro r will satisfy e / n d < c r • Re/2. But 
| JC | >Re~l. Thus the relative roundoff error will satisfy 

e / n d e / n d a • Re /2 

I x I Rel Rel 

which provides a constant bound on the relative roundoff error over the 
r a n g e RminexP~l<\x\ <R"*ju*p. 

H o w e v e r , this b o u n d does no t hold in the c e n t e r in te rva l 
-Rminexp-\<x<Rminexp-\ j n w o r s t c a s e j ^ e n rnd(x) = 0, we have 

Pxnd= I ( j c - r n d ( x ) ) / x | =1. 
This analys is sugges t s t ha t one shou ld use a f l o a t i n g - p o i n t 

representation when trying to control the relative error, but a fixed-point 
representation when trying to control the absolute error. But in fact, a 
floating-point representation is a "reasonable" substitute for a fixed-point 
representation. Suppose x ranges over the interval -Re<x<Re, where 
minexp+ \ogR(l/or) -l<e<maxexp. Then the largest spacing anywhere in 
the interval is a • Re, and the absolute error must satisfy e™d<cr • Re/2. 
(The lower limit on e insures that the spaces surrounding zero do not exceed 
cr • Re; one could reduce this limit to minexp by permi t t ing / to be unnormal-
ized when e = minexp.) But this is as good as one could achieve for the 
interval —Re<x<Re with a fixed-point representation with the same word 
length as / . In effect, the price of using a floating-point representation to 
replace a fixed-point representation is simply the memory space for the 
variable e. 

The IBM 360 and 370 provide two forms of floating-point representa-
tion, called single and double precision, which differ in word length and 
spacing: 
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single precision double precision 

a 

minexp 
maxexp 

R 
w 32 

16 
- 6 4 
+63 
2 - 2 4 

64 
16 
- 6 4 
+63 
2-56 

O- • R/2 2 ~ 2 1 < 5 x 10"7 2 - 5 3 < 1 . 2 x l 0 - 1 6 

With RmaxexP>7x 1075, the range -R™<v«*p<x<RmaxexP seems enor-
mous, but it can be exceeded easily in moderately complicated calculations. 
The occurrence of an operation whose result is outside this range is an 
overflow and, as with integer overflow, causes termination with an error stop 
in Algol W. 

The occurrence of an operation whose result has a magnitude less than 
^wmexp-t<5_4x 10~79 is called an underflow. In the Algol W implementa-
tion the result of an underflow is set to zero and the computation continues. 

Regardless of whether fixed or floating point is used, computation with 
real numbers is dominated by the fact that these representations are only 
approximate. One obvious point is the danger implicit in testing two approx-
imate values for equality. Instead of testing x=y, which is likely to be 
spuriously false because of approximation, one should usually test either 

where e or p is an appropriate positive constant. In other words, one should 
test whether x and y approximate one another with a sufficiently small 
absolute or relative error. 

(Notice, however, that the above tests both differ from true equality in 
failing to satisfy the law of transitivity, e.g. a b s ( x - y ) < e and a b s ( y - z ) < e 
does not imply a b s ( x - z ) < e . ) 

One other small point deserves mention. In decimal notation, certain 
rational numbers have an exact finite representation which can be used to 
advantage in hand computation. In a binary computer—more precisely, 
when cr is a power of two—many of these numbers will no longer have exact 
representations. Thus for example, 1 /5 and 1/10 are not exactly represent-
able. 

*1.6.5 The Propagation of Errors 

Even for simple calculations with real numbers, careful attention must be 
paid to the effects of roundoff and other sources of numerical error. If one 
could begin with exact input data, carry out an exact calculation, and then 

a b s ( x - y ) ^ e 

or 

abs(x - y) < p x abs(x) , 
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round the result x to the nearest representable number, the error in this 
result would simply be the roundoff error e™d or p™d, which could easily be 
controlled by the choice of representation of the result. But in actuality, the 
inputs themselves will usually be approximate, and a roundoff error will 
occur at each step of the computation. Each of these errors will induce a 
corresponding error in the final result. 

The effects of input errors can be illustrated by a simple geometric 
example. Suppose the input data are coordinates of po in t sp , q, r, and 5 in the 
plane, and that we wish to compute the coordinates of the intersection of the 
line passing through p and q with the line passing through r and 5. As shown 
in Figure 1.6, if the two lines are nearly parallel or the points on one line are 
close to one another, then a small uncertainty in the input (indicated by 
drawing p, q, r, and 5 as small circles) will induce a large uncertainty in the 
output (indicated by the shaded regions). 

This kind of error magnification is intrinsic in the problem being posed 
and cannot be avoided by programming. The general case can be described 
with a little calculus. Suppose we wish to compute a continuous and differen-
t i a t e funct ion/(*! , ... , xn) for approximate values of the inputs x'u ... ,x„. 
To a first order approximation, the absolute error due to input errors is 

ef(x!, ... , xn) 

= \f(xi, ... , xn)-f(x[, ... , x'n)\ 

i = 1 

i=l 

1 = 1 

and the relative error is 

P f ( x . . . , X„) 

SA*1, - , *„) 
|/(*!, ... , *„)| 

i = l 
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In these formulas, the underlined coefficients of the input errors are called 
the (absolute and relative) error propagation coefficients. 

For input errors, these coefficients are determined by the func t i on /one 
is trying to compute and the inpu t sx l f ..., xn. When some of the coefficients 
are large, one is close to an "ill-defined" problem, and cannot avoid magnifi-
cation of the error. 

Further insight into the phenomenon of error propagation can be 
gained by considering the computation of the sum or product of two num-
bers. When/ ( j t i , x2)=xx+x2, the above formulas give 

exi+X2 ^ 1 

Px i + * 2 

X1 + 1 *2 

Xi+X2 
'Px, 

Thus for addition, absolute errors will not be magnified, but relative errors 
will be magnified when xx is near to - x 2 . 

For multiplication, taking f(x1} x2)=xx • x2 gives 
ex! • *2 ^ U2I ' e x i +|*i | • eX2 , 
PX1-X2 ^ 1 ' P x i + 1 ' Px2 • 

Here the situation is reversed. Relative errors will not be magnified, but 
absolute errors will be magnified when or | JC2 | is large. 

Although the propagation of input errors is essentially determined by 
the function one is trying to compute, the propagation of errors occuring in 
intermediate calculations can be profoundly influenced by the choice of 
computation method. Suppose g{xx, ... , xn) is an intermediate result in the 
computation o f / ^ ! , . . . ,xn). Then the effect of g(xx,..., xn) on the final result 
will be given by some function h such that 

/(*!, ... , xn) = h(g(x1, ... , xn), xu ... , xn) . 

The problem is that a roundoff or other error in the calculation of 
g{xi, ... , xn) will be magnified if the propagation coefficient for h with 
respect to its first argument is large, and that this can happen even when all of 
the propagation coefficients fo r / i t se l f are small. In essence, a well-defined 
problem can be structured to give an ill-defined subproblem. 

A vivid illustration is provided by the computation of derivatives. 
Suppose we wish to compute the first derivative of a function 6 at the point x. 
Since this derivative is the limit of [6(x + 8) - 0(x)]/8 as 8 goes to zero, an 
obvious method is to compute 

/ ( * ) = — G 

for some very small value of 8. 
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But consider the effect of a roundoff error in the computation of the 
intermediate result 6(x+d). In fact, we would be computing 

f , ( x ) = rnd(fl(x+8))-6>(x) 

which would induce the absolute error 
fl(x + 8)-rnd(fl(j>: + 8)) 

Sflx)= \f(x)~f'(x)\ = 

rnd / SJ _e0(x+8) / O ? 

which is inversely proportional to 8. Thus choosing too small a value of 8 
would catastrophically magnify the effect of an error in an intermediate 
result. 

This kind of analysis is a trivial example of numerical analysis, a highly 
developed field which is intellectually quite distinct from the rest of compu-
ter science, but which is crucially important in many areas of application. At 
least when the results are going to be relied upon, a solid knowledge of the 
fundamentals of numerical analysis is needed to program any nontrivial 
calculation with real numbers. 

Even an introduction to the field is beyond the scope of this book; we 
have only said enough to warn the reader that many pitfalls await the 
unwary. Good introductory texts are [Dorn 72] and [Hamming 71]. 

1.6.6 Real Variables and Expressions 

Real numbers, with single- and double-precision floating-point representa-
tions, are provided in Algol W by the data types real and long real. Simple 
variables of these types are introduced by simple variable declarations of the 
form 

real l h ... , l n 

or 

long real lx , ... , l n 

in which ... , In are binders of identifiers that denote real or long real 
variables. 

Constants are a bit complicated. In general, a numerical constant con-
sists of the following items, in order from left to right: 

(1) A nonempty string of digits, possibly containing a decimal point. 

(2) A scale factor of the form 'N, where N is an integer, possibly 
beginning with + or - . The scale factor indicates that the number 
being represented is to be multiplied by 10^. 
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(3) An optional letter L , which indicates that a double precision rep-
resentat ion is to be used. 

Ei ther i tem (1) or (2), but not both, may be omit ted. The data type of the 
constant is long real if L is present , otherwise it is real if a decimal point or a 
scale factor is present, otherwise it is integer. 

For example, the following are constants of different numerical types 
which all represent the number ten: 

integer real long real 

10 10. 10L 
10.00 10.L 
.1'2 10.00L 
1 0 0 ' - 1 .1'2 L 
'1 1 0 0 ' - 1 L 

'1L 

Note that the distinction be tween real and long real has nothing to do with 
the number of digits occurring in the constant. 

Expressions of type real or long real, as well as integer, are built up f rom 
constants and variables by using the familiar operators of arithmetic. 
Moreover , such expressions may have mixed type, i.e. an expression of one 
numerical type may have subexpressions of different numerical types. In 
general , E op E' has type integer if E and E' are both integer, type real if 
ei ther E or E' has type real, or type long real in any other case. However , 
there are the following exceptions: 

(1) ExE' is long real unless E and E' are both integer. 
(2) E / E', denoting real division, is never integer; it will be long real 

when both E and E' are integer. In contrast E div E' and E rem E' 
are always integer, and are permit ted only when E and E' are both 
integer. These are quite different operat ions. For example, 7 / 2 
= 3 .5L, but 7 div 2 = 3 and 7 rem 2 = 1. 

(3) E ** E', denoting EE', is always long real, and is permit ted only 
when E' is integer. 

In a numerical assignment s tatement of the form X : = E, X and E can have 
different numerical types, except that if X is integer then E must be integer. 

A more complete and precise description of this syntax, including 
several additional operat ions, is given in Appendix B. Despite a few idiosyn-
crasies, the general effect is to give the p rogrammer complete control over 
the precision of his calculations, while providing adequate precision in cases 
where the intention is not obvious f rom the program. For example, if all the 
variables are real, then 



SEC. 1 .6 NUMBER REPRESENTATIONS 71 

z : = xlxyl-x2xy2 

will cause the intermediate results of the two multiplications to be rep-
resented in double precision. If the programmer wants these intermediate 
results to be represented in single precision (which is probably unwise, since 
the subtraction can cause a growth in the relative error), he must write 

begin real t\, t2; 
tl : = xl xyl; t2 := x2xy2; z := tl-t2 
end 

Exercise 

1. Write a statement that will set y to ex, where x and y are long real variables. Use 
the Taylor series 

k=0 

More precisely, since one cannot sum all the terms of this infinite series, stop 
when 

n-l 
v 
Zj k\ 

k = 0 

approximates 
n 

V 
k\ 

k=0 

with a relative error of no more than 10 -10. Try executing this program for a 
variety of values of x. Explain why the program produces erroneous answers for 
large negative values of JC, e.g. -20 . Suggest a way of overcoming this deficiency. 
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2 ARRAYS 

2.1 ONE-DIMENSIONAL ARRAYS 

The p rogramming language we have used so far has the f u n d a m e n t a l limita-
tion that all var iables are d e n o t e d by identif iers occurring in the text of the 
program. A s a consequence , every evaluat ion of the same expression will 
depend upon the values of the same set of variables, i.e. the variables 
deno ted by the identif iers occurring in the expression. Similarly, every 
execution of the same assignment s ta tement will affect the value of the same 
variable, i.e. the variable d e n o t e d by the ident if ier on the left side of the 
assignment s ta tement . 

A l though an interest ing variety of p rograms can be wri t ten within this 
l imitation, it is f r equen t ly necessary to write a s ta tement with the proper ty 
that d i f ferent execut ions can involve d i f fe ren t m e m b e r s of some collection 
of variables, where the choice of the par t icular variables af fec ted by a 
part icular execut ion d e p e n d s u p o n previously compu ted results. 

For example , in a p rogram tha t deal t with the variat ion of t e m p e r a t u r e 
th roughout the day, one might need a collection of twenty-four real vari-
ables, each giving the t e m p e r a t u r e at a par t icular hour . Within this p rogram, 
some s t a t emen t might eva lua te or assign to the part icular var iable giving the 
t empera tu re at t ime t. Moreover , such a s ta tement might occur within a loop 
that i te ra ted over d i f fe ren t values of t. 

7 3 
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The basic facility that provides this kind of capability is called the array. 
A one-dimensional array is a finite collection of variables which is in one-to-
one correspondence with some finite consecutive set of integers, called the 
domain of the array. If X is such an array, then the member of X correspond-
ing to the integer i is called the ith element of X and is written X(i). 
Conversely, the integer i is called the subscript of X(i). 

For example, if X is a real array with the domain {5, 6, 7}, then the 
elements of X are three distinct real variables denoted by Z(5), ^ (6 ) , and 
X(7). 

It is important to distinguish between i=j, which implies that X{i) and 
X(j) are the same variable, and X(i) = X(j), which means that X(i) and X(j) 
are possibly distinct variables with the same value. If i=j, then X{i) = X{j) 
will always be true, and an assignment to X(i) will change the values of both 
X(i) and X(j). But if even though we may still have X(i) = X(j), an 
assignment to X(i) will leave X(j) unchanged. 

Just as with simple variables, each array used in a program must be 
declared in some block. A one-dimensional array declaration has the form 

r array Iu ... , lm (L:: U) 

where r is integer, real, long real, or logical, / l 5 ... , / m are binders of distinct 
identifiers, and L and U are integer expressions, called the lower bound and 
upper bound respectively. Such a declaration creates m distinct arrays, 
denoted by l x , . . . , Im . Each of these arrays is a collection of variables of type 
r , whose domain is the set of integers i such that L<i<U. These collections 
of variables will be part of the state of the computation during execution of 
the block which immediately encloses the array declaration. 

If / has been declared to be an array identifier, and E is an integer 
expression, then 

KE) 

is a phrase called an array designator, which denotes the Eth element of the 
array denoted by I. Since array designators denote variables, they can be 
used in the same contexts as other kinds of variable-denoting phrases such as 
variable identifiers. 

For example, the declaration real array X ( 0 : : 9 9 ) will create an array 
containing one hundred real variables, whose domain is the set of integers 
between 0 and 99 inclusive. Within the block containing this declaration, the 
individual elements of the array can be referred to by real array designators 
such as X(l), X(i), or X(i+j+1). 

The possibility for different executions of the same statement to affect 
different array elements arises from the fact that an array designator such as 
X(i+j+1) can have a subscript containing variables whose values are deter-
mined by the computation. The price one pays for this flexibility is the 
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possibility that an evaluation of X(E) can refer to a nonexistent element of 
X, which will happen when the value of E does not belong to the domain of 
X. Such an event is called a subscript error. During execution of an Algol W 
program, every subscript evaluation is checked for such errors, and the 
detection of an error causes program termination. Although this checking 
has a significant cost in computer time, it is well worth paying, since 
unchecked subscript errors can have unusually unpredictable and untrace-
able effects. 

In contrast to many programming languages, Algol W provides a useful 
capability called dynamic array allocation, which permits the domain of an 
array, at the time the array is created, to depend upon previously computed 
quantities. This arises from the possibility that the lower and upper bounds 
in an array declaration can be integer expressions containing variables. 
These bounds are evaluated each time the block immediately enclosing the 
array declaration begins execution, so that different executions of this block 
can create different sized arrays. But once an array has been created, its 
domain remains fixed throughout the current execution of the enclosing 
block. 

For example, in 

begin integer n\ n := 0; 
while n < 100 do 

begin n :— n +1; 
begin integer array X(l::n-1); S end 

end 
end 

the nth execution of the statement S will use an array whose domain runs 
from 1 to n -1. (Notice that this array will be empty for the first execution of 
S. It is permissible to declare an empty array, although any assignment to 
such an array will cause a subscript error.) 

Dynamic arrays cause a rather subtle problem concerning the scope of 
declarations. A block such as 

begin integer n; integer array X(n:: X ( l ) ) ; ... end 

appears to be nonsensical, since the variable n will have an unpredictable 
value, and the variable X(l) will not even exist, when the bounds n and X(l) 
are evaluated. In Algol W this nonsense is avoided by excluding array 
bounds f rom the scope of declarations in the same block. Specifically, the 
scope of any declaration, and of its binders, is the immediately enclosing 
block excluding lower and upper bounds of array declarations that are 
immediately enclosed by that block. 

Thus the above block makes sense in a context where n and X are 
declared at a higher block level, e.g. 
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begin integer n\ integer array ^ ( 1 : : 3); 
n : = 7; X(l) := 9; 

begin integer n; integer array ... end 
end 

H e r e the occurrences of n and X in n:: A ' ( l ) are b o u n d by the declara t ions in 
the ou te r block, so tha t the inner declara t ion of X will create an array with 
domain {7, 8, 9}. (However , this is no t r e c o m m e n d e d as an example of clear 
p rog ramming style.) 

2.2 PROGRAMS THAT USE ARRAYS 

2.2.1 Summation of an Array 

A s a first example , consider a p rogram fo r summing the e lements of a real 
array. M o r e precisely, we want a p rogram that will set the real var iable s to 
the sum of the values of those e lements of an array X whose subscripts lie 
be tween the integers a and b inclusive. 

It is not necessary for a and b to be the declared lower and u p p e r b o u n d s 
of the array X\ we want our p rog ram to be applicable to an arbi t rary segment 
of X r a the r than just the ent i re array. A n y ar ray-manipula t ion p rogram can 
be general ized to hand le segments r a the r than just ent i re arrays, and it is 
invariably good p rog ramming practice to do so. 

A t the comple t ion of our p rogram, we want the assert ion 

s=i xa) 
i=a 

to hold, where the summat ion nota t ion can be def ined as follows: 
b 

(I) 2 * ( i ) = 0 when b<a , 
i=a 

( i i ) i x(i)=(b;£ xa) 
i=a \ i=a 

k 
A n obvious approach is to achieve 5 = X bY setting k to a-1 and 5 

i=a k 
to 0, and then to repea ted ly increase k while mainta ining S until 

, i=a 
k = b. T h u s we use the invariant 

k 
5 = 2 * ( / ) and a-l<k<b , 

i=a 

which includes a specification of the range of k. T h e result ing p rogram is 

j + X(b) when b>a 
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while do 

{a-l^b} 
begin integer k; 
k := a — 1; s := 0; 

k 
{whileinv: s=£ and a - 1 <£<£>} 

i=a 
k<b 
k*b 

begin 
k := k + 1; Jt-i 
{j = J X(i) and a<k<b] 

i=a 
s 1= s + X(A:) 
end 

end 
{s=i xn)} . 

The scheme of iteration is essentially the same as in the factorial 
program of Section 1.3.1, except that k ranges from a - 1 to b instead of 0 to 
n. The reader may check that the assertions are correct, and should notice 
two salient points: First, the initial assertion a -1 < b is needed to insure 
a -1 < k < b after the assignment k:= a-1. Secondly, either the test k < b or 
k^b can be used in the while statement, since the presence of k<b in the 
invariant insures that either test will give the same outcome. 

The program must terminate since one cannot increase k indefinitely 
without falsifying k<b. However, now that we are using arrays, program 
correctness involves more than assertion correctness and termination; we 
must also consider the possibility of subscript errors. 

Specifically, we must make sure that, for every execution of an array 
designator, the value of the subscript expression belongs to the declared 
domain of the indicated array. The only array designator in the above 
program is the occurrence of X{k) in the statement s := s + which is 
preceded by an assertion containing a<k<b. Thus the program will be 
correct with regard to subscript errors if every integer k, such that a<k<b, 
lies in the domain of X. As we will see in the next section, this condition can 
be written as \a b\ ̂  dom X, which should be added to the initial assertion of 
the program. 

One final curious point remains. The initial assertion of the program 

contains a - 1 < b, yet our original problem, to set s to £ X(i), is well-defined i=a 
even when a — 1 >b. Consider executing the program when a — l>b. In 



7 8 A R R A Y S CHAP. 2 

contras t to the case covered by the assert ions, the behavior of t he p rogram 
will d e p e n d u p o n the choice of the test in the while s ta tement . If the test is 
k^b, then the initial condi t ion a-l>b will cause the p r o g r a m to run on 
fo rever . But if the test is k<b, then the initial condit ion a -1 > b will cause 
the while s t a t ement to t e rmina te wi thout ever executing its body, so tha t the 
final result will be 5 = 0, which is the correct result when a-l> b. Thus one 
can choose the while-s ta tement test so tha t the p rog ram will still behave 
correctly when par t of its initial assert ion is violated. T h e reason fo r this 
r a the r surprising state of affairs will become appa ren t in the following 
sections. 

Exercises 

1. Investigate the effects of changing while-statement tests (e.g. from ^ to < or > ) 
on the illustrative programs and exercises of Chapter 1. 

2. Write a program that will examine an arbitrary array segment and count the 
number of elements whose value is zero. 

2.2.2 Interval Diagrams 

T h e in t roduct ion of arrays compl ica tes the p rob lem of specifying p rogram 
behavior . T h e no ta t ion fo r assert ions used in the previous chap te r (with the 
addi t ion of quant i f iers , which will be discussed in Section 2.2 .5) is theoret i -
cally a d e q u a t e to specify array manipula t ions , but in practice it soon leads to 
unreadab ly long and complex assert ions. T o alleviate this complexi ty , we 
will in t roduce a variety of concepts , laws, and nota t ions specifically o r ien ted 
towards making asser t ions abou t arrays. 

Many r eade r s will f ind this mater ia l more difficult than the use of 
assert ions in C h a p t e r 1. This is largely due to unfamil iar i ty . In C h a p t e r 1 we 
m a d e extensive use of a r i thmet ic concepts such as the distr ibutive law, o f t en 
wi thout explicit men t ion . W e were able to do so—without making things 
"d i f f i cu l t "—because these concepts have been unde r s tood for centur ies and 
are now par t of o u r c o m m o n cultural her i tage. Bu t the ana logous concepts 
about arrays, which are just as vital to the unders tand ing of p rogramming , 
are no t centur ies old. Indeed , their fo rmula t ion is still a topic of cur ren t 
research [Reyno lds 79]. 

T o begin with, we consider re lat ionships a m o n g di f ferent segments of 
the same array. P r o g r a m m e r s have tradit ionally expressed such re la t ion-
ships by box-l ike diagrams. In this section and the next, we will provide a 
precise mean ing fo r such d iagrams which will permi t their use in assert ions. 

Each segment of an array is in one- to -one co r respondence with some 
finite consecut ive set of integers; such a set is called an interval. In fact , the 
re la t ionships we are in te res ted in are really se t - theoret ic re la t ionships 
a m o n g intervals. 



SEC. 2.2 PROGRAMS THAT USE ARRAYS 7 9 

In this section we will develop simple diagrams, called interval diag-
rams, which denote intervals themselves. For example: 

denotes the set of integers i such that a<i<k 
@ denotes the set {&} whose single member is k , 

o 
denotes the set of integers i such that k<i<b , 

\a h\ denotes the set of integers i such that a<i<b . 
In the next section, we will use interval diagrams to compose more elaborate 
entities called partition diagrams, which assert relationships among inter-
vals. For example, \a \k\~b\ asserts that the three intervals g , and 
k[^b\ are disjoint (i.e. no integer belongs to more than one of these inter-
vals), and that the union of these intervals is the interval |a b\. It will turn 
out that this assertion is true if and only if a < k < b. 

We now proceed to make these ideas precise. For any integer expres-
sions a and b, a diagram of the form a\^b\ is called an interval diagram. We 
will use such a diagram in assertions as an expression denoting the set of 
integers i such that a<i<b. On either side of the box, we may write |a 
instead of a - l | to improve readability. We may also write @ as an abbrevia-
tion for \a a\, which denotes the singleton set whose only member is a. Thus 

O 
| a b\ 

O 
E > 
0 

denotes the set of integers i such that 

a <i<b 
a<i<b 
a <i<b 
a<i<b 
i — a . 

When formulating general properties of interval (or partition) diagrams we 
will always use the standard form a\ b\, but when using the diagrams to 
make assertions we will freely employ all of the forms shown above. 

For an array X we write dom X to denote the domain of X. Thus the 
assertion a bj Q dom X used in the previous section states that every integer 
i satisfying a<i<b belongs to the domain of X. (The relation S' means 
that S is a subset of S'. It should be emphasized that diagrams, the operator 
dom, and set-theoretic operators such asQ are not part of Algol W and can 
only be used in assertions.) 

For any finite set S, we will write # 5 to denote the size, or number of 
members of S. At first sight, one might expect that # ] = b - a, but b - a 
can be a negative number, while the size of a set is never less than zero. 
Actually, 
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# « 0 1 = i f b-a>0 then b-a else 0 . 

The fact that we need a conditional expression to describe a fundamental 
property of intervals is a clear portent of a potential source of programming 
errors, i.e. the possibility that a program might be correct for one case of the 
conditional but not the other. To emphasize this situation we say that a\ b\ is 
a regular representation of an interval when a < b, and an irregular represen-
tation when a>b. 

There are three possibilities: 

If b-a Then a\ b\ is a 

> 0 regular representation of a nonempty set 
= 0 regular representation of the empty set 
< 0 irregular representation of the empty set. 

Thus, only the empty set has irregular representations, but it also has regular 
representations. 

Of course, the notions of size and irregularity can also be applied to 
interval diagrams in which one or both expressions appear to the right of a 
dividing line. For example, 

# a b = i f f c - a + l > 0 then b-a + 1 else 0 

and \a b\ is an irregular representation of the empty set when b — a +1<0. 
The segment of an array X consisting of the array elements whose 

subscripts belong to an interval (or other set) S will be called the segment of 
X over S. For example, the program given in the previous section sums the 
values of the segment of X over 

The one-to-one correspondence between array elements and their sub-
scripts insures that the number of elements in a segment over S is the same as 
the size of S. (However, the number of elements in an array segment may be 
greater than the size of its set of values, since several array elements may 
have the same value.) When S has an irregular representation we will say 
that a segment over S is irregular. For example, the "final curious point" 
made in the previous section is that the summation program works correctly 
for irregular segments when the test k<b is used in the while statement. 

2.2.3 Partition Diagrams 

For any integer expressions a0, ax, a2, ... , an, where n> 1, a diagram of the 
form 

a2 
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is called a partition diagram. The intervals denoted by g0| q j , ax\ q2\, ... , 
an-iC3 are called ^component intervals of the partition diagram, and the 
interval denoted by a0\ an\ is called the total interval of the partition diag-
ram. 

We will use partition diagrams in assertions as logical expressions with 
the following meaning: 

A partition diagram is true if and only if its component intervals are 
disjoint (i.e. no integer belongs to more than one of them), and the 
union of the component intervals is the total interval. 

(In set-theoretic terminology, this is equivalent to saying that the component 
intervals form a partition of the total interval.) 

Just as with interval diagrams, we may write ... ... instead of ... 
... , and ... |a| ... instead of .. 

\a \k\ b\ 

a a\ . For example, 

is a partition diagram with the same meaning as 

k k 

which in turn has the same meaning as the standard-form diagram 

a-1 k — 1 k b 

Notice that, since these conventions work the same way for interval and 
partition diagrams, we can decompose a partition diagram into component 
and total interval diagrams without converting it into standard form. For 
example, bj decomposes into 

a b 

Component Intervals Total Interval 

\ajk 

0 
o 

whose standard forms, 

Component Intervals 

a-1| k-l\ 
k-l\~k\ 

O 
are the same as the decomposition o f a - 1 k-1 k b 

Total Interval 

a-lQ] , 

It is important to understand the distinction between interval diagrams, 
which will be used in assertions as expressions denoting intervals, and 
partition diagrams, which will be used in assertions as expressions denoting 
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true or false. A diagram with intermediate dividing lines can only be used as a 
partition diagram, but a diagram with only end lines can be used in either 
role. 

Since a partition diagram asserts a relationship among intervals that are 
determined by integer expressions, the truth or falsity of the partition 
diagram depends only upon the values of these integer expressions. The 
following theorem shows that this dependency can also be expressed by 
ordering relations: 

Theorem 1 The partition diagram 

is true if and only if either 

(i) a 0 < a x < a 2 ^ ... 

or 

(ii) «o — — fl2— ••• -an • 

Notice that (i) asserts that every component interval diagram is regular, 
while (ii) asserts that every component interval is empty. 

Proof: (1) Suppose a 0 < a 1 < o 2 ^ ••• ^ a n . To show disjointness, suppose 
k belongs to some component interval a , . J a,|, and let a^A a\ be any other 
c o m p o n e n t . T h e n e i the r ; < * , so tha t aj^ai^x<k, or i<j, so tha t 
k<ai<cij-\. Ei ther way, aj-1<k<aj is false, so that k does not belong to 
ai-iQ' 

To show that the total interval is the union of the component intervals, 
s u p p o s e t h a t k b e l o n g s to some c o m p o n e n t a , , J a\. T h e n s ince 
a 0 <«,_!< k <ai<an, k belongs to the total interval fl0[ an\. On the other 
hand, suppose that k belongs to a0| an\. Since a0<k but k<an, there is a 
smallest i such that 1 < i< n and k< at. Then a^x <k<ah so that k belongs to 
the component a\. 

(2) Suppose a 0 — — a2 — ••• —an• Then each component interval is 
empty, which establishes disjointness, and the total interval is also empty, 
and is therefore the union of the component intervals. 

(3) Finally we come to the interesting case: We must show that, if the 
partit ion diagram is t rue, then either (i) or (ii) holds. The following proof is 
due to F. L. Morris. 

Suppose a0 | ax ... an\. A fundamenta l fact about parti t ions is that the 
size of the total interval must be the sum of the sizes of the component 
intervals, i.e. 
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# «0 = I # « i - l [ 
i=l (a) 

where the size function # a\ fr| = if b-a>0 then b-a else 0 is always 
nonnegative and is zero if and only if a\ b\ is empty. 

However, for arbitrary a,'s simple cancellation gives 

a n - a 0 = 2 
i=l (b) 

Now suppose we define the function 

f(a, b) = b-a-#a\^b\= ifb-a>0 then 0 else b-a , 

which is always nonpositive and is zero if and only if a\ b\ is regular. Then 
subtraction of (a) from (b) gives 

f(a0, an) = I M - i , «/) 
i=l (C) 

The total interval diagram a0| an must be either empty or regular (or 
both). Suppose it is empty. Then (a) asserts that a sum of nonnegative terms 
is zero, which implies that each term is zero. Thus, for each i, a , ,^ a,| is 
empty and 

On the other hand, suppose a0 a^ is regular. Then (c) asserts that a 
sum of nonpositive terms is zero, which implies that each term is zero. Thus, 
for each i, a\ is regular and ai-1<ai. 0 

From this theorem, we can derive some general rules for inferring one 
partition diagram from another. Note that all the vertical lines in a partition 
diagram are called dividing lines, which may be either end lines or intermedi-
ate lines. 

Theorem 2 (1) (Erasure) A partition diagram implies any diag-
ram that can be obtained from it by removing dividing 
lines (and their associated expressions). 
(2) (Dividing line replication) Let 

D\=ao\ ... ajT.. an 

be any partition diagram, and let 

be obtained from Dx by adding a dividing line with the 
same associated expression as an-adjacent dividing line. 
Then Dx implies D2. 
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(3) (Direct Substitution) Let 

D2=am.x 

•
 am am 1 ... an 

- 1 . . . C; « m 

be partition diagrams such that the end lines of D2 have 
associated expressions which are the same as the associ-
ated expressions of two adjacent dividing lines in Dx. 
Then D\ and D2 implies D3, where 

D3 = a0 ... flm_l Cl ... c, m ... 
is obtained from Dx by inserting the intermediate lines 
of D2 between the adjacent lines of 

Proof: (1) If a 0 — — ••• — an i s t r u e > then it will remain so if we delete 
some of the a- s. The > case behaves similarly. 

(2) If aQ< ... < « m < ... then aQ< ... <am<am< ... < « „ . The 
> case behaves similarly. 

(3) If Dx and D2 are true then there are four possibilities: 

(a) aQ< ... < a m _ 1 < a / r l < ... <an 

and a m - i < c x < ... < c i < a m , 
(b) a0— ••• ... <an 

and a m _ 1 > c 1 > ... > C i > a m , 
(c) a0> ... >am-x>am> ... >an 

and am.1>cl> ... >ct>am , 
(d) ... > f l w _ 1 > a m > ... >an 

and a m _ 1 < c 1 < ... <cl<am . 

In case (a) we have a0< ... < a m _ 1 < c 1 < ... < c z < a m < ... <an directly. In 
case (b), am^l<am and am_l>cx> ... >cx>am give am^x = cx= ... = cl = am, 
and again we have a0 < ... < ... < c / < a w < ... < « „ . The remain-
ing cases are similar. [] 

A final theorem gives more specific results: 

Theorem 3 (1) Any partition diagram without intermediate lines, 
e.g. a\ ft|, is always true. 

~ ' ' ' f t ] , a < f t , 

# 1, a G a ft , and b e 
a ft 

a ft 

(3) The following are equivalent: 
a r i b e 

, a < f t < c , 

The proof is left to the reader. 
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Exercises 

1. For each of the fol lowing assert ions, give an equivalent par t i t ion d iagram: 

(a) k e |a b\ and m e |a b\ and k<m , 
(b) k e |a b\ and m e |a b\ and k<m , 
(c) k 6 |a m\ and |a m\ <= |a b\ 

2. Prove 

(a) «ol al a21 ... an| is equiva lent to 
a0+c\__ al+c\ a2 + cl ••• an + cl 

(b) M 1" is equiva len t to [a] ffo] . 

2.2.4 Summation Revisited 

To illustrate the use of interval and part i t ion diagrams, we shall reconstruct 
the program given in Section 2.2.1 for summing an array segment . W e first 
introduce a more genera l nota t ion for summat ion . Let e s X(i) deno te the 
sum of the values of X(i) over all i in the set S. T h e n 

( I ) X; e s X(i) = 0 when S is empty , 

(II) l i e ® m = X(k) , 

(III) X i e S U S ' m = {liesx(i)) + (lies' ^ ( 0 ) 
when S and S' are disjoint sets. 

In this nota t ion , we want our p rogram to achieve 

If our p rogram is to i tera te over the integers in the interval b\, then 
its invariant should assert tha t this interval is par t i t ioned into subsets of 
"p rocessed" and " u n p r o c e s s e d " integers, and that s is the sum of X over the 
processed subset . Moreove r , if the i tera t ion is to be in increasing o rde r then 
both of these subsets will be intervals and the processed integers will all be 
smaller than the unprocessed integers. Using the integer variable k to keep 
track of the division be tween the two subintervals , we get the invariant 

and s=^ie X(i) 

where the processed and unprocessed subintervals are the componen t s 
k and b of the par t i t ion d iagram. 

(We could equal ly well have chosen to write instead of k\ . 
Roughly speaking, we have decided that k will deno te the last processed 
integer ra ther than the first unprocessed integer . ) 
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Initially, we can achieve the invariant by setting k to a — 1 and s to zero, 
so that the processed interval is the empty interval a a-1 , the unprocessed 
interval is the total interval g—1| b\ = |a b\, and s is the sum of X over the 
empty processed interval. On the other hand, when k>b the unprocessed 
interval will be empty, and the partition diagram will imply 

a k\ = \a k] U k\ b\ = \a b\ , 

so that the invariant will imply the consequent of our program. Thus we have 

{|a b\ c dom X) 
begin integer k; 
k: = a — 1; s : = 0; 
{whileinv: |a k\ b\ and s = ^ i € JTJ 
while k < b do 

"Process one integer" 
end 

The invariant can be rewritten as 

k+l b\ and s=2ie X(i) 

and the test k<b implies b\ by Theorem 3(2). Thus Theorem 2(3) 
shows that, when "Process one integer" begins execution, 

*+l| b\ and 5= e £jk+1 X(i) , 

so that increasing k by one will give 

k b\ and 5= S i e • 

Less formally, k<b insures that k + 1 belongs to the unprocessed interval, 
and k:= k + 1 transfers this integer into the processed interval, which is then 
the union of two disjoint subintervals: its former value |a and the single-
ton Then (II) and (III) imply 

2 e Q X{i) + X(k) 

so that the invariant can be regained by = s + Thus the summation 
program is 
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{|a b\ c dom X} 
begin integer k\ 
k:=a-1; s: = 0; 
{whileinv: |a k\ b\ and s = E i e Q *(*)} 
while k < b do 

begin 
k: — k+1; { 

and 5 = X / e X(i)} 
s: = s + X(k) 
end 

end 

{s= Si 6 im *(Q} • 

To show the role of interval and partition diagrams more explicitly, we 
give a complete formal proof of the correctness of this program. The proof 
consists of the two tableaus shown in Tables 2.1 and 2.2. The first tableau 
shows that the while-statement body 5 satisfies the specification {/ and L} S 
{/}, where I is the invariant and L is the while-statement test. From this 
specification, the inference rule for while statements gives {/} while L do S {/ 
and 1 L}. Then the second tableau uses this result to show that the entire 
program meets its specification. Justifications of the various inferences are 
given to the right of the tableaus. The terms "disjointness property" and 
"union property" refer to the two properties that define partition diagrams. 

Termination is based on the size of the unprocessed interval k\ b\, 
which is decreased by the while-statement body and cannot be less than zero. 
The impossibility of subscript errors is shown by the initial assertion |a b\^ 
dom X (which must hold throughout the program since a and b are not 
changed and dom X cannot be changed within the scope of the declaration of 
X), plus the partition diagram a /c ft , which is equivalent to k € a ft by 

Theorem 3(3) and which occurs in the precedent of the s ta tement 
s: = s + containing the only array designator. 

In contrast to Section 2.2.1, the correctness proof using interval and 
partition diagrams includes—without any extra analysis—the case where 

b is irregular. Of course, the while-statement test that k\ b\ is nonempty 
must be k < b rather than k ^ b . 

Notice that both nontermination and the impossibility of subscript 
errors are shown by informal arguments which go beyond our formal logic 
for inferring specifications. Formally, subscript errors are a special kind of 
nontermination, so that {P} 5 {Q} means that if P holds beforehand then 
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b\ and J = 2 i c and 

a k b\ 

a k 

a \k+l b\ a n d s = 2 , e X(i) and \k + l\ 6 |} Theorem 3(2) 

a \k + l\ b\ a n d s = I , e \T]k+i D i r e c t substitution 

k+1; 

and s = 2 « € *(*)} Assignment 

T] and 5 + X{k) = ( L e O + ( ^ i e @ * © ) } (II) 

a M b\ and * + * ( £ ) = 2 / e Q * u 0 (HI) and disjointness 
property 

Union property 

= s + X(k) 

a |*| b\ and s = 2 € X(i)} Assignment 

a b\ and 5 = 2 , 6 O * ( ' ) } Erasure 

Table 2.1 Proof of the Summation Program, Part I. 

a b\ c dom X ) 

a Theorem 3(1) 

a a-1| Dividing line replica-
tion 

a a-1| b\ a n d 0 = 2 , e \a * ( / )} (I) and definition of 
interval diagram 

: = a — 1; 

a k\ b\ and 0 = £ , e [ 7 J X(i)} Assignment 

:=0; 

and s = £ , e O Assignment a k 

while k<b do begin k: = k +1; s: = s+X(k) end 

a k\ b\ and 6 [ 7 J x(i) and 1 k<b} while s ta tement 

|a k\ b\ and s=^ie X(i) and k\^b\ empty} Definit ion of interval 
diagram 

\a k\ = 1 a b\ and s = 2 / e Q *(»)} Union property 

s = S i € O *(*)} Substitution of equals 

Table 2.2 Proof of the Summation Program, Part II. 

e x e c u t i n g 5 wi l l , if S t e r m i n a t e s without an error message, g ive a s t a t e in 
w h i c h Q h o l d s . T h i s v i e w p r e s u p p o s e s t h a t al l s u b s c r i p t e r r o r s will c a u s e 
e r r o r m e s s a g e s ; f o r t u n a t e l y t h i s is t h e c a s e in A l g o l W . 
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Exercise 

1. The following generalization of the factorial-computing problem shows that the 
kind of reasoning about intervals facilitated by interval and partition diagrams 
can be needed even in the absence of arrays. Write a program that will accept two 
arbitrary integers a and b, and will set the real variable s to I I , e i, where 

(i) n,e{}«=i , 
(II) n i e f t i = k , 
(in) n,e5u5 i=(\\€Si)x(uieS. i) 

when S and S' are disjoint . 

2.2.5 Quantifiers 

Our next example will be a program to find the subscript of a maximum 
element in an array segment: Given the segment of X over \a b\, we want to 
find an integer j such that |a |;| b\ and X(j) is at least as large as every 
element in the segment. However, before beginning to develop a program 
for this task, we must translate the previous sentence into a precise logical 
expression, and here we encounter a problem: How do we express "X( j ) is at 
least as large as every element in the segment"? 

Given a particular integer i in a b, it is easy enough to say that 

X(i)^X(j). The problem is that we want to assert this logical expression for 

all i in \a~b\, not just for a particular i. The solution is simply to introduce a 
new notation (V / e 5) which is defined to mean "For all I in the set 5 . " We 
then write 

b\) X(i)<X(j) . (V i e 

The phrase (V I € S) is called a universal quantifier of I. There is a 
second kind of quantifier, called an existential quantifier of I, which is written 
( 3 1 e S) and means "For some I in the set 5 " or "There exists an / in the set S 
such that". The extension of logical expressions in assertions to include these 
two kinds of quantifiers produces a fundamental increase in their expressive 
power. (In the jargon of symbolic logic, we are moving from the proposi-
tional calculus to the first-order predicate calculus.) 

Quantifiers, like declarations, are binding mechanisms. Specifically, the 
occurrence of the identifier / in (V I e S) P or ( 3 / e S) P is a binder whose 
scope consists of itself plus the following expression P, i.e. the entire quan-
tified expression excluding the set S. 

For example, in (V i e |a b|) X(i) < X(j) the scope of the binder of i is 
the binder itself plus X(i)<X(j), and the only identifiers occurring in this 
scope are i, X, and j. Thus the meaning of this assertion will remain 
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unchanged if we alpha-convert it, as discussed in Section 1.5.2, by replacing 
the binder of i and the occurrence of i in X(i) < X(j) by any other identifier 
except X or j, e.g. 

(V*€ X(k)^X(j) , 

or even 

(V a € O ] ) X(a)^X(j) , 

but not 

(VyG ET1>]) X ( j ) ^ X ( j ) . 

The nature of the universal quantifier is explicated by the following 
laws: 

If Sc S' and (V i e S') P then (V i e S) P , (1) 

(V i € {}) P , (2) 

(VI G S U S') P if and only if both ('V i e S) P and ('V / e S') P , (3) 
If (V i € S) P and E e S then p \ , (4) 

where {} denotes the empty set and S U S' denotes the union of the sets S and 
S'. Law (2) asserts that anything is true when universally quantified over the 
empty set; in this case the quantified expression is often said to be vacuously 
true. Law (4) asserts that, f rom a universally quantified expression one can 
infer anything obtained by substituting for the bound identifier an expres-
sion denoting a member of S. 

The universal and existential quantifiers are related by the operation of 
negation: Something is true for all members of S if and only if it is not false 
for some member of S. In other words, 

(V i G S) P if and only if 1 ( 3 i e 5) 1 P , (5) 

and similarly 

(3 i<= S) P if and only if 1 (V i e S) 1 P . (6) 

Although quantifiers can be used in assertions, they cannot occur in 
logical expressions in Algol W programs themselves. This is not an acciden-
tal omission—it can be shown that it is theoretically impossible to write a. 
computer program that will correctly evaluate an arbitrary logical expres-
sion containing quantifiers. (Actually, it would be possible to evaluate 
quantifiers over finite sets. But even permitting such limited quantifiers in 
programs would drastically change the nature of the programming language, 
since it would introduce expressions with unbounded evaluation times.) 
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Exercises 

1. Explain the difference between 

( V / e la~b\) (3 j e \a~b\) 
and 

(3 j e [ a f r j ) (V i e Q ) i > / . 

2. Use quantifiers to formalize the following mathematical facts and definitions. 
You may use Int to denote the set of integers and Real to denote the set of real 
numbers. In (c) and (d) you may need the operator implies discussed in Section 
2.2.10. 

(a) For every integer, there is a larger integer. 
(b) There is no maximum integer. 
(c) There is a real number between every pair of distinct real numbers. 
(d) For every real x, |*J is the largest integer that is no more than x. 

3. Prove that the formalizations of (a) and (b) in the previous exercise are equival-
ent. 

4. Binding occurs in the summation notations used in Sections 2.2.1 and 2.2.4, and 
in the conventional notation for definite integrals. For each of these notations, 
describe the binders and their scopes. 

2.2.6 Substitution and Identifier Collisions 

Both law (4) in the previous section and the rule for assignment in Section 
1.4.2 involve the application of substitution to assertions that, with the 
introduction of quantif iers , can contain bound identif ier occurrences. 
Because of this, we must consider an interaction between substitution and 
binding which is of ten called identifier collision. 

As an example, if Int denotes the set of integers then 

(V i e Int) ( 3 j e Int) i=j-1 

is an obviously true fact about the integers. Thus, since y + l is an integer 
expression, law (4) implies 

( 3 /' g I n t ) i=j—l\ 1 . 

However, if we interpret the indicated substitution naively, then the above 
expression seems to be 

( 3 / e Int) j+1=;-1 , 

which is patently false. The difficulty is that the f ree occurrence of j in y + l 
has been moved by the substitution into the scope of a binder o f a n d has 
therefore been " cap tu r ed" by the binder. More briefly, the two usages of j 
have collided. 
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In essence, this means that the naive interpretation of substitution is 
incorrect, and that a correct definition of substitution must preserve binding 
structure by avoiding collisions. The basic method for accomplishing this is 
to use alpha conversion to eliminate binders that could cause collisions. 

In formulating such a definition of substitution, we include the case of 
simultaneous substitution for several identifiers, and we permit the substitu-
tion to involve phrases, such as statements, that occur in programs but not 
assertions. Although these generalizations are presently unnecessary, they 
will be needed in Section 3.1.1, where we will use substitution to describe the 
copy rule for procedures. 

Suppose S is a phrase, Ix ... ,ln are distinct identifiers, and Au ... ,An 

are phrases. Let S' be an alpha variant of S (or possibly S itself) that contains 
no binder of any identifier that occurs free in any of the A / s . Then 

h,... ,I„->Ai, ... ,A„ > 

called the result of substituting the A?s for the 7,'s in S, is the phrase obtained 
from S' by replacing every free occurrence of each /, by the corresponding Ah 

For example, to obtain 

( 3 / e Int) i—j—\\ i->j+i , 

we cannot take S' to be (3 j e Int) i=j-1, since this phrase contains a binder 
o f / , which occurs free iny '+l . Instead, we must take S' to be an alpha variant 
such as (3 k g Int) i=k - 1 , to obtain (3 k e Int) j+1 = k - 1 as the result of the 
substitution. (Which alpha variant we choose as S' doesn't matter—since 
they all have the same meaning—as long as it does not contain any binder of 

(Actually, the requirement that S' contain no binder of any identifier 
that occurs free in any of the A f s is stronger than necessary. The following 
weaker but more complicated requirement is sufficient to avoid identifier 
collisions: For each Ih S' must contain no free occurrence of within the 
scope of a binder of any identifier occurring free in A{.) 

Two other aspects of substitution require comment. The replacement of 
occurrences of /, by A t must be carried out in terms of phrases rather than 
strings of characters. For example, * Xy = o| is (a + b)xy = 0, not 
a + b x y = 0. In general, each A{ must be enclosed in parentheses (or begin ... 
end) whenever this is necessary to preserve its identity as a subphrase of the 
result of the replacement. 

Finally, it should be noted that simultaneous substitution can produce a 
different result than repeated substitution. For example, x < y \ x y^,y x is 
y<x, but ( x < y 1^-^)1 is 
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Exercise 

1. Suppose the consequent (V i e |a X(t) <X{j) is to hold after executing the 
assignment j: — i+1. What is the precedent that must hold before execution of 
this assignment? 

2.2.7 Maximum Finding 

Now that we have in t roduced quant i f iers and deal t with the interact ion of 
binding and subst i tut ion, we can at tack the problem of max imum finding. 
We want a p rogram tha t , given the segment of X over 
variable j to satisfy the consequen t 

a b , will set the 

b\ and (V i e |a b\) X(i)<X(j) 

An obvious plan of a t tack is to sequence th rough the e lements in o rde r of 
increasing subscripts while always keep ing / set to the subscript of the largest 
element encoun te red so far . If we use a variable k to k e e p track of the 
subscript of the las t -examined e lement , then our invariant will be: 

k b\ and (V i e o k ) X(i)<X(j) 

which asserts tha t |a b\ is pa r t i t ioned into a processed interval a k and an 
unprocessed interval k\ b |, and that j is t he subscript of a max imum e lement 
of the subsegment of X over the processed interval . 

When k>b, the unprocessed interval will be empty , the processed 
interval will equal |a b\, and the invariant will imply the f inal asser t ion. 
However , unlike the summat ion p rogram, we cannot start with the initializa-
tion k: = a - 1 , fo r t hen the re could be no value of j satisfying a |y| k\. T h e 
smallest \a k we can start with is a one-e lement interval . Moreove r , since 

this one-e lement interval mus t be a subset of 

initial condit ion that 

a b\, we mus t impose the 
a b be n o n e m p t y , or equivalently a\ b\. In fact , this 

initial condit ion is inheren t in the p r o b l e m we are trying to solve—if 

were empty it would be meaningless to ask for the subscript of its m a x i m u m 

element . 
If |Q| b\, t h en the initialization j: = a;k: = a will give \a |/| k b , and 

also \a k\ = [/], which implies (V i e |a X(i) < X(j). Thus this initializa-
tion will achieve the invar iant . 

If we increase k at the beginning of t he while-s tatement body , we get the 
program skele ton 
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{ B 
begin integer k\ 
j: = a; k: = a; 
{whileinv: \a \j\ k\ b\ and (V i e \a A:|) X(i)<X(j)} 
while k < b do 

begin k: = k+l; "Inspect one e lement" end 
end 

{\a 1 / 1 b\ and (V i e 1 7 1 b \ ) X(i)<X(j)} 

At the beginning of the while-statement body, the invariant will be true 
and k\ b\ will be nonempty, so that 
increasing k by one will give 

k+1 b will hold. Then 

k\ b\ and (V i e \(T]k) X(i)<X(j) 

With this assertion as precedent, "Inspect one e lement" must reestablish the 
invariant. 

At this stage, since |a k\ will be the union of \cT^\k and the max-
imum element of X over |a k\ will be the larger of the maximum over |a \k, 
which will be X(j), and the maximum over which will be X(k). Thus j can 
be left unchanged if X(k)<X(j), and j can be reset to k if X(k) > X(j). 
(Notice that \a |;j k\ b\ will not be falsified by j: = k since k € a k\, and 
that either alternative can be taken when X(k) = X(j).) 

As with the summation program, termination is assured by the decreas-
ing size of the unprocessed interval k\ b\. The only array designators are 
X(k) and X(j) in " Inspec t one e l e m e n t " , whose precedent contains 

b\. Thus subscript errors will be precluded by adding |a b | £ 
dom X to the initial assertion. 

The final program is 

{[a b\ Q dom X and b\} 
begin integer k; 
j: = a; k: = a; 
{whileinv: |a \j\ k\ b\ and (V i € \a k\) X(i)<X(j)} 
while k < b do 

^X(k)>X(j) 
X(k)>X(j) 

begin k: = k+1; if then j : = k end 

end 
{\a |/1 >̂1 and (V i e b\) X(i)<X(j)} 
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Either choice of the relation which compares X{k) with X(j) gives a 
program that meets the specification. However, this choice can make a 
difference in the result of the computation. (Consider the extreme case 
where all elements of X have the same value.) In fact, we have intentionally 
provided a indeterminate specification; when the segment of X over 

has more than one maximum element, the specification leaves the program 
free to produce the subscript of any maximum element. 

Exercises 

1. For each of the two versions of the maximum-finding program, give a correct 
specification and invariant that are determinate, i.e. that cannot be met by a 
program with different behavior. 

2. (Suggested by F. L. Morris) Write program that will produce the subscripts of 
both a maximum and a minimum element of an array segment. Use a single while 
statement, so that the array segment is only scanned once. With a bit of clever-
ness, this program can be written so that the number of executed comparisons of 
array elements is no more than 3 / 2 times the size of the segment. 
(Hint: Process the array elements two at a time.) 

2.2.8 Functions as Array Values 

So far we have taken the view that an array is a collection of variables which, 
like the simple variables used in Chapter 1, possess numerical or logical 
values. For many purposes, however, it is more convenient to view an array 
as a single "giant" variable, whose value is a function. 

A function F consists of three sets: 

(1) A set dom F, called the domain of F, 
(2) A set cod F, called the codomain of F, 
(3) A set, called the graph of F, consisting of pairs ( i , r) such 

that i belongs to dom F and r belongs to cod F, 

which satisfy the following relationship: 

For each i in dom F there is exactly one r in cod F such that (i, r) 
belongs to the graph of F. 

A function F is often said to be a function from dom F to cod F. For any i in 
dom F, we write F(i) to denote the unique value such that (i, F{i)) belongs to 
the graph of F; this unique value is called the result of applying F to i, and F is 
said to map i into F(i). Two functions F and G are equal if and only if they 
have the same domain, codomain, and graph, i.e. dom F = d o m G, cod F 
= cod G, and F(i)=G(i) for all i in dom F. 
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Consider an array A' in a particular state of some computation. Let F be 
the function such that 

(1) dom = dom X. 

(2) cod F is the set of values (e.g. the set of integers, the set of 
reals, or the set {true, false}) that are associated with the 
data type of the elements of X. 

(3) For all i € dom F, F(i) is the current value of the array 
element X(i). 

Then the function F is said to be the current value of the array X. 
Now suppose X(i) is an array designator in an expression, e.g. on the 

right side of an assignment statement or in an assertion. Instead of saying 
that X(i) denotes the value of the ith element of X, we can equally well say 
that X(i) is the result of applying the value of X to i. 

Suppose, for example, that sq is an integer array with domain | - 5 5 
such that, in the older view, each sq(i) is a variable whose current value is the 
square of the number i. In the functional view, sq itself has a current value, 
which is the "squaring funct ion" f rom | - 5 5[ to the set of integers, and an 
expression such as sq{3) denotes the result of applying this function to 3. The 
contrast between these views is pictured in Figure 2.3. 

Henceforth, in discussing expressions or assertions we will often ignore 
the distinction between an array and its value, e.g. we will say " the function 
X " rather than " the function that is the value of the array X" . Actually, this 
is no worse than saying " the integer instead of " the integer that is the 
value of the variable JC". 

At present, the main reason for emphasizing the functional view is to 
introduce several mathematical concepts about functions and their sets of 
results which will allow assertions to be expressed more succinctly. 

The first of these concepts is restriction. If X is a function and S is a 
subset of its domain, then the restriction of X to S, written X \ S, is the 
function from S to the codomain of X that gives the same result as X when 
applied to any member of S. In other words, if S ^ dom X then 

dom X \ S = S , (1) 
cod X 1 5 = cod X , (2) 
(V/ e S ) ( X ] S) (i)=X(i) . (3) 

This concept can be used to describe the value of a segment of an array: 
The value of the segment of X over S is just the restriction X1 S of the value 
of X to S. For example, the value of the segment of sq over |2 4| is sq ] 
2 4|, which is the squaring function f rom [2 4| to the set of integers 
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The integer array 
sq with domain 

EH3 

the value of which is The squaring function 
f rom | - 5 5| to the 
set of integers 

&> 3 -o 0 

H C 
s? 

3' o OQ >4 
O 
U> 

The integer 
variable s<?(3) 

the value of which is 
The integer 9 

Figure 2.3 Two Views of an Array. 

It is easy to see that restriction obeys the following laws: 

X 1 dom X=X , (4) 

If 5' c 5 c dom Z then (X ] S) 1 S =X ] S' , (5) 

* 1 { } = <> • (6) 

In the last line, () denotes the unique function from the empty set to the 
codomain of X, whose graph must necessarily be empty. In general, we will 
write () for such a function without explicitly stating its codomain, which will 
usually be evident from context. Notice that <) is the only possible value of an 
empty array. 

A second useful concept is the image of a function, which is the set of 
results that can be obtained by applying the function to all members of its 
domain. We write to denote the image of X. Thus r belongs to {A!} if and 
only if there is an i in the domain of X such that X(i) = r. For example, 

{sq} = {0, 1 , 4 , 9, 16, 25} , 

{sq 1 O W 4 ' 9 ' 16> • 

Notice that, if a function maps several arguments into the same result, then 
its image will be smaller than its domain. 

It is easily seen that images obey the following laws: 
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{*} ^ cod X , 

If S C dom X then {X ] 5} c {X} , 

{*} = {} if and only if A><> , 

If dom U S' then {*} = {X ] S'} , 

@}={*(0} , 

(7) 
(8) 

(9) 
(10) 
(11) 
(12) # {.«¥}<# dom X when dom X is a finite set 

In (11), {Z(/)} denotes the singleton set whose only member is X(i). This 
standard mathematical usage of curly brackets should not be confused with 
our notation for an image—since X(i) is not a function. 

Finally, to describe relations between sets such as images, we will use 
the concept of the pointwise extension of a relation. Suppose p is a binary 
relation between values of some type. If 5 and T are sets of such values, then 
S p* T is a logical expression that is true if and only if x p y is true for all x in 5 
and y in T. The entity p*, which is a binary relation between sets, is called the 
pointwise extension of p. 

Strictly speaking, we should say that if p relates values in some set U to 
values in some set f / ' , t h e n p * relates subsets of U to subsets o f t / ' . However, 
we can gloss over the specification of U when p is = or # , which are defined 
for all kinds of values, or < , < , > , or > , which are defined for all kinds of 
numeric values, and which will be extended to certain other kinds of values 
in Section 2.3.7. When the latter relations are defined between all members 
of a set, we will say that the standard ordering is defined for that set. 

As an example, 

are all false. (The last two examples show that is not the negation of =*. 
Moreover =* and are different from the relations = and ^ between sets. 
This is why the asterisk is needed to indicate pointwise extension explicitly.) 

It is easily seen that for any relation p, the pointwise extension of p 
satisfies the following laws: 

{2, 3} < * {3, 4} , {2, 3} {4, 5} 

are both true, but 

{2, 3} < * {3, 4} , {2, 3} =* {2, 3}., {2, 3} {2, 3} 

If S ' c S and S p* T then S' p* T , 
If T'c T and S p* T then S p* T , 
{}p*T , 
SP*{} , 

{*} P* {y} if only if x p y , 
(SU S') p* T if and only if both S p* T and S' p* T , 
S p* (TU T') if and only if both S p* T and S p* T' , 

(14) 

(15) 

( 1 6 ) 

(13) 
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Here (14) is justified since any logical expression quantified by "for all JC in 
5" is vacuously true when S is empty. 

Very frequently, the set on one side or the other of a pointwise-
extended relation will have a single member. We write JC p* T as an abbrevia-
tion for {JC} p* T and S p* y as an abbreviation for S p* {y}. For example, for 
any integers a and b, a <* a\ b\ and a\ b\ <* b. 

Some additional laws relate the pointwise extension of different rela-
tions: 

If JC p y implies x p y for all JC and y, 
then S p* T implies S p* T for all S and T. ^ ' 

If JC p y and y p z implies JC p" z for all JC, y, and z, 
then S p* T and T p* U implies S p"* U for all S and U (18) 
and nonempty T. 

Notice that (18) does not hold when T is empty, since then S p* T and Tp'* U 
are vacuously true, even though 5 p"* U may be false. Taking T to be the 
singleton set {y} gives the special case: 

If JC p y and y p z implies JC p" z for all JC, y, and z, , . 
then S p*y and y p'* U implies S p"* U for all 5, y , and U. ^ ' 

Both (18) and (19) are particularly useful in the case where p, p ' , and p" 
are the same relation. If JC p y and y p z implies JC p z for all JC, y, and z, then p is 
said to be a transitive relation. 

The reason for introducing the concepts of restriction, image, and 
pointwise extension is that they permit many (though hardly all) assertions 
about arrays to be expressed without explicit quantifiers. For example, in the 
invariant used in the previous section we wrote 

( V i g a X(i)<X(j) 

to indicate that X(j) is a maximum element of the segment of X over 
We can now express this assertion more succinctly as 

{* 1 \ajc\} <* X(j) . 

The reasoning used to justify the assignment j : = k when X(k)>X{j) 
can now be given more formally by using the laws developed in this section. 
Suppose 

and {X j 1 < * X{j) and X{j)<X{k) . 

Since < is a transitive relation, (19) implies {X ] |a <* X(k). On the 
other hand, (11) and (15) give {X ] §} = {*(*)} <* X(k). Then, since 
implies a 

l a w s ( 1 0 ) ' (5)> a n d ( 1 6 ) 8 i v e 

{X\ \a~k\} = {Xl U { Z 1 \k\}<*X(k) 
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The notations defined in this section are not part of Algol W and can 
only be used in assertions. (Notice that this prevents any confusion between 
the use of curly brackets to enclose assertions and the use of such brackets 
inside assertions to indicate images or other sets.) 

Exercises 

1. Determine which of the relations = , ^ , < , < , > , > satisfy which of the following 
laws: 

(a) (Transitivity) x p y and y p z implies x p z 
(b) (Reflexivity) x p x 
(c) (Antisymmetry) x p y and y p x implies x-y 
(d) (Totality) x p y or y p x 
(e) (Symmetry) x p y implies y p x . 

A relation is said to be preorder if it satisfies (a) and (b), a partial order if it 
satisfies (a) through (c), a total order if it satisfies (a) through (d), and an 
equivalence if it satisfies (a), (b), and (e). 

2. Determine when the law x p y implies x p y holds for the various relations listed 
in Exercise 1. When this law holds p is said to include p, since the set of pairs 
related by p includes the set of pairs related by p. 

2.2.9 Linear Search 

We next consider the problem of searching an array segment to find an 
occurrence of a specified value. More precisely, we want a program that will 
accept the segment of an array X over |a b\ and a single value y, and will set 
a variable j to an integer in [a b] such that X(j) =y. However, we must also 
deal with the possibility that the value of y may not occur in the array 
segment being searched. For this reason, we introduce a logical variable 
present, and require our program to set present to true if it is able to achieve 
the above criterion or to false if it is impossible to do so. Thus our program 
must set present and j to satisfy the final assertion 

if present then b\ and X(j)=y else {X 1 o j } ^ * y 

Notice the use of a logical conditional expression within an assertion. An 
equivalent but less readable assertion would be present and 
X(j)=y or "I present and {X 1 \a b|} ^ * y. 

b and 

The basic idea is to test each X(j), in order of increasing subscript, until 
either the search criterion is satisfied or the array segment is exhausted. The 
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invariant asserts that if present is true then the search criterion has been 
satisfied, while if present is false, then | a j\ is a subinterval of a ft for which 

the search criterion cannot be satisfied: 

if present then ft and X(j)=y 
else |a j\ ft| and {X \ \a ;|} ^* y . 

This invariant will imply the final assertion if either present is true or 
/ E 3 e m P t y - o t h e r hand, it can be achieved initially by setting j 

to a-I and present to false. Thus we obtain a program of the form 

{|g ft|g dom X} 
begin 
j := a-1; present := false; 
{whileinv: if present then \a \j\ ft 1 and X(j) =y 

else |a j\ b\ and {X 1 |a ;j} # * y } 
while "1 present and ( j < b ) do 

begin j := j+1; "Test next e lement" end 
end 
{if present then and X{j) =y else {X 1 [a ftp ^ * y} 

At the beginning of the while-statement body the invariant will be true, 
present will be false, and j\ ft] will be nonempty, which implies 

1 present and |a | / + l | ft] and {X 1 \a j|} ^* y . 

Taking into account the action of j : = ; + 1 , we see that "Test next e lement" 
must meet the specification 

and {X \ \aZ\j}**y} { "I present and 
"Test next element 
{if present then and X(j)=y 

else \a j\ ft | and {X ] |a j\} ^ * y } . 

If X(J)=y then present should obviously be set to true by "Test next ele-
ment", while if X(j)^y then present can be left false, since 

{x 1 ^ j \ } = { x 1 o u 0 } = { * 1 0 > u ^ 1 * m y • 

Thus "Test next e lement" can be replaced by 

if X(j) =y then present : = true . 

The finished program is 



102 A R R A Y S CHAP. 2 

{\a bdom Z } 
begin 
y := a — 1; present := false; 
{whileinv: if present then |a |/| b\ and X(j)=y 

else |a j\ b\ and {X \ # * y } 
while "I present and (/' < b) do 

begin j := ; '+l ; if X(j)=y then present := true end 
end 
{if present then |a |;| and X(J) =y else {A' 1 |a ^ * y} 

Termination is assured since the while-statement body either sets present to 
true or eventually r e d u c e s b \ to the empty interval. Subscript errors are 
precluded by a b\^ dom X and the presence of |a |/| b\ in the precedent 
of "Test next e lement" . 

The contrast between this program and that of Section 2.2.7 reveals an 
intrinsic difference between finding a maximum and finding an element with 
a given value. The property "being a maximum" depends upon the entire 
array segment in such a way that e,very element must always be examined. 
But "being an element with a given value" is a property of the element by 
itself, so that a successful search can sometimes terminate without examining 
every element. 

It is natural to ask if the above program is the best we can do. Intuitively 
at least, the answer is yes; in the absence of any information about the values 
of X, we must continue to test the elements of X over |a b \ until either our 
search is successful or all elements have been tested, and there is no reason to 
prefer one order of search over another. However, as we will see in the next 
section, the situation can be dramatically different if the programmer pos-
sesses a priori information about the values of the array being searched. 

2.2.10 Binary Search 

A much more efficient method for searching an array segment can be used in 
the special but practically important case where the array segment is known 
to be ordered. 

The concept of ordering will be used in many programs. Let X be a 
function with numerical arguments and results, such as the value of an 
integer or real array. Then X is ordered in increasing order if and only if 

(V i € dom X) (V j e dom X) i<j implies X(i)<X(j) . 

However, increasing order is only one way in which a function can be 
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ordered. To deal with a variety of such possibilities we generalize the 
relation between X(i) and X(j) to an arbitrary binary relation p. Suppose X is 
a function such that the standard ordering is defined for its domain and p is 
defined for its codomain. Then we write ordp X, and say that X is ordered 
with respect to p, if and only if 

(V i e dom X) (V j e dom X) i<j implies X(i) p X(j) . 

In this definition we have used implies as a logical operator with the 
following meaning: 

p i p implies q 

false false true 
false true true 
true false false 
true true true 

We have previously used implication as a relationship between assertions: 
"P implies <2" is an English sentence meaning that every computational 
state described by P is also described by Q. Now we will also use implies (in 
boldface) as a logical opera tor (akin to and and or except that it is not part of 
Algol W) within assertions. The connection between these usages is that the 
sentence "P implies Q " is t rue if and only if the assertion P implies Q 
describes all computat ional states. 

A worthwhile generalization should have several useful special cases 
and satisfy nontrivial general laws. Useful special cases of ordp include: 

ord< X: increasing order 
ord< X: strict increasing order 
ord> X: decreasing order 
ord> X: strict decreasing order 
ord= X: all elements have equal values 
ord^ X: all elements have distinct values , 

and general laws include: 

If S c dom X and ordp X then ordp X 1 5 , (1) 

If # dom X<1 then ordp X , (2) 

Suppose dom I = 5 U T and S <* T. Then ordp X holds 
if and only if: 

(a) ordp X 1 5, 
and (b) ordp X 1 T, (3) 
and (c) {X 1 S} p* {X \ T) . 

Also, since a\ b\ c\ implies a\ b|<* b\ c|, one can obtain the following 
special case of (3) for intervals: 
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Suppose dom X — a\ c] and a 
only if 

ordp X 1 a[~~b\, 
ordp X 1 

Then ordp X holds if and 

(a) 

and (b) 
and (c) 

(4) 
1 * Q ] } p* 1 C 3 > 

Further laws hold for certain relations. If x p x holds for all x, then p is 
said to be reflexive; for example < is reflexive. It is easily seen that 

If p is reflexive and dom X= \a bj is nonempty, 
(5) then ordp X implies X(a) p* {X} and {X} p* X(b) . 

Anothe r obvious law is: 

If x p y implies x p ' y for all x and y, 
then ordp X implies ordp- X for all X 

For example, ord< X implies both ord< X and ord^ X. 
Returning to the problem at hand, we want a program that will satisfy 

(6) 

; dom X and ord< X 1 a 
"Sea rch" 
{if present then a j and X(j) =y else {X 1 

The essential idea is that if inspection of an array element gives X(j) ^ y , then 
one can test whether X(j) <y or X(j) > y ; in the first case the ordering of the 
segment implies that all e lements to the left of X(j) must be less than y, while 
in the second case the ordering implies that all e lements to the right must be 
greater than y. Ei ther way, one is able to exclude f rom fur ther search an 
entire segment of e lements ra ther than a single element . 

As with linear search, the heart of our program will be a while s tatement 
whose invariant asserts that if present is true then the search criterion has 
been met, while if present is false then there is a portion of the interval 
for which the criterion cannot be met. But now this port ion can consist of 
both a left and a right subinterval of a b , which enclose the subinterval 
remaining to be searched. If we use the variables c and d to delimit these 
subintervals then the invariant is 

if present then a j b\ and X(j)=y else 
a c d a n d { * 1 | a |c} y and {X ] d\ b\} y 

This invariant can be achieved with a trivial initialization. On the other 
hand, it will imply the final assertion if either present is true or 
The latter case holds since t he partition diagram 

is empty. 
implies that 
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= O c U w h e n lc i s empty. Thus we obtain the program 
skeleton: 

{[a b| e dom X and ord< X \ |a b[} 
begin integer c, d\ 
c := a\ d := b; present \ = false; 
{whileinv: if present then \a |y| b\ and X(j)=y else 

while "1 present and (c < d) do 
and {X 1 [«•<;} y and {X ] ** y } 

" R e d u c e [c d\ while maintaining invariant" 
end 
{if present then b\ and X(j)=y else {X ] \a b[} y} 

At the beginning of "Reduce c d\ while maintaining invariant" we will 
have 

c d ~b\ and {X 1 Q c } y and {X 1 d[^b\} y 
and "1 present and c < d 

At this point we want to set j to some subscript in the interval \c d\, which is 
known to be nonempty, and then do a three-way branch upon whether the 
y'th element is equal to, less than, or greater than y. If we assume that "Picky" 
is a statement that sets y to satisfy 

{c<d} "Pick y" { c < y < 4 , 

then we get the following expansion of "Reduce 
invariant": 

begin 
"Pick y"; 
{ 

while maintaining 

d\ b\ and {X ] \a~]c} y 
and {X 1 d\ fr |} y and 1 present } 

if X(j)=y then "Mainta in invariant when X(j)=y,, 

else if X(j) <y then "Mainta in invariant when X(j:)<y" 
else "Mainta in invariant when Z(y ' )>y" 

end 

When X(j) = y , since a |y | b will also hold, we can set present to true. 
When X(j)<y, since the subsegment of X over |a j\ £ |a b\ is ordered, we 
will have {X ] [ 7 j ] } <* X(j) by (5), which gives {X \ [ 7 j \ } y by (19) in 
Section 2.2.8. Thus the invariant will be maintained if we set c to y '+l . 
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Similarly, when X(j)>y, which implies {X ] |j b\} y because of the 
ordering, we may set d to j—\. 

At this stage the overall program is: 

{|a b\ ^ dom X and ord< X ] |a b\} 
begin integer c, d\ 
c := a; d := b\ present := false; 
{whileinv: if present then |a |y| b\ and X(j)=y else 

d b and {X 1 | T | c } y and {X 1 Q } y } 
while 1 present and (c<d) do 

begin 
"Pick ; " ; 
if X(j)=y then present := true 

else if X{j)<y then c := j+1 
else d j— 1 

end 
end 
{if present then a |y| b\ and X(j)=y else {X 1 \a b\} y} 

Termination is assured by the fact that each execution of the body of the 
while s tatement either sets present to true or decreases the size of c d\, and 
these operations cannot be repeated indefinitely without falsifying "I present 
and (c < d). (Note that termination would not be assured if the assignment to 
c or d was c : = j or d : = ;'.) The impossibility of subscript errors follows from 
the fact that "Pick / " will insure |a \c \j\ d\ b\ before execution of the 
conditional statement which tests X(j). 

Our final task is to fill in the statement "Pick which must satisfy 

{ c < 4 "Pick / " {c<j<d} . 

But here the problem is not just to produce a correct statement—for exam-
ple, j := c or j := d would be correct—but to make the program as fast as 
possible. 

Ideally, we would like to minimize the number of array elements that 
will remain to be searched, which will be # j[~d\ if X(j) <y, or # Q y if 
X(j)>y. But at this stage we don' t know whether X(j) is smaller or larger 
than y. The best we can do is to pick y to minimize the maximum of # yj d\ 
and # | c |y, which will occur if j is as close as possible to the middle of the 
interval |c d\. Since the "middle" is just the mean (c + d) / 2, we replace 
"Pick y" by 

j := (c + d) div 2 
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But here there is a subtle complication. When c + d is even, this state-
ment will produce (c + d) / 2, and will obviously meet its specification. But 
when c+d is odd, the mean will not be an integer, the operat ion div will 
round the mean downward or upward, and it is not obvious that the neces-
sary condition 

c<d implies c<(c + d) div 2 < d 

will be satisfied. 
At first sight, this seems to mean that we are going to have to look at the 

exact definition of the operation div, which would lead to a complicated 
analysis. (Remember that c + d might be negative.) But in fact our necessary 
condition is a consequence of a simple property which holds for any reason-
able definition of integer division (including the one used in Algol W). All 
we need to know about integer division rounding is that division by two is 
monotone, i.e. 

For all integers i and j, if i < j then 
(i div 2) < ( j div 2) . 

Because if c^d then (c + c) < (c + d) < (d + d), and by monotonicity, (c + c) 
div 2 ^ (c + d) div 2 < (d + d) div 2. But in the first and third cases, the divisor 
is even, so that div gives an exact result of c or d respectively. Thus c<(c + d) 
div 2<d. 

It is important to realize that the algorithm we have just described, 
which is called binary search, is an order of magnitude faster than the linear 
search algori thm given in the previous section. The previous search 
algorithm required a time of the order of # \a bj—the size of the array 
segment being searched—at least in the worst case where the element being 
sought is not present . But binary search requires a time of the order of the 
logarithm of # \a bj. Fundamental ly, this is because each execution of the 
while-statement body reduces the size of the interval c d. to at most half of 

its previous value. By an argument similar to that in Section 1.3.5, the 
execution time of the program is bounded by a + fi • (log2 # a 
where a and /3 are bounds on the time required for initialization and for the 
while-statement body. 

This is our first encounter with a pervasive phenomenon: The efficiency 
of many algorithms for manipulating arrays (or other representat ions of 
sequences of data) can of ten be improved by an order of magnitude if the 
arrays are known to be ordered according to some easily tested ordering 
relation. Curiously, this phenomenon has nothing to do with the "mean ing" 
of the ordering relation. Indeed, it is a common practice to obtain these 
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e f f i c i enc i e s by o r d e r i n g d a t a in a c c o r d a n c e w i th a c o m p l e t e l y a r b i t r a r y 
o r d e r i n g c o n v e n t i o n . (Of c o u r s e , th is i d e a is m u c h o l d e r t h a n m a c h i n e 
c o m p u t a t i o n ; it is t h e r a t i o n a l e b e h i n d a l p h a b e t i c o r d e r i n g . ) 

Exercises 

1. In general, a function X is said to be monotone when 

(V i e dom X) (V / e dom X) / < / implies X(i) < X{j) , 

to be injective when 

(V i e dom X) (V / G dom X) i # / implies X(i) ^ X(j) , 

and to be strictly monotone when it is both monotone and injective. Prove that X 
is monotone if and only if ord< X, injective if and only if ord # X, and strictly 
monotone if and only if ord< X. In your proof, indicate the roles of the following 
laws about the standard ordering: 

(a) (Transitivity) x < y and y < z implies * < z 
(b) (Reflexivity) x< ;c 
(c) (Antisymmetry) x<y and y<x implies x=y 
(d) (Totality) x<y or y<x 
(e) (Definition of < ) x<y if and only if both 

x<y and 1 y<x . 

2. Prove law (3) given in the above section. As in the previous exercise, indicate the 
roles of the laws about the standard ordering. 

3. (Suggested by S. Winograd) On a computer with short word length, unneces-
sary overflow can be caused by using/ := (c + d) div 2 for "P i ck / " , since c+d can 
be out of range even when c, d, and (c + d) div 2 are all in range. In this situation, 
a better alternative is j := c + (d-c) div 2. Use a monotonicity argument to show 
the correctness of this version of "Pick / " . 

4. (Suggested by C. J. Rimkus) The version of binary search developed in this 
section may perform as many as two tests of X(j) per iteration. Write an 
alternative version that meets the same specification but only performs a single 
test in the body of its while statement, at the minor expense of always continuing 
the iteration until c d is reduced to at most one element. The basic idea is to use 
an invariant which asserts that if the search criterion is met by some integer in 

then it is met by some integer in [c or equivalently if the criterion fails 
throughout c d\ then it fails throughout |a b\: 

and ({Z 1 y implies {X 1 |a b\} ^* y) 

Suppose an increasing zero of an array X is an integer i such that X(i) < 0 and 
X(i +1) > 0. Write a program that will accept a segment of the array X over \a b\ 
such that a < b and X(a) < 0 and X(b) > 0, and will set i to an increasing zero of X 
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'"such that a<i<b. As with binary search, each iteration should roughly halve the size 
of the segment being searched. Notice that a proof of correctness and termination for 
this program constitutes a proof of the existence of an increasing zero under the 
specified precedent. 

6. Suppose a run in an array segment is a subsegment whose elements all have the 
same value. Write a program that will accept a nonempty segment of the array X 
over \a^J>\ and set i and j to integers such that the segment over [T7] is (one of) 
the longest runs in the given segment. The program should require a time of the 
order of the size of |a b\. 

r> 

2.3 PROGRAMS THAT SET ARRAYS 

In the previous section, we have descr ibed programs tha t use arrays without 
creating or al tering t h e m , i.e. tha t eva lua te array e lements but do no t assign 
to them. W e now turn to p rog rams tha t also assign to array e lements . 

2.3.1 Two Simple Examples 

As a first example , consider a p rogram for creat ing a table of the values of 
some funct ion such as the factorial . Given a segment of an array F over 
jo n\, we want to set each e l emen t F(k) of the segment to k\, i.e. we want a 
program satisfying 

{|0 n\e dom T7} 
" T a b u l a t e Fac tor ia l " 
{(V i € [o n\) F(j)=i\} . 

Trivially, we could i tera te over |o n\ in any o rder , comput ing each factorial 
by means of the a lgor i thm we have a l ready deve loped in Section 1.3.1: 

{|0 n\^ dom T7} 
begin integer k; 
k := -1; 
{whileinv: [o k\ n\ and (V i e |o A:|) F(/) = *!} 
while k<n do 

begin k := k + 1; " C o m p u t e k\ and assign it to F(ky end 
end 
{(V i e [o nj) F(f)=/!} . 

/ 
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But this is ludicrously inefficient, since it does not take advantage of the 
fact that our method of computing k\ will compute all smaller factorials "on 
the way" . Actually, once we have set ^(0) to 0!, if we iterate over increasing 
k, t hen we can always ob ta in A;! directly f r o m the s tored value of 

In this approach the iterative structure is somewhat different . Each 
execution of the while-statement body still computes a single factorial, but 
now this computat ion presupposes the presence of a previously computed 
factorial. This presupposit ion is reflected in the invariant by the assertion 
that |o k\ must be nonempty . In turn, this causes the initial assertion to 
contain the requi rement that 0 n\ be nonempty: 

{|0| n\ and |0 n\ £ dom F} 
begin integer k\ 
k : = 0; F(0) : = 1; 
{whileinv: [o n\ and (V i e [o F(i) = i\} 
while k<n do 

begin k := k +1; F(k) : = kxF(k-l) end 
end 
{(V i € \6~n\) F{i) = i\} . 

One can view this program as a modification of the program given in 
Section 1.3.1, in which the successive values of k\ are stored in distinct array 
elements ra ther than in a single simple variable. It is common to make this 
kind of modification when the intermediate results of a computat ion can be 
used effectively later in the program. 

As a second example, we consider a program for shifting each element 
of an array segment one place to the left. We want a program satisfying 

{ a fc and |a b\ Q dom X and X=X0} 
"Shif t l e f t " 
{(V i e \a~Jb) X(i) = XQ(i+l)} . 

Notice that , since this program is non input-preserving, we must use a ghost 
identifier X0 to denote the initial value of the array X. 

The program scans f rom left to right, copying each array element into 
the e lement on its left. The invariant asserts that the segment of X over 
is part i t ioned into a lef thand segment which has already been shifted and a 
r ighthand segment which retains its initial value, with a hole in the middle 
which has been copied but not yet copied into: 
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{|a[ b\ and \a b\c dom X and X=X0} 
begin integer k; 
k := a; 
{whileinv: \a b\ and (V i e X(i)=X0(i + l) 

and (V i e X(i)=X0(i) } 
while k < b do 

begin k := k + 1; X{k-1) := X(k) end 
end 
{(Vie \cT\b)X(i)=X0(i+l)} . 

Exercises 

1. Write a program that will set F(k) to the fcth Fibonacci number fib{k), for each 
element of the segment of F over |o w|, where 0 n contains at least two 
elements. 

2. As above, but for each element of an arbitrary segment over |a b|. Use 
fib(n -2) =fib(n) -fib(n - 1 ) to define fib for negative n. 

3. By comparing it with the left-shifting program given above, one might expect the 
following to be a right-shifting program: 

begin integer k; k := a; 
while k<b do begin k := k + 1; X(k) := X(k-1) end 

end 

In fact its behavior is quite different since, after the first iteration, the expression 
X(k-1) yields a value that has been stored during the previous iteration. 
Describe the behavior of this program by giving an invariant and initial and final 
assertions. 

2.3.2 Inference for Array Assignments 

So far we have relied upon the reader 's intuition to see that assignment 
statements which assign to array elements satisfy their specifications. Before 
proceeding further , we will develop an inference rule which can be used to 
verify such assignments rigorously. 

In the first place, it is easily seen that the inference rule for simple 
assignment given in Section 1.4.2, 

{P\x-*E}X:= E{P} , 

is inadequate to deal with assignments to array elements. If we try to apply 
this rule to an array assignment such as X(i) := y, we get 

{P\ x ( f H y } X(i) :=y{P} . 
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But it is not clear what P \ X{i)^y means. We might reasonably infer 

{y = z} Xii) :=y {X(i) = z} 

or 

{w=z} X(i) : = y {w=z} , 

but the rule falls apart in a situation such as 

{?} X(i) :=y{X(j)=z} . 

In fact, if j=i we must have y -z before executing X(i): = y, while if j^i we 
must have X(j)=z. Thus 

{(if j=i then y else X(j))=z} X(i) := y {X(j) = z} . 

But this is hardly a consequence of the inference rule for simple assignment. 
As first pointed out in [Hoare 72a, 73], the simplest and cleanest way to 

reason about array assignments is to regard them as operations which change 
the value of an entire array rather than a single element. (This idea draws 
upon earlier work in [McCarthy 67].) Specifically, X(i) :=y can be regarded 
as an operation that assigns to X the function that is just like the old value of 
X except that it maps i into y. 

To formalize this idea we need a notation for describing the variation of 
a function at a single argument. Suppose X is a function such that i belongs to 
its domain and y belongs to its codomain. Then we write [X \ i: y] to denote 
the function such that 

dom [X| i: y] = dom X , (1) 
cod [X\ i: y] = cod X , (2) 
[X\ i:y](i)=y , (3) 
If y V i then [X\ i: y](j)=X(j) . (4) 

Using this notation we can regard an assignment statement of the form 
X(S) : = E, which assigns to an array element, as an abbreviation for X : = 
[X | S: E\ which assigns to an entire array. The latter form is acceptable to 
the inference rule for simple assignment, which gives {P \ X-+[x \ s-. £]} x : = 
[X | S: E] {P}. Thus we have the following inference rule [Hoare 72a, 73]: 

Array Assignment: 

{P\x^x\s-. £]} X(S):=E{P} . 

Notice that the precedent of this inference rule does not contain a 
condition such as 5 6 dom X which would preclude subscript errors. The 
absence of such a condition is consistent with our view that subscript errors 
are a special kind of nontermination, so that their absence must be shown by 
informal arguments. 
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As an example of the use of the array assignment rule, consider the 
statement F(k): = k x F(k - 1 ) in the factorial tabulation program given in the 
previous section. To show the correctness of this program, one must show 
that _ _ _ _ _ 

{|0~ "1 and (V i e |o~~|fc) F(i) = i!} 
f 

{ 
F(k) := kxF(k-l) 

and (V i e |o k\) F(i) = i\} 

Let P be the consequent. Then we must show that the precedent implies 
P\ F-*[F | *:*xF(*-l)]' w h i c h i s 

and (V i e |o~fc|) [F | A:: JfexF(Jk-l)] ( /)=/! . 

0 k-l\k\ n gives |0 k n by erasure, and also 

implies k - U [fT]*: and [o ^ 1 = fo U 

According to the last result (along with (3) in Section 2.2.5), in order to 
show 

(V i € |0 [F | k: kxF(k-l)] (/)=/! 

it is sufficient to show 
(V i e [F \ k: kxF(k~ 1)] (i)=i\ 

and 
(V i e @) [F | k: kxF(k-l)] ( i )=i! . 

But i e [o |k implies iV A:, and i € is equivalent to i=k. Thus by the 
definition of [F | k: k x — 1)], the two conditions above are equivalent to 

(V i €E Q I F E ) F(i)=i\ 
and 

kxF(k — \) = k\ 

The first of these conditions is given directly by the precedent, while the 
second is a straightforward consequence of the precedent and the definition 
of the factorial function. 

It is evident that repeated application of the array assignment rule can 
create expressions of the form 

[ ... [X | h: yd ... | in: y„] . 

This kind of nesting is common enough that it is useful to abbreviate it: To 
stand for the above expression we will write 

[X | y! ... | in: yn] . 
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As with the other concepts we have introduced, there are useful laws 
about the variation of a function at a single argument. Suppose i and j belong 
to dom X, y and z belong to cod X, and S c dom X. Then 

The last of these laws says that the image of an array value is preserved by an 
exchange operation. In (10), the operator - denotes the subtraction of sets, 
i.e. S-T is the set of those values which belong to S but not to T. 

Since expressions denoting array values and other functions are useful 
in assertions, the reader may wonder why such expressions, or even assign-
ment statements that assign values to entire arrays, are not permitted in the 
programming language itself. Although such features are provided in some 
programming languages, notably APL and PL/ I , their use makes it difficult 
to control or even estimate the time and space requirements of programs. So 
we have chosen to use a "lower level" language that forces the user to 
express his programs at a level of detail much closer to the actual operation 
of the computer. (An additional pedagogical benefit is that even fairly 
simple programming tasks lead to programs with significant structure.) 

Exercises 

1. For the left-shifting program given in Section 2.3.1, and the program given in 
Exercise 3 following that section, determine the appropriate specification for the 
array assignment statement, and prove that this specification is met 

2. Prove law (11). 
(Hint: Treat the cases i=j and separately.) 

3. An additional subtlety of array assignment arises when an array occurs in its own 
subscript. For example, one might expect that, for any variable-denoting phrase 
L,the two statements L := 7 a n d L : = 7 ; L : = 7 should have the same effect. But 
in fact, the two statements *(Z(1)) := 7 and := 7; X(X{1)) := 7 have 
different effects if ^(1) = 1 before execution. Show that the inference rule for 
array assignment describes this situation correctly. 

[X | i: X(i)] = X , 
i: y | i:z] = [X\ i: z] , 

If i ^ j then [X | i: y \ j: z] = [X \ j: z \ i: y] 
Hie S then [X \ i: y] 1 S = [X 1 5 | i: y] , 
If i £ S then [X j i: y] 1 S = * 1 5 , 
{[A- | i: y]} = {X 1 (dom X-{i})} U {y} , 

{[X | i: X(j) | j: X m = {Xi • 

(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
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2 3.3 Sorting by Maximum Finding 

Next we consider a p rogram for sort ing an array segment , i.e. for rearranging 
the values of the e l emen t s so tha t the segment becomes o rde red in increasing 
order. O n e approach is to build upon the p rogram given in Section 2.2.7 for 
finding the max imum e lemen t of a segment ; the idea is to find the max imum 
of the entire segment and move it t o the right, then find the maximum of the 
remaining e lements and move it to the right, etc. We begin by writing an 
invariant that descr ibes the typical s i tuat ion in the midst of p rogram execu-
tion. The array will be divided into two subsegments such that the right 
subsegment is a l ready o rde red , and each e lement in the left subsegment is 
smaller or equal to each e l emen t in the right subsegment . If we use the 
variable m to k e e p t rack of the right end of the left subsegment , then the 
invariant is 

[ T ^ m Q and ord< X 1 m | j ] and {X 1 \a m\} <* {X 1 m Q 

The invariant can be achieved by sett ing m to b , so that m\ b| is empty 
and ( f T j w ] = a b > a n d ^ implies the final assertion when |a m\ is empty . 

Thus we get the p rog ram ske le ton: 
- d o m x } 

begin integer m; 
m := b\ 
{whileinv: |a m\ b\ and o r d s X \ m\ b\ 

and {X 1 |a m\} <* {X ] mQT)} } 
while a < m do 

" M a i n t a i n invar iant while decreasing m ' 

end 
{ord< X 1 \a b\} 

Within "Ma in t a in invariant while decreasing m " , we want to find a 
maximum e lement of the lef t subsegment and move it to the right of tha t 
subsegment . W h e n execut ion begins, we know that the left subsegment is 
not empty, so tha t we can use ou r previously wri t ten p rogram to set a 
variable j to the subscript of a max imum e lement in this subsegment . A t this 
point the invariant will still be t rue , and we will also know that 

b\ and {X 1 \a m]} <* X(j) 

Next we will exchange the e l emen t s X{j) and X{m). Since these e lements fall 
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outside the subsegment over ra| b\, X ] m\ b\ will still be ordered. Also 
{X \ |a m }<* {X 1 ra| b\} will remain true, since the image {X ] [a^m]} 
will be unaffected by an exchange of elements within the segment over 

But now X(m) will be a maximum of the subsegment over [fTjn]. 
So far "Maintain invariant while decreasing m " has the form: 

begin integer ;; 
"Set j to the subscript of a maximum of X over 

{ O 
{AM 

b] and ord< X \ m\ b\ and 
<* {X 1 m Q | } and {X 1 } X{j) } 

"Exchange X{j) and X(m)"; 
X 1 ra a j m b 

« ra 
and ord. ~~b\ and 

ra]} < * {X 1 m Q } and {X ] \a m\) <* X(m) } 

end 

At this stage, the fact that all elements in the left subsegment are smaller or 
equal to those in the right subsegment implies that the right subsegment will 
remain ordered if we decrease m by one, and the fact that the rightmost 
element of the left subsegment is a maximum implies that the elements in the 
left subsegment will still be less than all the elements in the right subsegment 
if we decrease m by one. 

To make this argument more formal, we first note that the partition 
implies that |a m\ is not empty, and therefore 

m\~b\} implies X(m) <*{X\ m[~b\} 
which, in conjunction with ord< X \ m\ b\, implies ord< X i 
Also, {X 1 

OM 

diagram 
T h e n { X ] 

Ira 

} <* X(m) and {X 1 \a m\) <* {X ] m\~~b\} implies 
} and therefore {X] \a~]m}<*{X\ \m &|}.Thus 

the last assertion in the above program implies 

3 and {X 1 \cT\m} and ord< X \ m {X 1 ra b } 

which shows that the invariant will still be true if we complete "Maintain 
invariant while decreasing m " with the statement m := m — 1. 

To finish the program, we replace "Set /' to the subscript of a maximum 
of X over \a raj" by our program for maximum finding, with m substituted 
for b, and replace "Exchange X(j) and X(m)" by an obvious program for 
exchanging the values of two variables (which will have no effect when the 
variables are the sam^). This gives: 
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\\a~l>1 ^ dom X} 
begin integer m\ 
m := b\ 
{whileinv: a m 

and {X 1 
while a<m do 

begin integer 
{|a m\ dom X and 

begin integer k\ 
j := a; k := a\ 
{whileinv: 

and ord X 1 m| fcj 
Q } } 

and {X 1 a k } <* X(j)} 
while k<m do 

begin k := k + 1; if X(k)>X(f) then j := k end 
end; 

b_ and ord< X \ m\ b\ and 
" } <* {X 1 m Q } and {X 1 

m 
a m } X{j) } 

begin integer t; t := X{j); Z(y') := X(m); := t end; 

{ 
X { m ) } 

a j m b 

{X\ a m } } m Q } a n d { Z l 
m := m - 1 
end 

end 
{ord< X 1 |a 

Termination is based on the size of 

the p receden t 

a m . We have already seen that 
Q dom X will p rec lude subscript e r ro rs in the 

maximum-finding subprogram. Subscript errors in the exchange statement 
are precluded by the precedent and the initial assertion 
c dom X. 

The maximum-finding subprogram will, on the average, take time 
proportional to half the size of a b\. The outer while s tatement will repeat 
this subprogram, along with some statements which require a constant 
amount of time, once for each member of a . Thus the execution time for 
the whole program will be of the order of the square of the size of the 
segment being sorted. This is an order of magnitude worse than what can be 
achieved by more sophisticated methods. In Section 3.2 we will develop 
programs that can sort a segment of size n in time of order n - log n. 
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Exercises 

1. Show that the sorting program given above remains correct (and becomes 
slightly faster) if the test o < m in the outer while statement is replaced by a<m. 

2. 

3. 

4. 

Give a formal proof that the exchange statement within the sorting program 
meets the specification given by its surrounding assertions. 

Complete the following partially written program for removing duplicate values 
from an ordered array segment. The program should set only X and c (and local 
variables), should require a time of order # 
arrays. 

, and should not use any local 

{[a b\^ dom X and ord s X 1 \a b\ and X=X0} 
begin integer d; 
"Achieve invariant"; 
{whileinv: |a \c \d ~b\ and ord< X ] |a 

and {X 1 
while d<b do 

c}={Xo1 d} and X ] \cTb\=X0 1 f T b } } 

Another method for sorting an array segment is to build up an ordered subseg-
ment by repeated insertion of new elements. The simplest way to perform the 
insertion while maintaining the ordering is to "slide" the new element from one 
end of the subsegment to its proper destination by repeated exchanges of 
adjacent elements. 

Complete the following partially written program for sorting by insertion. 
The program should set only X (and local variables), should require a time of 
order ( # [a fcj)2, and should not use any local arrays. 

{\a b\^ dom X} 
begin integer d; 
"Achieve invariant"; 
{whileinv: |a d 6 and ord£ X \ \a d|} 
while d<b do 

begin 
d := d +1; 
"Reestablish invariant by sliding X(d) leftward" 
end 

end 
{ord s X 1 . 

so that 5. Write a program that will set the segment of an integer array D over 
D(k) is the smallest factor of k that is larger than one, i.e. the least integer i such 
that i> 1 and k rem i=0. An obvious approach is to test k rem i for each k and 
each i such that 1 < / < k, but you should be able to find a more efficient method. 
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2 3.4 Rearrangement and Realignment 

The sorting p rogram given in the previous section was shown to satisfy the 
specification 

- d o m X } " S o r t " X 1 [a b\} . 

In fact, this specification is seriously incomplete , since it does not specify that 
the final value of the segment will be some rea r rangement of the initial value. 
(For example, the specification could be trivially met by a p rogram that sets 
every e lement to zero . ) Intuitively, it is obvious that the sorting p rogram 
satisfies this " r e a r r a n g e m e n t cond i t ion" since all the p rogram ever does to 
change the segment is to repea ted ly exchange pairs of e lements . But a 
surprising a m o u n t of mathemat ics is needed to give a r igorous proof of the 
rearrangement condi t ion, or even a r igorous defini t ion of the concept of 
rearrangement . 

One approach is to formal ize the idea that X is a r ea r r angemen t of Y 
when every value occurs the same n u m b e r of t imes as a result of X and of Y. 
Another approach is to formal ize the idea that X is a r ea r r angemen t of Y 
when there is a one- to -one cor respondence or bijection be tween the domains 
of these func t ions such that X and Y give the same result when applied to 
corresponding values. We will pursue the second approach since, by impos-
ing restrictions on the one- to-one cor respondence , we will also be able to 
define the concept of an order-preserving rea r rangement , or realignment. 
Eventually, in Section 2.3.8, we will show that these two approaches are 
equivalent. 

First we will in t roduce the concepts of funct ion composi t ion and iden-
tity functions. T h e n we will use these concepts to def ine bi ject ions, and 
finally we will use b i jec t ions to def ine r ea r r angemen t and rea l ignment . 

If F is a funct ion f r o m S to T and G is a funct ion f r o m T to U, then F • G , 
called the composition of F with G , is the funct ion f r o m S to U such that 
(F • G)(i)=G{F(i)) fo r all i in S. (Note tha t the order of composi t ion is the 
reverse of the o rde r of applicat ion.) If S is a set, then Is, called the identity 
function on S, is the func t ion f r o m S to S such that Is(i) = i for all i in S. 

Composi t ion is associative, and identity func t ions behave like identity 
elements with regard to composi t ion , i.e. if F is a funct ion f r o m S to T, G is a 
function f rom T to U, and H is a func t ion f r o m U to V, then 

( . F - G ) - H = F-(G-H) , ( 1 ) 
1S-F = F , (2) 
F-lj=F . (3) 

Further laws relate composi t ion and identity func t ions to the various con-
cepts about func t ions which we have in t roduced previously. Suppose F is a 
function f rom S to 7 , G is a func t ion f rom T to U, S' c S, i e 5 , a n d / e T. T h e n 
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(F-G) 1 S=(F 1 S ) - G , 
{F • G} = {G 1 {i7}} , 
Vs 1 = , 
[ F | i:j].G = [F.G | i: G(/)] , 

(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

If ord< F and ordp G then ordp F-G , 
ord< I s . 

A function F is said to be injective when 

(V i € dom F) (V j e dom F) i ^ j implies F{i)^F{j) , 

i.e. when for every k in its codomain there is at most one i in its domain such 
that F{i) = k. When the standard ordering is defined for its domain, F is 
injective if and only if o rd^ F. (See Exercise 1 after Section 2.2.10.) How-
ever, the concept of an injective function is meaningful for any domain. 

On the other hand, F is said to be surjective when {F} = cod F, i.e. when 
for every k in its codomain there is at least one i in its domain such that 
F(i) = k. When F is both injective and surjective, i.e. when for every k in its 
codomain there is exactly one i in its domain, it is called a bijection, or 
sometimes a one-to-one correspondence. 

Now suppose F is a function from 5 to T and F~l is a function from T to 5 
such that 

F - F~l =IS and F~l - F=IT . 

Then F~l is called an inverse of F. In fact, a function cannot have more than 
one inverse, since if F~l and F~v are both inverses of F then 

F-i'=F-v . is = F-i' • F • F'1 =/r • F~1=F~1 . 

(Strictly, we should write 

... =F~V • IS = F~1' • (F • F~1) = (F~1' - F) • F-!= ... . 

However, we will often elide the application of an associativity law by 
omitting parentheses in multiple compositions.) Thus we are justified in 
calling F~l the inverse of F. 

However, not every function possesses an inverse. Indeed: 

To see this, suppose F possesses an inverse F~l. If i and j are distinct 
members of dom F, we cannot have F(i) = F(j) since this would imply i= 
F~l(F(i)) = F~1(F(j)) =;'; thus F is injective. Moreover, if A: is a member of 
cod F, then F~\k) is a member of dom F such that F(F~1(k)) = k, so that 
k e {F}; thus F is surjective. On the other hand, if F is a bijection then F 1 

can be taken to be the function which maps each k in cod F i n t o the unique i 
in dom F such that F(i) = k. 

A function possesses an inverse if and only if it is a bijection. (10) 
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If the standard ordering is defined for its domain and codomain, a 
function F is said to be monotone when 

(V i e dom F) (V j e dom F) /<;' implies F(i)<F(j) . 

It is easy to see that ord< F holds if and only if F is monotone, and that ord< F 
holds if and only if F is both monotone and injective. (See Exercise 1 after 
Section 2.2.10.) 

S u p p o s e B is a b i j e c t i o n f r o m 5 t o T a n d C is a b i j e c t i o n f r o m T t o U. 

Then 
B • C • C-1 • B~l = B • lT • B~X = B • B x-ls , 

and 
C-i • B-1 - B • C=C-! • IT> C=C"! • C=lv . 

Moreover, if ord< B and ord< C then, by (8), ord< B • C. Thus 

If B and C are (monotone) bijections then B • C is . , 
a (monotone) bijection with (B • C)" 1 = C~l • B x . 

Here we are using a common mathematical convention for combining two 
similar propositions: the above s tatement is true if either all the parenthes-
ized phrases are included or if they are all omitted. 

Since ls • h=h and, by (9), ord< ls, 

is a ( m o n o t o n e ) b i j e c t i o n w i t h / s
_ 1 = / 5 . ( 1 2 ) 

If B is a bijection f rom S to T then B • B~l = Is and B~l - B = IT, and 
interchanging the order of these equat ions shows that B1 is a bijection f rom 
T to 5 whose inverse is B. Moreover , if ord< B then ord< B~l. To see this, 
suppose i and j are members of cod £ = dom B~l such that i<j. We cannot 
have B~l{i) > B'Hj), since ord< B would imply i=B(B~1(i)) > B(B'l(j)) =j. 
We cannot have B^\i) = B'l{j) since * V ; a n d B~x is injective. Therefore we 
must have B~1(i)< B~Hj). Thus 

If B is a (monotone) bijection, then B~x is a 
(monotone) bijection with ( B ~ l ) ~ l = B . 

This development should seem familiar to readers who know abstract 
algebra. For a given set 5, functions f rom S to 5 form a monoid with 
composition as multiplication and I s as the identity element, and bijections 
from 5 to 5 (of ten called permutat ions) form a group that is a subalgebra of 
this monoid. Moreover , monotone bijections also form a group that is a 
subalgebra of the monoid. (However , we are interested in functions between 
arbitrary sets, which have a richer structure than an ordinary algebra: sets 
and the functions between them form a category in which bijections are the 
isomorphisms.) 
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Addit ional laws establish that " in te rchange" functions and functions 
between singleton sets are bijections. We leave it to the reader to verify that: 

If i e S and j e S then [7S | i: j \ j: i] is a 
bijection which is its own inverse. ^ ' 

The function B f rom {/} to {;'} such that B{i)=j is a 
monotone bijection with an inverse such that B~1(j)=i . ^ ' 

At last we can define rearrangement and realignment. Suppose X and Y 
are functions with the same codomain. We write X ^ Y, and say X is a 
rearrangement of Y, when there is a bijection B f rom dom X to dom Y such 
that X= B • y . We write X ^ Y , and say X is a realignment of Y, when there 
is a monotone bijection B f rom dom X to dom Y such that X= B • Y. 
Obviously, 

I f X ^ Y t h e n X ^ Y . (16) 

If there are (monotone) bijections B and C such that X = B • Y and 
Y= C • Z, then X= B • C • Z where, by (11), B • C is a (monotone) bijec-
tion. There fore 

(Transitivity) 
If X ^ Y and Y ~ Z then X ^ Z , (17) 
If X ^ y and y ^ Z then X ~ Z . 

By similar reasoning, (12) leads to 

(Reflexivity) 
X ^ Z , (18) 
X ^ X , 

and (13) leads to 

(Symmetry) 
If y then y ^ X , (19) 
If X ~ y then y ~ X . 

Thus ^ and ^ are equivalence relations. 
Two more laws establish that exchanging array elements creates a 

rear rangement and that functions with singleton domains and equal results 
are real ignments of each other . From (14) and (7) we have 

If i e dom X and j e dom X then 
[X | /: X(j) | j: X(i)] - X , 

and f rom (15) we have 

If dom X={i} and dom Y={j} and X(i) = Y(j) 
then X ~ y . 

(20) 

( 2 1 ) 
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Further laws show that rearrangement preserves images and realign-
t preserves ordering. If there is a b i j ec t ionB such that X = B • Y then (5) 

d v e s { X } = {B • V} = {V1 {B}} = {Y 1 codB} = {Y/\ dom Y} = {Y}. Moreover , if 
ord< B and ordp Y then (8) gives ordp X. Thus 

and 

If X^ Y t h e n {X}={Y} 

If X ^ Y and ordp Y then ordp X 

(22) 

(23) 

Finally, we note that if X=B • Y then X • Z=B • Y • Z. Thus rear-
rangement and realignment are both preserved by composition on the right: 

If X^ Y t h e n X- Z^ Y> Z , ( 2 4 ) 

If X 2* Y then X > Z^Y Z . 

With these mathematical preliminaries, we can return to the sorting 
problem. To specify the rear rangement condition, i.e. that the final value of 
X 1 a r e a r r a n 8 e m e n t t h e i n i t i a l value, we use a ghost identifier: 

{ £ 3 - d o m Z and X = AT0} "Sort" {X1 [ T T | ~ 1 • 

By reflexivity, the initial assertion implies X ] |a b | ~ X01 \a b |, so that 
this specification can be proved by showing that every part of the program 
preserves X 1 \a~~b\~ X0 1 \a b|. In other words, we must show that each 
program part will continue to meet its specification if we add this condition 
to all assertions. This is trivial for the parts that do not assign to the array X. 
The only interesting par t is "Exchange X(j) and X(m)", which can be proved 
as follows: 

i m b 

\\a |/| m b b and [X1 a b 
m: X(j)] 1 

m: t]1 Ia b 

{[X | /: X{m) I m: X(i) 1 1 a b 
t := X(j); 
{[X I j: X(m) 
X(j) := X(m); 
{[X | m: t] 1 1 |a 
Z(m) := t 
{X 1 - 1 | 7 T ] } • 

"U I £ ^J J 
/ : X ( m ) | m: * ( / ) ] -

*01 O } 

- 1 1 ^ 1 ) 

The first step is a consequence of transitivity and (20) , and the second step is 
a consequence of (8) in Section 2.3.2. (A similar argument applies to the 
insertion sorting program of Exercise 4 after Section 2.3.3.) 

The concept of real ignment plays no role in the specification of the 
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sort ing p rog ram since the order ing of the final value of X is not a f fec ted by 
the order ing of the initial value. A simple example of the use of real ignment 
is the fol lowing anno ta t ion of the left-shif t ing p rogram, with assert ions that 
avoid the quant i f ie rs used in Section 2.3.1: 

{ 
b\ and |a b] £ dom X and X=X0} 

begin integer k\ 
k := a; 
{whileinv: \a b| and X ] ( [ r 3 A : U A : Q ) - xo 1 ° Q } 
while k < b do 

begin k := k + l\ X(k-\) := X(k) end 
end 
{x 1 | T > * 1 « • & ] } . 

Not ice tha t the invar iant expresses the idea of an array with a hole in the 
middle by using a func t ion whose domain |a \k U A;| b\ is not an interval. 

Exercises 
1. Prove law (5) in the above section. 
2. Show the following generalization of (8): If ordp F and ordp G then ordp F • G, 

where p" is expressed in terms of p and p' by 

< > < > = ^ 

< 
> 

< > < > = ^ 
> < > < = ^ 

7*— = ^ 

3. Show that if B is a monotone bijection from an interval to an interval, then there 
must be a constant 5 such that, for all i e dom B, B(i)=i+s. This implies that if X 
^ Y and the domains of X and Y are both intervals, then there is an 5 such that 
Z(/) = Y( ;+j ) , i.e. X is a "shift" of Y. 

4. Actually, our specification of "Sort" is still too weak, since we should also show 
that the elements of X outside of the segment over |a b\ are left unchanged. 
Show that the assertion X ] (dom X-\a b\)=X0 1 (dom X-\a *>|) can be 
added to the consequent of the program. 
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2.3.5 Partitioning 

We next consider a p rogram to rea r range an array segment so tha t it is 
artitioned into a subsegment whose values are smaller or equal to a given 

number r, and a second subsegment whose values are larger than r. Specifi-

cally we want a p r o g r a m that , when given the segment of X over |a b\ and a 

number r , will r ea r r ange the segment and set an integer variable c so tha t 

V~b\ and {X 1 | T | c } < * r and r <* {X 1 \c b\} . 

In the midst of p rog ram execut ion, the re will be th ree subsegments , 
with values known to be at most r on the left , values known to be larger than r 
on the right, and values that r emain to be processed in the middle. Thus the 
invariant will be 

c d\ b\ and {X 1 f ] c } < * r and r <* {X 1 d\^b\} . 

This invariant can be achieved initially by making |a \c and d\ b\ 

empty and [c d\ equa l to a b , and it will imply the final result when |c d| is 

empty. Thus we get: 

{EZ3 - dom x} 
begin integer d; 
c : = a ; d :=/?; 
{whileinv: \a \c d\b 

and {X 1 • c } < * r and r <* {X 1 d\^b\} } 

while c<d do 
" R e d u c e c d while mainta ining invar ian t" 

end 
{\a |c b\ and {X ] Q c } < * r and r <* {X ] I T T ] } } . 

For the body of the while s t a tement , a s t ra ightforward approach is to 
compare some e l emen t in the middle subsegment with r, move it to the left or 
right of the middle subsegment by exchange, and then increase c or decrease 
d to incorpora te the tes ted e l emen t into the left or right subsegment . A 
portion of the exchanges can be avoided if the tested e lement is a l ready at 
the left (or equal ly well at the r ight) of the middle segment . Thus " R e d u c e 
|c d\ while mainta in ing invar ian t" can be filled in with 
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if X(c) < r then c := c+1 else 
begin "Exchange X(c) and X(dy d := d — 1 end 

But this still does an unnecessary amount of exchanging. A better 
approach is to notice that |c d\ can be reduced without any rearrangement if 
ei ther X(c)<r or X(d)>r: 

if X(c)<r then c : = c + 1 else 
if X(d)>r then d := d-1 else ... . 

In the remaining case we can exchange X(c) and X(d) to achieve X(c) < r and 
X{d) > r, which suggests that we can then both increase c and decrease d. But 
this operat ion will violate the partit ion diagram bj by making 
\c d\ irregular unless # |c d\>2 beforehand. Fortunately, X(c)<r and 
X(d)>r implies X(c)^X(d), and therefore c^d, so that # \c d\>2. 

The final program is: 

{|g dom X} 
begin integer d\ 
c := a; d := b\ 
{whileinv: |a |c d\~~b 

and {X 1 | < * r and r <* {X \ d\^b\} } 
while c < d do 

if X(c)<r then c : = c + 1 else 
if X{d)>r then d := d-1 else 

begin 

i K M ) 
begin integer t; t := X(c); X(c) : = X(d); X(d) := t end; 
c : = c + 1; d := d-1 
end 

end 

{\a \c b\ and {X \ Qc} <* r and r <* {X 1 [7j>]}} . 

Terminat ion and the impossibility of subscript errors are obvious. Since 
the exchange opera t ion is the only part of the program that alters the array, 
the argument given in the previous section shows that the final value of X 
over a bj is a rear rangement of the initial value. 

It is easily seen that the maximum time taken to partit ion an array 
segment of size n is of order n. 
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2.3.6 Merging 
Next we consider merging. T h e basic p rob lem is to copy the combined values 
of two ordered array segments into a single segment , while per forming a 
r e a r r a n g e m e n t so tha t the f inal segment is o rdered . Trivially, we could copy 
one segment a f te r the o the r and then sort the result , but a much faster 
program is possible if we take advantage of the order ing of the input 
segments. 

Let the input segments be X over ax to and Y over ay by , and let 
the output segment be Z over az bz . For simplicity, we assume that the 
output segment is exactly the right size to hold the result . T h e n the p rogram 
specification is: 

{ 
ax bx 

and ord 
and # 

" M e r g e " 

£ dom X and 

X 1 

ay by <= dom Y and az bz dom Z 

ax ~bx\ + # 
bx and ord 

ay by = # 
y 1 I ay by\ 

{ord< Z 1 |az bz|} 

Just as with the sort ing and par t i t ioning programs, we will pos tpone the 
problem of showing that the ou tpu t segment is a r ea r r angemen t of the 
combined input segments . 

The basic idea is to scan all three segments f rom left to right, while 
copying individual e l emen t s f r o m X ox Y into Z. Thus each array segment 
will be divided into a left subsegment containing copied values and a right 
subsegment conta in ing uncopied values (or unused space in the case of Z). 
We expect tha t the Z s egment will be o rdered as it is built up , and that every 
copied value will be smaller or equa l to every uncopied value. T h e la t ter 
condition insures tha t the uncopied values can eventually be moved into Z 
without dis turbing the values tha t are a l ready present . Thus if we use the 
variables kx, ky, and kz to k e e p t rack of the scanning posit ions in the th ree 
segments, we will have the invariant 

ax kx bx | and | ay | ky by and 

and ord< Z i \az \kz 

and {Z 1 J ^ T > z } < * {X j \kT~bx\} U {Y 1 \ky by\} 

and # 

kz bz 

kx bx + # ky by = # kz bz_ 

The last line asserts tha t the re is exactly enough space left in Z to accommo-
date the uncopied values. 

The obvious initialization is t o m a k e the th ree le f thand segments empty , 

and we can t e rmina t e w h e n \kz bz\ is empty , or equivalently w h e n bo th 
kx bx and \ky by\ are empty . This gives the p rogram fo rm: 
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ax bx dom X and 
X \ 

ay 
and ord 
and # bx + # 

fryj <= dom Y and 
| and ord< Y \ 

= # 

az 6z ^ dom Z 
ay by 

ay by bz] } 
begin integer kx, ky, kz; 
kx := ax; ky : = ay; kz : = az; 
{whileinv: as above} 
while kz < bz do 

"Copy one e l emen t" 
end 
{ord. Z 1 az bz 

To preserve the condition that copied values must be smaller or equal to 
uncopied values, "Copy one e l emen t" must move the smallest member of 
{X 1 |kx bx|} U {Y 1 |ky by\} into Z 1 az \kz. Since X and Y are ordered, 
this smallest m e m b e r will be either X(kx) or Y(ky). A t first sight, it might 
appear sufficient to compare these two components , but this overlooks the 
possibility that one of them may not exist. We do not know that both of the 
segments over kx bx\ and \ky by are nonempty. If only one of them is 
nonempty , then its leftmost component should be copied without being 
compared with a nonexistent component of the other segment. 

Thus "Copy one e l emen t" has the form: 

if (if ky > by then true else if kx > bx then false else X(kx) < Y{ky)) 
then {|fcjt;| bx\ and \kz\ bz 

and X(kx) <* {X ] 
" C o p y X" 

kx bx[} U {Y 1 ky by\} } 

else { ky by and kz_ 

* {X 1 

bz 
kx bx\} U {Y 1 ky by|} } and Y(ky) 

"Copy Y" . 

Notice the use of a logical conditional expression to avoid evaluating 
X(kx) < Y(ky) in a context that could cause a subscript error . 

In "Copy X" we will per form Z(kz): = X(kx) to copy the least uncopied 
value, kx : = kx + 1 to exclude this component f rom the uncopied segment of 
X, and kz := kz +1 to include it in the copied segment of Z. 

The fact that the previously copied values are all smaller or equal to the 
uncopied values, including X(kx), insures that Z ] \az kz will remain 
ordered. Moreover , the fact that X(kx) is a least uncopied value insures that 
the copied values will continue to be smaller or equal to the uncopied values. 
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The development of "Copy Y" is similar. The final program is: 

{ax bx ^ dom X and ay by £ dom Y and az bz Q dom Z 
and ord< X ] ax bx and ord< Y \ ay by| 
and # ax bx + # ay by = # az bz | } 

begin integer kx, ky, kz; 
kx := ax; ky := ay; kz := az; 
{whileinv kx 

and ord< Z ] 
and {Z 1 
and # 

bx and 
z kz 

ay ky by and kz bz 

kx bx 
kz} <* {X 1 \kx 
+ # 

bx 
ky by = # 

} U {Y 1 ky by\} 

i | } kz 
while kz < bz do 

if (if ky > by then true else if kx > bx then false else 
X(kx)<Y(ky)) 

and kz bz then { kx bx 
{X\ kx bx }U{Y1 ky and X(kx) 

begin Z(kz) : = X(kx); kx := kx + 1; kz 
and 

by]}} 
- kz +1 end 

else { ky by>_ kz bz 
and Y(ky) <* {X ] kx bx|} U {Y 1 [ky by]}} 
begin Z{kz) := Y(ky); ky 

end 
{ord< Z 1 

ky + 1; kz := kz +1 end 

bz 

T e r m i n a t i o n is b a s e d o n t h e size of kz bz]. T h e imposs ib i l i t y of s u b s c r i p t 

errors is left to the reader . The time required by the program is obviously of 

order # bz 
It is tempting to replace the logical expression 

if ky > by then true else 

if kx > bx then false else X(kx) < Y(ky) 

by the more compact expression 

(ky > by) or {kx < bx) and (X(kx) < Y(ky)) , 
but the latter expression does not make it obvious that the array designators 
X(kx) and Y(ky) will only be evaluated when the appropriate segments are 
nonempty. In fact, this situation hinges upon a rather subtle point of lan-
guage design. The expressions Ex or E2 and Ex and E2 have the property that , 
if their first operand is t rue or false respectively, then the result is indepen-
dent of the second operand. In some programming languages, including 
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Algol W and LISP, the second operand will not be evaluated under these 
circumstances, so that the more compact expression given above is correct. 
However, in many other languages, there is no guarantee that the second 
operand will not be evaluated, so that the more cumbersome conditional 
expression must be used. 

It may be noted that the merge program involves some redundant 
testing. For example, before copying an element from X to Z, the program 
will have tested whether the right subsegment of Y is empty. Yet the next 
time around the while-loop this test will be repeated, despite the fact that its 
outcome cannot be different. In Section 4.2.7 we will develop a version of 
the program that avoids this inefficiency. 

2.3.7 Concatenation and Disjoint Union 

Just as with the sorting program in Section 2.3.3, the treatment of merging in 
the previous section avoided specifying a rearrangement condition. In this 
case, we want to show that the result of "Merge" is a rearrangement of the 
combined input segments, but to do this we must formalize the notation of 
combining or concatenating functions. 

Ordinarily, concatenation is only defined for sequences. For n> 0, a 
sequence of length n is a function whose domain is |l n\. If X and Y are 
sequences of length m and n with the same codomain, then X ©seq Y, called 
the sequence concatenation of X and Y, is the sequence of length m + n, with 
the same codomain as X and Y, such that 

(X ©seq Y) (i) = if / < m then X(i) else Y(i-m) 

for all i in |l m + n\. It is easily seen that 

a. dom (X ©seq Y) is the union of the disjoint sets 
1 m and m m + n 

b. (X © 
c. (X 0 

seq Y) 1 1 m — x , b. (X © 
c. (X 0 seq y) 1 m m + n ^ Y 
d. 1 m <* m m + n 

However, we are going to need to consider the concatenation of func-
tions which are not sequences: The rearrangement condition for "Merge" 
involves concatenating functions whose domains are intervals which might 
not begin with one, later in this chapter we will need to concatenate functions 
whose domains are not intervals, and in Section 5.3.1 we will concatenate 
functions whose domains are not even sets of integers. Unfortunately, the 
above definition does not generalize cleanly to such cases. 

The way out of this difficulty is to realize that, for most purposes, the 
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specific domain of the concatenation of X and Y does not matter ; all that 
matters is that this domain should partition into sets, akin to [1 m and 

m Q m + n], that possess the properties stated above. The simplest general 
way to produce such a domain is to pair or " t ag" the members of dom X with 
some value, say one, and to tag the members of dom Y with some distinct 
value, say two. 

For sets Si and S2, we write Si x S2 , called the Cartesian product of and 
S? i to denote the set of pairs i2) such that ix e S\ and i2 € S2. Then, for any 
sets 5 and T, {1}XS and {2}x T are disjoint sets in one-to-one correspon-
dence with S and T respectively, so that we can define S+T, called the 
disjoint union of 5 and T, to be the set 

5 + T = { l } x 5 U {2}xT . 

It is easily seen that 

If S'^ S and T'^ T then S' + J ' e S+T , (1) 

(,S+T) U (S'+T') = (S U S') + (T U T') , 
( s+r ) n (s' + r ' ) = (s n s') + (T n t') , (2) 
0S + T)-(S' + T') = (S-S') + (T-T') , 
# ( S + r ) = ( # S) + ( # T) when S and T are finite sets. (3) 

In (3), notice that + stands for the disjoint union of sets on the left, but for 
the ordinary addition of integers on the right. 

Now suppose X is a function f rom S to U and Y is a function f rom T to U. 
Then we define X © Y, called the concatenation of X and Y, to be the 
function f rom S + T to U such that 

(X® Y) « 1 , i)) = X(i) for all i e S , 
(X@Y) ((2, j))=Y(j) for all j e T . 

The relationship between this definition of © and the earlier definition of 
© s e q is illustrated by Figure 2.4. 

Let B be the funct ion f rom {1} x S to 5 such that B(( 1, i)) = i for all i in S, 
and C be the funct ion f rom {2 }xT to T such that C« 2, j)) =j for all j in T. 
Then B and C are bijections such that ( X © Y ) 1 ({1 }xS) = B • X and 
(X®Y) 1 ( { 2 } x T ) = C • Y. Thus 

a. d o m ( X © Y) is the union of the disjoint sets 
{ l } x d o m X and {2}xdom Y , ^ 

b. (X® Y) 1 ( { l j x d o m X)^ X , 
c. (X®Y) 1 ({2}xdom Y ) ^ Y . 

However , we want realignments, not merely rearrangements , and we 
also want the property {l}x dom X < * {2}x dom Y. For these notions to be 
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i (X ©seq Y) (i) 

I X(i) 

" 1 3 ~ 

2 1 

_ 3 4 _ 

i m 

i _ 

2 5 

3 9 

_4 2 

(X®Y) (/) 

"<1. 1) 3 

(1,2) 1 

.<1, 3) 4 

~<2, 1) 1 

(2,2) 5 

<2, 3) 9 

<2,4) 2 

Figure 2.4 Two Kinds of Concatenation. 

meaningful , we must extend the standard ordering to encompass the pairs in 
S+T. 

If the s tandard ordering is defined for S and T, then we extend it to S + T 
as follows: 

(x, y)^{x , y ) if and only iix<x or (x=x and y<y') , 
(x, y) <(x , y ) if and only if or (x=x and y<y) . 

This kind of ordering is of ten called lexicographic ordering, since it is a 
special case of the word ordering used in dictionaries. (Think of two-letter 
words as pairs of letters.) Notice that repeated use of this definition extends 
the standard ordering to sets constructed by repeated use of + . 

When 5 + J is ordered lexicographically, <1, / ) < ( 1 , i') i m p l i e s / < / ' , so 
that the bijection B is monotone , <2,;> < ( 2 , / ) i m p l i e s ; < / , so that bijection 
C is monotone , and (1, i) < (2, j) always holds, so that {1} x S<*{2} x T. Thus 
(4) can be s t rengthened to: 

If the s tandard ordering is def ined for dom X and dom Y, then: 

d o m ( Z © Y) is the union of the disjoint sets 
{1} x dom X and {2} x dom Y , 
(Z © Y) ] ({1} x dom X) ^ X , (5) 
(X@Y) 1 ({2}xdom Y ) ^ Y , 
{ l } x d o m Z < * { 2 } x d o m Y . 

a. 

b. 
c. 
d. 
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This is similar to the basic propert ies of © s e q , except that the sets {1} x dom X 
m + n and {2} x dom Y of pairs have replaced the intervals [l m] and m 

Concatenat ion is related to the restriction and composition of functions 
by simple laws. If X and Y are functions with the same codomain then 

If S ^ dom l a n d T c dom Y then 
( * © Y ) 1 = S ) © ( Y 1 T) . 

Moreover, if Z is a function whose domain is the common codomain of X and 
Y then 

(X © Y) • Z=X- Z © Y - Z . (7) 

For each of these equations, the reader may verify that the functions denoted 
by the two sides of the equat ion have the same domain and the same 
codomain, and that these funct ions give the same result when applied to any 
member of their common domain . 

From (4) we can obtain an equat ion for the image of a concatenation. 
By (10) in Section 2.2.8, we have 

{ * 0 Y } = { A : © Y 1 {1}xdom X} U {X®Y 1 {2}xdom Y} , 

so that by (22) in Section 2.3.4, 

{X®Y} = {X} U {Y} . (8) 

Similarly, f rom (5) we can obtain a relationship between concatenation and 
ordering. From (3) in Section 2.2.10, 

ordp (X © Y) if and only if 
(a) ordp (X © Y) 1 {1} x dom Z 

and (b) ordp (X © Y) 1 {2} x dom Y 

and (c) {(X © Y) 1 {1} x dom X} p* {(X © Y) 1 {2} x dom Y} , 

so that by (23) and (22) in Section 2.3.4, 
ordp ( X © Y) if and only if 

(a) ordp Z ( 9 ) 
and (b) ordp Y 
and (c) {X}p*{Y} . 

A number of fur ther laws relate concatenation to rearrangement and 
realignment. Each of these laws arises f rom the existence of a bijection 
between sets that are constructed by disjoint unions. We assume that X, Y, 
Z, X', and Y' are funct ions with the same codomain, and that the standard 
ordering is def ined for their domains. (If the standard ordering is not so 
defined then the laws we derive still hold w i t h ^ replaced b y ^ . ) 

The function B f rom (dom Z + d o m Y) + dom Z to dom Z + ( d o m Y 
+ dom Z) such that B « l , <1, i » ) = < 1, i), B(( 1, <2, / » ) = (2, <1, / » , and 

k)) = (2, (2, k)) is a m o n o t o n e bi ject ion satisfying ( X ® Y ) ® Z 
= B> {X@(Y@Z)). Thus 
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(X®Y)®Z^X®(Y®Z) . (10) 

The funct ion B f rom dom X+{} to dom X such that B(( 1 , i)) = i is a monotone 
bijection satisfying Z © ( ) = B • X. Thus 

X®()^X • (11) 

Similarly, the funct ion B f rom {} + dom X to dom X such that B((2,;')) =;' is a 
mono tone bijection satisfying ( ) ® X = B • X , so that 

( ) ® X ^ X . (12) 

The funct ion B f rom dom X+dom Y to dom Y + d o m X such that B((l, i)) 
= (2, i) and B((2, ;')) = (1, j) is a bi ject ion—but not a monotone bijec-
tion—satisfying X®Y=B - ( Y © * ) - Thus 

X®Y^Y®X . (13) 

Next , suppose that there are (monotone) bijections B and C such that 
X=B - X' and Y=C • Y' . Let D be the function f rom dom Z + d o m Y to 
dom X' + dom Y' such that D(( 1, i » = ( 1, B(i)) and D « 2 , y » = <2, C(j)). Then 
D is a (monotone) bijection such that A"© Y=D • ( Z ' © Y' ) . Thus 

If X^ X' and Y' then X © AT'© Y' . 
If Af' .and Y ^ Y' then X®Y^ X'®Y' . ( ' 

The reader who is familiar with abstract algebra will recognize the 
import of laws (10) to (14). Functions with a common codomain form an 
algebra in which © is a binary operat ion and () is a constant. By (14) the 
equivalence relat ions-^ a n d ^ are congruences on this algebra, by (10) to 
(12) the quotient of this algebra by ^ is a monoid, and by (10) to (13) the 
quotient of this algebra by ̂  is a commutat ive monoid. While we will not use 
these algebraic concepts explicitly, they suggest that (10) to (14) are likely to 
be pervasive laws about concatenat ion. 

Finally, suppose that dom S U T where S and T a r e disjoint sets. Let 
B be the funct ion f rom S U T to 5 + T such that B(i) = if ieS then <1, i) else 
<2, />. Then B is a bijection such that X= B • ((X] S ) © ( X 1 T)). Moreover , 
if S<*T then B is monotone . Thus 

If dom X=S \J T and 5 and T are disjoint 
then X^ (X 1 5 ) © ( Z 1 T) . 

If dom X=S U T a n d S <* T 1 ; 

then X ^ (X ] S)©(Af 1 T) . 

As a special case where S and T are intervals: 

If dom X = a\ c| and a\ b\ c\ 
then X ^ (X ] a\^j\)@(X 1 fcQ) . 

( 2 1 ) 
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We can now formulate and prove the rearrangement condition for the 
merging program. To show that the result of " M e r g e " is a rearrangement of 
the concatenation of its input segments, we must show that 

ay by ) (Z 1 \az bz\)^(X\ \ax bx\)®(Y] 

can be added to the consequent of the program. (Since the program does not 
alter X or Y, we do not need to use ghost identifiers.) The obvious addition 
to the invariant is 

]kz) ^ (X 1 [ a 7 > * ) © ( Y 1 \ayZ\ky) , ( 2 1 \az 

which will imply the final result when kx bx|, \ky by\, and kz bz• are 

empty. To show that the invariant is still preserved it is sufficient to show that 
"Copy X" satisfies the specification 

kz\ bz\ { ax kx bx | and [az_ 
and ( Z 1 \a^]kz)^ (X 1 | ^ ~ | k c ) © ( Y 1 \ay M } 

begin Z(kz) := X(kx); kx : = kx+\\ kz := kz+1 end 
{(z 1 \aT]kz) ^ (x 1 0 h ) © ( y 1 R H m ) , 

and that "Copy Y" satisfies an analogous specification. 
To prove this specification, we will show that its precedent implies the 

precedent of the following specification, which is a direct consequence of the 
inference rules for array assignment and simple assignment: 

{([Z | kz: X(kx)] 1 \az kz\) ^ (X \ \ax kx\)®(Y 1 \ay [/cy)} 
begin Z(kz) := X(kx); kx := kx + 1; kz := kz + 1 end 

fc*)0(rl RHm} • { ( Z 1 kz) ^ (X 1 ax 

Thus, assume the first precedent . Then: 

[ Z | kz: X(kx)] ] az kz 
- ( [ Z | kz: X(kx)] 1 \az~Jkz)®([Z | kz: X(kx)] ] \kz\) (16) 
= (Z 1 \a[Jkz) © ( [ Z | kz: X(kx)] 1 (9 in 2.3.2) 

M Z 1 ̂ \kz)@(X 1 (21 in 2.3.4, 14) 
|^T~|fac)©(y 1 £ I | A : y ) © ( Z l (hypothesis, 14) 

\ ax Jkx)®(X 1 @ ) © ( Y 1 Q f c y ) (13, 14) 
^ ( X ] \ax fa^|)©(Yl \ay^ky) . ( 1 6 , 1 4 ) 

Here we have hidden applications of the associativity law (10) by writing the 
fifth and sixth lines without parentheses; even though the functions denoted 
by the two ways of parenthesizing one of these lines are not equal, they are 
realignments of one another , and that is enough for our purposes. By (16), 
and (18) in Section 2.3.4, each adjacent pair of lines is related b y ^ . Thus the 
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desired conclusion follows f rom the fact t h a t ^ is transit ive. The proof for 
" C o p y Y" is similar. 

Somet imes conca tena t ion can be used to good effect in proving specifi-
cat ions where it does not appea r explicitly. A n example is provided by the 
version of the left-shif t ing p rogram given at the end of Section 2.3.4. To 
show that the while-s ta tement body mee t s its specification, we must show 
tha t 

\k-l\k\ b\ and X ] U J f c - Q ) ~ X0 1 a[~b\ 

implies 

[X | k-1: X(k)] 1 (\a~^\k U k\~b\) ^ X0 1 a\~~b 

This can be proved by a sequence of rea l ignments involving concatenat ions : 

[X | k-1: X(k)] 1 ( k U k\~b\) 
k-l:X(k)]] | 7 » © ( [ * | k-liXik)]] k\~b\) (15) 

^([X | k-1: *(*)] 1 [ T ] * - l ) © ( p r | k-1: X(k)] 1 E D ) 
®([X | k-1: X(k)] 1 * Q ] ) (16, 14) 

M X 1 \aZ\k- 1 ) © U 1 @ ) © U 1 ^ Q l ) 
(9 in 2.3.2, 21 in 2.3.4, 14) 

M X 1 |7~lfc-l)©lY 1 k-l\^b\) (16, 14) 
^ ^ 1 ( Q f c - 1 U j f c - l Q ) (15) 

1 a\ b\ . (hypothesis) 

Exercises 

1. Show that the lexicographic extension of the standard ordering is consistent with 
the laws given in Exercise 1 after Section 2.2.10, i.e. prove that if these laws are 
satisfied by members of S and T then they are satisfied by members of 5+7". 

2. Prove that if X and Y are sequences with the same codomain then X ©seq Y is the 
unique sequence which is a realignment of X © Y. Then use this fact to show that 
laws (7) to (14) and (16) hold for sequences when © is replaced by © s e q a n d ^ 
by = . 
(Hint: The result of Exercise 3 after Section 2.3.4 implies that if X and Y are sequences 
such that X ~ Y then X= 7.) 

3. Suppose S and T are sets, J is the function from 5 to 5 + T such that J(i) — (1, i) for 
all i in S, and K is the function f rom T to S+T such that K(j) — (2,j) for all j in T. 
Prove that: 

If U is a set, X is a function from S to U, and Y is a function f rom T to U, 
then there is exactly one function f rom S+T to U, namely X® Y, such 
that J • (X®Y) = X and K • ( * © Y ) = Y. 

(This property characterizes disjoint union in terms of category theory by 
asserting that 5 + 7 is a "coproduct" in the category of sets.) 
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4. Write a program to merge two strictly ordered array segments into a strictly 
ordered array segment, eliminating duplicate values. The program should set 
only Z and kz, should require time of order # 
not use any local arrays. It should satisfy 

ax bx + # ay by\, and should 

bx 
and ord 
and # + # | ay by 

dom X and ay by \ Q dom Y and az bz \ c dom Z 
X 1 |ax bx and ord< Y \ 

< # w 
ay 

E } 
"Strict Merge" 
{ az kz bz | and ord< Z i |az kz 

and {Z 1 az = 'j ax bx ay 3 ) I 

(Suggested by W. J. Gadbow) Write a program to merge two ordered array 
segments that takes one of its inputs f rom an upper subsegment of its output 
segment. This is possible since the processed part of the output segment will 
never overlap the unprocessed part of the input segment. The program should 
set only X, should require a time of order # \ax bx , and should not use any local 
arrays. It should satisfy 

bx dom X and |ay by\ Q dom Y and 
and o r d s X i \cx bx and ord< Y \ |ay by 
and # ax cx = # ly by | and X = X0 } 

bx\ 

"Overwriting Merge" 
d< X 
(X 1 

{ord£ X ] |ax bx | and 
(X0 1 |ct bx|) © (Y 1 \ay by\) } 1 3 ) 

Write a program to eliminate all values in an ordered array segment that do not 
occur in another ordered array segment. At the same time the program should 
eliminate duplicate values. It should set only X and cx, should require time of 
order # \ax bx| + # \ay by\, and should not use any local arrays. It should 
satisfy 

{ x bx\ ^ dom X and ay by | c dom Y 
and o r d s X \ \ax bx and ord s Y \ ay by\ and A^A'q} 

ax cx bx and ord< X \ IX cx 
and {X 1 | a* | ax bx]} n {Y 1 ay by\} } 

2.3.8 Preimages and Related Concepts 

In this s ec t i on we i n t r o d u c e s o m e a d d i t i o n a l c o n c e p t s a b o u t f u n c t i o n s t h a t 
a re u s e f u l in spec i fy ing a r r a y m a n i p u l a t i o n s . M o s t i m p o r t a n t is t h e n o t i o n of 
a p r e i m a g e . If U is a s u b s e t of t h e c o d o m a i n of a f u n c t i o n X t h e n X), 
called t h e preimage of U under X , is t h e s u b s e t of t h e d o m a i n of X w h o s e 
m e m b e r s a r e m a p p e d by X i n t o m e m b e r s of U. In o t h e r w o r d s , i e X ) if 
and on ly if i e d o m X a n d X(i) e U. 
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Let U and U' be subsets of cod X. Then it is easily seen that & preserves 
set inclusion: 

If t / ' c £ / then W , X)^ &(U, X) , (1) 

distributes with U, fl, and — : 

0>(t/UI/', X) = P(U, X)U9>(U', X) , 
&(unu', x)=P(u, X)r\&(u', x) , (2) 
&{U-U', X) = P(U, X)-&(U\ X) , 

and takes on its maximum or minimum values when U includes or excludes 
the entire image of X: 

U, X) = dom X if and only if {X} c U , (3) 
X) = {} if and only if U and {X} are disjoint . (4) 

There are also some obvious relationships with composition and identity 
functions. If X • Y is defined and U is a subset of the codomain of Y then 

&{U,X'Y) = g>(9>{U1Y)tX) , (5) 

and if U' is a subset of U then 

9>(U',IV)=U' . (6) 

Somewhat more subtle are the relationships among preimages, restric-
tion, and images. Suppose S c= dom X and U ^ cod X. Then X ] 5) 
consists of the members of dom(X ] S) = S that are mapped by X into 
members of U, which are just the members of X) that are also members 
of S. Thus 

&(U, X 1 S) = P(U, X) fl S . (7) 

If we start with a set S^ dom X of arguments, form the set {X \ 5} of 
results obtained by applying X to these arguments, and then form the set 
2P({X i 5}, X) of all arguments that give these results, we must end with at 
least the arguments we began with, i.e. 

S^ &({X ] S}, X) . (8) 

Going in the other direction we can give even more information. If we start 
with a set U^ cod X of results, form the set X) of arguments that give 
these results, and then form the set {X \ X)} of results obtained from 
these arguments, we must get exactly the members of U that can be obtained 
by applying X to any argument, i.e. 

{X 1 0>(£/, X)}=U n {X} (9) 
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Next, we connect preimages with concatenation. Suppose U is a subset 
of the common codomain of X and Y. Since dom(X© Y) = dom X + d o m Y 
= {l}xdom X U {2}xdom Y, we can use (7) and (5) to obtain 

0>(t/, X®Y) 
= (&(U, X® Y) n ({1} x dom A-)) 

U (P(U, X® Y) n ({2}xdom Y)) 
= P(U, U © Y ) 1 ( { l } x d o m * ) ) 

U P(U, ( Z © Y ) 1 ({2}xdom Y)) 
= &(U, B - X) U P(U, C • Y) 
= X), B) U 0>i>(Z7, Y), C) , 

where B is the bijection f rom {1} x dom X to dom X such that i)) = i and 
C is the bijection f rom {2} x dom Y to dom Y such that C((2, /')) = j. Then the 
preimage of X) under B is {1 }x&(U, X), the preimage of Y) 
under C is {2}x&>(U, Y), and the union of these preimages is + 
P(U, Y). Thus 

X®Y) = 2P(U, X) + £P(U, Y) . (10) 

Finally, we relate preimages to rearrangement and realignment. Sup-
pose B is a (monotone) bijection from dom X to dom Y, and 5 is a subset of 
dom X. Since B(i) e {B\ 5} for all i in S, we can define a function Bs by first 
restricting B to 5 and then reducing its codomain to {B ] 5}. In other words, 
Bs is the function f rom S to {B \ 5} such that Bs{i) = B{i) for all i in S. This 
function is obviously surjective, and it inherits the injectivity (and monoton-
icity) of B. Thus B$ is a (monotone) bijection from S to {B 1 S}. 

Now suppose X = B • Y, where X and Y are functions with the same 
codomain, and suppose U is a subset of that codomain. Then B^u x) will be a 
(monotone) bijection f rom X) to {B ] 9>{U, X)}. But f rom (5) and (9) 
and the fact that B is surjective, we have 

{B 1 X)} = {B 1 0>(£7, B - Y)} 
= 1 Y), B)} = {B} n 0>(t/, Y) 
= cod B fl Y) = 2P(U, Y) . 

Thus the composition B p ^ X) ' (Y 1 &(,Ut Y)) is well-defined. Moreover, 
for all i in 9>(U, X), 

(Y 1 W , Y)) (BnUtX) (i)) = Y(B(i)) = X(i) , 

so that (X] &(U,X)) = Bp{u,x)> (Y ] Y)). Thus when U is a subset of 
the common codomain of X and Y, we have 

I f X ^ Y t h e n X ] X)^ Y ] 0>(U, Y) , ( . 
If X^ Y then AM &(U, X)^ Y ] &(U, Y) . 1 ; 

The first part of this law is one step in proving a fundamental theorem 
about the nature of rearrangement: 
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Theorem If X and Y are functions with the same codomain, then the 
following statements are equivalent: 

(a) Y , 
(b) For all U^ cod X, X ] &(U, X)^Y 1 Y) , 
(c) For all £ / c Cod X, # 0»(t/, X) = # &(U, Y) , 
(d) For all r e cod X, X \ 9>({r}, X) ~ Y \ &{{r), Y) , 
(e) For all r e cod X, # &>({r}, X) = # 0>({r}, Y) . 

Notice that the equivalence of (a) and (e) captures the idea that A' is a 
rearrangement of Y when every value occurs the same number of times as a 
result of X and of Y. 

Proof: From the first part of (11), we see that (a) implies (b). To see that (b) 
implies (c), suppose X \ X) ~ Y ] 0>(U, Y). Then there is a bijection 
from 0>(C7, Z ) to 0>(l/, Y), so that # X) = # 0>(£/, Y) follows from the 
well-known proposition of set theory that two sets have the same size if and 
only if there is a bijection between them. (For finite sets, this can be proved 
by induction on the size of the sets; for infinite sets it is the definition of 
"have the same size".) 

Since (d) is a special case of (b) and (e) is a special case of (c), (b) implies 
(d) and (c) implies (e). Moreover, (d) implies (e) for the same reason that (b) 
implies (c). 

Finally, we must show that (e) implies (a). If (e) holds then the above-
mentioned proposition of set theory insures that, for each r in cod X, there 
will be a bijection Cr f rom X) to @({r}, Y). Since each i in dom X 
belongs to $P({X(i)}, X), we can define C to be the function from dom X to 
dom Y such that C(i) = CX(i)(i). Similarly, we can define D to be the function 
from dom Y to dom X such that D(y') = Cy^^KyO-

For each i e dom X, C(i) = Cx{i)(i) will belong to &({X{i)}, Y), so that 
Y ( C ( 0 ) = * ( 0 , and D(C{i)) = CY{c{i)rKC(i)) = Cx«f1(Cx(i)(i))=i. Thus 
X = C • Y and C • D =/dom x. 

Similarly, for each / € dom Y, D{j) = CY{j)~l{j) will belong to ^>({Y(y')}, 
X), so that X(D(j)) = Y(j), and C(D(j)) = Cx{Dij))(D(j)) = C y ^ C ^ f 1 (/)) 
=j. Thus D • C = / d o m y. 

Combining these results, we see that D is the inverse of C, so that C is a 
bijection, and X=C • Y, so that X ~ Y. 

In summary, (a) implies (b), (b) implies (c) and (d), either (c) or (d) 
implies (e), and (e) implies (a). Thus if any of these statements are true, they 
must all be true. Q 

For a function X and a set U, the restriction X ] ^ (cod X f ) U , X ) retains 
just those domain elements which are mapped into members of U. This is a 
sufficiently useful notion that it is worth defining X f ] U, called the intersec-
tion of the function X with the set U, to be X 1 ^ (cod XOU, X). 
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Since {X}^ cod X, {I}c U holds if and only if cod X n U which, by 
(3) holds if and only if 0>(cod XnU, X) = dom X. In turn , this holds if and 
only if X 1 ^(cod XnU,X) = X. Thus 

X n U=X if and only if { Z } c ( / . (12) 

On the o ther hand , U and {X} are disjoint if and only if cod Xn U and {X} 
are disjoint, if and only if, by (4) , 0>(cod Z n U, * ) = { } , if and only if X ] 
0>(cod X l~l U, X ) = ( ) . T h u s 

1 ( 1 U=() if and only if U and {X} are disjoint . (13) 

Since restr ict ion doesn ' t a l ter codomains , we have cod(Xn t /) = cod X. 
Thus 

0>(cod(xn U) n i f , xi] u) 
= 0>(cod m U',X 1 0>(cod x n U, X)) 
= 0>(cod x n i f , x ) n ^ ( c o d x n u, X) 
= ^ ( c o d x n u n u', x) , 

where the last two lines are consequences of (7) and (2). T h e n 

(xn V) ii u' = (xh u) 1 ̂ (cod (xh u) n u',x n u) 
= ( x h u ) 1 ^>(cod x n u n u', x ) 
= (x 1 ^(cod x n u, x)) 1 ^(cod x n u n i f , x) 
=x 1 ^ ( c o d x n u n u', x) , 

i.e. 

(xn u)h u'=xh (u n u') . (14) 

If X and Y, and the re fo re X © Y, have the same codomain , then (10) , 
along with (6) in Section 2.3.7, gives 

(X © Y) n u=(x © Y) 1 ̂>(cod (x © Y) n u, x © y) 
= (X © y) 1 (0>(cod X 0 U, X) + £P(cod YOU, Y)) 
= (x 1 ^(cod xn u, x)) © (y 1 0>(cod y n u, Y)) , 

i.e. 

(X © Y)fi U=(Xh U) © (Yfi U) . (15) 

Fur the r laws re la te h to images, r ea r r angemen t , and rea l ignment . F rom 
(9) we get 

{xh u}={x} n u , (16) 
which shows why n is called intersect ion. F r o m (11) we get 

If y t hen xn U^ Y f ) U , m x 
If X ^ Y then Xn U^ Y h U . 1 } 
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Sometimes one needs to consider the restriction of a function X that 
eliminates, rather than retains, just those domain elements that are mapped 
into members of a set U. In this case it is useful to define X — U, called 
t h e subtraction of U f r o m X, t o be X 1 0>(cod X-U, X) = X n 
(cod X- U). Each of the laws (12) to (17) for intersection has an analogue 
for subtraction, which can be derived in a similar manner: 

X— U=X if and only if U and {X} are disjoint 
X - I7=<> if and only if {X}^ U , 
(.X- U)^ U' = X^ (U U U') , 
{X ® Y) — U-{X— U) © (Y — U) , 

U}={X}-U , 
If X ^ Y then X — U ^ Y — U , 
If Xo* Y then X — U ^ Y — U . 

( 1 2 -
( 1 3 -
( 1 4 -
( 1 5 -
(16-

( 1 7 - ) 

A simple illustration of these concepts is provided by the following 
program, which restricts the array segment X \ \a b] to eliminate all values 
outside of the interval |r s|, and realigns the result so that its domain is a left 
subinterval of |a b |: 

{\a b\Q dom X and X=X0} 
begin integer d; c := a; d := a; 
{whileinv: |a \c \d fr] and X \ ^ (X0 1 \a~\d) f) [r s\ 

and X 1 |d b\ = XQ ] \d b\ } 
while d<b do 

if [X(d)<r) or ( s < * ( d ) ) then d := d +1 
else begin X(c) := X(d); c := c +1; d := d +1 end 

end 
a n d X l Q c ^ (Xq] | 7 T ] ) h Q } . 

The heart of the correctness proof for this program is to show that the 
invariant and d<b and X(d) £ |r s\ imply 

X\ | 7 ] c ~ (Z0 1 Q ) f i • , 

and that the invariant and d<b and X(d) e |r s\ imply 

[X | c: X(d)] 1 ~ (X0 1 h Q . 

To see this, assume the invariant and d<b. Then |a \d\ and a c and 
X 1 1 so that 
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( * 0 1 Q ) n Q 
— (C^o 1 Q ) © ( * o 1 @ ) ) n Q (16 in 2.3.7, 17) 
= ((*<> 1 \a~\d) n • ) © ( ( * ( , 1 @)n Q ) (15) 
M X 1 [a |c) © (QYq 1 0 ) n Q ) (hypothesis , 14 in 2 .3 .7) 
= ( X ] | T ] C ) © ( ( Z 1 0 ) H Q ) . 

If £ Q . then Q and {X ] 0 } = {X(d)} are disjoint sets, so tha t (13) 
gives (X 1 fi |r •?[=(), and the above concatenat ion equals 

(X 1 [T>) © <) 

^ X j PT~lc . (11 in 2.3.7) 

then {A' 1 On the o ther hand , if X(d) e , so that (12) gives 
(X 1 @) H k s\=X 1 and the above conca tena t ion equals 

{X\ © (X 1 

- ( [ X | c: *(<*)] 1 £ _ > ) © ( [ * | c: X(d)] 1 
(9 in 2.3.2, 21 in 2.3.4, 14 in 2.3.7) 

^[X | c: X(d)] 1 Q . (16 in 2.3.7) 

Exercises 

1. Prove 
If t / c cod X then X) = P(U n tX}, X) , 
K i £ / = * n (u n {X}) , 

2. Write a program to eliminate all values in an ordered array segment that do not 
occur in another ordered array segment, without eliminating duplicates of the 
values that are retained. The program should set only X and cx, should require 
time of order # ax bx + # ay by |, and should not use any local arrays. It 
should satisfy 

{ ax bx | c dom X and ay by dom Y 
and ord£ X \ \ax bx\ and ord s Y 1 

"Intersect segments" 
{ ax | cx bx [ 

ay by and X=X0 } 

and X 1 \ax \cx ~ (X0 1 \ax bx\) fl {V 1 j ay by\} } 

(Compare the consequent of this specification with that in Exercise 6 after 
Section 2.3.7.) 

3. As in the previous exercise, except that the A'-values to be eliminated are those 
that do occur in the segment of Y. The program specification is the same as in the 
previous exercise, except that — replaces the occurrence of h. 
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4. (Suggested by O. O 'M. Pardee) Write a program to remove, f rom an array 
segment with nonnegative values in decreasing order, all elements whose values 
are squares of values in the original array segment. The program should set only 
X and c, should require time of order # |a b\, and should not use any local 
arrays. It should satisfy 

{|a b\c dom X and ord a X 1 \a b\ and {X ] \a b|} > * 0 
and X=X0 } 

"Remove squares" 

{EL 
and X 1 ^ (X0 1 [TT]) - {X0 • Sq 1 |7T]} } , 

where Sq is the function f rom integers to integers such that Sq(i) = ixi. 

*2.3.9 Ordering by Keys and Stability 

In ou r p rog rams fo r sorting, part i t ioning, and merging, the o rde r of occur-
rence of values in the ou tpu t ar ray is specified in t e rms of an order ing 
re la t ion which is appl ied to the values themselves . In the merging p rogram of 
Section 2.3.6, fo r example , the o rder of occurrence in the ou tpu t ar ray is 

In many appl icat ions, however , the values in an array such as Z are complex 
records , and the o rde r of their occur rence d e p e n d s upon the appl icat ion of 
an o rder ing re la t ion to values called keys which appea r in cer ta in fields of 
these records . 

Abst rac t ly , we can formal ize this s i tuat ion by assuming that there is a 
func t ion K, f r o m the codomain of the array being o rde red to the set of keys, 
tha t m a p s each record in to the value of its key field. (We are assuming here 
tha t a set of r ecords can be descr ibed by a da ta type. In fact , we are 
ant ic ipat ing p rob lem-or i en ted , or user -def ined types, which will be dis-
cussed in C h a p t e r 5.) T h e n the o rde r of occurrence of values in an array can 
be specified in t e r m s of the composi t ion of tha t ar ray with K. In specifying a 
merg ing p rogram, fo r example , one would assert ord< Z • K ] 
which is 

az bz 

(Vie laz bz\) (V je az bz\)i<j implies K(Z(i)) < K{Z(j)) 

In fact , the genera l iza t ion of a p rog ram such as " M e r g e " to handle 
o rde r ing by keys is usually s t ra ight forward . In tests of the values of ar ray 
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elements and assertions about such values, the arrays are replaced by their 
composition with K. However , this replacement is not applied to statements 
which move values of array elements, or to assertions about rearrangement 
or realignment—it is the records themselves, not their keys, that are to be 
rearranged. 

For instance, the generalization of " M e r g e " to ordering by keys is: 

{ax bx ^ dom X and ay by £ dom Y and az bz ^ dom Z 
and ord< X • K ] ax bx and ord< Y • K ] [ay by 
and # ax bx +# ay by = # az bz\ } 

begin integer kx, ky, kz; 
kx : = ax\ ky := ay, kz := az\ 

\ax kx bx and ay ky by and az kz bz 
and ord. 
and {Z • 

U {Y 
and # 

. Z K 1 
K 1 kz} < 

kz 
* {X K 1 kx bx} 

K 1 ky by} 
kx bx ky by — # kz ~bz1 + # 

kz)^(X 1 [ax \kx) © (Y 1 |gy~~~M } and (Z 1 
while kz<bz do 

if (if ky > by then true else if kx > bx then false else 
K(X(kx))<K(Y(ky))) 

then { kx bx and \kz_ bz\ 
and K(X{kx)) <* {X - K ] [kx bxI} U {Y • K ] ky by } } 
begin Z(kz) := X(kx); kx := kx +1; kz := kz + 1 end 

"Copy X" 
else { ky by and kz bz 

and K(Y(A:>0)<*{X- K \ 
begin Z(kz) := Y(ky); ky 

kx bx 1} U {Y • K 1 ky by |} } 
ky +1; kz := + 1 end 

"Copy Y" 
end 

ftyl)} 

The specification of this program illustrates a curious characteristic of 
ordering by keys. If distinct records can have the same key, i.e. if the function 
K is not injective, then the specification is indeterminate: its consequent 
would remain true if one were to rearrange output records with the same 
key. 
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Although this indeterminacy is of ten acceptable, in some applications it 
is necessary to strengthen the program specification by adding a condition 
called stability. Roughly speaking, a program which rearranges records to 
meet some ordering criterion is said to be stable if records with the same keys 
occur in the same order in the output as in the input. 

This idea can be described rigorously by using the concepts of realign-
ment , preimages, and array intersection. Suppose X, Y, and K are functions 
such that cod X=cod Y = dom K. Then X is said to be a stable rearrangement 
of Y with respect to K when 

(V k £ cod K) X f ] &({k}, K ) ^ Y f ] &({k}, K) . 

The following theorem shows that stability is preserved by exchanging 
array segments which have no keys in common: 

Theorem If X, Y, and K are functions such that 
codA:=cod Y = d o m K and {X • K} ^* {Y • K} then 
(V k e cod K) (X® Y)f] &({k}, K)^ ( Y © * ) h ®{{k), K). 

Proof: Let k be a member of cod K. Since {X • K} and {Y • K} are disjoint 
sets, either k £ {X • K} or k g {Y • K}. 

Suppose k $ {X • K}. Then {&} and {X • K} are disjoint, so that by (4) in 
Section 2.3.8, ^({k}, X • /£) = {}, and therefore X1 2P({k}, X • K) = ( ) , Thus, 
using (5) in Section 2.3.8 and the definition of n, we have X ] &({k}, 
X • K) = X 1 &(&({k}, K), X)= X f ] &{{k}, K) = (). Similarly, if k t {Y • K} 
then Y n &{{k), K) = {). 

From (15) in Section 2.3.8, we have 

U © Y ) n K) = ( X f ] 2P({k}, K))@(Yf\ &({k}, Q) , 
( Y @ Z ) f i &({k}, K) = {Yf1 &({k}, K))@(Xf] &{{k), K)) . 

Then, since either Xt) &({k}, K) or Yh &({k}, K) is(>, the identity laws for <) 
with regard to © (i.e. (11) and (12) in Section 2.3.7) establish that the right 
sides of these equat ions are realignments of one another . • 

To illustrate the application of this theorem, we show part of a proof 
that the generalization of " M e r g e " to ordering by keys is stable. A t the 
outset , it should be stressed that this stability hinges upon the use of the test 
K{X(kx))<K(Y[ky)) to compare array elements; had we chosen to use 
K(X(kx)) < K{Y(ky)) the program would still have met its previous specifi-
cation but would not have been stable. 

We replace the rear rangement condition in the consequent by an asser-
tion that Z 1 az bz\ is a stable rear rangement of the concatenation of X ] 
ax bx and Y 1 ay by with respect to K: 
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(V k e cod K) ( Z 1 \az bz\) n &({k}, K) 
^ ( ( X ] \ax bx\)®(Y j \gy by\)) h K) 

Similarly, we replace the rear rangement condition in the invariant by an 
assertion that the concatenat ion of the processed subsegment of Z, the 
unprocessed subsegment of X, and the unprocessed subsegment of Y is a 
stable rear rangement of the concatenation of X \ ax bx and Y ] \ay fey 
with respect to K: 

(V A: € cod K) 
( ( Z 1 \aT}kz)®{X 1 \kx bx\)®(Y j |ky by\))(]P({k},K) 
^((X j \ax bx\)®(Y j \ay~l^\)) ft &({k}, K) . 

Also, as a consequence of ord< X • K \ ax bx\ and the falsity of the test 
which branches between "Copy X " and "Copy Y", we add {Y • K ] [fey]} 
{X ' K 1 kx bx|} to the precedent of "Copy Y". 

The heart of the correctness proof is the demonstrat ion that "Copy Y" 
preserves the stability assertion which we have added to the invariant. Af te r 
propagating the invariant backwards through the assignments in "Copy Y", 
we are left with the task of showing that the invariant and the precedent of 
"Copy Y" imply 

(V A: e cod K) 
(([Z| kz: Y(ky)] \ laz kz\)®{X\ \kx fcc|)©(Yl ky[~ty\)) 

li 0({k}, K) 
((X1 ojc bx)®(Y 1 ay by )) (j &{{k}, K) 

We assume the invariant and the precedent of "Copy Y", and write & as 
an abbreviation for &{{k}, K). Then , for any k in cod K, 

( ( [ Z | kz: Y(ky)] ] \az kz\)®(X] \kx ^1)0(^1 ky\~bj])) 
h ^ 

_AZ)©(Y1 0)©(X 1 |Ax bx\)®(Y j A y Q ) ) 

i i ^ 

At this point, we need to interchange Y 1 [AyJ and X ] \kx bx\. (Such an 
interchange is not needed in proving the analogous implication for "Copy 
X" . ) Using (15) in Section 2.3.8, the theorem we have just proved, and the 
assumption that {Y • K ] [Ay]} and {X • K \ 
the above expression is a real ignment of 

kx bx } are disjoint, we see that 
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( ( z 1 [ o T > z ) n 9 ) 
®(«y 1 @ ) © ( A M I kx bx I)) h 9) 

@((y 1 

®((Y1 ky\~by\) h 9) 
— ( ( Z 1 |fac fa|)©(Yl 0 ) © ( Y 1 ky[Jy\)) 

h 9 
^ ( ( Z 1 \az \kz) ©(X 1 |kx bx\) © ( Y 1 [fry fry|)) fi 9 

k 9 , 

where the last s tep fol lows f r o m the stability condi t ion in the invariant . 

Exercises 

1. Prove that a stable rearrangement is a rearrangement, i.e. that 

( V J t e cod K) X f ) &{{k}, &({k}, K) 

implies X ^ Y. 
(.Hint: Use the equivalence of (a) and (d) of the Theorem in Section 2.3.8.) 

2. Generalize the insertion-sorting program of Exercise 4 after Section 2.3.3 to 
ordering by keys, and prove that it is stable. 

3. Give examples to show that the generalizations to ordering by keys of the 
programs for sorting by maximum finding (Section 2.3.3) and for partitioning 
(Section 2.3.5) are not stable. 

2.4 MULTIDIMENSIONAL ARRAYS 

2.4.1 Multidimensional Arrays in Algol W 

So far we have only considered arrays whose domains are intervals, i.e. finite 
consecut ive sets of integers, bu t conceptual ly an ar ray domain could be any 
set. A case of par t icular practical impor tance is multidimensional arrays, 
whose doma ins are finite sets of finite sequences (or " t u p l e s " ) of integers. 
E v e r since F O R T R A N , mos t p r o g r a m m i n g l anguages have p rov ided 
facilities for mul t id imens ional arrays, which are especially useful in numer i -
cal calculat ions, e.g. for the represen ta t ion of matr ices or tables of multi-
a r g u m e n t func t ions . (More recent languages , such as Pascal [Wir th 71a], 
provide an even r icher variety of arrays.) 
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In Algol W, an n-dimensional array declaration has the form 

r array /x , ... , lm (L: :: Uu ... , Ln :: Un) 

where r is integer, real, long real, or logical, I\, ... , l m are binders of distinct 
identifiers, and Lx , ... , Ln and Ui,... , Un are integer expressions, called the 
lower bounds and upper bounds respectively. Such a declaration creates m 
distinct arrays, denoted by I u ... , I m . Each of these arrays is a collection of 
variables of type r whose domain is the set of integer sequences ... , in) 
such that L] < i \ < Uu ... , Ln<in<Un. 

If 1 has been declared to be an n-dimensional array identifier, and 
Ex, ... , En are integer expressions, then 

I(Et, ... , En) 

is an array designator denoting the array element corresponding to the 
domain member (El, ... , En). Et is called the ith subscript of I(Ei, ... , En). 

For example, the declaration real array X(l::4, —2::2) will create a 
two-dimensional array containing twenty real variables, whose domain is the 
set of integer pairs (/, j) such that l < i < 4 and - 2 < ; ' < 2 . 

In the case of a two-dimensional array, the elements can be visualized in 
a rectangular arrangement, e.g. 

X(l,-2) X(l,-1) X(1,0) X(l,l) X(l,2) 
X(2,-2) X(2,-l) X(2,0) X(2,l) X(2,2) 
X(3,-2) A- (3 , - l ) Z(3 ,0) X(3,l) X(3,2) 
X{4,-2) X(4,-l) X(4,0) X(4,l) Z(4,2) . 

As suggested by this arrangement, the ith row of a two-dimensional array is 
the set of elements whose first subscript is i, and the ith column is the set of 
elements whose second subscript is i. 

As with one-dimensional arrays, the value of an n-dimensional array X 
is the function with the same domain as X which maps (ii, ... , in) into the 
value of the element X{ix, ... , in). 

2.4.2 Assertions for Multidimensional Arrays 

Most of the concepts and notations we have introduced for assertions about 
one-dimensional arrays carry over to multidimensional arrays. The main 
novelty is the use of the Cartesian product to describe domains. In Section 
2.3.7 we introduced the binary Cartesian product, but now we must general-
ize to a product of n sets: If Si, ... , Sn are sets, then the Cartesian product 
5 x x ... xSn is the set of s e q u e n c e s ^ , ... , in) such that e Si, ... , in e Sn. 
It is easily seen that 
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x ... xS„ is empty if any 5, is empty , ( i ) 

If Sx c I"! and ... and Sn c Tn then 
S x x ... x 5 n c J j x ... x 7 n , 

S x x ... x (5, U Ti)x ... x 5 „ 
= (5

2
X ... xSiX ... x5„) U (5IX ... xT^ ... x 5

n
) 

# (S
2
x ... xS

B
) = (# 5

t
)x ... x(# 5J 

when 5j , ... , Sn are finite sets . 

(2) 

(3) 

(4) 

(Note that x denotes a Cartesian product on the left of (4), but an ordinary 
numerical product on the right of the same line.) If all of the 5,'s are intervals, 
then Si x . . . x S n is called a block. Thus for example, the declaration real 
array X(li::ut, ... , /„::«„) creates an array whose domain is the block 
/x MJ x ... x 

Suppose S is a block that is a subset of the domain of X. Then the portion 
of X consisting of the elements X{a) such that cr € 5, is called the segment of 
X over S. For example, if dom X=SxT, then the ith row of X is the segment 
of X over [7] x T and the y'th column of X is the segment of X over S x [/]. 

If (i!,..., in) belongs to the domain of a function X, then [X | (ix,..., in): 
y] denotes the function with the same domain such that 

[X | </l5 ... , in): y] 0\, ... , jn) 
= if i\ = ji and ... and in = jn then y 

else X(ji, ... , jn) . 

The obvious extension of the inference rule for array assignments is: 

Multidimensional Array Assignment: 

M ..., sn): Ei X(Slt ... , Sn) := E {F} . 

*2.4.3 The Minimax of an Array 

As an example of the use of a multidimensional array, we consider a problem 
arising in game theory: finding the minimax of a two-dimensional array 
segment. Consider a nonempty segment of a two-dimensional array X over 
1 m] x [l «j. X(i0,j0) is a minimax of this segment if and only if 
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(1) X(iO,jO) is a maximum of the /Oth row, 
(2) The maximum of each row is at least X(i0,j0). 

Thus our program should set the integer variables iO and y'O to meet the 
specification 

{|l nt\ X ]l n\ ^ dom X and 
"Find Minimax" 
{ 

m and |l| n\} 

iO and 
and {X 1 [iol x 

yo 
} <* X(i0,j0) 

and (V i 6 [l m[) (V j e | l n|) 
{X 1 0 x |l n\} <* X(i,j) implies X(i0J0) < X(i,j) } . 

On the main level, our program will iterate over successive rows, using a 
variable k to keep track of the last row processed. The invariant asserts that 
X(i0,j0) is the minimax of the part of X processed so far, i.e. the segment 
over [ T ~ f c | x [ r ^ ] : 

E iO and yo 
and { 1 1 @ x |l n\} < * X(i0,j0) 
and (V i e |l k\) (V j € |l n|) 

{X 1 0 x |l n|} < * X(i,j) implies X(i0,j0) < X(i,j) 

This will imply the final consequent when k\ m\ is empty. On the other hand 
it can be achieved initially by setting k to one and iO and y'O to the subscripts of 
a maximum of the first row. Thus the program has the form: 

begin integer k\ 
"Set y'O to second subscript of maximum of first row"; 
iO := 1; k := 1; 
{whileinv: [F |l |i'0| k m and 1 yo n 

and {X 1 [To] x |l n|} < * X(iOJO) 
and (V i e [Tjfc]) (V j e 

{X 1 0 x |l n|} < * X(i,j) implies X(i0,j0)<X(i,j) } 
while K m do 

begin k := k +1; 
"Process &th r ow" 
end 

end 
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At the beginning of "Process kth r o w " we will have 

1 /o k m\ j o 
and {X 1 [/Oj x [l «J} < * X(iO,jO) 
and (V i e \T]k) (V j e 

{X 1 0 x |i n[} < * X(i,j) implies X(iO,jO) < X{i,j) . 

To regain the invariant, the obvious thing to do is to scan the kth row to find 
its maximum and, if the new maximum is smaller than X(iO,jO), to reset t'O 
and y'O to the subscripts of the new maximum. 

But one can do bet ter than this. While scanning the kth row, we can 
compare each element with X(iOJO). If we find any element which is at least 
X(iO,jO) then, without completing the scan, we can infer that the maximum 
must also be at least X(iO,jO), so that /0 and y'O will not be reset. 

Thus, suppose we begin "Process A:th r o w " with 

begin logical new; integer y l ; 
"Scan &th row" ; 

end 

where "Scan A:th r o w " either sets new to true andy'l to the second subscript of 
a row maximum which is smaller than X(iO,jO), or sets new to false if there is 
some row element which is at least X(iO,jO): 

{ 1 k m and I 
"Scan A:th r o w " 
{if new then y'l| n\ and {X 1 \k\ X | l n\} <* X(k,jl) 

and X(kjl) < X(iO,jO) 
) X(iO,jO)^X(kJ) } else (3 j e 1 n 

By the reasoning of the previous paragraph, this consequent implies that if 
new is false then the maximum of the kth row is at least X(iO,jO). Thus 
"Process A:th r o w " can be completed with 

if new then begin i'0 := k; y'O := yl end 

The invariant of "Scan A:th r o w " is similar to the consequent except that, 
if new is true, it only asserts that X(k,j 1) is a maximum of a subsegment of the 
kth row over | l y|. This invariant will imply the consequent when either new 
is false or j\ n\ is empty, and can be achieved initially by setting y and yl to 
one and new to X(k,\) < X(iO,jO). Thus "Scan A:th r o w " has the form 
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begin integer /'; 

j •= 1; jl := 1; new := X{k,l)<X(iO,jO); 

{whileinv: if new then | l | ; l | 
and {X 1 @x[Tj]} <• X(k,jl) 
and X(k,jl)<X(iO,jO) 

else (3 j e Q ) X(iOJO)^X(kJ) } 

while new and ( j < n ) do 
begin j := ; + 1 ; "Inspect X(k,j)" end 

end 

At the beginning of "Inspect X(k,j)" we will have 

T l / l l |yI and {A- 1 x [l |/} < * X(k,jl) 
and X{k,jl)<X(iO,jO) . 

If X(iO,jO) ̂  A'Cfc,;') then we can set new to false; otherwise we can proceed as 
in a conventional maximum-finding program. Thus "Inspect X(kJ)" can be 
replaced by 

if X{iO,jO) < X(k,j) then new := false else 
if X(k,jl)< X(k,j) then jl := j . 

Filling in "Set y'O to second subscript of maximum of first row" with the 
obvious subprogram, we obtain the following final program: 
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{[l m\x |l n\ c dom X and |l| m\ and |l| n|} 
begin integer k; 

begin integer j; 
j:= 1; jO := 1; 
while j<n do 

begin; := ; +1; if X(1J0)<X(1J) then jO : = 
end; 

/0 := 1; A: := 1; 
{wh 

/ end 

{X 1 0 x |i n[} < * X(i,j) implies X(iOJO)<X(i,j) } 
while K m do 

begin k := k + 1; 
begin logical new; integer jl; 

begin integer j; 
j := 1; jl := 1; new := X(k,l)<X(iO,jO); 
{whileinv: if new then |l |yl 

and {X \ |a1x[T1} <* X(k,jl) 
and X(k,jl)<X(iO,jO) 

) X(iO,jO)<X(k,j) } else (3 j g [l_ 
while new and ( j < n ) do 

begin; := j+1; 
if X(iO,jO)<X(k,j) then new := false else 

if X(k,jl)<X(k,j) then jl := j 
end 

end; 
if new then begin /0 := k; jO := jl end 
end 

end 
end 

Termination and the impossibility of subscript errors are left to the reader. 
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T h e i d e a of a b o r t i n g t h e r o w s c a n w h e n e n c o u n t e r i n g a n e l e m e n t l a r g e r 
or e q u a l t o X(iO,jO) is a s p e c i a l c a s e of J . M c C a r t h y ' s " a l p h a - b e t a h e u r i s t i c " , 
which is a n a l g o r i t h m f o r t h e m o r e g e n e r a l p r o b l e m of f i n d i n g t h e m i n i m a x 
of a t r e e w i t h n u m e r i c a l n o d e v a l u e s [ S l a g l e 6 9 ] . 

Exercises 

1 For many a r ray-manipu la t ion p rob lems , r easonab le efficiency requ i res subs tan-
tially d i f fe ren t a p p r o a c h e s to the input -preserving case and the non- inpu t -
preserving or " i n p l a c e " case. A simple i l lustration is provided by the p r o b l e m of 
transposing a two-d imens iona l array. 

Wri te two p rograms , o n e for placing the t ranspose of X \ [l m\ x [l n] in 

y 1 [ T ^ n ] x | l m \ a n d the o the r for placing the t ranspose of X \ | l n\ x | l n\ in 

X itself. T h e p r o g r a m s should requ i re t ime of o rde r # | l m | x [ l nj and 

# [ T j i ] x | l n\ respect ively, and should no t use any local arrays. They should 

satisfy 

{ | l m\ x | l n\ Q dom X and | l n\ x | l m| £ dom Y} 
" Inpu t -p rese rv ing t r anspos i t i on" 
{ (V i e | l m\) (V j e [ T ^ ) Y(j, i) = X(i, j)} 

and 

Q x Q c dom X and 

" Inp lace t r anspos i t i on" 
{ (V i e Q ) (V j 6 Q ) X ( j , i)=X0(i, j)} . 

2. (Suggested by R . W . Floyd) Wr i t e a p rog ram tha t will examine the segment of a 
logical array T over | l m\x | l n\ to d e t e r m i n e the largest square subblock 
within which the values of T are all t rue . 

Let 

squ(i, j, d) = 
i-d\~l\xj-d\~~j\ ^ [l m\ x [l n 

and {T ] i-d[~i\xj-d\~j\} =* true 

Then the p r o g r a m should set in teger var iables i, j, and d, and satisfy 

{I 1 m \ x jl "1 - dom T} 
"F ind largest s q u a r e " 
{squ(i, j, d) and (V i e \l m\) (V / e Q ) (V d' > 0) 

[squ(i', f , d ) implies d * d ) } . 

With some ingenui ty , it is possible to cons t ruc t such a p rog ram tha t requ i res t ime 

of o rde r m • n. 



i g f j f l 

" 



3 PROCEDURES 

Most programming languages provide facilities that, to at least a limited 
extent, permit the p rogrammer to define and then use new kinds of state-
ments and expressions. In Algol-like languages, this capability is provided by 
procedures: new s ta tements called procedure statements are defined by 
proper procedure declarations, and new expressions called function desig-
nators are defined by function procedure declarations. (Most of our attention 
will focus on proper procedures; function procedures will be introduced in 
Section 3.1.8.) 

The use of procedures can sometimes save considerable writing and also 
reduce the space needed to store a program in the computer . But the real 
importance of procedures is their usefulness for displaying program struc-
ture. One can encapsulate as a procedure a conceptually subordinate prog-
ram for performing some task, and then treat the per formance of this task as 
an elementary operat ion on the same level as the basic s tatements and 
expressions of the programming language. 

Of necessity, our discussion of procedures will be more language-
dependent than that of previous topics, since facilities for procedures (often 
called "subrout ines" or "mac ros " ) vary substantially among different prog-
ramming languages. Fortunately, the procedure facility of Algol W, based 
upon that of Algol 60 [Naur 60, 63], is exceptionally powerful , elegant, and 
amenable to formal reasoning. Indeed, this is one of the main reasons that 
Algol W, as opposed to Pascal for example, is used in this book. 

1 5 7 
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3.1 PROCEDURES IN ALGOL W 

3.1.1 Proper Procedures and the Copy Rule 

Suppose a statement S occurs several times in some block of a program: 

begin ... ; S; ... ; 5; ... ; S; ... end . 

Rather than writing out each occurrence of S, we may declare some iden-
tifier P to stand for S, and then write P instead of S: 

begin procedure P; S\ 
... ; P; ... ; P; ... ; P; ... end . 

Here procedure P; S is a procedure declaration whose body is S, and the 
other occurrences of P are procedure statements. The procedure statements 
are said to call the procedure defined by the procedure declaration. 

Under the scope of the declaration procedure P; S, the procedure state-
ment P will have the same meaning as S. For example, under the scope of 

procedure stepx\ x := x +1 , 

the statement stepx will have the same meaning as x := x + 1. 
In this form, the procedure facility has limited usefulness; it is unusual 

to need exactly the same statement in several places. More often, one needs 
statements that are similar in form but different in the occurrences of certain 
subphrases. To accomplish this kind of variation, we introduce parameters. 

The basic idea is to add a parenthesized list of distinct identifiers F x ; . . . ; 
Fn, called formal parameters, to the procedure declaration: 

procedure P{FX\ ... ; Fn); S 

and to add a corresponding list of phrases Ah ... , An, called actual param-
eters to each procedure statement: 

P(AU ... , An) . 

Then, under the scope of the above declaration, P(Alt ... , An) will have 
the same meaning as the statement obtained by substituting Ax, ... , An for 
Fx, ... , Fn in S. 

For example, if we declare 

procedure mc.x:(integer {exp} y); x := x + y 

(the occurrence of integer {exp} here will be explained in the next section), 
then the procedure statement incx(3) will have the same meaning as x : = 
x + 3, and the procedure statement incx(a x b) will have the same meaning as 
x := x + axb. 

Actually, the exact definition of the meaning of procedures, called the 
copy rule, is somewhat more complicated than is indicated by the above 
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discussion. Before stating the copy rule, however, we must describe the 
binding properties of procedure declarations, which are more complex than 
those of other declarations. 

Like all declarations, a procedure declaration binds the identifier which 
it declares, i.e. in 

procedure P{FX, ... ; Fn); S 

the occurrence of P is a binder whose scope is the scope of the declaration, 
which is the immediately enclosing block, excluding lower and upper bounds 
of array declarations that are immediately enclosed by that block. However, 
the occurrences of Fx, ... , Fn in the formal parameter list are also binders, 
whose scope is different than that of the declaration: the scope of Fx,..., Fn is 
the formal parameter list itself plus the body S of the procedure declaration. 

This binding structure is illustrated by 

" ' r r 
begin procedure mcx(integer {exp} y); (x) := (x) + y; 

incx{Q) +1) 
end , 

where we have circled free identifier occurrences and drawn arrows from 
bound occurrences to the binders that bind them. Notice that the procedure 
statement incx(@)+ 1) falls within the scope of the binder of incx, but not 
within the scope of the binder of y. Also notice that a procedure body can 
contain free occurrences of identifiers, such as x, that are not formal para-
meters. In general, the free identifier occurrences in the body of a procedure 
declaration that are not bound by the formal parameter list of that declara-
tion are said to be global occurrences. 

We can now state the copy rule: Let P(AU ... , An) be a procedure 
statement in which the occurrence of P is bound by the declaration 

procedure P{FX\ ... ; Fn); S 

Suppose that, for every identifier G occurring globally in 5, there is no binder 
of G whose scope includes the procedure statement but not the procedure 
declaration. Then P{AX, ... , An) has the same meaning as 

Fi Fn-+Ai, ..., An • 

The restriction on binders of global identifiers is needed to avoid 
identifier collisions. As will be illustrated in Section 3.1.3, this restriction can 
always be satisfied by alpha-converting the scope of the offending binders. 

It should be emphasized that the copy rule describes the meaning of 



1 6 0 PROCEDURES CHAP. 3 

procedures r a the r than their implementa t ion . O n e could implement proce-
dures (except ing recursive procedures , which will be in t roduced in Section 
3.2) by using the copy rule to el iminate p rocedure s t a tements pr ior to 
t ranslat ion into machine code ; such an approach is o f t en called an "open 
s u b r o u t i n e " or " m a c r o - e x p a n s i o n " implementa t ion . In the implementa t ion 
of Algol W, however , "c losed subrou t ines" are used: p rocedure declarat ions 
and s t a t ements are compi led into separa te segments of code , and dur ing the 
execut ion of a p rocedure s ta tement control passes back and fo r th be tween 
these segments in a complex m a n n e r that s imulates the copy rule . 

W e will not discuss the details of this implementa t ion m e t h o d , which is 
descr ibed in [Di jks t ra 60] and [Rande l l 64]. Its overall ef fect , however , is to 
reduce the s torage needed for machine code at the expense of increasing 
execut ion t ime and the s torage needed fo r da ta . However , these increases do 
not affect o rde r of magni tude bounds on t ime or s torage space. 

3.1.2 Specifiers and Phrase Types 

In the prev ious discussion, we glossed over the possibility tha t the 
fo rmal and actual p a r a m e t e r s of a p rocedure may not match , so tha t the 
subst i tut ion prescr ibed by the copy rule gives a syntactically invalid state-
ment . 

Cons ider a p rocedure declara t ion with n fo rmal pa ramete r s : 

procedure P{FX\ ... ; Fn); S 

U n d e r the scope of this declara t ion, each p rocedure s t a t ement P{AX,..., An) 
must obviously have n actual pa ramete r s . Beyond this, however , each A{ 

must be a phrase tha t can meaningful ly replace F t at all of its f ree occurrences 
in the p rocedu re body S. Fo r example , u n d e r the declara t ion of incx given in 
the previous sect ion, the s t a t ement mcx(true) would be e r roneous , since 
subst i tut ing true fo r y in the body x := x + y would give the syntactically 
invalid x := x + true. 

It is impor t an t to be able to detect this kind of e r ro r dur ing compila t ion 
r a the r than execut ion . ( " D u r i n g execu t ion" can be long a f t e r the p rogram 
has been wri t ten, tes ted , and falsely p r e s u m e d correct . ) Fo r this purpose , 
Algol W requi res the p r o g r a m m e r to specify the types of all fo rma l pa rame t -
ers. A p rocedu re declara t ion with n fo rmal p a r a m e t e r s actually has the fo rm 

procedure P(cri, ... ; cr„); 5 

where each or, is a specifier, which not only names the fo rmal p a r a m e t e r Ft 
but also descr ibes its type. Using the type in format ion in o-h the compi ler 
checks bo th the occur rences of Ft in S and the cor responding actual p a r a m e -
ter Ai in each p r o c e d u r e s t a t emen t that calls P. T h e type in fo rma t ion is also 
used to improve the efficiency of the c losed-subrout ine implemen ta t ion . 
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For example, the specifier integer y in 

procedure mc;t(integer .y); x := x + y 

nermits the compiler to detect an incorrect usage, such as x : = x and y, of the 
formal parameter _y in the body of the procedure declaration, and to detect a 
procedure s ta tement , such as mcjt(true), with an incorrect actual parameter . 

Ideally, these checks by the compiler should insure that no parameter 
mismatches can occur during execution of a program, i.e. that the substitu-
tion prescribed by the copy rule never gives a syntactically invalid statement. 
Unfortunately, however, the specifiers used in Algol W are inadequate to 
achieve this goal. For example, one can declare 

procedure setzero(integer y); y : = 0 

In contrast to the situation with incx, a procedure statement such as 
setzero(7) is erroneous, since the substitution of 7 for y would give the 
invalid s tatement 7 : = 0. Similarly, setzero(a -I-1) is erroneous, since it would 
lead to a + 1 : = 0. In general, however, this kind of error cannot be detected 
in Algol W programs before execution. 

This inadequacy is the most serious design mistake in the language. It 
postpones the detection of a significant class of errors f rom compilation to 
execution. Moreover , the need to detect such errors during execution 
degrades the efficiency of the procedure mechanism. 

At the t ime Algol W was developed, the design of adequate specifiers 
was not unders tood. Since then, however, largely through the development 
of Algol 68 [van Wijngaarden 69], the problem has been solved. In this 
book, we will apply the solution retroactively to Algol W. 

Essentially, we will change Algol W by extending the form of specifiers 
to eliminate their inadequacies. Of course, we will not actually change the 
compiler to accept a different form of specifier or to detect more errors. The 
extra information in our extended specifiers will really be comments—indi-
cated by the perennial curly brackets—but these comments will be used in a 
formally prescribed manner that will insure the correctness of parameter 
matching. 

For example, we will write 

procedure mcjc(integer {ex p} y),x := x + y 

to indicate that the formal parameter y is used in the procedure body as an 
integer expression, but not in a context, such as the left side of an assignment 
statement, that requires a variable. This permits procedure statements such 
as incx(7) or incx(a + 1), though it prohibits s tatements such as mcx(true) or 
incx(3.5) where the actual parameter is not an integer expression. 

On the other hand, we will write 

procedure setzero(integer {var} y); y := 0 
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to indicate that the formal parameter y may be assigned to (as well as 
evaluated) in the procedure body. This permits statements such as setzero(a) 
orsetzero(X(l)), but prohibits statements such assetzero(7) or setzero(a +1) 
where the actual parameter is not a variable. 

In general, what an (extended) specifier specifies is the phrase type of 
the formal parameter that it binds. At the outset, it must be emphasized that 
phrase types are quite different than data types. A data type, such as integer, 
describes a set of values that can be taken on by a particular kind of variable 
On the other hand, a phrase type, such as integer variable, integer expres-
sion, or procedure(integer expression), describes a set of phrases that have a 
particular kind of meaning. When a formal parameter is specified to have the 
phrase type 0, it must only occur in contexts that would permit any phrase of 
type 0 (perhaps af ter parenthesization), and each corresponding actual 
parameter must be a phrase of type 6. 

For instance, for any data type r , the specifier r {var} F specifies that F 
has phrase type r variable. Phrases of this type include not only appropri-
ately declared identifiers, but also array designators such as X(l), where X 
denotes a one-dimensional r array. On the other hand, the specifier 
T {exp} F specifies that F has phrase type r expression. Phrases of this type 
include not only phrases of type r variable, but also various constants and 
compound expressions. Since the variety of phrases is greater for r expres-
sion than for r variable, the variety of contexts that permit formal parameters 
is more limited, e.g. it excludes the left sides of assignment statements. 

Formal parameters of phrase type r variable or r expression are often 
called simple parameters. In Section 3.1.5 we will introduce other specifiers 
for simple parameters, and in Sections 3.1.6 to 3.1.8 we will introduce 
specifiers for parameters of other phrase types. 

Frequently, several formal parameters of the same procedure will have 
similar specifiers. When such specifiers appear consecutively in the formal 
parameter list they may be combined into a single compound specifier. For 
example, the formal parameter list 

integer {exp} i; integer {exp} real {var} x\ real {var} y 

can be abbreviated by 

integer {exp} i, real {var} x, y 

Note that, just as with declarations, specifiers are separated by semicolons, 
while formal parameters within compound specifiers are separated by com-
mas. 

Not only specifiers, but all binding mechanisms specify the phrase type 
of the identifiers that they bind. For example, the declaration r I u ... , In 

specifies that I h . . . , In have phrase type r variable. The quantifiers (V / e 5) 
and ( 3 / e S) each specify that I has phrase type r expression, where r is the 
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data type of the m e m b e r s of S. ( O n e needs r expression here , ra ther than r 
v a r i a b l e , so that cons tants or c o m p o u n d expressions can be subst i tuted for I 
when applying law (4) of Section 2.2.5.) 

The na ture of specifiers and phrase types is formal ized by the syntax in 
Appendix B, where phrases of type 6 are the phrases that can be derived 
from the non te rmina l (6), and the contexts that permit fo rmal pa ramete r s 
and o ther ident if iers of phrase type 9 are the contexts that permit the 
nonterminal (6 identif ier) . In Section B.3 of Append ix B, it is shown that 
correctness with regard to this syntax is preserved by the copy rule. 

3.1.3 Identifier Collisions 

Most of the p rog rams developed in previous chapters might reasonably 
occur within comple te p rograms as the bodies of p rocedure declarat ions. A n 
example is the fol lowing declarat ion of a p rocedure for comput ing the 
factorial: 

procedure/ac?(integer {exp} n\ integer { v a r } / ) ; 
{AZ>0} 
begin integer k\ 
k := 0 ; / : = 1; 
while k ^ n do 

begin k := k +1; / := k x / e n d 
end 
{/="!} • 

Suppose a,b,c are integer variables, and x is a real variable. It is easily 
seen f rom the copy rule that , unde r the scope of this declarat ion, the 
procedure s t a t ement fact(a, b) will set b to the factorial of a,fact(3, a) will set 
a to 6, and fact(a + b,c) will set c to the factorial of a + b. O n the o the r hand , 
because of the rules for p a r a m e t e r matching, fact(a, b, c), fact(true, a), 
fact(x, a),fact(3, x),fact(3, 4), and fact(3, a + b) are all e r roneous . 

A m o r e interes t ing case is the p rocedure s ta tement fact(k, a). A t first 
sight, it might a p p e a r that the copy rule asserts tha t this is equivalent to 

begin integer k; 
k := 0; a := 1; 
while k ^ k do 

begin k := k + 1; a := kx a end 
end 

But this s t a t ement will not compu te the factorial correctly, since the actual 
parameter k has been cap tu red by the declara t ion of the local variable k. 

This is ano the r instance of the interact ion be tween subst i tut ion and 
binding called ident i f ier collision, which was first encoun te red in Section 
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2.2.6. The definition of substitution given there requires that, before sub-
stituting Ai, ... , An for Fu ... , Fn in S, S must be alpha-converted to 
eliminate binders of identifiers that occur free in any At. In this case, since k 
occurs free in an actual parameter , the procedure body must be converted to 
eliminate the binder of k before substituting k,a for n,f. Thus the procedure 
statement fact(k, a) is equivalent to 

begin integer k'; 
k' : = 0; a := 1; 
while k ' ^ k do 

begin k : = k' +1; a : = k' x a end 
end , 

where the bound occurrences of k have been renamed k'. As one would 
hope, this statement will set a to the factorial of k. (Strictly speaking, k' is not 
a legal Algol W identifier, but for expository purposes the use of primes to 
indicate renaming is irresistible.) 

When a program is to be encapsulated as a procedure, one must decide 
which of the identifiers occurring free in the program are to be bound as 
formal parameters and which are to be left as globals. In general, it is clearest 
to parameterize only those identifiers whose meaning will vary among 
different calls of the procedure. Thus one would declare 

procedure mc;c(integer {exp} y); x := x + y 

to increase the particular variable x by a variety of values, 

procedure incbyy(integer {var} x); x : = x+y 

to increase a variety of variables by the particular value y, and 

procedure mc(integer {var} x\ integer {exp} y); x := x+y 

to increase a variety of variables by a variety of values. 
Global identifier occurrences introduce further possibilities for iden-

tifier collisions. Consider, for example, 

begin integer x; 

procedure mcx(integer {exp} y); x := x + y; 

begin integer x; ... incx{3); ... end end 
Here the global occurrences of x are bound by the first declaration of x, so 
that incx is a procedure for increasing the particular variable denoted by that 
declaration. Thus this block should not be equivalent to 



SEC. 3.1 PROCEDURES IN ALGOL W 165 

begin integer x\ 

begin integer x\ ... x := JC + 3; . . . end 
end , 

in which x : = x + 3 increases the var iable deno ted by the second declarat ion 

of x. 
This is the ra t ionale fo r the proviso in the copy rule tha t " f o r every 

identifier G occurr ing globally in S, there is n o b inder of G whose scope 
includes the p r o c e d u r e s t a t emen t but not the p rocedure dec la ra t ion . " T o 
meet this proviso, we must a lpha-conver t our example to el iminate the 
second declarat ion of x b e f o r e applying the copy rule. This gives 

begin integer x; 

begin integer x ; ... x := x + 3 ; .. . end 
end , 

in which x := x + 3 increases the var iable declared by the first declara t ion. 

Exercise 

1. For each identifier occurrence in the following statements, indicate whether it is 
free or bound and, if it is bound, indicate the binder that binds it. Then use the 
copy rule, with alpha conversion when necessary, to produce equivalent state-
ments that do not contain procedure statements. 

(a) begin integer x\ 
procedure powerx(integer {exp} n\ integer {var} y); 

begin integer k\ k := 0; y := 1; 
while begin k := k+l \ y := x X y end 
end; 

x := 3; 
begin integer x\ ... powerx(k+1, x); ... end 

end 

(b) begin 
procedure ^(integer {var} y); 

begin 
procedure ^(integer {var} y, z); 

begin integer x\ x := y ; y := z; z := x end; 
P(x, y) 
end; 

begin integer x; ... p(x); ... end 
end 
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3.1.4 Interference and Parameter Assumptions 

Al though the copy rule avoids identif ier collisions by a lpha conversion, it 
does not avoid ano the r p h e n o m e n o n called interference. A simple illustra-
tion is provided by the p rocedure s ta tement fact(a, a), which is equivalent to 

begin integer k; 
k := 0; a := 1; 
while k ^ a do 

begin k := k + 1; a := kx a end 
end 

This s t a t ement does no t set the variable a to the factorial of its previous 
value. The difficulty is that the two fo rmal pa rame te r s n and / , which we 
expected to d e n o t e distinct variables when we wro te the p rocedure body, 
have bo th been rep laced by actual pa rame te r s denot ing the same variable. 
This r ep lacemen t causes / to interfere with n, i.e. an ass ignment to / will 
change the value of n. In fact , the assignment / : = 1 will obl i te ra te the value 
of n whose factor ia l we are trying to compute . 

M o r e general ly, in te r fe rence can occur whenever an actual pa ramete r 
of phrase type r variable occurs in some o ther actual p a r a m e t e r . For exam-
ple, fact(a + b, a) will not set a to the factorial of a + b. Again , the replace-
ment of fo rmal by actual pa rame te r s c a u s e s / t o in te r fe re with n. 

In te r fe rence can also t ake place be tween fo rmal p a r a m e t e r s and global 
identif iers . For example , 

procedure power;t(integer {exp} n; integer {var} y); 
{ n > 0 } 
begin integer k; 
k : = 0; y : = 1; 
while k ^ n do 

begin k := k + 1; y := xXy end 
end 
{y=x"} 

will normal ly set y to the n th power of the global variable x. But this 
p rocedure will no t behave correctly if y in te r fe res with e i ther the fo rmal 
p a r a m e t e r n o r the global ident if ier x. Thus b o t h p o w e r x ( a , a) and powerx{a, 
*) would be e r r o n e o u s calls. 

These examples m a k e it clear tha t t he correctness of a p rocedure 
s t a t emen t will o f t e n d e p e n d upon assumpt ions of non in te r f e rence that 
res t r i c t t h e r e p l a c e m e n t of f o r m a l by ac tua l p a r a m e t e r s . A clear ly 
d o c u m e n t e d p r o c e d u r e declara t ion must include a descr ipt ion of these 
parameter assumptions. 

For this pu rpose we will write X # E, where X is a var iable and E is an 
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expression, to indicate that X must not interfere with E, i.e. that no assign-
ment to X may affect the value of E. (Normally, X and E will be formal 
parameters or global identifiers.) When more than one such assumption is 
necessary, they will be joined together with the symbol & (meaning "and") . 
The parameter assumptions will then be labeled with the symbol pa, sur-
rounded by curly brackets (since they are formal comments about program 
correctness), and placed between the formal parameter list and the proce-
dure body (before the precedent of the body if it is present). 

For example, a correctly annotated version of fact is 

procedure/acf(integer {exp} n; integer {var} / ) ; 
{pa: / # n} 
{ « > 0} 
begin integer k; 
k := 0 ; / : = 1; 
while k ^ n do 

begin k := k+l\ f := kxf end 
end 
{/="!} • 

Similarly, for powerx we would write 

procedure powerx{integer {exp} n\ integer {var} y); 
{pa: y#n & t} 
{«>( )} 
begin integer k; 
k := 0; y := 1; 
while k ^ n do 

begin k := k+1; y := xxy end 
end 
{y=x»} . 

It is important to understand the distinction between assertions, para-
meter assumptions, and specifiers. Assertions describe states of the compu-
tation. Parameter assumptions and specifiers describe restrictions on the 
replacement of formal by actual parameters. The distinction between the 
latter two entities is that specifiers describe syntactic restrictions, i.e. restric-
tions that can be expressed by a syntactic description of the programming 
language (as in Appendix B), and that can be enforced by a compiler (even 
though the existing Algol W compiler does not enforce our extended speci-
fiers). In contrast, parameter assumptions describe restrictions that are, in 
general, too subtle to be treated syntactically or to be enforced by a com-
piler. 

(Actually, the possibility of devising syntactic restrictions to control 
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in te r fe rence is a cur ren t research topic of considerable impor tance , espe-
cially fo r the design of p rogramming languages for concurren t computa t ion 
[Reynolds 78a] . Howeve r , such an approach to the p rob lem of interference 
is beyond the scope of this book . ) 

3.1.5 Call by Value and Result 

For simple pa rame te r s , there is a s tandard me thod fo r avoiding the problems 
of in ter ference . T h e basic idea is to replace occurrences of fo rmal paramet-
ers in the p rocedure body by local variables . T h e n the fo rma l pa ramete r s 
that convey input in format ion are used to initialize the cor responding local 
variables, while the fo rmal pa rame te r s tha t convey ou tpu t in format ion are 
assigned the final values of the cor responding local variables. 

Fo r example , the result of applying this t r ans fo rma t ion to the procedure 
fact would give 

procedure /«cf(integer {exp} n; integer {var} / ) ; 
begin integer « ' , / ' ; 
ri := n; 

begin integer k; 
k : = 0 ; / ' : = 1; 
while k ^ r i do 

begin k : = k+1; f := k x f end 
end; 

/ : = / ' 
end 

In this fo rm, the p rocedu re will still work correctly w h e n / i n t e r f e r e s with n, 
since this will not cause the local va r i ab l e s / ' and ri to in ter fere , and since the 
p rocedure never examines the possibly a l tered value of n a f t e r assigning t o / . 

Fo r example , fact(a+b, a) has the same mean ing as 

begin integer « ' , / ' ; 
ri := a + b; 

begin integer k; 
k : = 0 ; / ' : = 1; 
while k ^ r i do 

begin k := k+1; f := k x f end 
end; 

a:=f 
end 

Of course , this s t a t emen t will change the value of a + b, so tha t a = (a + b)\ 
will no t hold a f te r execut ion . But the final value of a will be the factor ial of 
the initial value of a + b, i.e. 
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{a + b>0 and a + b = n0} fact(a + b, a) {a = n0!} . 

This kind of t ransformat ion is so commonly useful that an equivalent 
mechanism is built into Algol W. To define the procedure given above, one 
need only write the declaration 

procedure/acf(integer value n; integer result / ) ; 
begin integer k\ 
k := 0 ; / : = 1; 
while k ^ n do 

begin k : = fc + 1; / : = k x f end 
end 

The general mechanism is the following: Instead of using the specifiers 
r {var} F or r {exp} F (where r is some data type), one may use any of the 
following specifiers: 

r value F 
T result F 
T value result F 

In these cases the formal parameter F is said to be called by value, called by 
result, or called by value and result, respectively. In contrast, a formal 
parameter with any other form of specifier is said to be called by name. 

(Although these terms are firmly entrenched in the computing litera-
ture, they are slightly illogical. One normally speaks of a procedure state-
ment "calling" a procedure , e.g .fact(a+b, c) calls fact. But "call by n a m e " or 
"by value" or "by resul t" describes the behavior of a parameter , not a 
procedure.) 

The effect of these new specifiers is equivalent to transforming the body 
of the procedure declaration as follows: 

(1) All f ree occurrences of formal parameters called by value or by 
result (or both) are renamed . (We will indicate this renaming by 
adding primes to the parameter occurrences.) 

(2) The procedure body is enclosed in a block in which the renamed 
parameters are declared as local variables, with the data types 
indicated by their specifiers. 

(3) For each formal parameter F t called by value, or by value and 
result, the assignment F\ := Ft is added to the beginning of the 
block enclosing the body. 

(4) For each formal parameter F t called by result, or by value and 
result, the assignment Fj := F\ is added to the end of the block 
enclosing the body. 

After the procedure body has been t ransformed in this manner , specifiers of 
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the form r value F should be replaced by r {exp} F, and specifiers of the form 
r result F and r value result F should be replaced by r {var} F. 

This transformation preserves syntactic correctness if each formal 
parameter specified by r value, r result, or r value result is used as a r variable 
within the procedure body. For r result and r value result, the corresponding 
actual parameters must also be t variables, but for r value, the corresponding 
actual parameters may be r expressions. (Thus r value is anomalous in 
specifying one phrase type, r variable, for the identifier that it binds but 
another phrase type, r expression, for corresponding actual parameters.) 

In addition to avoiding the problems of interference, call by value and 
call by result are usually more efficient than call by name. This is especially 
true when a formal parameter that is repeatedly evaluated in the procedure 
body is replaced by an actual parameter that is a complex expression. For 
example, consider fact((a + b)xc, d). When the formal parameter n (cor-
responding to (a + b) x c ) is called by name, this statement is equivalent to 

begin integer k; 
k := 0; d := 1; 
while kj£(a + b)xc do 

begin k := k + 1; d := kx d end 
end , 

which will repeatedly evaluate (a + b) x c. On the other hand, when n is 
called by value, the expression (a + b)Xc will only be evaluated once, at the 
beginning of the procedure body. 

In most cases, it is best to call simple parameters by value a n d / o r result. 
One should specify value if the formal parameter conveys input information, 
and result if it conveys output information. Indeed, the Algol W compiler 
encourages the use of call by value and result by giving a warning message 
whenever a simple parameter is called by name. Conceptually, however, call 
by name is more fundamental , since it is defined directly by the copy rule, 
while call by value and result are defined in terms of call by name in the 
manner we have just described. 

Nevertheless, there are situations where call by name is needed for 
simple parameters. One case occurs when it is necessary to avoid evaluation 
of some parameter for certain values of other parameters. Consider 

procedure setimply(logical result p\ logical value q; 
logical {exp} r); 

p : = if q then r else true 

If P is a logical variable and Q and R are logical expressions, then the 
procedure statement 

setimply(P, Q, R) 
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has the same effect as P: = if Q then R else true, or P: = Q implies R (which 
cannot be written in Algol W since the language does not provide the logical 
operator implies). Calling r by name rather than by value avoids the 
unnecessary evaluation of R when Q is false. This is vital if R is ill-defined for 
certain states in which Q is false. For example, suppose X is an array with 
domain \a b\- Then the use of call by name for r is necessary to avoid 
subscript errors in a procedure statement such as 

setimply{zerovalue, (a < i) and (i^b), X(i) = 0) . 

A more profound application of call by name, known as Jensen's device, 
turns the phenomena of repeated evaluation and interference into advan-
tages. Consider 

procedure ,swm(integer {var} i; integer {exp} e); 
begin s := 0; i := a — 1; 
while Kb do 

begin i := i+1; s := s + e end 
end 

Suppose I is an integer variable and E is an integer expression. Then the 
procedure statement sum(I, E) is equivalent to 

begin s 0; I := a — 1; 
while I<b do 

begin I := I+1, s :— s + E end 
end 

At first sight this statement appears to sum the same value of E 
repeatedly, i.e. to be an unusual ly ineff icient way of set t ing s to 

b|) x E. But suppose that the variable I interferes with the expression 
E. Then each execution of the while-statement body will evaluate E for a 
different value of I, and the program will set s to the sum 

b 
I E . 

I=a 

For example, if a is 1, b is 100, and X is an array with the domain 
, then sum{j, X{j) x X{j)) will set s to 

100 
£ X(j)xXU) , 
y=i 

i.e. to the vector product of X with itself. 
Call by name and call by value are peculiar to Algol-like languages, and 

call by result is an original feature of Algol W. Most programming languages, 
including F O R T R A N and PL/ I , treat parameters by a method known as call 

1 100 
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by reference or by address. In this approach , a fo rma l p a r a m e t e r F, denotes 
the same variable as the cor responding actual p a r a m e t e r A t when A t denotes 
a variable, but Ft deno te s a local variable initialized to At w h e n At is a 
cons tant or a c o m p o u n d expression. Roughly speaking, var iables are called 
by n a m e , while constants and c o m p o u n d express ions are called by value. 
R e p e a t e d (or avoided) p a r a m e t e r evaluat ion never occurs, but in terference 
is still possible. Call by re fe rence is less power fu l t han the combina t ion of call 
by n a m e and by value, bu t it can be given a more efficient implementa t ion . 

This brief descr ipt ion glosses over some subtle d i f ferences be tween call 
by re fe rence and call by n a m e which have p r o f o u n d repercuss ions upon the 
formal defini t ion of p rogramming languages and m e t h o d s for proving prog-
r a m correctness . A l t h o u g h call by re fe rence is more prevalent in present-day 
p rog ramming languages, the au thor bel ieves tha t call by n a m e is a more 
sound conceptua l basis fo r the p rocedure mechanism. 

Exercises 

1. Show that, for the procedure fact, interference problems will be avoided if n is 
called by value and / by name, or if n is called by name and / by result. 

2. When call by value is specified, one can assign to the formal parameter without 
affecting the corresponding actual parameter. Use this capability to write a 
version of fact whose only local variables are the "hidden" local variables 
implicit in the use of call by value or result. 
{Hint: Use the invariant/x (n!) = n0! and «>0 , where n0 is a ghost identifier referring to 
the value of the formal parameter n when execution of the procedure body begins.) 

3. Consider how the examples and exercises in Chapter 1 might be encapsulated as 
procedures. In particular, determine which identifiers should be formal para-
meters, and what their specifiers should be. Are there any cases in which call by 
name might be useful? 

3.1.6 Array Parameters 

So far , we have only cons idered simple pa ramete r s , whose phrase type is r 
variable or r expression. In this section and the next we move on to pa ramet -
ers with o the r phrase types. T h e copy rule is sufficiently genera l to handle 
these extensions , bu t addi t ional specifiers must be in t roduced. 

A n ar ray specif ier in Algol W has the f o r m r array F(*,... ,*), whe re r is 
a da ta type and the pa ren thes ized list, called a dimension list, conta ins n> 1 
asterisks. This specifies tha t F d eno t e s an / i -dimensional array whose ele-
men t s have da ta type r . A cor responding actual p a r a m e t e r must also deno te 
an n-d iment iona l ar ray whose e l emen t s have da ta type T. 
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Just as with simple call-by-name parameters , we will extend array 
specifiers by adding {exp} or {var}. The specifier 

r a r ray {exp} F(*, ... , *) 

which establishes the phrase type r a r ray expression(*, . . . , * ) , will be used if 
no element of F can be assigned to or changed by executing the procedure, 
while 

r a r ray {var} F(*, ... , *) 

which establishes the phrase type r a r ray variable(*, ... , *), will be used 
otherwise. 

In this case, the use of {exp} or {var} is not needed to ensure that the 
copy rule preserves syntactic correctness, since there is no phrase in Algol W 
that denotes an array value but not an array whose elements can be assigned 
to. However, such array expressions are conceptually possible; indeed, 
much of Chapter 2 was devoted to defining such expressions, e.g. [ X \ i: e] or 
X • Y, for use in assertions. Moreover , the use of {exp} or {var} provides 
essential information about a procedure by indicating which parameters 
denote arrays whose values may be changed by the procedure. 

Similar array specifiers that occur consecutively can be combined. For 
example, 

integer a r r ay {exp} integer ar ray {exp} Y(*) 

can be abbreviated by the compound array specifier 

integer a r r ay {exp} X , Y(*) 
Array parameters are always called by name, so that interference 

between arrays can affect correctness. One should be wary whenever the 
same array identifier occurs more than once as an actual parameter in a 
procedure s ta tement . 

The omission of call by value or result for arrays is motivated by both 
consistency and efficiency. The provision of these facilities would introduce 
implicit array assignments into a language that does not permit explicit array 
assignments, and would obscure the space and time requirements of array-
handling procedures. Although, as we will see below, there are situations 
where arrays must be copied to avoid interference, such copying can have a 
major impact on the time and space requirements of a program, so that it is 
better to program the copying explicitly rather than hide it in a parameter -
passing mechanism. 

As an example of the use of array parameters , the following procedure 
encapsulates the program constructed in Section 2.2.7 for finding the sub-
script of a maximum of an array segment: 
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procedure max (integer value a, b; integer result j; 
integer a r ray {exp} X(*)); 

{|a b\ £ dom X and |g| b\} 
begin integer k; 
j := a; k := a; 
{whileinv: k\ b\ and {X ] XU)} 
while k<b do 

begin k := k+1; if X(k)>X(j) then j := k end 
end 

(E and {X 1 < * X(j)} . 

Similarly, we can present the sorting program of Section 2.3.3 as a 
procedure. But now we can express the way in which this sorting program 
uses maximum-finding as a subsidiary operat ion by having the sorting pro-
cedure call the previously defined maximum-finding procedure, i.e. by using 
a procedure s ta tement referring to max in the body of the declaration of 
maxsort: 

procedure maxsort(integer value a, b; integer a r ray {var} X(*)); 
{|a fe|^dom X and X=X0} 
begin integer m; 
m := b; 
{whileinv: |a m\ b\ and ord< X ] m\ b| 

and {X 1 a m } < * {X 1 fl} 
and X 1 \g b\ ^ XQ \ \a b\ } 

while a<m do 
begin integer j ; 
max(a, m, j, X); 
begin integer t; t := X{j); X(j) := X(m); X(m) := t end; 
m m — 1 
end 

end 
{ord< X 1 |a b\ and X \ bj -v X0 1 a 

We could also express the subsidiary operat ion of exchanging two array 
e lements as a separate procedure , i.e. we could define 

procedure exchangeixniegev value i, j; integer a r ray {var} X(*)) ; 
begin integer t; t := X(i); X{i) := X(j); X(j) := t end , 

and then write 
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procedure maxsort{integer value a, b; integer a r ray {var} Ar(*)); 
{ Q c d o m X and X=X0} 
begin integer m; 
m := b; 
{whileinv: . . . } 
while a<m do 

begin integer j; 
max(a, m, j, X); 
exchanged, m, X); 
m := m — 1 
end 

end 

{ord< X 1 \a b\ and X 1 |a b\ ^X0 ] \a b\} . 

Notice that the specifier of X contains {var}, even though no assignment 
to an element of X appears in the body of maxsort. One must still use {var} to 
indicate that executing maxsort will change X, even though the change is 
caused by calling another procedure . 

Two more examples of array-manipulating procedures are constructed 
from the partition program of Section 2.3.5: 

procedure partition (integer value a, b, r\ 
integer result c; integer a r ray {var} A't*)); 

{|q dom X and X=X0} 
begin integer d; 
c := a; d := b\ 
{whileinv: a \c d\ b\ and {X ] <* r 

and r <* {X 1 d\^b\} and X 1 \a b\ ^ X0 1 \a b\ } 
while c < d do 

if X(c) < r then c : = c + 1 else 
if X{d)>r then d := d-1 else 

begin 
{c d} 
begin integer t\ t:=X(c); X(c) :=X(d); X(d) := t end; 
c := c + 1; d := d — 1 
end 

end 
{|a [c b\ and {X 1 Q c } <* r and r <* {X \ \c b\} 

and ^ 1 \a b\ ^ ^ o 1 \a b\} 
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and from the merging program of Section 2.3.6: 

procedure raerge(integer value ax, bx, ay, by, az, bz; 
integer a r ray {exp} X, Y(*); integer a r ray {var} Z(*)) ; 

{pa: Z#X & Z # Y } 
{|q;r k c | g d o m X and |ay dom Y and az bz £ dom Z 

and ord< X \ ax bx and ord< Y 1 ay by>_ 
and # ax bx + # ay by = # M ) 

begin integer kx, ky, kz; 
kx := ax; ky := ay; kz := az; 
{whileinv: |ax \kx ~bx\ and 

and ord< Z 1 |az \kz 
ay ky by and az kz bz 

and {Z j \az \kz} <* {X \ |kx bx\}U{Y ] |ky fr>>|} 
and # |kx bx\ + # \ky by\ = # \kz bz\ 
and ( Z 1 \az^\kz) ~ (X ] \ax | fcc)©(Y 1 \ay^\ky) } 

while kz<bz do 
if (if ky>by then t rue else if kx>bx then false else 

X(kx) < Y(ky)) 
then begin Z{kz):=X(kx); kx:=kx+1; kz:=kz+1 end 
else begin Z(kz): = Y(ky); ky:=ky+1; kz:=kz+1 end 

end 
{ord< Z 1 f az bz\ 

and (Z] |az bz\)^{X\ \ax bx\) © (Y 1 \ay by\) } 

Since the last procedure has several array parameters , one of which is 
changed by the procedure, it raises the possibility of interference between 
the array parameters . Consider a procedure statement merge{ ... ) in which 
the same array identifier occurs twice as an actual parameter . There is no 
problem if the actual parameters corresponding to the formal parameters X 
and Y are the same, since neither of these arrays is changed by the proce-
dure. But merge may not behave correctly if the actual parameters corres-
ponding to X and Z, or to Y and Z, are the same. In this situation, the 
procedure may per form assignments to elements of Z that are yet-to-be-
processed e lements of X or Y. Thus, correct usage of merge requires that Z 
must not interfere with X or Y. 

We have indicated this requirement as a parameter assumption. In 
general , if X and Y are arrays, we write X# Y to indicate that no assignment 
to an e lement of X should affect the value of an element of Y. Similarly, if X 
is an array and E is an expression, we write X#E to indicate that no 
assignment to an e lement of X should affect the value of E. 
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Of course, even though we cannot call arrays by value or result , we 
could overcome the in te r fe rence p rob lem by simulating call by result for Z 
(or call by value for X and Y). We could simply replace Z in the body of 
merge by a local array ZZ, and add a s ta tement for copying Z Z into Z to the 
end of the body: 

p rocedure merge ( integer value ax, bx, ay, by, az, bz\ 
integer a r r a y {exp} X, Y(*); integer a r r ay {var} Z(*)) ; 

begin integer a r r a y ZZ(az::bz); 
begin ... end; 

begin integer k\ k := az — 1; 
while k<bz do 

begin k := k+ 1; Z{k) :— ZZ(k) end 
end 

end 

(where begin . . . end is the previous p rocedure body with Z r e p l a c e d by ZZ) . 
But now we have increased the space and t ime requ i rements of merge 
substantially and, m o r e crucially, we have imposed this penal ty on all usages 
of merge to a c c o m m o d a t e a part icular kind of usage. A far more flexible 
approach, encouraged by the absence of call by value or result for arrays, is 
to retain the original version of merge, to state its l imitations clearly, and to 
leave the p rob lem of c i rcumventing these l imitat ions to its users. 

Exercise 

1. For Exercises 4 to 6 following Section 2.3.7, encapsulate the solution of each 
exercise as a procedure by constructing an appropriate heading. Include the 
necessary parameter assumptions. 

3.1.7 Procedure Parameters 

In Algol W, a p a r a m e t e r of a p rocedure can itself deno te a p rocedure . Thus 
one procedure can be passed as a p a r a m e t e r to a second p rocedure , and then 
called f rom within the body of the second procedure . For example , if we 
declare 

p rocedure p(procedure q {integer exp, integer var}); 
begin . . . q{a + b, c) . . . end 

then the s t a t ement pifact) has the same meaning as the result of substi tut ing 
fact for q in the body of p, so tha t q(a + b, c) becomes fact(a + b, c). 

In Algol W, the specifier p rocedure F is used to indicate tha t the fo rmal 
parameter F d eno t e s a p rope r p rocedure . However , just as with o the r kinds 
of parameters , this f o r m of specifier must be ex tended to provide enough 
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information to check parameter matching. As illustrated above, we will 
include in the specifier of a procedure parameter a list of the phrase types of 
the parameters to which the procedure parameter can be applied. In general 
we will use a specifier of the form 

procedure F {dx, ... , 6n} 

to indicate that the formal parameter F denotes a proper procedure that in 
turn accepts n> 1 parameters of types 0 b . . . , 6n. The phrase type established 
by this specification is procedure(0j , ... , 6n). 

When n = 0, i.e. when F denotes a "parameter less" procedure, an 
interesting possibility arises. Within the body of the procedure in which F is a 
formal parameter , any call of F will be a procedure statement consisting of F 
by itself, which will remain syntactically correct if F is replaced by any 
statement . Thus an actual parameter corresponding to F can be any state-
ment, ra ther than just an identifier denoting a parameterless procedure. 

In fact, this possibility is permit ted in Algol W. Thus we say that the 
specifier procedure F (where the absence of curly brackets indicates n = 0) 
establishes the phrase type statement, indicating that an actual parameter 
corresponding to F can be any statement . 

As an example, consider 

procedure repeat(procedure s; logical {exp} / ) ; 
begin s\ while "II do 5 end 

If S is a s tatement and L is a logical expression, then repeat{S, L) is 
equivalent to begin 5; while "I L do S end, or to the flowchart 

Thus repeat(S, L) is equivalent to the s tatement repeat S until L, which is not 
provided in Algol W, but occurs in several other languages and expositions 
of programming [Wirth 71a, Dijkstra 71]. 

As a second example, consider 

procedure iterate{integer value a, b; procedure p {integer exp}); 
begin integer k\ k := a — 1; 
while k<b do 

begin k := k +1; p(k) end 
end 
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The effect of this procedure is to apply p to every integer in |a b|, in 
increasing order. (Notice that {integer exp} in the specification indicates that 

ik) s h o u l d not change the value of k.) Thus, for example, the following 
s t a t e m e n t will set s to the sum of the segment of X over \a fr1 • 

begin 
procedure addoneelement(integer {exp} i); s := 5 + X(i); 
s := 0; iterate{a, b, addoneelement) 
end 

To see this, we first apply the copy rule (and the rule for call by value) to 
the call of iterate: 

begin 
procedure addoneelement^integer {exp} /); s : = s + X(i); 
5 : = 0; 

begin integer a', b'; 
a := a ; b' := b\ 

begin integer k\k := a -1; 
while k<b do 

begin k := k + 1; addoneelement(k) end 
end 

end 
end , 

and then apply the copy rule to the resulting call of addoneelement: 

begin 
procedure addoneelement(integer {exp} i)-, s := s + X{i)\ 
s := 0; 

begin integer a', b ; 
a' := a; b' := b\ 

begin integer k; k := a — 1; 
while k<b' do 

begin k := k + 1; s := s + X{k) end 
end 

end 
end 

Procedures that accept procedure parameters are of ten called higher-
order procedures. As illustrated by repeat and iterate, such procedures can be 
used to describe control mechanisms. Indeed in Section 4.1.1 we will see that 
the Algol W for s ta tement can be viewed as a call of iterate. Fur ther examples 
of higher-order procedures will occur in Chapter 5. 
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3.1.8 Function Procedures 

Just as p rope r p rocedure declarat ions can be used to def ine new sta tements 
called procedure s ta tements , so function procedure declarations can be used 
to def ine new expressions called function designators. 

Let r deno te integer, real, long real, o r logical. T h e n a r function 
declarat ion has the fo rm 

r p rocedure P{cr\\ . . . ; cr„); E 

where each o-, is a specifier of a formal p a r a m e t e r Fh and E is a r expression. 
Within the scope of this declara t ion, one can write a r expression of the form 

which is called a. function designator. T h e meaning of P{AX, ..., An) is again 

def ined by the copy rule: it is the same as the meaning of 
E \ f U ,Fn-+A\, ... ,An > 

with the proviso abou t global identif iers tha t is needed to avoid identifier 
collisions. The fo rm of specifiers, the rules fo r matching fo rma l and actual 
pa ramete r s , and the behavior of call by value and result a re the same as for 
p rope r p rocedures . 

The following examples should be obvious: 

integer p rocedure maximum (integer value m, n); 
if m>n then m else 

logical p rocedure even (integer value x)\~\odd{x)\ 
logical p rocedure implies{logical value q\ logical {exp} r); 

if q then r else t rue 

Funct ion p rocedures may also be used as pa rame te r s to e i ther p rope r or 
funct ion procedures . For n> 1, the ex tended specifier 

r p rocedure F {dl5 ... , 6n} 

establ ishes the phrase type r p r o c e d u r e ^ , . . . , 9n). W h e n n = 0, a corres-
ponding actual p a r a m e t e r may be any r expression, r a the r than just a r 
func t ion p rocedure , since any call of F will be a funct ion des ignator consist-
ing of F by itself, which will r emain syntactically correct if F is rep laced by 
any (paren thes ized) r expression. Al though this possibility is not men t ioned 
in [Sites 72], it is a na tu ra l analogue of the si tuation for p rope r p rocedures 
which appea r s (on the basis of several test cases) to be suppor ted by the 
Algol W implemen ta t ion . Thus the specif ier r p rocedure F (where the 
absence of curly b racke t s indicates n = 0) establ ishes the phrase type r 
expression. In fact , r p rocedure F has the same meaning as r {exp} F. 

Algol W permi t s the bodies of func t ion p rocedures to be a kind of 
phrase called a block expression which can conta in ass ignments and o the r 
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statements. Unfo r tuna t e ly , the int roduct ion of block expressions permi ts 
the construction of express ions with side effects, i.e. expressions whose 
evaluation can change the s tate of the computa t ion . 

The use of side effects can m a k e p rograms very difficult to unders tand . 
More fundamenta l ly , side effects invalidate our whole approach to specify-
ing programs and proving their correctness, which relies upon the assump-
tion that any express ion which can be wri t ten in the p rogramming language 
can also appear in assert ions. T h e occurrence of an expression with side 
effects in an asser t ion is meaningless , and thus the introduct ion of a language 
feature permit t ing side ef fec ts would unde rmine the rigor of our logic. 

For this r eason we will not use block expressions in this book , nor will 
we use call by result for t he p a r a m e t e r s of funct ion procedures . 

O n the o the r h a n d , we will use call by value. The formal explanat ion of 
call by value given in Section 3.1.5 does not extend to funct ion procedures 
(since we have proscr ibed block expressions) , but the reader ' s intuitive 
understanding should be a d e q u a t e . Call by value is usually prefe rab le to call 
by name (for s imple p a r a m e t e r s ) since it p revents r epea ted evaluat ion of an 
actual pa rame te r . H o w e v e r , as indicated by the above declarat ion of implies, 
call by name may be needed to avoid unnecessary evaluat ion. 

Exercise 

1. Most of the programs in Section 2.2, which use arrays but do not alter them, can 
be recast as proper procedures that accept function procedures that in turn 
accept integers. Encapsulate the program for binary search in Section 2 .2 .10 as a 
proper procedure that accepts a function X and searches over an interval for an 
integer j such that X{j)=y. 

3.1.9 A Summary 

Since our exposi t ion of t he var ious aspects of p rocedures has been ra ther 
discursive, it is usefu l to summar ize their characteristics. Th roughou t this 
summary, the symbol r s tands fo r any of the fou r da ta types integer, real , long 
real, or logical. 

A proper procedure declaration has the fo rm 

p rocedure P{p-\, ... ; cr„); 5 

where the body 5 is a s t a t emen t , and a r function procedure declaration has 
the fo rm 

r p rocedure P{cr\; ... ; cr„); E 

where the body E is a r express ion. In each case P is a b inder of an identif ier , 
and o " ! ; . . . ; an is a formal parameter list in which each o-, is a specifier. W h e n 
n = 0 the pa ren theses enclosing the fo rma l p a r a m e t e r list are omi t ted . 
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In the sequel we will only describe specifiers that contain a single binder 
of an identifier, which is called a formal parameter. However , any specifier 
can be compounded by listing several formal parameters , separated by 
commas, in place of a single formal parameter . 

The scope of the binder P in a procedure declaration is the immediately 
enclosing block, excluding lower and upper bounds in array declarations 
immediately enclosed by that block. The scope of the binders in the formal 
parameter list is the formal parameter list plus the following procedure 
body; the identifier occurrences which are f ree in the body and not bound by 
these binders are called global occurrences. 

The meaning of a procedure declaration can be obtained by first using 
the t ransformat ion described in Section 3.1.5 to eliminate the specifiers 
r value F, r result F, and r value result F, and then using the copy rule 
described in Section 3.1.1. 

We have extended the form of specifiers in Algol W, by adding formally 
prescribed comments in curly brackets, to achieve a syntax that guarantees 
that the copy rule will preserve syntactic correctness. This syntax, precisely 
described in Appendix B, is based on the idea that every binder establishes 
the phrase type of the identifier occurrences that it binds, which in turn 
determines the contexts that can contain these occurrences. In particular, an 
identifier P of phrase type p r o c e d u r e ^ , ... , 6n) can only occur in a proce-
dure s ta tement P{AX,... , An) if each actual parameter At is a phrase of type 
Oi. A similar requirement is imposed upon an identifier occurrence of type 
r p r o c e d u r e ^ , . . . , 6n) in a function designator. As a consequence, the 
substitution prescribed by the copy rule is always type-correct, i.e. it replaces 
identifier occurrences by phrases of the same phrase type. In Section B.3.5 
of Appendix B, we will show that , with appropriate parenthesization, such 
substitutions preserve syntactic correctness. 

The following is a list of the phrase types used in programs in this book, 
along with a description of the declarations, specifiers, and other binders 
that establish these phrase types: 

(1) r variable. This phrase type is established by the declaration r I x , 
... , /„, or by the specifier r {var} F, r value F, r result F, or r 
value result F. 

(2) r expression. This phrase type is established by the declaration r 
procedure P; E, or by the specifier r {exp} F or r procedure F. 
Moreover , as we will see in Section 4.1.1, the phrase type integer 
expression is established by the binder in a for s ta tement . 

(3) r a r r ay variable(*, ... , *). This phrase type is established by the 
declaration r a r ray ... , Im(Li::Ui, . . . , Ln::Un), or by the 
specifier r a r r ay {var} F(*, . . . , *). The number n>\ of asterisks 
indicates the number of dimensions of the array. 
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(4) r a r r ay expression(*, ... , *). This phrase type is established by the 
specifier r a r r a y {exp} F(*, ... , *). Again, the number of asterisks 
indicates the n u m b e r of dimensions. 

(5) statement. This phrase type is established by the declarat ion proce-
dure P; S, or by the specifier procedure F. 

(6) procedure(0i, •••, 0n), where n> 1 and each 0, is a phrase type. This 
phrase type is established by the declaration procedure P(cri, ... ; 
crn); S, where each cr, is a specifier establishing the phrase type 0,-, 
except that if cr, is r value, 0, is r expression. It is also established by 
the specifier procedure F {d^ ... , 0„}. 

(7) r procedure(0 i , . . . , 0„), where n> 1 and each 0, is a phrase type. 
This phrase type is established by the declarat ion r procedure P ( o v , 
. . . ; o"«); E , where each cr, de termines as described in (6) above. It 
is also established by the specifier r procedure F {01? . . . , 

Exercise 

1 Consider the following procedure declaration. 
(a) For each identifier occurrence, show the binder that binds it. 
(b) For each binder, show the phrase type that it establishes. 
(c) Use the copy rule to obtain an equivalent procedure declaration that does 

not contain any calls of the procedures iter or q. 

procedure doubleiter(procedure p {integer exp, integer exp}); 
begin 
procedure /ter(procedure p {integer exp}); 

begin integer k; k := 0; 
while £ < 1 0 0 do 

begin k : = k + 1; p(k) end 
end; 

procedure ^(integer {exp} /); 
begin 
procedure ^(integer {exp} j); p{i, j); 
iter(q) 
end; 

iter(q) 
end 
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3.2 RECURSION 

Since the scope of a p rocedure declara t ion is a block that includes the body 
of the declara t ion, a p rocedure can be called f r o m its own body, or f r o m the 
body of any o the r p rocedure declared in the same block. Thus a p rocedure 
can call itself, and a family of p rocedures declared in the same block can call 
one ano the r . This capabili ty is called recursion. 

So far , we have used p rocedures to encapsula te par ts of p rograms in 
o rder to clarify s t ructure and to avoid replicating similar par ts of programs. 
But the use of recurs ion goes far beyond this. It is a p r o f o u n d extension 
of ou r p rog ramming language, which provides an essentially new way of 
writing programs. 

3.2.1 Simple Examples 

Consider the p rocedure 

p rocedure /acf ( in teger value n\ integer result / ) ; 
{ n > 0 } 
if n = 0 then / : = 1 else 

begin fact{n-\, / ) ; / : = n x / e n d 
{ / = « ! } , 

which calls itself via the p rocedure s ta tement /acf( r t - 1 , / ) . Obviously, fact(0, 
f ) s e t s / t o the factor ial of zero , since it only executes the ass ignment / : = 1. 
But t hen fact(l, / ) must s e t / t o the factorial of one , since in this case the 
recursive call fact(n - 1 , / ) is fact(0,f). Similarly, fact(2,f) will call fact{\,/) 
and will set / to the factorial of two, etc. 

In summary , fact(0,f) works correctly, and for « > 0 , the correc tness of 
fact(n — 1 , / ) implies the correc tness of fact{n,f). T h u s by induct ion on n, 
fact(n,f) is correct for all « > 0 . Howeve r , the p rocedure does no t work for 
n<0; in this case it will cont inue to call itself forever with increasingly 
negat ive values of n. Just as with the while s t a t ement , the use of recurs ion 
can p roduce non te rmina t ing computa t ions . 

Recurs ion can be expla ined by means of the copy rule. Of course , 
applying the copy rule to a p rocedure s t a t ement tha t calls a recursive 
p rocedure will always give a n o t h e r s ta tement tha t still contains one or m o r e 
p rocedure s t a t ements as subs t a t emen t s—one can never e l iminate such 
s t a t emen t s complete ly . However , for any part icular t e rmina t ing execut ion 
of a recursive p rocedure s t a tement , there will be some finite n u m b e r of 
copy-rule appl icat ions such that the remaining p rocedure s t a t ements will not 
be execu ted . For example , applying the copy rule twice to fact(n,f) (and 
using the rules for call by value and result) gives 
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begin integer ri, f ; ri : = n; 
if n' = 0 then / ' : = 1 else 

begin 
begin integer n", f"; ri': = ri -1; 
if n" = 0 t h e n / " := 1 else 

begin fact{n"-\, / " ) ; / " : = n" x / " end; 
/ ' : = / " 
end; 

/ ' := « ' x / ' 
end; 

/ : = / ' 
end , 

which will s e t / t o the factorial of n, when 0 < « < 2 , without executing the 
recursive procedure statement fact(n"-l, / " ) . More generally, N applica-
tions of the copy rule will be sufficient for 0 < n < N . 

In general, recursion can be used to solve a problem if: 

(1) There is some integer characteristic of the problem, which we will 
call the size of the problem, that has a minimum value. 

(2) Minimal-sized cases can be solved directly, i.e. without recursion. 
(3) The solution of any nonminimal-sized case can be expressed in 

terms of the solution of (perhaps several) cases with smaller sizes. 

A problem with these characteristics can be solved by a recursive procedure 
of the form: 

procedure solve{ ... ); 
if "Size is minimal" then "Direct solut ion" 

else "Gene ra l solut ion" , 

where "Genera l solut ion" will use recursive calls of solve to obtain solutions 
for smaller cases. A proof of correctness and termination will involve induc-
tion on the size of the problem. 

For the problem of s e t t i n g / t o n!, the size is n, the minimum size is zero, 
the direct solution for n = 0 is / := 1, and the general solution for n>0 is 
fact(n — l , / ) ; f : = n x / . 

Computing factorials is a trivial application of recursion; a program 
using iteration by means of a while s ta tement will be nearly as clear and 
somewhat faster. A more significant example is a puzzle called the "Towers 
of Hanoi" [Dijkstra 71]. 

This puzzle consists of three pegs and n disks of distinct sizes which can 
be piled on the pegs. In a legal configuration every disk will be on some peg, 
and no disk will be on top of a smaller disk. (See Figure 3.1.) A move consists 
of removing the topmost disk f rom one peg and placing it on top of another 
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Figure 3.1 A Legal Conf igura t ion of an Eight-disk Tower of Hanoi Puzzle. 

peg, without violating the constraint that no disk can be on top of a smaller 
disk. Starting with all disks on one peg, the problem is to find a sequence of 
moves that will place all disks on one other peg. 

The key to solving the puzzle is to notice that the problem of moving the 
k smallest disks f rom one peg to another is unaffected by the presence of 
larger disks on any of the pegs—the larger disks simply remain unmoved 
beneath the moving ones, and they cannot violate the constraint that no disk 
can be on top of a smaller one. 

To treat the problem of moving the k smallest disks recursively, we take 
k to be the size. Then the minimal case is k = 0, and the direct solution is to do 
nothing. 

For k>0, the general solution is to move k— 1 disks to the " intermedi-
a t e " peg (the one that is neither the start nor the destination), to move a 
single disk f rom the start to the destination peg, and then to move k — 1 disks 
f rom the intermediate peg to the destination. 

To express this solution as a recursive procedure, we represent the pegs 
by three distinct integers, and we assume the existence of a procedure 
moveone(integer value a, b) for moving the topmost disk f rom peg a to peg b. 
(In practice moveone might simply print a record of the move f rom ato b.) 
Then the following procedure will move k disks f rom peg a to peg b, using 
peg c as an intermediary: 

procedure mo vemany (integer value k, a, b, c); 
if £ :>0 then 

begin 
movemany(k — 1, a, c, b); 
moveone (a, b); 
movemany(k—\, c, b, a) 
end 
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In contrast to the factor ial computa t ion , this p rocedure expresses the 
eneral solution in t e rms of m o r e than one smaller solution. In o ther words, 

a single execut ion of the body of movemany may cause two immedia te calls 
of movemany. This s i tuat ion is usually characterist ic of a nontrivial use of 
recursion. 

Exercises 
1 Show that movemany(k, a, b, c) will execute 2 * - l moves. 

2 The following recursive procedure, which sets / t o the nth Fibonacci number, is 
very similar to the factorial example: 

procedure fib (integer value n; integer result / ) ; 

if n = 0 then / := 0 else if n = 1 then / := 1 else 
begin integer g; 
fib(n-2, g); fib(n — l, /); / := f+g 
end 

{f=fib(n)} . 

However, this is an extremely inefficient way to compute Fibonacci numbers. 
Why? 

3 The computational power of recursion subsumes that of the while statement. To 
show this, define a recursive procedure whiledo, whose body does not contain a 
while statement, such that whiledo(L, S) has the same meaning as while L do S. 

3.2.2 Sorting by Merging 

To provide f u r t h e r examples , we will explore several ways of applying 
recursion to the p rob lem of sort ing an array segment . A n obvious measure of 
the size of this p rob lem is the size of the segment to be sor ted . T h e minimal 
case occurs when the segment conta ins zero or one e lements—in this case 
the segment is a l ready o r d e r e d and no th ing needs to be done . 

For larger segments , we can divide the segment into two smaller sub-
segments, recursively sor t each of the subsegments , and then merge t hem, 
i.e. r ea r range the o r d e r e d subsegments so tha t the ent i re segment is o rde red . 
Thus our p rog ram has the f o r m : 
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procedure mergesort(mte%pr value a, b\ 
integer a r ray {var} X(*))\ 

; dom X and X= X^ { 
if a < b then 

begin integer m\ 
"Pick m " ; 
{ a m ~b\ a n d # | o ^ m ] < a n d # m Q T ] < # [<Tji]} 
mergesort(a, m, X)\ mergesort(m + 1, b, X)\ 
{ o r d s X 1 |a m\ and ord< X \ m\ b\ 

and X \ |a m\ ^ X0 \ |a m\ 
and X 1 m\ b\ ^ X0 1 m[~b\ } 

" M e r g e " 
end 

{ o r d s X 1 ^ 1 \<LJ>\} • and X 1 

At first sight, one might expect to replace " M e r g e " by 

merge (a, m, m + 1, b, a, b, X, X, X) , 

where merge is the procedure defined in Section 3.1.6. But, as discussed in 
that section, this would cause the formal parameter Z to interfere with the 
formal parameters X and Y, which would cause merge to malfunction. To 
overcome this difficulty, we will declare a separate local array to hold the 
result of merge, and then copy this array back into X. Thus " M e r g e " is 
replaced by 

begin integer a r ray Y(a::b); integer k\ 
merge(a, m, m + 1, b, a, b, X, X, Y); 
{ord-g Y and Y ^ XQ\ |a b\} 
k: = a — 1; 
while k<b do begin k: = k +1; X(k): = Y(k) end 
end 

To insure terminat ion of our recursive procedure, we must program 
"Pick m " so that both |a m\ and are smaller than |a b\, i.e. so that 

{<a<b} "Pick m " { a < m < b } . 

and # m\ b\ as a m Moreover , to maximize speed, we want to make # 
nearly equal as possible. The solution is to replace "Pick m " by 

m:=(a + b - 1) div 2 . 
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C o r r e c t n e s s can be shown by a monotonicity argument similar to that given 

in Section 2.2.10. 
The complete procedure is 

procedure mergesort(integer value a,b\ 
integer a r r ay {var} X(*) ) ; 

{|q fr|gdom X and X=X0} 
if a < b then 

begin integer m; 
m: = (a + b - 1) div 2; 
{ a m\ b| and # |a m < # \a~ 

and # m\ b\ < # a b } 
mergesort(a, m, X)-, mergesort(m + l , b, X); 
{ord<X 1 \a m\ and ord< X 1 m\ b\ 

and X 1 |a m\^X0 ] \a m\ 
and X \ m Q ^ o 1 } 
begin integer a r ray Y(a::b); integer k\ 
merge(a, m, m +1, b, a, b, X, X, Y); 
{ o r d s Y and Y^ X0 1 \T~b\} 
k:=a- 1; 
while k<b do begin k:=k+1; Y(k) end 
end 

end 
{ord< X 1 and X 1 [7j>] ^ X0 1 [TT|} . 

(For simplicity, we have used slightly incomplete assertions. As dis-
cussed in Exercise 4 af ter Section 2.3.4, we should also specify that 
mergesort has no effect on the elements of X outside of the segment over 
[7j>]. For this purpose, * 1 (dom Z - [ 7 j > ] ) = 1 (dom X - [ 7 j > ] ) could 
be added to all assert ions.) 

To determine the time required by this procedure, we must investigate 
the pattern of recursive calls that occur during execution. This pat tern can be 
described by a calling tree in which each node represents a call of mergesort, 
and one node is a subnode of another if the call represented by the lower 
node occurs during execution of the call represented by the higher node. A t 
each node of the tree we will place the size of the segment being sorted by the 
corresponding call. For example, Figure 3.2 shows a calling tree for sorting a 
segment of size 7. 

A node without subnodes is called terminal. The depth of any node is its 
distance f rom the top node, and the depth of the tree is the depth of its 
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dep th = 

2 1 2 2 2 

/\ /\ /\ 
3 1 1 1 1 1 i 

Figure 3.2 A Calling Tree fo r mergesort with « = 7, d=3, t= 13, and s= 27. 

deepest node. In Figure 3.2, one terminal node has a depth of 2 while the 
others have depths of 3; the depth of the tree is 3. 

The nature of mergesort ensures that its calling tree will have the 
following propert ies: 

(1) A node is terminal if and only if its at tached size is one. 
(2) A node is nonterminal if and only if its at tached size is greater than 

one. In this case the node will have exactly two immediate subnodes 
(i.e. the calling tree will be a binary tree), and the size at tached to 
the node will be the sum of the sizes at tached to the immediate 
subnodes. 

(We are ignoring the case where the at tached size is zero, which will not 
occur in a calling tree except in the trivial special case where the entire array 
being sorted is empty. ) 

F rom these local propert ies of calling trees, we can establish certain 
global propert ies . Consider a calling tree with the following parameters : 

n = size at tached to top node, 
d= depth of tree, 
t—total number of nodes, 
s = sum of sizes at tached to nodes, 
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T h e n 

(3) t=2 - #i-l, 
(4)5=£n -(d + 1) 

To show that (3) and (4) are consequences of (1) and (2), we use 
induction on t ree dep th , i.e. in proving (3) and (4) for an arbi t rary t ree, we 
assume tha t (3) and (4) hold for its subtrees . If the t ree consists of a single 
terminal node , then n = 1, d = 0, t=1, and s=1, so tha t (3) and (4) are 
obviously t rue . 

O t h e r w i s e , t h e c a l l i n g t r e e h a s t h e f o r m s h o w n in F i g u r e 3 . 3 . 

d=depth 

t= number of nodes 

5 = s u m of sizes 

F O R F U L L T R E E 
'dx = depth 

tx = number of nodes 

5, = sum of sizes 

FOR LEFT S U B T R E E 

' d 2 - depthv 

t2=number of nodes 

•s2 = sum of sizes 

F O R R I G H T S U B T R E E 

Figure 3.3 The General Case for Induction on the Depth of a Calling Tree. 

The induct ion hypothesis for the two immedia te subtrees gives 

ti = 2 • « i - l 
sl<nl • (dx +1) 

t2 = 2 - n2 ~ 1 
s2<n2 • \d2 + l ) 

Then 

and 

t=tx + t2+ 1 
= (2 • — 1) + (2 • #i2 — 1) + 1 
= 2 • (ni + n2)-l 
=2'n—1 , 

5 = 5! + s 2 + n 

<nx • {dx +1) + n2 • (d2 + 1) + n 
• d+ n2 • d+n 

= («! + n2) - d + n 
= n-(d+1) , 
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where the second inequality holds because the depth of a t ree is one larger 
than the maximum depth of its immediate subtrees. 

Now consider the time required to execute a single call of mergesort for 
an array of size n, exclusive of the time required to execute any recursive 
subcalls. The only iterations are the while s tatement within merge and the 
while s tatement that copies f rom Y into X. Thus the time for a single call will 
be bounded by a linear function of n, say a + (3 • n. 

It follows that the total time required by mergesort, including recursive 
calls, will be bounded by the sum of a + (3 • n over the nodes of the calling 
tree, which is a • t +(3 • s. Then (3) and (4) show that the t ime to sort an array 
segment of size n is bounded by 

a • (2 • n - l ) + /3 • n - (d+1) . 

This formula shows the importance of minimizing the depth of the 
calling tree. For a given n, this depth will be minimized if the tree is almost 
balanced, i.e. if the depths of the highest and lowest terminal nodes in the 
tree differ by at most one. For example, the calling tree in Figure 3.2 is 
almost balanced, while the t ree in Figure 3.4 is highly unbalanced, and has 
much larger values of d and s. 

In fact, mergesort produces an almost balanced tree because, at each 
recursive level, the segment to be sorted is split as nearly as possible into 
equal parts. Specifically, the calling tree satisfies 

(5) For any nonterminal node with at tached size n > 2, if n is even then 
both immedia te subnodes have at tached size n/2, while if n is odd 
then the immediate subnodes have at tached sizes (n - 1 ) / 2 and 
(n +1)/2. 

Let [log2 n\ be the largest integer that is at most log2 n, and let [log2 n] be the 
smallest integer that is at least log2 n. Then (5) implies 

(6) Every terminal node has a depth d' such that [log2 n\ < d' 
^ n°g2 n\. 

Again the proof is by induction on t ree depth. For a single-node tree, 
n= 1 and d'= 0, so that (6) is obvious. Otherwise, we have the situation 
shown in Figure 3.3, and the induction hypothesis implies that, for every 
terminal node in the left subtree, the depth in the full tree satisfies 

[log2 nx\ +1 < d' < [log2 + 1 . 

(Remember that the depth of a node in the full tree is one larger than its 
d e p t h in an i m m e d i a t e s u b t r e e . ) T h e n s ince [log2 « i j + l = 
[(log2 nx) + lJ = [log2 (2 • «i)J, and similarly for [ log 2 -n 1 ]+ 1, we have 

Llog2 (2 • « 0 J d' < [log2 (2 • »!>! • 
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7 

1 1 

Figure 3.4 A Highly Unba lanced Calling Tree with n = 7, d = 6, *=13 , and s = 34. 

By a similar argument , for every terminal node in the right subtree, the depth 
in the full t ree satisfies 

[log2 (2 • n2)J < d' < [log2 (2 • n2J] . 

When n is even, 2 • nx = 2 • n2 = n, so that every terminal node satisfies 
(6). On the other hand, when n is odd, either 2 • nx = n - 1 and 2 • n2 = n + 1 
or vice-versa. Thus every terminal node satisfies 

Llog2 ( n - l ) J < d' < [log2 ( / i+ 1)1 . 

But here n is an odd integer and is not one (since it is at tached to a 
nonterminal node) , so it is no t an exact power of two. This implies 
[log2 n\ = [log2 ( n - l ) J and [log2 n] = ("log2 (n + l ) ] , which again establishes 
(6). 
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From (6), we see that the calling tree for mergesort is almost balanced, 
and that its depth is bounded by [log2 « ] < l o g 2 n + 1. Thus the time required 
by mergesort is bounded by 

a • (2 • n - 1) + /3 • n • (log2 n + 2) 
= 2 • (a + /3) • n -a + /3 • n • log2 n , 

which is of order n • log n. 

This result shows that sorting by merging is an order of magnitude faster 
than sorting by maximum finding, which requires a time of order n2. It also 
shows that the time to sort large arrays is dominated by the coefficient so 
that a t tempts to improve the speed of mergesort for large arrays should focus 
on the bodies of the while s ta tements within merge and the copying opera-
tion. Thus, for example, the speed for large arrays would not be significantly 
improved by treating # |a b\ = 2 as a special case to be sorted by a simple 
exchange. (For an improvement that does reduce see Exercise 2 below.) 

Finally, we must consider the space required by mergesort. For an 
order-of-magnitude estimate we can ignore individual variables and only 
consider the local array Y. Of course, each recursive call of mergesort will use 
its own local array, but no two of these arrays will exist at the same time. This 
is because the recursive calls of mergesort are outside the block in which Y is 
declared. As a result, all storage used by lower-level recursive calls will be 
released before the block using Y is entered. Anothe r way of seeing this is to 
notice that , al though repeated application of the copy rule will create many 
blocks with local arrays, these blocks will never overlap. 

Thus the local storage used by mergesort is the size of the largest local 
array, which is obviously the one at the top level of recursion whose size is 
# 

The situation would be completely different if the declaration of Y were 
moved outward to the block containing the recursive calls. Then several 
local arrays would be used simultaneously, and their combined size would be 
the sum of the sizes along some path in the calling tree, which could be nearly 
twice the size of the largest single array. This is a vivid instance of the 
importance of declaring arrays as locally as possible. 

On the o ther hand, as discussed in Exercise 3 at the end of this section, 
there is an ingenious method of reducing the storage requirements of 
mergesort—but not to the point where they are negligible. The need for 
substantial extra storage to avoid interference is inherent in the underlying 
method of sorting by merging, and is the most serious limitation of this 
method in comparison with others. 
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Exercises 

1. Show that, for any tree in which every node has either zero or two immediate 
subnodes, the number of terminal nodes is one more than the number of 
nonterminal nodes. 

2. Although the need for temporary storage is inherent in sorting by merging, it is 
possible to avoid performing the copying operation after each call of merge. This 
will significantly reduce the coefficient (3 of the term in the time bound that is 
dominant for large n. 

Def ine two procedures insort and outsort that satisfy the following specifica-
tions: 

procedure mso/t (integer value a, b\ integer array {var} A , ,Y(*)); 
{pa: X#Y & Y # X ) 
{[a fr|<=dom X and \a fe|^dom Y and 

{ o r d s X 1 |a b| and X ] \a b\ ~ ] \a b\}; 

procedure outsort (integer value a, b; integer array {var} Z , Y ( * ) ) ; 
{pa: Z # Y & Y # Z } 
{|q fr|^dom X and |a fr|^dom Y and X=X0} 

{ o r d s Y 1 \a b\ and Y 1 \a b\ ~ Z 0 1 \a b\} 

Insort should sort the segment of X over 
place; it should use the segment of Y o v e r 

b \ and leave its result in the same 
as its temporary storage. Outsort 

should sort the segment of X over \a 6 
over 

and leave its result in the segment of Y 
a b . The two procedures will be mutually recursive, i.e. each will call the 

other (and both will call merge). The provision of a second array as a parameter 
obviates the need for declaring a local array. 

3. (Suggested by W. J. Gadbow) Use the "Overwriting Merge" program of Exer-
cise 5 after Section 2.3.7 to develop a variation of mergesort that uses less 
storage. 

4. Show that, when merge is generalized to ordering by keys as discussed in Section 
2.3.9, mergesort is stable. 

3.2.3 Quicksort 

W e n e x t c o n s i d e r a d i f f e r e n t r e c u r s i v e s o r t i n g m e t h o d , c a l l e d quicksort, 
w h i c h w a s i n v e n t e d b y C . A . R . H o a r e [ H o a r e 6 2 , F o l e y 7 1 ] . A s b e f o r e , w e 
will t a k e t h e s i ze of t h e p r o b l e m t o b e t h e s ize o f t h e s e g m e n t t o b e s o r t e d , s o 
t h a t t h e m i n i m a l c a s e of z e r o o r o n e e l e m e n t s c a n b e t r e a t e d b y d o i n g 
n o t h i n g , a n d w e wil l t r e a t t h e g e n e r a l c a s e b y d i v i d i n g t h e s e g m e n t i n t o t w o 
s m a l l e r s u b s e g m e n t s a n d s o r t i n g t h e s u b s e g m e n t s r e c u r s i v e l y . 
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In mergesort, we followed the recursive calls by an operat ion that 
rearranged the ordered subsegments into a completely ordered segment 
Now we will reverse the approach: we will precede the recursive calls by an 
operat ion such that sorting the subsegments will make the entire segment 
ordered without fur ther computat ion. A sufficient condition is that, before 
the recursive calls, all values in the left subsegment should be smaller or 
equal to all values in the right subsegment. 

Thus our procedure has the form: 

procedure quicksort^integer value a, b\integer a r ray {var} Z ( * ) ) ; 

{|g fel^dom X and X=X0} 
if a<b then 

begin integer c; 
" P r e p a r e " ; 
quicksort(a, c - 1 , X)\ quicksort(c, b, X ) 
end 

{ord< X 1 |a b\ and X \ \a b\ ^ X0 1 |a fr|} , 

where " P r e p a r e " must satisfy 

{|a fr|^dom X and \a\ \b\ and X=X0} 
" P r e p a r e " 

i\a\ \c \b\ and {X ] \<T]c} <* {X 1 Q } 
and X 1 \a b\ ^ X0 1 \a b\ } . 

Notice that the consequent asserts that \a~\c and \c b\ are both nonempty, 
and therefore both smaller than |a b\, which is necessary to insure termina-
tion of the recursion. 

An obvious possibility for " P r e p a r e " is to choose some integer r and 
then use the procedure partition given in Section 3.1.6 to obtain two sub-
segments whose values are smaller or equal to r and larger than r: 

begin integer r; 
"Choose r " ; 
partition(a, b, r, c, X ) 
end 

But partition gives no guarantee that both \a^\c and \c b\ will be nonempty. 
Moreover , this situation cannot be remedied by a careful choice of r ; in the 
extreme case where all segment values are equal, one of the subsegments will 
be empty, regardless of the choice of r. 

A simple way around this problem is to treat the outermost elements of 
the segment separately, and to apply partition to the interior. The details of 
the argument are evident f rom the assertions in this version of " P r e p a r e " : 
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® {|q b\g dom A' and 0 
begin integer r; 
if X(a)>X(b) then "Exchange X(a) and X{b)"\ 
{X(a)^X(b)} 
"Choose r " ; 
{ X ( a ) ^ X ( b ) } 
partition(fl + 1, b — 1, r, c, A^ 
end 
{|Q| |c and Z ( a ) < r and {X 1 a Q c } <* r 

( 0 
and r<* {X 1 Q f c } and } 

and {A- 1 Q c } < * {AT 1 3 ) } 

(For clarity, the obvious rear rangement conditions have been omitted f rom 
the assertions.) 

To maximize speed we want to choose r , within the const ra in t 
X(a)^r<X(b), to make the segments |a \c and |c b\ as nearly equal in size 
as is possible without doing a t ime-consuming operat ion. If we exclude the 
possibility of examining more than the outermost elements, the obvious 
choice is r : = (AT(fl) + A'(fc)) div 2, which satisfies X{a)<r<X{b) by a 
monotonicity argument similar to that in Section 2.2.10. 

The final version of the procedure is: 

procedure quicksort (integer value a,b\ integer a r ray {var} A^*)); 
{|Q fr|gdom X and X=X0} 
if a<b then 

begin integer c; 
begin integer r ; 
if X(a)>X(b) then 

begin integer t\ 
t := AT(fl); X(a) := X(b)\ X(b) := t 
end; 

r := ( X ( a ) + X(b)) div 2; 
{ X ( a ) ^ X ( b ) } 
partition (fl + 1, b —1, r, c, X) 
end; 

~]b\ and {X 1 Qc} <* 1 [7 
and X 1 [a ~ 1 \a b\ } 

quicksort(a, c-1, ^V); quicksort(c, b, X) 
end 

{ o r d s x ] 

3 

and X 1 \a b\ ~ A'0 1 
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(As with mergesort, we have omi t ted the specification that this p rocedure 
must no t d is turb X outs ide of the segment a b .) 

In contras t to mergesort, this p rocedure does not use any local arrays, so 
tha t its s torage r equ i remen t s a re negligible in compar i son with the array 
being sor ted (with the except ion discussed in Exercise 2 be low) . 

T h e t ime requ i red by quicksort p resents a p h e n o m e n o n we have not 
encoun te red be fo re : there is an o rder -o f -magni tude d i f fe rence be tween the 
worst-case behavior and the average behavior . In the worst case, at each 
recursive level X(a) and X(b) might be the largest two e lements in the 
segment over [a b\. In this s i tuat ion the calling t ree will be extremely 
unba lanced , as in Figure 3.4, and the t ime requi red to sort a segment of size n 
will be of o rde r n2. Bu t if the execut ion t ime is averaged over a reasonable 
distr ibut ion of segments of size n, then the probabil i ty of a near ly balanced 
t ree is high enough tha t the average t ime is of o rder n • log n (as is shown in 
[ A h o 74]). 

Some r e f i nemen t s of quicksort are discussed in the following exercises. 
A thorough discussion of improvemen t s to the algori thm, with an extremely 
deta i led analysis of t ime r equ i remen t s is given in [Sedgewick 77, 78]. With 
such improvement s , the a lgor i thm is the best genera l -purpose m e t h o d for 
sort ing large ar rays (unless the arrays are so large they must be kep t in 
secondary s torage devices such as disks or tapes) . T h e only impor tan t 
qual i f icat ions are the anomalous worst-case behavior , which renders quick-
sort unsui table for cer ta in kinds of real- t ime applicat ions, and a lack of 
stability. 

Exercises 

1. Hoare's version of quicksort [Hoare 62, Foley 71] uses the notion of "stoppers" 
to achieve a faster partitioning operation than the version given above. The basic 
idea is as follows: Suppose {X ] \c b\} contains a value, called a stopper, which is 
larger or equal to r. Since \c b\ must be nonempty, we can examine X(c) without 
fear of a subscript error. If we find that X(c) is smaller than r, then it cannot be a 
stopper, so that {X ] c [ j>]} must contain a stopper. Moreover, if we also know 
' n 1 and {X 1 > * r, then " T ' 

Hoare's algorithm maintains the existence of a stopper in |c b\ that is at 
least r and a stopper in |a d\ that is at most r. In addition to justifying a reduction 
in the number of tests executed during the partitioning process, these stoppers 
insure that the recursively sorted subsegments will both be strictly smaller than 
the segment over 

Check the correctness, including termination and lack of subscript errors, of 
the following slight variation of Hoare's algorithm. Within assertions, I stands 
for 
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a 1 c d\ b\ and {X 1 f ] c } r and {X ] d\^b\) >* r 
and (3i e \c b\) X(i)>r and (3i e |a d\) X(i)<r 
and X \ I a b \ ~ 1 a b 

procedure quickersort(integer value a, b; integer array {var} A'(*)); 
{[a dom X and X=X0} 
if a<b then 

begin integer c, d, r\ 
"Choose r"; 
{(3/ € [a b\) X(i)>r and (3i e X(i)<r} 
c := a; d := b\ 
{whileinv: /} while X(c)<r do c := c + 1 ; 
{whileinv: I and X(c)>r} while X(d)>r do d := d-1; 
{whileinv: I and X(c)>r and X(d)<r} 
while c<d do 

begin 
begin integer f; t := X(c)\ X(c) := X(d); X(d) := t end; 
c := c + 1 ; d := d-1; 
{whileinv: /} while X(c)<r do c := c+1; 
{whileinv: I and X(c)>r} while X(d)>r do d := d-1 
end; 

}=*r} {/ and {X 1 c d 
quickersort(a, c—1, A'); quickersort(d+1, b, X) 
end 

{ord s X 1 [a b\ and X ] \a b\ -v X0 ] \a b\} . 

Notice that the specification of "Choose r" can be met by setting r to any value in 
the segment of X over |a b\. To minimize the probability of worst-case behavior 
it might be better to set r to the median of a small sample of segment values, 
which would also meet the specification. 

Consider the worst case, in which the calling tree for quicksort has the extremely 
unbalanced form shown in Figure 3.4. Even though there are no local arrays, the 
individual variable c, plus some storage space used by the procedure linkage 
mechanism, will be allocated at each level of recursion, so that the total storage 
needed will be proportional to the size of the array segment being sorted. 

To overcome this problem, one can combine recursion and iteration. The 
basic idea is that the body of quicksort should contain a while statement with the 
invariant: 

ao and o rd s X \ [a^ |a and o rd s X \ b 
]«} 1 \T~bj} and {X 1 

and 1 la0 ftp {X 1 b[~b^\} 
and X 1 fco - 1 K 

where a0 and b0 are ghost identifiers recording the values of a and b upon entry to 
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quicksort. Within the body of the while statement, one can partition X over 
into two smaller subsegments, sort the smaller of these subsegments with a single 
recursive call of quicksort, and then reset a or b so that the remaining subseg-
ment becomes the segment of X over a b\. 

This is an application of a general method for replacing recursion by 
iteration which is discussed in [Knuth 74], 

3.2.4 Sorting by Range Partitioning 

Finally, we consider a third recursive sort ing m e t h o d , which is appl icable 
when the values occurr ing in the ar ray segment to be sor ted lie within a 
known finite range . This m e t h o d is dist inguished f r o m mergesort and quick-
sort by the use of a d i f fe ren t not ion of size. 

Suppose tha t X is an integer array, and that the re is a f ini te interval [7~7| 
such that {X ] \a ft|}cr Q . W e Can then regard the size of Q to be the 
size of the p rob l em of sort ing X over |a b\. T h e minimal case occurs when 

V s\ h a s ze ro or one member s , which implies that X over |a b\ is a l ready 
o r d e r e d . In the genera l case, we can use partition to obta in two subsegments 
with ranges which a re each smaller than [ 7 ^ , and then sort each of these 
subsegments recursively. If we m a k e the ranges of the subsegments as nearly 
equal as possible, we get 

p rocedure rangesort(integer value a, b, r, s; 
integer a r r a y {var} Z ( * ) ) ; 

{k b\ ^ dom X and {Z ] |a b\} ̂  \r s\ and X=X0} 
if r<s then 

begin integer c, t; 
t := (r + s - l ) div 2; 

{EL3Z0} 
partition (a, b, t, c, X); 
{{X 1 £ Q and {Z 1 O } £ Q l 

rangesort (a, c-1, r, t, X); rangesort(c, b, t+1, s, X) 
end 

{ o r d s X 1 |a b\ and X 1 |a b\ ^ X0 ] |a fr|} . 

This p rocedu re bears a curious relat ion to quicksort: Thei r f o rms are 
similar yet the r easons for their t e rmina t ion , and also the t imes which they 
requ i re , a re comple te ly d i f ferent . A calling t ree for rangesort will still satisfy 

. (d + \), bu t n o w the dep th of the t ree will be the least in teger k such 
tha t # |7~7l<2*. T h u s the t ime requ i red fo r rangesort to sort an ar ray 
segment of size n will be of o rde r of magn i tude n • l o g ( # |r s|). 
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In most cases this will b e worse than n • log n. But somet imes one needs 
to sort an array whose range is smaller t han its size. In practice this si tuation 
arises when one is sorting a large file of records , not on the ent i re value of the 
records, bu t only on the value of some key field whose n u m b e r of possible 
values is less than the n u m b e r of records . (In the ex t reme case the key might 
only have two possible values, so tha t partition itself could be used to do the 
sorting.) 

In using rangesort in pract ice, one would probably replace the test in the 
conditional s t a t emen t by ( r C s ) and ( a < b ) , so tha t te rmina t ion will occur 
when the segment being sor ted has e i ther minimal range or domain size. 

3.2.5 Recursive Function Procedures 

Algol W permi ts func t ion p rocedures as well as p roper p rocedures to be 
recursive. For example , one can def ine 

integer p rocedure factorial^integer value n); 
if n = 0 then 1 else n xfactorial(n -1) 

or 

rea l p rocedure power (real value x; integer value n); 
if n = 0 then 1 else if odd(n) then JC x power(x, n- 1) 

else power(x x x, n div 2) . 

It is evident tha t this kind of def ini t ion can possess a high degree of clarity 
and e legance . I n d e e d , o n e wei l -known p r o g r a m m i n g l a n g u a g e — L I S P 
[McCar thy 60]—is buil t a r o u n d the concept of recursively def ined funct ions . 

Never theless , with much regre t , we will avoid the use of recursive 
funct ion p rocedures in this b o o k . T h e reason is similar to tha t fo r avoiding 
expressions with side effects . O u r app roach to specifying p rograms and 
proving their correctness relies u p o n the fact tha t any expression which can 
be wri t ten in the p rog ramming language can also appear in assert ions. But if 
recursive func t ions are pe rmi t t ed , then expressions such as factorial( - 1 ) can 
denote non te rmina t ing computa t ions . Unfo r tuna te ly , the possibility tha t 
such express ions might occur in asser t ions cannot be accommoda ted by the 
logic we are using fo r p rogram specif icat ion. 

Exercises 

1. The purpose of this exercise is to show how recursion can be used to do simple 
parsing. A parser is the input-processing routine of a compiler which determines 
whether the input is syntactically legal and, if so, how it is divided into sub-
phrases. 

Suppose that an S-expression is a sequence of characters which is either the 
single letter A or a pair of S-expressions, enclosed in parentheses and separated 
by a period. In other words, in the notation of Appendix A, S-expressions are 
defined by the productions 
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(S-expression) ::= A | ( (S-expression) . (S-expression) ) 

Thus for example, the following character sequences are S-expressions: 

A 
(A.A) 
{(A.A).((A.A).(A.A))) 

while the following character sequences are not S-expressions: 
( ( M ) 
0 CA.i4.il) 
(A) (A.A)) 

To represent a sequence of characters, one can use a one-dimensional 
integer array in which the ith element has the value 1, 2, 3, or 4 depending upon 
whether the ith character of the sequence is A, a left parenthesis, a period, or a 
right parenthesis respectively. (Alternatively, one could use the string proces-
sing facilities of Algol W, which are not described in this book.) 

Write a recursive procedure 

procedure parse (integer value a, b\ integer result c; 
logical result correct; integer array {exp} X(*))\ 

that will examine the segment of X over |a b\ to determine whether the charac-
ter sequence represented by this array segment begins with an S-expression. 
More precisely, 

(1) If there is an integer c such that a \c b\ and Z 1 [ 7 ] c represents an 
S-expression, then c should be set to this integer (which must be unique, 
since an S-expression cannot be an initial subsequence of any other 
S-expression) and correct should be set to true. 

(2) Otherwise, correct should be set to false. 

The reader should be warned that the problems which arise in parsing 
programming languages can be far more difficult than is indicated by this 
exercise. We have purposely chosen a language whose parsing can be accom-
plished by a straightforward use of recursion. Good general references for the 
construction of parsers are [Aho 72, Gries 71, Backhouse 79]. 

2. (Suggested by P. J. Landin) The function procedure in the following block does 
not use our extended specifiers, and violates the parameter-matching discipline 
described in Section 3.1. Nevertheless, it is legal Algol W, and its meaning can be 
explained by the copy rule. 

begin 
integer procedure strange(integer n; integer procedure h); 

if n = 0 then 1 else nxh(n-1, h); 
b :=strange (a, strange) 
end 

(a) Show that there is no way of extending the specifiers in this program that will 
obey the parameter-matching discipline used in this book. 

(b) Use the copy rule to explain the behavior of this program. (Assume that a 
and b are integer variables.) 

(c) Explain why this program might be said to exemplify "hidden recursion". 
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3 3 SPECIFICATION LOGIC 

The introduct ion of p rocedures has greatly enr iched the variety of meanings 
that can be deno ted by identif iers . Because of this, the logic for proving 
program correctness in t roduced earl ier cannot encompass the procedure 
mechanism. In this sect ion, we describe a more complex system, called 
specification logic, tha t provides the generali ty needed to cope with proce-
dures. 

Proof m e t h o d s for p rocedures have been the goal of considerable 
research. Most of this work , beginning with [Hoare 71b] and including 
[Hoare 73], [ L o n d o n 78], and [Gries 80] (which is unusually clear and 
readable), has focused on call by re fe rence and value, and has neglected the 
binding or " b l o c k " s t ructure of Algol-like languages ( though the use of 
subsidiary deduc t ion in [ H o a r e 71b] is a first step in this direction). The 
result has been some exceedingly compl icated inference rules, which fall 
considerably short of deal ing with the full generali ty of the Algol p rocedure 
mechanism. In par t icular , these approaches cannot handle in ter ference , call 
by name, s t a t emen t pa ramete r s , or h igher-order procedures . 

In contrast , specificat ion logic uses a more e labora te logical f r amework 
in which the mean ing of specif icat ions depends upon envi ronments , which 
are mappings of ident i f iers into their meanings . New fo rms of specifications 
are in t roduced to deal with this dependency , and to permit the formula t ion 
and inference of universal specifications, which are t rue in all envi ronments . 
Call by n a m e is r ega rded as f u n d a m e n t a l , with call by value and result 
t reated as abbrevia t iona l mechan isms in the sense of Section 3.1.5. 

It should be admi t t ed at the outse t that , at least in its present fo rm, 
specification logic is still seriously incomplete . As discussed in [Reynolds 
81], call by r e fe rence cannot be encompassed , and an interact ion be tween 
interference and h igher -order p rocedures prevents the proof of certain 
useful p rograms . Never the less , the au tho r believes tha t specification logic is 
more genera l than al ternat ive approaches and also conceptual ly simpler 
(especially in the abs t rac t version discussed in Section 3 .3 .12) . 

T o see the inadequacy of the logical f r a m e w o r k used in previous chap-
ters, consider the specificat ion 

{a + b>0} p(a + b, c) (c=(a + fc)!} . 

Without f u r t h e r in fo rmat ion , we cannot say whe the r this specification is t rue 
or false; it is t rue if the " m e a n i n g " of p is a p rocedure tha t compu te s the 
factorial and false o therwise . 

O n e might be t e m p t e d to say tha t the t ru th or falsity of the above 
specification d e p e n d s upon the context of the s t a t e m e n t p ( a + b, c), i.e. upon 
the declara t ion tha t b inds the occur rence of p. But this view is i nadequa te 
s i n c e p ( a + b,c) may occur in the body of a h igher-order p rocedure in which 
p is a fo rma l p a r a m e t e r . In this case, the mean ing of p can range over a 
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variety of p rocedures dur ing di f ferent execut ions of the same occurrence of 
p(a + b, c). 

Indeed , occurrences of formal pa rame te r s can falsify specif icat ions that 
do not re fe r to p rocedures explicitly and that are inferable in the logic of 
Chap t e r s 1 and 2. In that logic, for example , one can infer 

{ y < z } * : = 3 { y < z } . 

Howeve r , if x or y o r z is a formal pa rame te r , then x can in ter fere with y < z, 
and such in te r fe rence will falsify this specification. 

The solution to these difficulties is to recognize that the meaning of a 
specification, as well as the mean ing of any kind of phrase tha t can occur in a 
specification, d e p e n d s upon the meanings of the identif iers tha t occur f r ee in 
the phrase . M o r e precisely, the mean ing of a phrase d e p e n d s upon an 
environment which maps these identif iers into their meanings . 

3.3.1 Environments and Meanings 

T o unders t and env i ronmen t s and meanings , we must in t roduce some of the 
basic concepts of the semant ics of p rogramming languages. First, it must be 
unde r s tood that env i ronment s and states of the computa t ion are qui te 
d i f fe ren t enti t ies: 

A n environment is a func t ion that maps identif iers into their meanings . 
The kind of meaning appropr i a t e for a par t icular ident if ier depends 
upon its phrase type. 

A state of the computation, or more briefly, a state, is a funct ion that 
maps variables in to thei r values. T h e kind of value appropr i a t e fo r a 
par t icular var iable d e p e n d s upon its da ta type. 

T h e distinction be tween these entit ies, and the fact tha t b o t h are n e e d e d to 
descr ibe an Algol-l ike language, was first realized in the early work of 
Strachey and Landin [Bar ron 63, Landin 6 5 , 6 6 a , 66b] . These au thors called 
var iables "L-va lues" , and they called s tates " s t o r e s " , which is the British 
t e r m for c o m p u t e r memor ies . This te rminology was m e a n t to suggest tha t 
s ta tes were an abs t rac t ion of the con ten ts of a compu te r m e m o r y . (The 
mean ing of " e n v i r o n m e n t " in t roduced here is d i f fe ren t f r o m the informal 
mean ing of the t e rm used in Section 1.1.) 

The mean ings of identif iers or phrases of type r var iable are var iables 
tha t can possess values of da ta type r . W h e n we speak of the value of a 
var iable ident i f ier x, we really m e a n the value, in a par t icular state, of the 
var iable tha t is the mean ing , in a par t icular env i ronment , of x. 

For example , if we say that , in an env i ronmen t 17 and a state cr, the 
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values of x and y are both seventeen, we might be describing either of two 
situations: 

(a) The meanings of x and y in rj are distinct variables, which are both 
mapped by <r into seventeen, 

o r (b) The meanings of JC and y in 17 are the same variable, which is 
mapped by a into seventeen. 

The distinction between these situations shows how interference between 
variables is described: In (a) x and y do not interfere, while in (b) each 
interferes with the other . 

In general, we write M0 for the set of meanings appropria te to the 
phrase type 6, and [[Z]]^ for the meaning of an identifier or phrase X in the 
environment 77. Thus, if X has phrase type 6 then J Z ] ^ e Me, and if X is an 
identifier then l X ] v = r)(X). 

For example, M r v a r i a b ! e is the set of variables that can possess values of 
data type r . The two cases distinguished above can be described more 
succinctly as 

(a) W ^ I ) ' ] T , a n d o - ( [ x ] 7 , ) = o - ( | [ y ] r , ) = 1 7 , 
or (b) M 7 , = [ y l „ a n d o - ( M T , ) = 1 7 . 

The meaning of an expression or assertion determines a value that 
depends upon the state of the computat ion, so that this meaning is a funct ion 
from states to values. Thus MT expression is the set of functions f rom the set of 
states to the set of values of data type r , and M a s s e r t i o n is the set of functions 
from the set of states to {true, false}. For example, if x and y are integer 
var iable iden t i f i e r s , t h e n [jc + y]]*, is the f u n c t i o n tha t m a p s a in to 
0"(ttJclT)) + cr([> ;lr,)- Similarly, [3]]^ is the constant function that maps cr into 3. 

For an assertion P, we say that [i5]]^ describes a state o% or that cr satisfies 
when UP]U(o-) is t rue. 

For statements, M s t a t e m e n t is the set of functions f rom the set of states to 
the set of sequences of states. In particular, the meaning of a s tatement maps 
a state a into the sequence of states (excluding cr itself) that occur during 
execution of the s ta tement beginning with or. If this execution does not 
terminate then the sequence is infinite, otherwise it concludes with a. final 
state. 

Assignment s ta tements give rise to s tatement sequences consisting of a 
final state by itself. If X and E are phrases of type r variable and r expression, 
then 

IX := EJ , (o-)=<[o- | P ^ H E l ^ o - ) ] ) , 

where the final state is similar to cr except that it maps the variable that is the 
meaning of X into the value of E in cr. 

For example, if x and y are integer variable identifiers then 
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[ x : = 3 ] » = <[a-|MT,:|[31T,(o-)]> 
= <[o" I W , : 3 ] ) , 

\y ••= x+yU°-)=(l<rI lyh'.lx+yWb 

Longer sequences of states occur for compound statements. Suppose Sj 
and S2 a r e s t a t e m e n t s . If [ [ J ^ C c r ) is an in f in i t e s e q u e n c e t h e n 
I s i ; 521t,(o")= tt^ilr,(o")- Otherwise, if [S iJ^o- ) concludes with the final state 
oy, then [ 5 i ; 52J„(o-) = [ 5 1 ] ] » ® s e q [ ^ ( o y ) . 

For example, 

\x : = 3-,y := x+yl^a) 
= <[°"l 1*1,: 3]) © s e q ly := x + y j ^ t r \ [*[„ : 3]) 
= < M [*]„: 3], [a | [*!„: 3 | Mv: {x+y^([a\ [ x j , : 3])]) 
= <[0-11*1,: 3], [<r| 3 | 

M 1*1,: 3]( [*]„) + [o-| [ x ] , : 3](MV)]) 
= < M [ * ! , : 3], [cr| [ x j , : 3 | l y j , : 

3 + [<r| 3](I^1,)]> . 

In the last line, notice that [a | ([xj^: 3 ] ( l y \ v ) c a n n o t be simplified to o - f l ^ ) 
unless we know that [ * J , [>>],, i.e. that x does not interfere with y in the 
environment 77. 

Finally, as an example of nontermination, 

fx := 0; while t rue do x := x + l j ^ o ) 
= < M ffx],: 0], [o-| [*]„ : 1], [or| [*]„: 2], ... ) . 

We can now define the meaning of specifications of the form {P} S {(?}. 
The informal definition: 

l l M s t e } ] 
, is true if and only if, starting with any state described 

by tt^lrp executing [5J,, will either never terminate or will termi-
nate with a final state described by [<2]],. is formalized by: 

l{P} S {<2)1, is true if and only if, for any state cr such that 
IP]], ( a ) is true, the sequence |[5]],(o) is either infinite or con-
cludes with a final state ay such that [ G ] , ( a y ) is true. 

Notice that there is an implicit quantification over states but not environ-
ments. This reflects the way in which specifications differ fundamentally 
f rom assertions: their truth or falsity depends upon only an environment 
rather than both an environment and a state. 

For most purposes, including the above definition, the only relevant 
information about the sequence [51,(0") is whether it is finite and, if so, what 
its final state is. However, to define noninterference specifications in Section 
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3.3.4, we will need to consider the in te rmedia te s tates tha t occur dur ing 
execut ion of a s ta tement . 

It is evident tha t a s t a t emen t describes a change of s tate , bu t not a 
change of env i ronmen t . In contras t , env i ronment s are " c h a n g e d " by binding 
mechanisms. For example , the mean ing of begin integer I; S end in an 
environment 17 is the mean ing of S in the env i ronment [r) \ I: V] tha t is similar 
to except tha t it m a p s I in to a " n e w " variable V tha t is distinct f r o m all 
variables re levant to the mean ings prescr ibed by 77. 

In general , for any phrase P, [ P J ^ depends only upon t h e par t of 77 tha t 
gives meanings to the ident i f iers occurr ing f r ee in P. If P is the scope of 
binders of the ident if iers l x , . . . , /„ , t hen I P ] V is some func t ion of the 
meanings of the immedia te subphrases of P in env i ronment s tha t d i f fer f r o m 
77 only fo r 7 } , . . . , /„. M o r e general ly, if F? is any subphrase of P, and Ilt...,In 

are the ident i f iers occurr ing f ree in P' bu t b o u n d in P, then [ P ] ^ d e p e n d s 
upon the mean ing of P' in env i ronmen t s tha t d i f fer f r o m 17 only for , . . . , In. 

Opera t ional ly , one can think of t he execut ion or evaluat ion of P as 
creating new env i ronmen t s fo r the execut ion or evaluat ion of subphrases , 
but these new env i ronmen t s do no t "pe r s i s t " in the sense that changes of 
state persist . 

The re is a f u n d a m e n t a l re la t ionship be tween env i ronment s and sub-
stitution called the substitution law. If P is any phrase , 17 is any env i ronment , 
and Fi, . . . , Fn—*AX, ... , An is any type-correct subst i tut ion, then 

I F L , ... , Fn—*A 1 , . . . , Aniv = FF F I : [ / T I L „ | . . . | F „ : [ , 4 „ J „ ] • 

Essentially, the effect of the subst i tut ion Fx,..., Fn^Ax,... , An is the same 
as a change of env i ronmen t tha t maps each F t into the mean ing of A h 

W e can now descr ibe the mean ing of p rope r p rocedures . The meaning 
|H(Ai, ... , An)}v of a p rocedu re s t a t emen t can only d e p e n d upon the 
meaning ( [ o f the p rocedure being called and the meanings [ ^ i ] ^ , . . . , 
[[^njr, of the actual pa rame te r s . T h e r e f o r e , since the only ro le of p rocedures 
is to de t e rmine the ef fec t of their calls, [H]]^ can be t aken to be the func t ion 
that maps [[A J , , , . . . , H A J ^ i n t o \ H ( A U . . . ^ J ^ . T h u s M p r o c e d u r e ( 0 1 ; is 
the set of func t ions f r o m M0lx . . . x M 0 n to M s t a t e m e n t , and 

\H(AX, ... , A ^ l ^ l H U l A ^ , ... , lAn}v) . 

N o w consider the dec lara t ion p rocedure H(0x Fx; ... ; dn Fn)\ BpTOC. 
( H e r e and in the rest of this chap te r we will use F{;...; 0n Fn as the general 
fo rm of a p a r a m e t e r list, ignoring call by value and result , c o m p o u n d 
specifiers, and such syntactic trivia as the fact tha t one writes real a r r a y {var} 
F (*) instead of real a r r a y var iable(*) F.) A s with any declara t ion, the 
meaning of the enclosing block in an env i ronmen t 17 is the mean ing of the 
block body in an env i ronmen t tha t is similar to 17 except fo r giving a new 
meaning to the ident i f ier be ing declared: 
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[[begin procedure H(dl Fx; ... ; 0n Fn); 5 p r o c ; B end],, = | , 

where 

V = H:h] . 

In this case, the new meaning h is the function f rom M0lx . . . xMe to 
^statement SUCh that 

h(fu ... ,/«) = I5proc]][7J'|Fi:/l| | Fn, fn] . 

For example, 

|begin 
procedure <7 (integer {var} v; integer {exp} e)\ 

begin x:=3; v: = e end; 
<?(y, *+y) 
end]jv 

= h(y,x+y)lu , 

where 7)' = [r) \ q: h] and h is the function such that 

M/l,/2)=II*:=3; V'- = e\v'\v: fi\e: • 
Thus 

M y , ff^IvCIT^IlV' lx+yh') 

^ ( M v * l*+yh') 

= [ x : = 3; v : = | v: l y ] v . | e. [ x + y l v ] 

= lx:=3; v: = e\ v e^y,x+yh' 

= lx:=3;y: = x+y}r)- , 

where the penul t imate step is an application of the substitution law. Thus the 
meaning of the block enclosing the declaration of q, in an arbitrary environ-
ment T7, will remain the same if q(y, x + y ) is replaced by x:= 3; y := x+y. 
Notice that this coincides with the prescription of the copy rule. 

In fact, the copy rule can be derived f rom the semantics of procedures 
and the general propert ies of environments given in this section. Consider 
the block 

begin procedure H{dx Fx, ... ; 6n Fn); 5 p r o c ; B end , 

and suppose that B contains a procedure s tatement H(AU ... , An) in which 
the occurrence of H is bound by the procedure declaration. Also suppose 
that , for every identifier G occurring globally in Bproc, there is no binder of G 
whose scope includes the procedure statement but not the procedure decla-
ration. Then the meaning of the block enclosing the procedure declaration, 
in an environment 17, will only depend upon the meaning of H(A u...,An) in 
environments 17" that agree with 17' = [171 H: h] for H (since the occurrence of 
H is bound by the procedure declaration) and the identifiers occurring 



SEC. 3 .3 S P E C I F I C A T I O N L O G I C 2 0 9 

globally in BpTOC (since there are no intervening binders of these identifiers). 
For such an environment 17", 

|H(AU ...,An) 

= ... , l A n ^ ) = E"pxoc 1 [TJ' I F\: Hilv'l ... I Fn- lA„]r,] • 

The environment here agrees with [17" | Fx: l A ^ | ... | Fn: lAJ^] for both 
the formal parameters and the identifiers occurring globally in BpTOC, and 
therefore for all identifiers occurring free in £ p r o c . Thus the above meaning is 
the same as 

= I I f i p r o c l [ 1 ? " | F i : fl^ijr," I . . . | Fn: I ^ M 

= tt^proc I Fi, ... , Fn^> Ai, ... , A„IT," > 

where the last step is an application of the substitution law. Thus the 
meaning of the block enclosing the declaration of H, in an arbitrary 
environment 17, will remain unchanged if H(AU ... , An) is replaced by 
^proc I F\, ... , Fn~*A\, ... , An-

This argument also leads to a conclusion which will be used in Section 
3.3.8 when we justify an inference rule for procedures, and which is obtained 
by taking the actual parameters Ax, ... , An to be the same as the formal 
parameters Fx, . . . , Fn, so that the substitution of actuals for formals has no 
effect on fiproc: If 17" is an environment that agrees with 17' = [171 H: h] for H 
and the identifiers occurring globally in fiproc, then [[//(Z^, ... , Fn)}v» 
= II Bproc 117" • 

Although this discussion of semantics is enough to preface the presenta-
tion of specification logic, it is not a general exposition of the subject. Three 
omissions in particular should be noted: 

(1) Saying that MT v a r i a b i e is a set of variables precludes phrases of type r 
variable, such as array designators, that can denote different vari-
ables depending upon the state of the computat ion. To encompass 
such phrases, the members of MT v a r j a b l e must be functions f rom the 
set of states to the set of variables that can possess values of data 
type r . 

(2) In the definition of the meaning of procedure declarations, the 
equat ions 

V = b l H: h] 

and 

h ( f u . . . , / « ) = I^proclIfVI ... I Fn-.fn] 
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are mutual ly recursive; in ef fec t a recursive semant ic defini t ion is 
needed to def ine the semant ics of recursive p rocedures . Al though 
it is nontrivial to show that these equa t ions possess a solution, the 
real difficulty lies in the opposi te direct ion: there are a variety of 
solutions, and the part icular solution that describes p rocedures is 
the least solution in a certain part ial o rder ing tha t can be imposed 
on the set of p rocedure meanings . This is the subject ma t t e r of 
fixed-point theory, which is a m a j o r topic in m o d e r n semantics. 

(3) T h e semant ics we have descr ibed, o f t en called direct semantics, 
cannot easily a c c o m m o d a t e labels and goto s ta tements , which will 
be in t roduced in Section 4.2. To describe these enti t ies, one must 
use a m o r e complex app roach called continuation semantics. 

T w o useful survey pape r s on semant ics are [Reynolds 72], which deals 
with opera t iona l semant ics , and [Tennen t 76], which deals with denota t ional 
semantics . A good text is [Stoy 77]. A more e lementa ry text is [Tennen t 81], 
which uses the under lying concepts of semant ics to describe a variety of 
p rog ramming languages. 

3.3.2 Universal Specifications 

It is n o w clear tha t the mean ing of a specification such as 

{a + b>0}p(a + b, c) {c = (a + fc)!} 

or 

{ y < z } * : = 3 {>><z} 

d e p e n d s upon an env i ronmen t . Thus the " t r u e s t " kind of specification is one 
that , unl ike these examples , is t rue for all env i ronmen t s ( that provide 
type-appropr ia te mean ings to the identif iers occurr ing f r ee in the specifica-
t ion) . W e will call such a specification universal. Unfo r tuna t e ly , because of 
the p rob lem of in te r fe rence , there are hardly any universal specif icat ions of 
the fo rm {P} S {Q}. TO obta in universal specifications, we must en large the 
language of specif icat ions radically. 

Fo r example , if X is a variable and E is an expression, we will write 
X#E to specify tha t X does not in te r fe re with E. M o r e precisely, the 
specification X# E is t rue in those env i ronmen t s in which ass ignments to the 
var iable tha t is the mean ing of X cannot af fect the value of E. 

W e will also use a kind of implicat ion to construct c o m p o u n d specifica-
tions. If and are specifications, then is a specification mean-
ing "if then or implies 5^2" M o r e precisely, i s t rue in 
those e n v i r o n m e n t s in which e i ther is false or 5^2 is t rue . 

Using no ta t ions such as these , we can write nontrivial specif icat ions that 
are universal . For example , 
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j t # ( y < z ) = > { y < z } x: = 3 { y < z } 

is true in all env i ronments . 
A part icularly desirable advantage of universality is tha t it is p reserved 

by substitution. The result of pe r fo rming any type-correct subst i tut ion upon 
a universal specification is ano the r universal specification. This is a consequ-
ence of the subst i tut ion law s ta ted in the previous section. If fl^]*, is t rue fo r 
all envi ronments r/, then 

tt^U... , Fn-*Ai, ... An1r)' tt^lh' I F\: I — I Fn- MnlVl 

is true fo r all 17'. 
For example , consider the subst i tut ion that replaces x and y by the same 

identifier w. W h e n appl ied to the nonuniversa l specification 

{ y < z } x : = 3 { y < z } , 

this subst i tut ion gives 

{w < z} w : = 3 {w < z} , 

which is pa ten t ly false. But when appl ied to the universal specification 

x # ( y < z ) = > { y < z } x : = 3 { y < z } , 

the same subst i tut ion gives 

W#(W<Z)=>{H><Z} w:= 3 { w < z } , 

which is t r ue—indeed universal—since w # (w < z) is false. 

3.3.3 Additional Phrase and Data Types 

A vital p roper ty of bo th asser t ions and specifications is that the language in 
which they are wri t ten is as similar as possible to the language in which 
programs are wri t ten . In par t icular , ident if iers have the same kinds of 
meaning, and binding and subst i tut ion behave in the same way. For exam-
ple, the mean ing of asser t ions and specifications, like that of programs, is 
preserved by a lpha convers ion. 

However , to ob ta in the full expressive power of specifications, we must 
introduce addi t ional phrase types. T o see this, consider the fol lowing univer-
sal specification, which succinctly character izes while s ta tements : 

{i a n d /} s {/}=>{/} while / do 5 {1 and "I /} 

Here I is a logical expression ident i f ier , s is a s t a t ement ident if ier , and i is an 
assertion ident if ier . Since this specificat ion is universal, it holds for all 
meanings of /, s, and i tha t a re appropr i a t e for logical expressions, s tate-
ments, and asser t ions respectively. As a consequence , we may p e r f o r m any 
type-correct subst i tut ion, such as 
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j—»begin k\ = k+\ \ f \ = kxf end 
i->f=k\ and Q<k<n , 

which gives 

{f=k\ and 0 < k < n and k^n) 
begin k: = k + 1; / : = kxf end 
{f=k\ and 0 < A : < « } 

=> 

{f=k\ and 0"<A:<n} 
while k ^ n do begin k: = k+1; f := kxf end 
{f=k\ and 0<k<n and 1 k^n} . 

It is evident that this universal specification conveys the same information as 
the while-statement rule given in Section 1.4.3. 

This example illustrates the usefulness of identifiers that stand for 
assertions. To permit such identifiers we will add assertion to the set of 
phrase types. An identifier of type assertion can be used in any context that 
permits an assertion, while a phrase of type assertion can be any assertion. 

This generalization seems less startling if one remembers that assertions 
are similar to logical expressions—both are phrases whose meanings map 
states into t ruth values. (Indeed, when we defined M a s s e r t i o n in Section 3.3.1, 
we were treating assertion as a phrase type.) The difference is that assertions 
are not part of the programming language and may even be uncomputable in 
principle. Thus assertions, including assertion identifiers, cannot occur 
within executable phrases such as s ta tements and expressions (except as 
comments) . 

In fact, we will go a step fur ther and introduce procedures whose calls 
are assertions, by adding assertion procedure ( 0 l 5 . . . , 9n) to the set of phrase 
types. (Here 0 l 5 . . . , 0„ is a list of phrase types.) Of course, such procedures 
cannot be called f rom sta tements or expressions, but they still can be used to 
define concepts that are needed to make assertions intelligible. 

For example, the concept of increasing order introduced in Section 
2.2.10 can be defined by 

assertion procedure incord(integer a r ray {exp} 
(Vi e dom Z)(V/ € dom X) i<j implies X(i)<X(j) . 

We can even define the concept of ordering with respect to an arbitrary 
binary relation on integers if we regard such a relation as an assertion 
procedure accepting two integers: 

assertion procedure ori/(assertion procedure rho {integer exp, 
integer exp}; integer a r ray {exp} ^ ( * ) ) ; 

(Vi e dom X)(\/j e dom X) i<j implies rho{X(i), X { j j ) . 
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A n o t h e r useful general izat ion will be to use da ta types that do not occur 
in executable p rograms . In Sections 3 .3 .13 and 4.1 we will t rea t integer set as 
a data type, so tha t interval d iagrams are phrases of type integer set expres-
sion. Then in C h a p t e r 5 we will in t roduce abstract da ta types tha t a re specific 
to the p rob lems o u r p rograms are in tended to deal with. 

O n e f ina l p o i n t a b o u t spec i f i ca t ions and p h r a s e t ypes r e q u i r e s 
emphasis. Specif icat ions will usually contain f r ee ident if ier occurrences . In 
this situation it is essential to s tate the phrase types of the f r ee identif iers. For 
example, when we gave the universal specification fo r the while s ta tement , 
we were carefu l to indicate tha t I had type logical expression, s had type 
statement, and i had type assert ion. This point is crucial since some specifica-
tions are syntactically correct for several assignments of phrase types to their 
free identif iers, bu t universal only for some of these type assignments . 

3.3.4 The Syntax and Semantics of Specifications 

We now in t roduce the full variety of specifications used in the rest of this 
book. T h e r eade r who has difficulty with the formal def ini t ions of the 
meaning of these specif icat ions should re tu rn to t hem af te r reading the la ter 
sections describing inference rules and illustrating their usage. 

First we have the fo rm {P} S {(?} tha t was in t roduced in Chap te r 1. As 
described in Section 3.3.1: 

(1) If P and Q are asser t ions and S is a s t a tement then [{P} S {QIIIt, is 
t rue if and only if, fo r any s ta te a such tha t [PH^cr ) is t rue , the 
sequence [ S ^ o - ) is e i ther infini te or concludes with a f inal s tate oy 
such that [ Q J ^ o y ) is t rue . 

Secondly, we in t roduce a specification of the fo rm {P} to indicate tha t 
an assertion P is static, i.e. tha t P holds for all s tates of the computa t ion and 
therefore cannot be falsified by execut ing any s ta tement : 

(2) If P is an asser t ion then l{P}]v is t rue if and only if [PD^cr ) is t rue 
for all s ta tes <r. 

For example , if k is an integer express ion identif ier t hen {k > 4 implies k > 5} 
is universal, and {odd(2 x k + 1 ) } is t rue in any env i ronment in which odd has 
its p redec la red meaning . (Not ice , however , tha t ne i ther of these specifica-
tions is t rue if A: is a real express ion ident i f ier ; this i l lustrates the impor tance 
of stating the phrase types of f r ee ident if iers explicitly.) 

Next , we have f o r m s of specif icat ions containing subspecif icat ions. If 
and a re specif icat ions then & .. . & => Sf is a specification 

meaning "if and . . . and & n t hen ST* or and . . . and Sfn implies 
More precisely: 
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(3) Fo r n> 1, if . . . , Sfn and & are specifications then & ... & 
V n ^ y I T , is t rue if and only if e i ther J is t rue or some 1 ^ , 1 i s 

false. 

Notice tha t & and => play roles in the fo rmat ion of specifications 
analogous to the roles of and and implies in the fo rmat ion of assertions. We 
have intentionally chosen d i f ferent symbols to emphasize that specifications 
are d i f ferent f rom assertions. Also notice tha t this kind of compound specifi-
cat ion has a more restr icted fo rm than the analogous fo rms for assertions: & 
can only appea r on the left of =>, and there are no opera t ions corresponding 
to or o r "I. T h e use of this restr icted fo rm is based on Gen tzen ' s not ion of 
na tura l deduct ion [Gen tzen 35]. 

In the f o r m 9>
1 & .. . & Sfn ST, the subspecifications S f u . . . , Sfn are 

called assumptions. 
W e will also use a universal quant i f ier V that is analogous to V for 

assertions. T h e specification (V0 / ) tf means that is t rue for every meaning 
of I tha t is appropr ia te to the phrase type 0. More precisely: 

(4) If I is an identif ier and 5? is a specification such tha t the f ree 
occurrences of I in Sf have phrase type 0, then |[ (V01 ) Sf}^ is t rue if 
and only if, for all meanings m appropr ia te to 0, [ S ^ i I : m ] is t rue. 

Next we consider nonin te r fe rence specifications. We have already men-
t ioned the case V#E, where V is a variable and E is an expression; then 
V# E m e a n s that assigning to V does not affect the value of E. The left side of 
# can also be a s ta tement , in which case 5 #E means that executing S does 
no t affect the value of E. More precisely, it means that , start ing with any 
state, the value of E will not be af fected at any t ime during the execut ion of 5: 

(5a) If 5 is a s ta tement and E is a r expression or assertion then 
is t rue if and only if, for all s tates a and cr' such that cr' 

occurs in the sequence |[S]|„(<r), I £ I „ (< r ' ) = I£]|„(<r). 

Fo r example , 

begin x: = x+l; x: = x-l end # x 

is not t rue . O n the o ther hand , 

while t rue d o x : = ^ + l # y 

is t rue if x and y deno te distinct variables. 
W e can def ine the case where a variable occurs on the left of # in t e rms 

of (5a) , by saying tha t V#E holds if no assignment to V in ter feres with E: 

(5b) If V is a r variable, E is a r expression or assert ion, and I is an 
ident if ier no t occurr ing f r ee in V or E then , for all envi ronments , 
V # E has the same meaning as 

( V r exp I ) (V: = l ) # E . 
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In fact, we will generalize noninterference specifications fur ther , to 
permit any statement-like phrase to appear on the left of # , and any 
expression-like phrase to appear on the right. The classification of various 
types of phrases as statement-like or expression-like is given in Table 3.5. 
Roughly speaking, statement-like phrases describe ways of changing states, 
while expression-like phrases describe ways of computing values f rom states. 
Notice, however, that simple and array variables are both statement-like, 
since assigning to a variable causes a change of state, and expression-like, 
since any variable is also an expression. 

Phrase Type Statement-like Expression-like 

r variable X X 
r expression X 
r array variable(*, ... , *) X X 
r array expression(», . . . , *) X 
statement X 
assertion X 
p r o c e d u r e ^ , . . . , 6n) X 
T procedure^! , . . . , 6n) X 
assertion p r o c e d u r e ^ , . . . , 0n) X 

Table 3.5 Statement-like and Expression-like Phrases. 

An array variable does not interfere with an expression or assertion E if 
none of its e lements interfere with E: 

(5c) If X is an n-dimensional r array variable, E is a r expression or 
assertion, a n d . . . , / „ are distinct identifiers not occurring free in 
X or E then, for all environments , X# E has the same meaning as 

(V integer exp Ix) ... (V integer exp /„) X(lu ...,/„)#£ 

A procedure does not interfere with E if the only calls of the procedure 
that interfere with E are ones in which statement-like actual parameters 
interfere with E. 

(5d) If H is a p r o c e d u r e ^ , ... , 0„), E is a r expression or assertion, 
... , In are distinct identifiers that do not occur free in H or E, 

and 0 t l , . . . , 0J / tare the statement-like members of {0 l 5 . . . ,0„} then, 
for all environments , H # E has the same meaning as 

( V 0 a / j ) . . . ( V 0 n / „ ) ( / , , # £ & . . . & I i k # £ = > H ( / l f . . . , / „ ) # £ ) • 

Roughly speaking, H does not interfere with E if no call of H interferes with 
E by means of global identifiers. For example, in the environment created by 
the declaration 

procedure p(integer {var} z); begin z: = z+l; x: — z end , 
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p ( I ) # E holds whenever x # E and / # E , so t h a t p # E holds w h e n e v e r x # E . 
Next we generalize the right side of # . A statement-like phrase does 

not interfere with an array expression if it only interferes with applications of 
the expression to subscripts when it interferes with the subscripts: 

(5e) If S is a statement-like phrase, Y is an n-dimensional r array 
expression, and ... , I n are distinct identifiers not occurring free 
in 5 or Y then, for all environments, S # Y has the same meaning as 

(V integer exp I \ ) ... (V integer exp /„) 
( S # / x & ... & S # / „ = > S # Y(/ l 5 ... , / „ ) ) . 

Finally, a statement-like phrase does not interfere with a function (or 
assertion) procedure if it only interferes with calls of the function procedure 
when it interferes with expression-like actual parameters: 

(5f) If 5 is a statement-like phrase, JFis a r p r o c e d u r e ^ , ... , 0n) or an 
assertion procedure(0i , ... , 0n), ... , I n are distinct identifiers 
not occurring f ree in S or F, and 0 Z 1 , . . . , dik are the expression-like 
members of {01? ... , 0„} then, for all environments, S# F has the 
same meaning as 

(V 0 j 7 0 ... (V 0„ / „ ) (S#Itl & ... & 5 # / < t = > 5 # F ( / 1 , . . . , / „ ) ) . 

Again the effect is to specify an absence of interference through globals. 
Sometimes it is necessary to quantify a specification about noninterfer-

ence over an identifier of an arbitrary statement-like (or expression-like) 
type rather than a specific phrase type. For example, 

(V sta-like 5) (s#x & s#y=>s#2) 

specifies that something interferes with z only when it interferes with x or y, 
where the "something" could be a simple variable, statement, array vari-
able, or procedure. The generalization of (4) is straightforward: 

(4 ') If I is an identifier and is a specification such that all free 
occurrences of I in have the form / # . . . (or ... # / ) , then 
[ (V sta-like I) (or [ (V exp-like I) 5 % ) is true if and only if, for 
all meanings m appropriate to any statement-like (or expression-
like) type, | 1: m ] is true. 

The final form of specification that we will use is gv(V), where V is a r 
variable. This specification holds if assigning any value to V will transform 
any state into a state in which V possesses that value; in this situation we say 
that V is a good variable. 

At first sight, it might seem that gv(V) should be true for all variables 
and all environments. But the syntax of Algol W permits phrases of type r 
variable, such as the array designator ^ ( ^ ( 1 ) ) , that are not good variables. 
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(See Exercise 3 a f te r Section 2.3 .2 . ) For a state in which the array e l emen t s 
X ( l ) a n d X ( l ) h ave t h e va lues 1 and 2 respec t ive ly , execu t i on of 
X ^ l ) ) " 7 will p roduce a state in which X ( Z ( 1 ) ) has the value 2. T h u s 
g v ( Z ( ^ ( l ) ) ) i s false. Moreover , the use of Z ( Z ( 1 ) ) as an actual p a r a m e t e r 
will create an env i ronmen t in which the cor responding fo rmal p a r a m e t e r is 
not a good var iable . 

The fo rmal defini t ion of gv (V) is based on the idea that this specificat ion 
holds when , fo r any value E and any p roper ty II of values, the ass ignment 
V:=E will t r ans fo rm a state in which n holds fo r E into a state in which II 
holds fo r V. T h e formal iza t ion of II is an assertion p r o c e d u r e ( r express ion) 
that is no t in te r fe red with by V: 

(6) If V is a r var iable , and E and II are distinct identif iers tha t do not 
occur f ree in V then , fo r all env i ronments , gv(V) has the same 
mean ing as 

(V r exp E) ( V assert ion p rocedure ( r exp) I I ) 
( v # n r > { n ( £ ) } v : = E { n ( v ) } ) . 

T h e re la t ionship be tween this def ini t ion and an axiom for ass ignment 
will be explored in Section 3 .3 .12. 

3.3.5 Rules of Inference for Universal Specifications 

Specification logic is a system fo r inferr ing universal specifications. In this 
section we presen t most of the rules of inference dealing with arbi t rary 
specifications, and with the par t s of the p rog ramming language tha t do not 
involve binding mechanisms . These inference rules replace the ones given in 
Sections 1.4.2 and 1.4.3, which do no t t ake into account the ef fec ts of 
in ter ference and o the r p h e n o m e n a that can occur when p rocedures are used. 

T h e fo rm of the rules is essentially the same as in Chap te r 1. Each rule 
consists of a sequence of zero or m o r e specifications called premisses, 
separa ted by a hor izonta l ba r f r o m a single specification called the conclu-
sion. Again , an instance of a ru le will be f o r m e d by replacing capital let ters , 
called metavariables, by phrases , subjec t to restr ict ions tha t p re face the rule . 
These restr ict ions will s ta te the types of phrases tha t can replace metavar i -
ables, and will somet imes restr ict these phrases to be identif iers. In the la t ter 
case, the phrase type s ta ted for the ident if ier must be the phrase type of all 
f ree occurrences of tha t ident i f ier in the premisses and conclusion of the 
instance of the rule . 

T h e essential change f r o m C h a p t e r 1 is that the rules describe the 
inference of universal specif icat ions, r a the r than specifications tha t are t rue 
in a par t icular env i ronmen t . T h u s the meaning of a rule is tha t , for any 
instance, if all the premisses of the instance are t rue in all env i ronments , t hen 
the conclusion of the instance is t rue in all env i ronments . 
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Some special conventions apply to specifications of the form & ... & 
It is evident that the meaning of such a specification does not 

depend upon the order in which the assumptions Sf\ & ... & Sfn are written, 
nor does the meaning change if duplicate occurrences of the assumptions are 
added. For these reasons, we can regard & ... & as a (finite) set of 
specifications. 

Because of this, we will permit expressions denoting finite sets of 
specifications to appear on the left of => in inference rules. In constructing 
such expressions we will use the metavariables 2 and (with occasional 
subscripts and superscripts) to stand for finite sets of specifications and 
individual specifications respectively. We will write 2 & 2 ' to denote the 
union of the sets 2 and 2 ' , and 2 & V to denote the union of 2 and {5^}. When 
such an expression is replaced by a specific set of assumptions, these assump-
tions can be written in any order and can be duplicated. For example, if 
2 stands for {Sfu and 2 ' stands for 2, then 2 & 2 ' & SrA=>&> 
stands for any of the following equivalent specifications (among others): 

sex & v2 & & 
&2 & & & set=>se 

& Zf2 & ^ 3 & & Sfi & ^ 3 . 

We can even include the case where the set of assumptions is empty. If 2 
stands for the empty set, then 2 => Sf simply stands for 

Our first rules of inference describe the basic propert ies of => and &: 

( R l ) Self-Implication 

. 
(R2) Adding Assumptions 

(R3) Separat ing Assumptions 

2 & s ' = > y 
2 = > ( 2 ' = > ^ ) . 

(R4) Combining Assumptions 

2 = > ( 2 ' = > 5 Q 

2 & 2 ' = > ^ . 

(R5) Modus Ponens 

2 & & ... & 
2 & 2 i & ... & 2„ => V . 
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The first rule says that any specification implies itself. The second rule says 
that assumptions can always be added to a specification. The third rule shows 
how multiple assumptions can be separated by introducing an extra => , and 
the fourth rule shows how such separation can be removed. The fifth rule 
says that assumptions can be replaced by other assumptions that imply them. 
It is called " M o d u s Ponens" by analogy with classical logic. 

The next three rules deal with quantifiers of the form (V0 /) : 

(R6) Quant if ier Introduction 
If 7 is an identifier of phrase type 0 that does not occur f ree in X 
then 

2 = > ( V 0 I) . 

(R7) Quant i f ier Removal 
If I u ... , In are distinct identifiers of phrase types 9 U ... , 0M, and 
Ai, ... , An are phrases of types 0 l 5 ... , 0„ then 

(V0! 7 0 ... ( V 0 n / „ ) y = > y | / l f ...,lH-+Au...,An • 

(R8) Free Substitution 
If y\j in-*Ai An

 i s a type-correct substitution, then 
& 

y \ l\, ... , In~*A\, ... , An • 
Rule (R8) says that substitution preserves the universality of specifica-

tions. In fact, this rule can be derived f rom the more general rules (R6) and 
(R7). To see this, suppose is a universal specification and I 
... ,An is a type-correct substitution. Then there are phrase types 01? . . . , 0n 

such that each free occurrence o f / , in tf has type 0( and each A t has type 0(. By 
applying rule (R6) n t imes to (taking X to be the empty set), one can infer 
(V 0! 7i) ... (V 6n I n ) V- Then f rom rule (R7) and modus ponens (R5) , one 
can infer y | / j , . . . ... ,An-

The next rules deal with specifications of the form {P\, which hold in a 
particular environment if P is a static assertion, i.e. if P is true for all states: 

(R9) Mathematical Fact Introduction 
If P is an assertion that is a mathematical fact then 

M • 
(RIO) Reduct io ad Absurdum 

{false} => . 

( R l l ) Static Implication 

If P and Q are assertions then 

{/>} & {P implies 0}=>{G} • 
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Rule (R9) says that mathematical facts (typically about various data 
types) are true in any environment and state. Rule (RIO) says that the 
specification {false}, which is not true in any environment, implies anything. 
Rule (R11) says that static assertions can be combined according to the usual 
laws of mathematical reasoning. 

In fact, rule (R11) can be expressed in a different way. By substituting 
the assertion identifiers p and q for the metavariables P and Q, we can infer 
the particular universal specification 

( R l l ' ) Static Implication (Axiom) 

{p} & {p implies q}^>{q) . 

On the other hand, f rom ( R l l ' ) we can use rule (R8) for free substitution to 
obtain {p} & {P implies £>}=>{£?} for any assertions P and Q. Thus the single 
universal specification ( R 1 1 ) has the same power in our logic as the rule of 
inference ( R l l ) . 

Of course, a universal specification such as ( R l l ' ) can be viewed as a 
very simple kind of inference rule, with no premisses and no metavariables. 
But it is simpler to view it as an axiom, i.e. a particular specification that, 
because it is known to be universal, can be written as part of a proof without 
being inferred f rom anything that precedes it. 

In fact, most of the rules of inference given in Sections 1.4.2 and 1.4.3 
can be reformulated as axioms in specification logic. In stating these axioms, 
we use p, q, r, i, px, p2, <?i,and q2 as assertion identifiers, s, su and s2 as 
s tatement identifiers, and I as a logical expression identifier: 

(R12) Statement Compounding (Axiom) 

{p} sx {q} & {q} s2 {r}^>{p} su s2 {r} . 

(R13) Strengthening Precedent (Axiom) 

{p implies q} & {q} s {r} =>{/?} s {r} . 

(R14) Weakening Consequent (Axiom) 

{p} s {q} & {q implies r} =>{/>} s {r} . 

(R15) while statement (Axiom) 

{i and /} 5 {*'}=>{«} while / do 5 {i and 1 /} . 

(R16) Two-way Conditional Statement (Axiom) 

{p and /} sx {q} & {p and 1 /} s2 M => {p}if ^1 t h e n sielse J2 fa} • 

(R17) One-way Conditional Statement (Axiom) 

{p and /} 5 {q} & {(p and 1 I) implies q} =>{/?} if I then 5 [q] . 
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(R18) Empty Statement (Axiom) 

{p} M • 
(R19) Specification Conjunct ion (Axiom) 

{p i} s {41} & {pii s fa2}=>{pi and p2} s {qx and q2} • 

(R20) Specification Disjunction (Axiom) 

{Pi} s fail & {pii s fa2}=>{pi or p2} s {qx or q2} . 

To see the relationship between these axioms and the rules of Chapter 
1 consider (R12). Let P, Q, and R be any assertions and SI and S2 be any 
statements. Then by applying the rule of f ree substitution (R8) to axiom 
(R12), we may infer {P} 5! {Q} & {Q} S2 {/?}=>{p} S i ; S2 {R}. 

If {P} {Q} a n d { f i} s 2 W have been shown to be universal specifica-
tions then, by modus ponens (R5) , we may infer {P} SI,S2 {P}. In form, this 
is exactly the inference permit ted by the rule for s tatement compounding 
given in Section 1.4.2. However , in specification logic it is no longer a very 
useful inference. The problem is that it is very rare for specifications of the 
form {P} Si {Q} or {Q} S2 {P} to be universal. 

The usual situation is that {P} Sj {Q} will only be t rue in all environ-
ments satisfying some set S i of assumptions, and {Q} S2 {i?} will only be true 
in all environments satisfying some set of assumptions. In other words, 
2 1 = > { p } s t {Q} and 22=>{£>} S2 {/?} will be universal specifications. In this 
situation, we may use modus ponens and (R12) to infer 2 i & S 2 => 
{P} SI, S2 {i?}. Thus {P} Si; S2 {R} will be true in all environments satisfying 
both S i and S 2 . 

More generally, if 

are universal specifications, and & ... & can be obtained f rom an 
axiom A by type-correct substitution, then free substitution and modus 
ponens can be used to infer 

Xi & . . . . 

Hencefor th , we will simply say that such an inference is obtained "by 
applying A " . 

It is this ability to carry along and combine assumptions about environ-
ments that distinguishes specification logic f rom the logic of Chapter 1. 

Next we consider specifications of the form S # £ , which specify that S 
does not interfere with E. The essential idea we want to capture is that 
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everything that can cause interference is named by an identifier. Thus if I h 

. . . , / „ are the identifiers occurring f ree in S, we would expect E & ... & 
/„ # E to imply S # E. 

However, this form of reasoning needs to be strengthened. For exam-
ple, x # (y + z) => (*: = y) # (y + z) holds despite the fact that y interferes with 
y -I- z. The reason is that the only occurrence of y in x : = y is in a context—the 
expression on the right side of an assignment s ta tement—that is not 
statement-like, and therefore cannot describe any action that might cause 
interference. 

To make this precise, we must develop some notation for identifier 
occurrences. Let P be any phrase. We write 3<(P) for the set of identifiers 
that have f ree occurrences in P. 

We say that an occurrence in P of an identifier (or more generally, an 
occurrence of a subphrase) is statement-like if the type of every subphrase of 
P enclosing the occurrence is statement-like. This concept can be defined 
more formally by using the terminology of Appendix A: A statement-like 
identifier or subphrase occurrence in P corresponds to a subtree in a deriva-
tion tree for P such that every node on the path f rom the root of the 
derivation tree to the root of the subtree has a statement-like phrase type. 
We write ^sta-!ike(^) f ° r the subset of &(P) consisting of those identifiers that 
have statement-like free occurrences in P. 

Then we have the following inference rule: 
(R21) Left-Side Noninterference Decomposition 

If 5 is a statement-like phrase, E is an expression-like phrase, 
and ^sta-iike(S) = { / i , . . . , In), then 

1X#E & ... & In#E=>S#E . 
A similar rule deals with the identifiers occurring on the right side of # . 

We say that an identifier or subphrase occurrence in a phrase P is 
expression-like if the type of every subphrase of P enclosing the occurrence is 
expression-like, and we write ^exp-iike(^) f ° r the set of identifiers that have 
free expression-like occurrences in P. Then: 

(R22) Right-Side Noninterference Decomposition 

If 5 is a statement-like phrase, E is an expression-like phrase, 
and ^exp-iike(£) = {/i, - , In), then 

S#IX & ... & S # / „ = > S # £ . 

For example, since ^exp-iike(.y + 2 ) = {.y> z}> r u l e (R22) gives x#y & 
x # z = > J t # ( y + z). T h e n since ^ s t a - i ike( x : = >') = {•*}> r u l e ( R 2 i ) gives 
; t#(y- l -z)=>( j t : = y ) # ( y + z). Using modus ponens to combine these two 
specifications gives x#y & j t # z = > ( x : = y ) # ( y + z). In this way, these two 
rules can be used to express any noninterference specification in terms of its 
free identifiers. 
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Our next rule describes an important consequence of noninterference. 
Suppose a statement S does not interfere with an assertion P, and consider 
executing S with an initial state for which P is true. Then P will continue to be 
true during execution of S and will still be true when (and if) S terminates. 
Thus if S satisfies {Q} S {/?}, it will also satisfy {Q and P} S {R and P}. 

This reasoning is captured by the following axiom, in which s is a 
statement identifier, and p, q and r are assertion identifiers: 

(R23) Constancy (Axiom) 

s#p & fa} s {r}=>fa and p} s {r and p] . 
Finally, we come to the inference rule for assignment. In Chapter 1 we 

gave the rule {P| X: = E {P}, which can be falsified by various effects 
caused by the procedure mechanism. To avoid such falsification, we must 
preface this specification with the assumptions that X is a good variable and 
that X does not interfere with any other identifier that has a free expression-
like occurrence in P. Thus we have 

(R24) Simple Assignment 

Let X be a x variable identifier, E be a r expression, and P be an 
assertion such that all f ree occurrences of X in P have type 
r expression. Let {Ix, ... , /„} = ^exp-iike(^)~ W - T h e n 

gv(Z) & X#Ix & ... & X#In=>{P\x^E} X.= E {P\ . 

Notice why this rule makes sense syntactically. The free occurrences of 
X in P are in contexts that permit r expressions, and therefore r variables, 
since a variable can always be used as an expression. Thus we can either 
substitute the expression E for X in P, or leave X unchanged while changing 
its type f rom r expression to r variable. 

Exercise 

1. Derive the following rules of inference from the rules given in the preceding 
section: 

(a) 
2 & • 

(b) S ^ t 

(c) If I has phrase type 6 then 

srx & ... & 
(V0 i) & ... & (v<? i) i) y . 
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(d) If / j and 12 have phrase types 0X and 0 2 then 

CHAP. 3 

(V0X / j ) (V02 12) Sf=>(V02 / 2 ) / : ) Sf • 

(e) If 7 and J have phrase type 6 then 

(ye / ) (V0 j ) ^=>(V0 / ) ("S^i . 

( f ) Axiom 

{?} * M & * {/> and r} . 

3.3.6 An Example of Inferences in Specification Logic 

W e have n o w accumula ted enough rules to give an ex tended example . Le t k, 
f , and n be in teger var iable identif iers. T h e n the fol lowing two universal 
specif icat ions are instances of the ass ignment rule ( R 2 4 ) : 

gv(k) & k#f & k#n=> 
{(fc+1)x/= (fc+l)! and 0<A:+l<n} 
k:=k +1 {kxf=k\ and 0<*:<«} 

gv(/) &/# A: &/#«=> 
{kxf=k\ and 0<A:<n} 
/:= kxf{f=k\ and 0<fc<n} . 

By applying ax iom ( R 1 2 ) for s t a t emen t compound ing , we get 

gv(&) & k#f& k#n & gv(/) &/#«=> 
{(fc+l)x/=(fc+l)! and 0<Jt+l<n} 
k:=k + l ; f : = kxf{f=k\ and 0<&<«} . 

Next , the ru le fo r in t roducing mathemat ica l facts gives 

{(f=k\ and 0 < k < n and k^n) 
implies ((fc + l)x/=(A; + l)! and 0<£ + l<n) } , 

since the asser t ion within curly b racke ts is a mathemat ica l fact about the 
integers . T h e n by applying axiom ( R 1 3 ) for s t rengthening preceden ts , we get 

gv(&) & A:#/& k#n & gv(/) & f#k &/#«=> 
{f—k\ and 0< k < n and k^n) 
k: = k + l-tf:= kxf {f=k\ and 0<A:<«} . 

Just as in C h a p t e r 1, reasoning tha t involves the rules fo r s t a t ement 
compound ing , s t rengthening precedents , and weaken ing consequen t s can 
be concisely c o m m u n i c a t e d by using a tab leau . T h e only change is that now 
the t ab leau must be p re faced with the union of the assumpt ions used in each 
s tep of the reasoning . Fo r example , the chain of reasoning we have just given 
can be descr ibed by the fol lowing tab leau : 
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g y(k)8ik#f&k#n \ 
& g v ( / ) & / # / c & / # n J 
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{f=k\ and 0<k<n and k^n} 
{(A:+l )x /=(A;+l ) ! and 0 < A : + l < n } 
k:=k + l] 
{kxf=k\ and 0< fc<rc} 
/:= kxf 
{f=k\ and 0 < f c < n } . 

The general situation is that a tableau has the form 2 = > L , where L is a 
list of intermixed assertions and statements that begins and ends with asser-
tions. Such a tableau is valid if: 

(1) Whenever the triple {P\ S{<2} occurs in L, where 5 is a statement or 
sequence of statements, £=>{p} S {Q} is a universal specification, 

and (2) Whenever the pair {P}{Q\ occurs in L, 2=>{P implies Q} is a 
universal specification. 

If a tableau 2 = > L is valid, then 2 = > M Si; ... ; S„ {Q} is a universal 
specification, where {P} S^ ... ; SN {<?} is obtained f rom L by deleting 
intermediate assertions. 

From the result of the above tableau, we can use the while-statement 
axiom (R15) to infer the universal specification: 

gv(fc) & k#f & k#n & gv(/) &f#k &/#n=> 
(f=k\ and 0< k < n } 
while k ̂ n do 

begin k:=k + l; f := kxf end 
{f=k\ and and 1 k^n) , 

which is the main step in the following tableau: 

{ n > 0 } 
{1 = 0! and 0 < 0 < n } 
k: = 0; 
{l =k\ and 0 < A : < n } 
/ : = ! ; 
{f=k\ and 0 < A : < n } 
while kj£n do 

begin k: = k + l;f := kxf end 
{f=k\ and 0 < A ; < « and 1 k^n] 
{ / = « ! } . 

gv(fc) & k#f& k#n 1 
&gv(/) &/#£&/#« J 

The remaining steps are obvious applications of the rules for assignment 
statements and for introducing mathematical facts. Notice that these steps 
do not introduce any additional assumptions. 
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This example shows that specification logic t reats ass ignment and con-
trol s t a t emen t s in much the same way as in Chap te r 1. T h e d i f ference is that 
each ass ignment s ta tement in t roduces assumpt ions abou t the re levant iden-
tifiers. In the fol lowing sections we will see how these assumpt ions are 
e l iminated or "d i s cha rged" by declarat ions and o the r binding mechanisms. 

Exercise 
1. Determine the necessary set of assumptions 2 , and prove 

2=>{n>0} 
k:=0;y:=l; 
while k ^ n do 

begin k: = k +1; y: = xxy end 
{y=x"} . 

3.3.7 Inference for Simple Variable Declarations 

The f u n d a m e n t a l shor tcoming of the kind of reasoning abou t p rograms used 
in Chap te r s 1 and 2 is tha t the specification of a s t a t emen t is always inferred 
independen t ly of the context in which the s t a t ement occurs. This is in sharp 
contras t to the way in which one reads a p rogram in a language with block 
s t ructure . A s the r eade r descends into the p rog ram, each declara t ion pro-
vides in fo rmat ion abou t the ident i f ier being declared which can be used in 
unders tand ing the s t a tements within the scope of the declara t ion. Similarly, 
specifiers and p a r a m e t e r assumpt ions provide in fo rmat ion about formal 
pa rame te r s . In specif icat ion logic this in format ion is conveyed by assump-
tions. 

Cons ider a block begin integer X\ B end, which conta ins a single simple 
var iable dec lara t ion , and suppose tha t we wish to show that this block 
satisfies {P} begin integer X\ B end {<2}. If the block is not a comple te 
p rogram, this will no t be a universal specification, bu t it should be implied by 
some set 2 of re levant assumpt ions tha t have b e e n establ ished by declara-
t ions in enclosing blocks. In o the r words , we want to show tha t 2 =>{P} begin 
integer X\ B end {(?} is universal . 

T o do this, we must obviously show that the block body B satisfies {P} B 
{ 0 \ . Bu t now, in addi t ion to the assumpt ions 2 , we may use cer ta in addi-
t ional assumpt ions arising f r o m the na tu re of the declara t ion integer X. 
Specifically, we may assume that X is a good variable , and that there is no 
in te r fe rence be tween X and any phrase that does no t conta in a f ree occurr-
ence of X. 

This reason ing is cap tu red by the following rule of inference : 

( R 2 5 ) Simple Var iable Declara t ions 

If X is a T var iable identif ier , B is a s t a t ement , P and Q are 
asser t ions, Elf ... , Em a re expression-l ike phrases , S1 ? . . . , Sn 
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are statement-like phrases, and X does not occur free in 2 , P, Q, 
EI, ... , EM, S!, ... , SN, then 

2L&GVW &X#EX & ... & X#EM & SX#X& ... & S„#*=>{/»} B{Q} 
2=>{/>} begin r B end {Q} . 

The reason that X must not occur free in 2 , P, or Q is that the meaning of this 
identifier outside the block is unrelated to its meaning inside the block. 

As an example, we apply this rule to the specification proved at the end 
of the previous section. To match the premiss to this specification, we take X 
to be k and 

2 E\ E~> S\ 

gv(/) &/#« & gy(k) & k#f & k#n 

P 

{ « > 0} 
' k:=0,f:= 1; 

B • while k^n do 
begin k: = k + 1; / : = kxf end 

Q 

{/="!} • 

Then the rule for simple variable declarations gives 

gv(/) &/#«=> 
{ n > 0 } 
begin integer k\ 
k:=0-,f:= 1; 
while k^n do 

begin k: = k +1: /: = kxf end 
end 
{/=„!} . 

Informally, we say that the declaration integer k discharges the assumptions 
gv(fc) & k #/ & k # n & /# k which were used in reasoning about the body of 
the block. 

Notice that there is no choice about which assumptions are discharged 
by a declaration r X. The undischarged assumptions 2 must be those not 
containing f ree occurrences of X, while each discharged assumption must 
have one of the forms gv(Z) or X # E or S # X, where 5 and E contain no free 
occurrences of X. In effect rule (R25) tells us everything we can assume 
about X and nothing else. 
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Of course , the rule for simple variable declara t ions only applies to a 
block that conta ins the declara t ion of a single variable . Howeve r , a block 
conta in ing a mult iple declara t ion or a sequence of declara t ions can be 
e x p a n d e d into a nest of blocks in which each block conta ins the declarat ion 
of a single var iable . 

Exercise 

1. Using the result of Exercise 1 after the previous section, determine the necessary 
set of assumptions 2 and prove 

begin integer k\ 
k: = 0; y : = 1; 
while k ^ n do 

begin k: = k+ 1; y: = xXy end 
end 
{y=x»} . 

3.3.8 Inference for Proper Procedure Declarations 

N o w we come to the hear t of our deve lopment : the fo rmula t ion of an 
in fe rence rule fo r p r o p e r p rocedure declarat ions. Because of its impor tance 
and complexi ty , we will give a m o r e r igorous just i f icat ion for this rule than 
fo r o thers : we will p rove the correctness of a version of the rule tha t is 
a d e q u a t e fo r nonrecurs ive p rocedures , and only rely u p o n the r eade r ' s 
intui t ion to just ify the s t rengthening of this rule tha t is necessary to handle 
recurs ion. 

Suppose we wish to infer a universal specificat ion about a block contain-
ing the declara t ion of a p r o p e r p rocedure , i.e. 

2 = > M begin procedure H(BX Fx, ... ; 0n Bpioc; B end {Q} (1) 

where H, Fx,..., Fn are distinct identif iers. T o do this we must show that the 
block body satisfies {P} B {Q}, using bo th the inher i ted assumpt ions 2 and 
addi t ional assumpt ions 2 p r o c tha t describe the na tu re of the p rocedure being 
dec lared . In o t h e r words , we must have a premiss of the f o r m 

2 & X p r o c =>M B {Q} . (2) 

Since the p r o c e d u r e ident i f ier H has a d i f fe ren t mean ing in B than outs ide 
the block conta in ing the p rocedure declara t ion, we assume that H does not 
occur f r ee in X, P, o r Q. 

Wi th a simple var iable declara t ion, the ana logue of S p r o c is complete ly 
de t e rmined by the declara t ion . With a p rocedure declara t ion, however , the 
s i tuat ion is m o r e complex : to m a k e an assumpt ion abou t calls of a proce-
dure , one mus t first p rove someth ing abou t the body of its declara t ion. T h u s 
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our rule will have a specification of fiproc as an additional premiss, and the 
form of Sproc wiH depend upon this premiss as well as upon the procedure 
declaration itself. 

The premiss about B p r o c has the form 

{ 0 p r o c } • ( 3 ) 

Here the assumptions needed to insure {P p r o c } BpTOC { Q p r 0 c } are divided in 2 ' , 
which is a subset of the inherited assumptions 2 that describes global 
identifiers in P p r o c , and 2 p a , which is the set of parameter assumptions 
discussed in Section 3.1.4. We assume that 2 ' contains no f ree occurrences of 
the formal parameters P i , . . . , Fn, since these identifiers have a different 
meaning in B p r o c than outside the enclosing block. We also assume that H 
does not occur f ree in 2 p a , Pproc? Or Qproc-

The complexity of the rule for proper procedure declarations lies in the 
form of 2proc- Ra ther than stating this form ad hoc, we will develop it while 
proving that the rule is correct, i.e. that if (2) and (3) are universal specifica-
tions then (1) is a universal specification. 

Assume (2) and (3) are universal, and led 17 be any environment in 
which 2 is t rue. Then we must show that 

{P} begin procedure H(6X Fx\ ... ; 9n P„); P p r o c ; B end {Q} 

is true in TJ. But the block in the above specification has the same meaning in 
r) as its body B has in r)' =[r) \ H: h\ where h is the meaning of the procedure 
being declared, as described in Section 3.3.1. Moreover , P and Q have the 
same meaning in 77 and 17' since H does not occur free in these assertions. 
Thus it is sufficient to show that {P} B {Q} is t rue in 17'. 

Since H does not occur f ree in 2 , the t ruth of 2 in 17 implies the t ruth of 2 
in 7/. Thus the universality of (2) implies the desired result that {P} B {Q} is 
true in 17', providing 2 p r o c is t rue in 17'. 

Now consider (3), and let 17" be any environment that gives meanings of 
the appropriate type to the identifiers occurring free in (3), and that gives the 
same meaning as 17' to H and to the identifiers that occur f ree in 2 ' or globally 
in P p r o c . We know that 2 is t rue in r ) 2 ' is a subset of 2 , and 17" agrees with 17' 
for the identifiers occurring f ree in 2 ' ; thus 2 ' is t rue in 17". Then the 
universality of (3) implies that 

S p a { ^ p r o c } ^ p r o c { Q p r o c } 

is true in 7?". Moreover , as shown in Section 3.3.1, since 17" agrees with 17' for 
H and the identifiers occurring globally in Bp roc, FI(Fl,... , Fn) has the same 
meaning in 17" as BpTOC, so that 

2 p a = > { ^ p r o c } H ( F u . . . , F n ) { G p r o c } 

is true in TJ". It follows f rom the definition of quantified specifications that 
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the above specification, quantified over any of the identifiers for which i)" 
can differ f rom 17', is t rue in the environment 17', and can therefore be an 
assumption in 2 p r o c . 

These quantif ied identifiers can include the formal parameters FX, ... 
FN, which are distinct f rom H and do not occur f ree in X' or globally in £ p r o c . 
Moreover , we can also quantify over other identifiers that are distinct from 
H and do not occur free in 2 ' or Z?proc. If such identifiers have any free 
occurrences in (3) (which is the only case of interest), then they are ghost 
identifiers of (3); we therefore call them ghost parameters. 

Thus 2 p r o c can contain the assumption 

(V 0, Fx)... (V en Fn) (V * j G i ) . . . (V e'kGk) 
i^MPproc} H(Fu ... , Fn) {eproc}) , 

where the ghost parameters G1,...,Gk can be any identifiers, of phrase types 
elt . . . , 0k, that are distinct f rom each other and H, ... , Fn, and do not 
occur f ree in 2 ' or BPIOC. 

However , we will also need a second assumption in 2
proc

 that describes 
noninterference propert ies of the procedure being declared. To derive this 
assumption, let / j , ... , I m be the identifiers with global statement-like 
occurrences in J9proc, i.e. 

U l > ••• > I m } ~ -^sta-likeC^proc) > ... , FN} , 

and let E be some identifier distinct f rom FX, ... , FN, H, and the identifiers 
occurring globally in 5 p r o c . Since every member of ^sta-iike(£proc) must be 
ei ther an /, or a statement-l ike formal parameter , we can use rule (R21) for 
left-side noninterference decomposit ion to infer the universal specification 

/I#E & ... & IM#E^>(FIX#E & ... & F^#E^>BPROC#E) , 

where FIV ..., FT. are the formal parameters with statement-l ike phrase type. 
Let e be any meaning, appropria te to an expression-like phrase type, 

such that L!#E& ... & lm#E is t rue in h ' | E: e], and let TJ" be any 
environment that gives the same meaning as [17' | E: e] to all identifiers 
except the formal parameters . Since the formal parameters do not occur in 
II#E & ... & IM#E, this specification is t rue in 17", so that the universal 
specification in the previous paragraph implies that 

FH#E & ... & FJJTF E=>BPTOC#E 

is t rue in 17". But BPTOC and H(FL, ..., FN) have the same meaning in 77", since 
this environment agrees with 17' for H and the identifiers occurring globally 
in BPIOC. Thus the above specification, with BPTOC replaced by H(FL,..., FN), is 
also t rue in 17", and since 17" gives arbitrary meaning to the formal parameters 
and agrees with [17' | E: e] for o ther identifiers, 
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(V0! ... <yon Fn) (Ftl#E& ... &Fij#E^>H(Fi,..., Fn)#E) 

is true in [V | E: e\ 
By (5d) in Section 3.3.4, this specification is the definition of H#E, so 

that H# E is true in [17' | E: e]. Then since e is any expression-like meaning 
such that 1\#E & ... & Im # E is true in [17' | E: e], the specification 

(V exp-like E) (Ir#E & ... & lm#E^>H#E) 

is true in 77' and can be taken as the second assumption in Xproc- (A minor 
generalization of the form of this assumption, obtained by alpha-conversion, 
is that E can be any identifier distinct from Ix, ... , Im, and H.) 

This argument shows the correctness of a rule that is adequate for-
nonrecursive procedures. To handle recursion, the rule must be streng-
thened in two ways: 

(a) The assumptions Xproc must be added to the premiss (3). Essen-
tially, we must be able to make the same assumptions about calls of 
a procedure f rom within its body as from elsewhere in its scope. 

(b) H must be excluded f rom the identifiers 71? ... , Im in the noninter-
ference part of Xproc- Essentially, a procedure only interferes with 
something if some global identifier other than the procedure name 
interferes with it. 

Thus we have: 

(R26) Proper Procedure Declarations 

Suppose 

Fi, ... , Fn, Gi, ... , Gfc, H are distinct identifiers of phrase 
types di, ... , 6n, e\, ... , e'k, procedurê !, ... , 0n), 

^proc> B are statements, 
Ppr00 Gproc, P, Q are assertions, 
X, X', Xpa are finite sets of specifications, 

such that 

X'cX, 
Fi, ... , Fn do not occur free in X', 
Gi, ... , Gfc do not occur free in fiproc or X', 
H does not occur free in Pproc, Qpioc, P, Q, X, X', or Xpa. 

Let Xproc be 

(yoiFi)... (V0nJp„) (yo'iGi)... <ye'kGk) 
(Xpa=>{Pproc} H(Fi, ... , Fn) {Qploc}) 

& (V exp-like E) {Ix#E & ... & 7
m
#£=>//#E) , 
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where {Ix,... ,lm} = ^sta-iike(£Proc)-{Fi,... ,Fn,H} and E is some 
ident i f ier tha t is distinct f rom I u . . . , I m and H . T h e n 

X & X p a & ^ p r o c ^ i P p r o c } ^ p r o c { Q p r o c } 

X & S p r o c ^ { P } B {Q} 

£=>{/>} begin procedure H(OxFy, ... ; 6nFn); J?
proc
; B end {Q} . 

A s with the rule fo r simple variable declarat ions , this rule only applies 
to blocks tha t conta in a single declara t ion. Usually, blocks with multiple 
declara t ions can be e x p a n d e d into nests of blocks with single declarat ions, 
but this app roach will no t handle groups of mutual ly recursive procedures . 
T o handle mutua l recursion, one must ex tend the above rule to multiple 
p rocedure declara t ions . A l though such an extension is conceptual ly straight-
fo rward , the result ing rule is so compl icated tha t we will not try to fo rmula te 
it. 

O n the o the r hand , the full general i ty of the s ingle-declarat ion rule 
given above is f r equen t ly unnecessary. In reasoning abou t nonrecurs ive 
p rocedures , the assumpt ion 2 p r o c may be omi t ted f r o m the first premiss. 
W h e n this premiss does not conta in ghost identif iers , the re will be n o need 
for the ghost p a r a m e t e r s G 1 ? . . . , G^. W h e n BpTOC conta ins no global identi-
fiers, or w h e n the only assumpt ions about global identif iers also involve 
fo rma l pa rame te r s , will be empty . 

3.3.9 Examples of Inference about Procedures 

O u r first example of the use of the rule for p rope r p rocedure declarat ions 
does not involve recurs ion, ghost pa ramete r s , or inher i ted assumptions . 
Cons ider the specif icat ion p roved in Section 3.3.7: 

'pa 

gv(/)&/#n: 

B proc 

' proc 

begin integer k\ 
k : = 0 ; / : = 1; 
while kŷ n do 

begin k : = k+1; f := kxf end 
end 
Q p r o c 
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YVe will encapsulate the statement in this specification as the body of a 
procedure declaration with the heading 

H 0i Fx 02 F2 

procedure /acf(integer {exp} n ; integer {var} /);... 
The metavariables in the procedure rule must be replaced so that the 

procedure declaration in the conclusion matches the declaration of fact, and 
the first premiss matches the specification of the procedure body. Most of 
these replacements are indicated above. Since there are no global identifier 
occurrences in 5 p r o c , is empty. Since there are no ghost identifiers in the 
specification of BpTOC, there are no ghost parameters. 

These replacements map the first premiss of the procedure rule (with 
Sproc omitted since there is no recursion) into the universal specification 
given above, and map £p r o c into the procedure assumptions 

(V integer exp n) (V integer var /) 
(gv(/) &f#n^>{n>0}fact(n,f) {/=«!» 

& (V exp-like e) fact #e . 

In the last line, there are no l x , . . . , Im since there are no global identifiers in 
^proc-

Thus the rule for proper procedure declarations shows that, from an 
instance of the second premiss, 

2 & 2 p r o c =>{P} B {(?} , 

we can infer an instance of the conclusion, 

begin procedure/acf(integer {exp} n; integer {var}/); 
begin ... end; 

B 
end 
M • 

Notice that, in addition t o / # n , the parameter assumptions include the 
assumption gv(/), which was omitted f rom the informal presentation of this 
procedure in Section 3.1.4. In fact, the use of gv in parameter assumptions is 
so stereotyped that it would be pedantic to include it in program comments. 
Normally, gv(F) will occur as a parameter assumption for each formal 
parameter F of type r variable. 

To illustrate how the assumption 2 p r o c is used in reasoning about the 
block body, we consider the procedure statement fact(a + b, c). From rule 
(R22) for right-side noninterference decomposition, we have 

c # a & + , 
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and f r o m rule ( R 7 ) fo r removing quant i f iers , we have 

((Vinteger exp n) (V integer var /) 
(gv(/) &f#n =>{«>0} fact(n, f ) {/=«!») 

=> (gv(c) & c # (a + b) =>{a + b > 0} fact(a + b, c) {c = (a + b)!}) 

Thus 

g v ( c ) S p r o c 

=>{a + b>0} fact(a + b, c) {c=(a + b)\} 

is a universal specif icat ion a b o u t the p rocedure s t a t ement fact (a + b, c). 
Howeve r , 2 p r o c also conta ins (V exp-like e) fact # e. T o see the role of 

this assumpt ion , we will show that fact(a + b, c) p reserves the assertion 
a + b > 0. T h e ru le for right-side non in te r fe rence decompos i ton gives 

c#a & c#b => c#(a + b>0) , 

quant i f ie r r emova l gives 

((V exp-like e) fact#e) => fact#{a + b> 0) , 

and left-side non in t e r f e r ence decompos i t ion gives 

fact#(a + b> 0) & c# (a + b>0)^>fact(a +b, c ) # ( a + fc>0) 

since the occur rences of a and b in fact(a + b, c) are not s ta tement- l ike . 
Next we employ the rule of constancy ( R 2 3 ) . By subs t i tu t ing /acf (a + 6, 

c) fo r 5, a + b> 0 fo r b o t h p and q, and c=(a + b)\ fo r r, we get 

fact(a + b, c)#(a + b> 0 ) 
& {a + b>0} fact(a + b, c) {c=(a + b)\} 

=>{a + b>0} fact(a + b, c) {c = (a + b)\ and a + b>0} . 

T h e n using m o d u s ponens to combine the last five specif icat ions gives 

r * \ 
gv(c) & C# a & c#b & Sproc^ 

P B Q 
/ * > , * < , » N 

{a + b>0} fact(a + b, c) {c = (a + b)\ and a + b>0} . 

It is easy to see how this k ind of reasoning could be ex tended to a block 
body conta in ing several calls of fact. Howeve r , if we just t ake the metavari -
ables as indica ted , the above specification becomes an instance of the second 
premiss of the p rocedu re rule , so tha t we may infer 
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gv(c) & c#a & c # & = > 
{a + b> 0} 
begin procedure /a r t ( in teger {exp} n; integer { v a r } / ) ; 

begin ... end; 
fact(a + b, c) 
end 
{c=(a + b)\ and a + b>0} . 

As a second example, we consider a recursive procedure for computing 
factorials: 

H 61 Fi d2 F2 

procedure /«cJ(integer {exp} n ; integer {var} / ); 

^pa 

{pa: g v ( / ) & / # n } 
p 
1 proc 

A 
B [ if n 

I ' 
— 0 then / : = 1 else 

Proc I begin fact(n -1, /);/:= n xf end 

G p r o c 

• 

With a recursive procedure, we cannot proceed by first proving a specifica-
tion of the body and then matching this specification against the first premiss 
of the procedure rule to determine 2proc> since we need to know Xp r o c while 
proving the specification of the body. However , an adequately commented 
procedure declaration, such as the one above, will contain enough informa-
tion to determine the metavariable replacements that give the first premiss 
and 2 p r o c- (Notice that the stereotyped parameter assumption gv ( / ) has 
been included since / has type r variable.) 

If we replace the metavariables as indicated, take to be empty since 
there are no global identifiers, and use no ghost parameters since there are 
no ghost identifiers, then the first premiss of the procedure rule becomes 

g v ( / ) & / # « & £ proc 

{ « > 0} 
if n = 0 then / : = 1 else 

begin fact(n -1 ,/);/:= nxf end 
{ / = « ! } , 
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where 2 n r n r is proc 

(V integer exp n) (V integer var / ) 
( g v ( / ) &f#n=>{n>0}fact(n,f) {/=*!}) 

& (V exp-like e) fact #e 

Actually, this is the same 2 p r o c as in the previous example, which is hardly 
surprising since the two procedures are intended to have the same meaning. 

However , we must now prove the above specification of B p r o c , using 
2 p r o c as an assumption. This reflects the basic method of reasoning about 
recursion: In showing the correctness of the. procedure body, one assumes 
that recursive calls behave correctly. 

As a first step, an argument similar to that given for the previous 
example shows that the s tatement fact(n — 1, / ) satisfies 

g v ( / ) & f#n & -^proc ~^ 
{n-l>0}fact(n-l,f) { / = ( « - 1 ) ! and n - l > 0 } . 

Then the following tableau establishes a specification for the compound 
s ta tement in the procedure body: 

{ r t > 0 and 1 rt = 0} 
{« — 1 > 0} 
fact(n — 1, / ) 
{ / = (« —1)! and n - l > 0 } 
{ « x / = r c ! } 
/:= nxf 

I {/="!} • 

The other half of the conditional s ta tement satisfies 

{n > 0 and n = 0} 

g v ( / ) & / # « = > ! 

{/="!} • 
Finally, the desired premiss about the procedure body can be inferred by 
using rule (R16) for the two-way conditional s ta tement: 

g v ( / ) & / # n & 2 proc" 

g v ( / ) & / # « & £ proc 

{ « > 0} 
if n = 0 then / : = 1 else 

begin f a c t ( n - l , / ) ; / : 
{ / = " ! } • 

n x f e n d 

Since 2 p r o c is the same as in the previous example, its usage in reasoning 
about the body of the block containing the procedure declaration is similar. 
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For a thi rd example , we consider a nonrecurs ive factor ia l -comput ing 
procedure tha t uses call by value and result: 

procedure /acf(integer value n; integer result /); 

Bo\ 

begin integer k\ 
k: = 0; f := 1; 
while k^n do 

begin k:=k + l\ f \ = kxf end 
end 

This p rocedure dec lara t ion will lead to a 2 p r o c which is s t ronger than in the 
previous examples , ref lect ing the fact tha t this p rocedure will still behave 
correctly when its p a r a m e t e r s in te r fere . However , to express this ext ra 
strength we will n e e d to use ghost ident if iers and pa ramete r s . 

Let Bo be the body of the above p rocedure declarat ion, and let Bq be 
B0\n f-+ri,f' T h e n according to the t r ans format ion described in Section 
3.1.5, the above declara t ion is equivalent to 

H 61 F I 6I F9 

procedure /acf(integer {exp} n ; integer {var} /); 

{begin integer ri, /'; 

n : = n; / := / 
end As in ou r first example , B 0 satisfies 

Moreover , s i n c e / i s the only ident if ier with a f r ee s ta tement- l ike occurrence 
in Bo, the rules for non in te r fe rence decomposi t ion give 

f # n & /#n0=>5o#(n = no) • 

Next, we use the ru le of constancy ( R 2 3 ) to obta in 

5 0 # ( n = n 0 ) & {"2=0} Bo { / = « ! } = > 
{n>0 and n-n0} B0 {f=n\ and n = n0} . 

Then by combining these resul ts and weaken ing the consequent , we obta in 

gv(/) & f # n & f#n0=>{n>0 and n = n0} B0 {/=«0!} • 

A t first sight, it may seem surprising tha t we will need this kind of 
ghost-identifier descr ipt ion of the behavior of B0. Intuitively the reason is 
that, since n is called by value, a caller of fact will have no access to the value 
of n a f t e r B0 has comple ted execut ion, and the re fo re no interest in the fact 
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that f—n\ will hold. What is important to the caller is that / will be the 
factorial of the value n0 possessed by n before execution of B0, since n0 will 
also be the value of the corresponding actual parameter . 

Next, we apply the substitution n,f—>n',f to the above specification, to 
obtain 

gv(/') &/'#«' & f' # n0=>{ri >0 and ri = n0} Bo {/' = n0'.} , 

which is the main step in the following tableau: 

{n > 0 and n = «0} 

gv(n') & ri #nQ 
& gv(/') &/'#n' &/'#n

0 &gv(/)&/#n
0 

n : = n; 
{ri > 0 and ri = n0} 
Bo; 
{ f = n0\} 
/ : = / ' 
{ / = « o ! } • 

Then two applications of rule (R25) for simple variable declarations give 

'pa 

gv(/) «fe/#M0
: 

B proc 

proc 

{n > 0 and n = n0} 

(begin integer ri, /'; 
ri : = n; B^; f := f 
end ( 2 proc 

{ F v } • 

The indicated metavariable replacements map this specification into 
the first premiss of the procedure rule. As in our previous examples, since 
there are no global identifiers, is empty. But now, since n0 is a ghost 
identifier of the above specification, it becomes a ghost parameter in 2 p r o c-
Thus we take to be n 0 and fy to be its phrase type integer expression. Thus 
^proc is 

(V integer exp n) (V integer var /) (V integer exp n0) 
(gv(/) & f#n0=>{n>Q and n = n0} fact(n, f ) {f=n0!}) 

& (V exp-like e) fact #e . 

The reader may verify that this 2 p r 0c implies the 2 p r o c the two 
previous factorial-computing procedures. (Hint: Substitute n for n0, using 
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parts (c), (d) and (e) of Exercise 1 fol lowing Section 3.3.5.) Thus the present 
procedure will behave correctly wheneve r the previous ones do so. 

On the o the r hand , as an example of the addi t ional capabili t ies provided 
by call by value and result , the present 2 p r o c implies 

(V integer exp n0) 
(gv(fl) & «#n

0
=> 

{a + b>0 and a + b = n0} fact(a + b, a) {a = «0!}) , 

which character izes the kind of call tha t will not behave correctly when call 
by name is used. 

Exercises 

1. For each of the following procedures, determine 2p r o c and prove the appropriate 
instance of the first premiss of rule (R26) for proper procedure declarations. 

(a) procedure powerx(integer {exp} n; integer {var} y); 
begin integer k; 
k:=0; y:= 1; 
while k ^ n do 

begin k: = k+1; y: = xXy end 
end 

Here the specification of the procedure body is the result of Exercise 1 after 
Section 3.3.7. Despite the presence of the global identifier AT, X' is empty, since 
the only assumption about x is y #x, which also involves a formal parameter and 
must therefore be part of 2p a . 

(b) procedure powerxy(integer {exp} n); 
begin integer k\ 

0; y : = 1; 
while k ^ n do 

begin k:=k+1; y: = xxy end 
end 

Again, the specification of the procedure body is the result of Exercise 1 after 
Section 3.3.7. Now, however, X' is gv(y) & y#x. 

(c) procedure powerxy (integer {exp} n); 
{pa: y#n} 

0} 
if n — 0 then y: = 1 else 

begin powerxy(n — 1); y: = xXy end 
{y=x"} . 

As in the previous case, X' is gv(y) & y # x . 

(d) The procedure described in Exercise 2 following Section 3.1.5. 
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2. Show that the procedure declaration 

procedure SH>ap(integer {var} x, y); 
begin integer t; t: = x\ x:=y; y: = t end 

gives rise to the procedure assumption 2 p r o c = 

(V integer var x) (V integer var y) (V integer exp *
0
) (V integer exp y0) 

(gv(*) & gv(y) & x#x0 & x$y$ & y#x0 & y#y0 & y#x=> 
{*=*„ and y=y 0 } swap(x, y) {y=x0 and *=y 0} ) 

& (V exp-like e) swap#e . 

Notice the asymmetry between x and y. 

3.3.10 Further Examples 

T h e examples in the previous section show the applicat ion of specification 
logic to p rocedures tha t can be proved by m o r e convent ional me thods , e.g. 
[ H o a r e 71b]. T h e only significant novelty is the t r ea tmen t of call by value 
and result as abbrevia t iona l const ructs in the sense of Section 3.1.5, which 
avoids the compl ica t ions of the p rocedure rule tha t would be necessary to 
include these paramete r -pass ing mechanisms explicitly. 

W e n o w consider two examples , involving s t a t ement p a r a m e t e r s and 
the use of call by n a m e to repea ted ly evaluate expressions with changing 
values, tha t canno t be t r ea ted by o the r approaches . In b o t h of these exam-
ples, we will use p a r a m e t e r assumpt ions tha t go beyond the simple noninter-
fe rence and good-var iable specifications used previously. 

T h e first example is the h igher-order p rocedure 

H 61 = statement Fx d2 F2 

procedure repeat( procedure s ; logical {exp} / ); 

BR 'proc 

begin s; while "1 / do s end 
which was in t roduced in Section 3.1.7. Suppose the ident i f ier p deno te s an 
asser t ion tha t will be t rue when the body of this p rocedure begins execut ion, 
and the ident i f ier i d eno t e s the invariant of the while s t a t ement . T h e n the 
s t a t emen t s should satisfy the specifications {p} s {/'} and {/ and 1 1 } s {/}, or 
equivalent ly the single specification {p or (i and 1 /)} 5 {/}. T h e key to 
reasoning abou t the p rocedure is to t ake this specification as the p a r a m e t e r 
assumpt ion . 

W e begin with the obvious tab leau 

{p or (i and "1 /)} s {/}: 

{/ and 1 /} 
{p or (/ and "1 /)} 
s 
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Then an application of the while-statement axiom (R15) gives the main step 
in the following tableau: 

{p or (i and "1 /)} s {/}: 

| W 
{p or (i and "I /)} 
•s; 
W 
while "1 I do s 
{i and 1 (1 /)} 
{i and /} 

To match the result of this tableau with the first premiss of rule (R26), 
we use the metavariable replacements 

X p a P p r o c P p r o c Q p r o c 

{p or (i and "1 /)} s {*'}=>{/?} s\ while ~l / do s {/ and /} . 

Since there are no global identifiers, X' is empty. Since p and i are ghost 
identifiers, they become ghost parameters, of phrase type assertion. Thus 
Sproc tS 

(V statement s) (V logical exp I) (V assertion p) (V assertion i) 
({p or (i and "I /)} 5 {/}=>{/?} repeat(s, I) {i and /}) 

& (V exp-like e) repeat # e 

The second line of 2 p r o c is similar to the kind of axiom one would give 
about a repeat statement if it were available in Algol W. However, 2 p r o c is 
not a universal specification; it only holds in environments in which the 
identifier repeat has an appropriate meaning. 

Our second example is the procedure given in Section 3.1.5 that uses 
Jensen's device to compute an iterated sum: 

procedure sum{integer {var} i\ integer {exp} e)\ 
begin s : = 0 ; i: = a — 1; 
while i<b do 

begin /: = i +1; s: = s + e end 
end 

To describe the body of this procedure, we introduce a ghost identifier 6, of 
phrase type integer procedure(integer expression), that expresses the value 
of e as a function of i. The relationship between these three identifiers is 
expressed by the static assertion {e= 6(i)}, which will appear as a parameter 
assumption. 

The invariant of the while statement asserts that a b\ is partitioned 
into a processed interval |a and an unprocessed interval /| b\, and that s is 
the sum of 6 over the processed interval: 
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a *1 b\ and [7~] 6{j) 

The following tableau shows that this invariant is preserved by the while-
statement body: 

gv(/) & i#a & i#b 
& i#s & i#0 
&{e=0(i)} 
& gv(s) & s#a & s#b 
& s#i & s#6 

b} 

Then the while-statement axiom gives the main step in 

{true} 
{0 = 0} 
5: = 0; 
{, = 0} gv(0 & i#a & i#b ^ 

& i#s & i#6 
&{e = 0(i)} 
& gv(s) & s#a & s#b 
&s#i&s#6 

(l« " - A b\ and s = S / e [7^1] 0(j)} 
i: = a — 1; 

{\a i\ b\ and 5= Sy e Q <?(/)} 
while i<b do 

begin i: = i+1; s: = s+e end 
and s = ^ j e \ 6 ( j ) and 1 i<b} { 

The following metavariable replacements map the first premiss of the 
procedure rule into the result of this tableau: 

gv(s) & s#a & s#b 

'pa 

& gv(/) & i#a & i#b & i#s & i# 0 & s# i & s# 0 & {e=d(i)}-
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B proc 

' proc 

{true} 
i: = a — 1; 

while i<b do 
begin / : = / + ! ; = s + e end 

Q proc 

The formal parameters are i and e, and the ghost parameter is 9. Thus 2 p r o c is 

(V integer var i) (V integer exp e) 
(V integer procedure (integer exp) 9) 

( g v ( / ) & i#a & i#b & i#s & i#9 & s#i & s# 9 & {e = 0 ( / ) } 
=>{true} sum{i, e) {5= e O ) 

& (V exp-like e) (5#e=>5wm#e) . 

In the next section, we will show how these assumptions can be used to 
reason about calls of sum. 

Exercise 

1. The procedure whiledo described in Exercise 3 following Section 3.2.1 uses 
recursion to obtain the effect of a while statement. Show that the declaration of 
whiledo leads to a 2proc bearing a close relation to axiom (R15) for the while 
statement. 

3.3.11 Lambda Expressions 

A significant shortcoming of Algol W is that it does not provide any way to 
denote a procedure without using an identifier to name the procedure. This 
deficiency is particularly painful for procedures that are actual parameters in 
calls of other procedures. For example, in Section 3.1.7 we used the follow-
ing statement to sum an array segment: 

begin 
procedure addoneelement(integer {exp} /); s: = s + X(i); 
s:=0; iterate(a, b, addoneelement) 
end 

Here the only usage of the procedure named by addoneelement is in the call 
of iterate, but we are forced to name this procedure by an identifier and to 
define the meaning of this identifier at a point remote f rom the only point 
where it is used. The program would be simpler and clearer if we could write 
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an expression denoting this procedure directly as an actual parameter of the 
call of iterate. 

This kind of facility is provided by a procedure-denoting expression 
called a lambda expression, which consists of the symbol A, followed by a 
parenthesized formal parameter list, a period, and a procedure body, e.g. 

A (integer {exp} i). s: = s + X(i) . 

A lambda expression defines the same procedure as would be defined by a 
procedure declaration with the same formal parameter list and body, but 
leaves the procedure unnamed. Instead, the lambda expression is written 
directly at the point where the procedure is used. For example, the array-
summing program given above could be written as 

begin 
s:=0; iter ate {a, b, A(integer {exp} i). s: = s + X(i)) 
end 

Syntactically, a lambda expression of the form 

A(0i Fn ... ; 0n Fn). B 

is a phrase of type p r o c e d u r e ^ , . . . , dn),r p r o c e d u r e ^ , . . . , 6„), or assertion 
p r o c e d u r e . . . , 6n), depending upon whether the body B is a statement, a r 
expression, or an assertion. As with procedure declarations, the occurrences 
of Fx, ... , Fn in the formal parameter list are binders whose scope is the 
formal parameter list plus the following procedure body, i.e. the entire 
lambda expression. 

Just as the meaning of procedure declarations can be explained by the 
copy rule, so the meaning of lambda expressions can be explained by a 
process called beta reduction. Consider a procedure statement or function 
designator that begins with a lambda expression: 

(A(0! F i ; ... ; 0n Fn). B) (Alt ... , An) • 

Such a phrase is called a beta redex. Its meaning is always the same as the 
meaning of the phrase obtained from the procedure body B by substituting 
each At for Ff. 

B I Fi, ... , F„-*Ai, ... , An • 
The replacement of a beta redex by the result of this substitution is called 
beta reduction. (The terms beta redex and beta reduction, like the term alpha 
conversion, are taken from the study of the lambda calculus, which is a 
logical language based upon the use of lambda expressions.) 

In this description of beta reduction, we have assumed that call by value 
or result is not used in the lambda expression. When such usage occurs, it 
must be eliminated by means of the transformation described in Section 
3.1.5, before the process of beta reduction is performed. 
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As an example, suppose iterate is defined by the declaration 

procedure iterate^integer {exp} a, b; procedure p {integer exp}); 
begin integer k; k: = a — 1; 
while k < b do 

begin k: = k +1; p(k) end 
end 

(To keep the example simple, we use call by name, rather than call by value 
as in Section 3.1.7.) Then an application of the copy rule shows that 

iterate(a, b, A(integer {exp} 

is equivalent to 

begin integer k; k: = a — 1; 
while k < b do 

begin k: = k +1; 
(\(integer {exp} i). s: = s + X(i)) (k) 
end 

end 

Next, the beta redex in the fourth line can be reduced to 5: = s + X(k), so that 
the call of iterate is equivalent to 

begin integer k; k: = a — 1; 
while k < b do 

begin k: = k +1; s: = s + X(k) end 
end 

Although lambda expressions are not available in Algol W, they are 
provided in several programming languages, including LISP and (with 
slightly different notation) Algol 68. In the rest of this book, we will occa-
sionally use them in programs to improve clarity. In such cases they can be 
eliminated by declaring a procedure with a dummy name. Specifically, one 
can replace a lambda expression of the form A(0! Fx, ... ; 0„ Fn). B by an 
identifier D that does not occur elsewhere in the program, and then insert 
the declaration 

procedure D(0X F . . . ; 0„ Fn); B 

in a block enclosing the occurrence of D. One should be careful that the 
enclosing block is small enough to fall within the scope of all binders of the 
identifiers occurring globally in B. As an example, this transformation would 
convert our array-summing program back into the form containing a decla-
ration of addoneelement that was given at the beginning of this section. 

However, our main reason for introducing lambda expressions is to use 
them in specification logic. Since lambda expressions denote procedures, 
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they are among the phrases that can be substituted for identifiers of pro-
cedural types. Moreover, since beta reduction preserves meaning, it can be 
used as a rule of inference, i.e. the reduction of a beta redex occurring in a 
universal specification gives another universal specification. Indeed, one can 
even use beta reduction backwards to create a redex in a specification. 

To illustrate the use of lambda expressions in specification logic, con-
sider the procedure sum discussed in the previous section. By applying rule 
(R7) for quantifier removal to the S p r o c obtained for this procedure, with the 
substitution 

i, y, X(j) x X(j), X(integer {exp} k). X{k) x X(k) , 

one can infer 

Sproc & 8V(/) & ]#a & j#b & j#s 
& y # (X (integer {exp} k). X{k)xX(kj) 
& s # y & (X(integer {exp} k). X(k) x X(k)) 
& {X(j) x X(j) = (X(integer {exp} k). X(k)x X(k))(j)} 
=>{true} sum(j, X{j) x X{j)) 

= l y e O (X(integer {exp} k). X{k) x X(k))(j)} . 
By beta-reducing the two redexes, we infer 

Sproc & gv(y') & ; # « & j#b & j#s 
& y # (X(integer {exp} k). X(k) x X(k)) 
&s#j &.s#(X(integer {exp} k). X(k)xX(k)) 
& {X(j)xX{j) = X{j)xX{j)} 
=>{true} sum(j, X(j) x X{j)) {s= € Q X{j) x X(j)} . 

Then, since X(j) x X(j) = X(j) x X(j) is a mathematical fact, and right-side 
noninterference decomposition gives 

j#X^>j# (X(integer {exp} k). X(k)xX(k)) 

and 

5 # Z = > s # (X(integer {exp} k). X{k) x * ( * ) ) 

(since only .X" occurs free in the lambda expression), we have 

V o c & gv(y') & y'#a & ]#b & y # 5 & j # x & 5#y & 

=>{true} sum(j, X(j) x Z(y)) {s= Sy e Q * ( / ) x * ( / ) } • 

Next, rule (R25) for simple variable declarations gives 
Sproc & S#X^> 

{true} 
begin integery; sum(j, X(j)xX(j)) end 
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Thus, if we take this specification as the second premiss of the procedure 
rule, remembering that = gv(s) & s#a & s#b must be a subset of 2 , we 
obtain the conclusion 

gv(s) & s#a & s#b & s#X^> 
{true} 
begin 
procedure sum (integer {var} /; integer {exp} e); 

begin s:= 0; i: = a — 1; 
while i<b do 

begin i: = i + 1 ; s: = s+e end 
end; 

begin integer j; sum(j, X(j) x X(j)) end 
end 

O * ( / ) * * ( / ) } • 

Exercise 

1. Use the copy rule and beta reduction to eliminate the procedure statements from 
the following program, which computes the sum of a segment of a two-
dimensional array: 

begin s: = 0; 
iterate(al, bl, (̂integer {exp} i). 

iterate(al, bl, (̂integer {exp} j). s: = s + X(i, j)) ) 
end 

(Assume the formal parameters a and b of iterate are called by name.) Also, use 
the method of introducing declared procedures with dummy names to convert 
this program to conventional Algol W. 

* 3.3.12 Abstract Specification Logic 

Once lambda expressions have been introduced into specification logic, with 
beta reduction as an inference mechanism, the logic can be simplified 
significantly. In particular one can give axioms, which we will call abstract 
axioms, from which several of the more complicated inference rules can be 
derived by substituting lambda expressions and then using beta reduction. In 
effect, much of the complexity of the logic can be encapsulated in the 
mechanism of beta reduction. 

For example, the following is an abstract axiom for assignment, in which 
x is a r variable identifier, e is a r expression identifier, and 7r is an assertion 
procedure(r expression) identifier: 
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(R27) Simple Assignment (Axiom) 

gv(x) & x # 7r=>{77(e)} x : = e {7t(jc)} . 

From this axiom, we can derive our previous rule (R24) for assignment 
as follows: Suppose X is a r variable identifier, E is a T expression, and P is an 
assertion such that the free occurrences of X in P have phrase type r 
expression. By substituting X for x, E for e, and X(r exp X). P for 7r in rule 
(R27), we can infer 

gv(Z) & *#(X(T exp X). P)=> 

{(X(r exp X). P){E)} X: = E{(\{T exp X). P)(Z)} . 

Then by beta-reducing the precedent and consequent, we get 

gv(Z) & (X(r exp X). P)=>{P | X: = E{P} , 
since beta-reducing the consequent leads to the substitution X—>X, which 
leaves P unaffected. 

However, by right-side noninterference decomposition, we have 

X#Ix & ... & X # (X(r exp X). P) , 

where {/1? ... , /„}=^ e x p . l i k e(X(r exp X). P ) = ^ e x p . l i k e (P) - {Z} . Then modus 
ponens can be used to infer the conclusion of rule (R24). 

From rules (R6) and (R7) for the introduction and removal of quanti-
fiers, it can be seen that axiom (R27) is equivalent to 

gv(x)=>(Vr exp e) (V assertion procedure(r exp) 7r) 
(x#77 =>{77(e)} x: = e {tt(x)}) . 

In this form, the axiom is an obvious consequence of the definition (6) of gv 
given in Section 3.3.4, as is the converse implication 

(R28) Good Variables (Axiom) 

(V r exp e) (V assertion procedure(r exp) 77) 
(*#7r=>{ir(<?)} x: = e {Tr(x)}) 

=>gv(x) . 

In the next section, we will use (R28) to obtain conditions for insuring that 
array designators are good variables. 

Another abstract axiom describes nonrecursive proper procedures. Let 
m be a p r o c e d u r e ^ , . . . , 6n) identifier and cr be a procedure (procedure (01? 

... , 0„)) identifier, and consider the block 

begin procedure h(6l fx\ ... ; 9n /„); m{fu ... , /„); a(h) end . 

Obviously the effect of the procedure declaration is to give h the same 
meaning as m, so that a ( h ) inside the block has the same meaning as <r(m) 
outside the block. This justifies the following abstract axiom, where p and q 
are assertion identifiers: 
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(R29) Nonrecursive Proper Procedure Declarations (Axiom) 

{p}a{m) {(?}=> 
M 
begin procedure h(6x fx\ ... ; 0n fn); m(fx, ... ,/„); 
a(h) 
end 
{«?} • 

(Strictly speaking, this is a family of axioms, one for each choice of n > 1 and 

0i, ••• , On-) 
Despite the seeming triviality of this axiom, it can be used to derive the 

nonrecursive case of rule (R26) for proper procedure declarations. Suppose 
that Fx, ... , Fn, Gi , ... , Gk, H, E are distinct identifiers, flproc, B are 
statements, P p r o c , e p r o c , P, Q are assertions, and 2 , 2 ' , 2 p a are finite sets of 
specifications, that satisfy the restrictions given in rule (R26) and also the 
restriction that H does not occur free in fiproc (since we are not considering 
recursion). 

Suppose that the first premiss of rule (R26), with 2 p r o c omitted since we 
are avoiding recursion, 

2 & 2 p a ^ { P j j r o c } ^ p r o c { G p r o c l 

is a universal specification. Since the F ' s and G's do not occur free in 2 ' , we 
can introduce quantifiers to infer 

proc { G p r o c } ) , 

where we have writ ten (VF, G) to abbreviate the list of quantifiers 
(V0iFi) ... (V0mFw) (V0iGi) ... iyo'kGk). 

By using left-side noninterference decomposition and introducing a 
quantifier, we can infer 

(V exp-like E) E & ... & 
( \ ( 0 i F i ; ... ; dnFn). Bpxoc)#E) , 

where {Iu ... , /m} = ^ s t a - l i k e ( ^ ( 0 l ^ i ; — > 0nFn). Bproc) = ^ s t a - l i k e ( f i p r o c ) _ 

{Fu ... , Fn, H}. 
Next, suppose that the second premiss of rule (R26), 

2 & ( V F , G ) ( 2 p a = > { P p r o c } H ( F u . . . , Fn) { Q p r o c } ) 

& (V exp-like E) E & ... & lm#E^>H#E) 
=>M B {Q} , 

is a universal specification. Since beta reduction preserves meaning, we can 
replace B by the redex (\(procedure(0i, ...,dn)H). B)(H) which reduces to 
B, i.e. we can do beta-reduction backwards. Then we can substitute 
\ (0 iF i ; ... ; 6nFn). Bpioc for H. Since the F 's , G's, and E do not occur free in 
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X(01 / r
1 ; . . . ; dnFn). fiproc, there is no alpha conversion. Since / / d o e s not occur 

free in 2 , 2 p a , Pproc, QpTOC, P, Q, or \(procedure(0i, ... , 0n) / / ) . B, these 
phrases are not changed by the substitution. On the other hand, the state-
ment H(FU ... , Fn) changes to ( \ ( # i F i ; ... ; 0nFn). BpTOC) (Fu ... , Fn), 
which beta-reduces to Bproc. Thus we have 

X & (V /S G) ( S p a ^ p r o c l B proc teproc}) 
& (V exp-like E) ( / 2 # E & ... & 

{KOiFu - ). Bproc)#E) 
=> M ( A . ( p r o c e d u r e . . . , 0n) H). B) 

(A(0i / i ; ... ; 0nFn). Bpioc) {Q} . ' 

Next we use axiom (R29). First we use alpha conversion to replace 
/ i , ... , / „ , and h by Fu ... , Fn, and H. (Without loss of generality, we can 
assume that these identifiers are distinct f rom p, q, m, and cr.) Then we 
subs t i tu te P for p, Q. for q, X(0jFi ; ... ; 0nFn). Bproc for m, and 
\ (procedure(0! , . . . ,0n)H).B for cr. Since Fx,..., Fn, and H do not occur free 
in the first of these lambda expressions and H does not occur free in the 
second, the substitution does not cause any alpha conversion. However, the 
substitution does convert the statements m(Fl, ... , Fn) and cr(H) into 
redexes. Af te r beta-reducing these redexes, we have 

{/>} (\(procedure(0i, ... , 0n) H). B) 
(\(0i/I; ... ; 0nFn). £ p r 0 c ) {Q} 

=>{P} begin procedure / / (0 iFi; ... ; 0nFn)\ Bproc\ B end { Q } . 

Finally, f rom the results of the last four paragraphs and the restriction 
2 ' ^ 2 , we can use modus ponens to infer the conclusion of rule (R26): 

£=>{/>} begin procedure HfaFi, ... ; 0„Fn); Bpioc; B end {Q} . 

Thus in the nonrecursive case, lambda expressions and beta reduction can be 
used to derive the complex rule (R26) from the almost trivial abstract axiom 
(R29). 

Unfortunately, this approach cannot be extended to encompass recur-
sion. To give an abstract axiom for recursion, one must int roduce 
specificationsalued procedures. Moreover, to insure the soundness of the 
axiom one must restrict the bound occurrences of identifiers in lambda 
expressions denoting these procedures so that, in the language of fixed-point 
theory, the meanings of these lambda expressions are continuous functions. 
These considerations, which are beyond the scope of this book, are discussed 
in [Reynolds 81]. 
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Exercise 

1 Simple variable declarations can be described by a family of abstract axioms 
indexed by the integers ra>0 and n>0. Let eu ... , em be identifiers of 
expression-like types, su ... ,s„ be identifiers of statement-like types, p and q be 
assertion identifiers, and a be a procedure(r variable) identifier. Then: 

(V t var x) (gv(x) & x#ex & ... & x#em 
& Si#x & ... & *„#*=>{/?} a(x) {4}) 

=> {p} begin r x; cr(x) end {<7} . 

Derive rule (R25) from this family of axioms, and vice-versa. 

* 3.3.13 Inference for Arrays 
In this section we give a brief account of the inference rules that describe 
assignment to array elements and the declaration of arrays. For simplicity, 
this account is limited to the one-dimensional case. 

In Section 2.3.2, we gave the rule {P|A:-[A:|S: £]} X(S): = E {P} for 
assignment to array elements. Just as with simple assignment, the generaliza-
tion to specification logic requires us to preface this specification with 
assumptions about noninterference, namely that assigning to X(S) will not 
affect the meaning of any identifier other than X that has a free occurrence in 
P. However, we do not need to assume that X is a "good" array variable 
since, in the subset of Algol W used in this book, all array variables have 
good behavior. (It is array designators, not array variables, that can behave 
badly.) Thus there will be no analogue of the specification gv(V) for arrays. 

As in Section 2.3.2, our rule will not take subscript errors into account, 
i.e. we will assume that such errors are akin to nontermination and must be 
treated by informal arguments outside of our conditional logic. 

These considerations lead to the following rule, which plays the same 
role for assignments to array elements that rule (R24) plays for simple 
assignments: (R30) Array Assignment 

Let X be an identifier of type r array variable(*), S be an integer 
expression, E be a r expression, and P be an assertion such that 
all free occurrences of X in P have type r array expression(*). 
Let {/ l5 ... , U = ^ e x p . l i k e ( P ) - { Z } . Then 

* ( S ) # / i & ... &X(S)#lnMP\x^[x\S:E]} X(S): = E {P} . 

The same rule can be stated more abstractly as an axiom, analogous to rule 
(R27) for simple assignment, in which JC is a r array variable (*) identifier, 5 is 
an integer expression identifier, e is a r expression identifier, and p is an 
assertion procedure( r array expression (*)) identifier: 
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( R 3 0 ) Array Assignment (Axiom) 

x(s)#p^{p([x | 5: * ] ) } { P ( J C » . 

We leave it to the reader to verify that (R30) and (R30 ' ) can each be derived 
from the other. 

In a sense, either rule (R30) or (R30 ' ) tells us everything that we need 
to know about assignment to array elements. In practice, however, we need 
additional rules to deal with the use of array designators as actual paramet-
ers. For example, let S p r o c be the procedure assumptions obtained in Section 
3.3.9 that describe a factorial-computing procedure using call by name. It is 
easy to infer the following specification about the call fact(X(i),X(j)), where 
X is an integer array: 

Sproc & gv(X(j)) & X(j)#X(£)=> 
{*( / ) > 0} fact(X(i), X(j)) {X(j) = X(i)!} . 

But to make use of such a specification we need rules to show when we can 
assume that an array designator is good, e .g . gv(X(j)), or that two array 
designators referring to the same array do not interfere with one another 
e.g. X{j)#X{i). 

The following rule serves the first of these purposes. Here x is a r array 
variable (*) identifier and 5 is an integer expression identifier: 

(R31) Good Array Designators (Axiom) 

x(s )#s=>gv(*(s ) ) . 

This rule can be derived from (R30 ' ) and (R28). To see this, let TT be an 
assertion procedure (r exp) identifier. By substituting \ ( r array exp (*) *). 
7r(*(s)) for p in (R30 ' ) and using right-side noninterference decomposition 
and beta reduction, we have 

x{s)#s & X(S)#TT^{TT([X I 5: *](*))} x(s):=e {TT(X(S))} , 

or since [x | 5: e](s) = e, 

X(S)#S & *(5)#7T^>{77-(£>)} X(s) 1 = E {tt(jc(s))} . 

Next, we separate assumptions and introduce quantifiers to obtain 

(V r exp e) (V assertion procedure (r exp) TT) 
(x(s) #TT^{TT(e)J x(s): = e {TT(X(S))}) . 

Then modus ponens can be used to derive rule (R31) f rom this result and 
rule (R28) for good variables. 

Notice that the assumption x(s)#s normally precludes *(s) from being 
an array designator such as Z ( Z ( 1 ) ) . 

The next two axioms describe noninterference. They show circum-
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stances in which assigning to an array element will not affect another 
element of the same array, or even a segment of the same array. Here s and t 
are integer expression identifiers, x is a r array variable (*) identifier, and v is 
an integer set expression identifier: 

(R32) Array Element Noninterference (Axiom) 

{s^t} & x(s)# t=>x(s)# x{t) . 

(R33) Array Segment Noninterference (Axiom) 

{s t v} & x(s)#v^>x(s)#x/\v . 

These axioms go significantly beyond the previously given rules for 
noninterference, since they specify noninterference between parts of an 
entity named by a single identifier. Notice the use of static assertions to 
insure that noninterference will hold for any state. 

Also notice that in defining the phrase type of v we have introduced 
integer set as a new data type. As described in Section 3.3.3, this is a 
straightforward extension of specification logic, despite the fact that integer 
set is not one of the data types provided in Algol W. In making inferences 
from rule (R33), one is f ree to substitute for v any expression, such as an 
interval diagram, which denotes a set of integers. 

We have remarked that the last three axioms are needed to deal with the 
use of array designators as actual parameters. As a simple example, consider 
the following program, which uses the procedure fact to create a table of the 
factorial function: 

{|0 dom X} 
begin integer k; 
k:= — 1; 
{whileinv: |o k\ n\ and (V i e [o fc|) X(i) = i!} 
while k<n do 

begin k:= k+ 1; fact(k, X(k)) end 
end 
{ ( V / G Q ) ^ ) = /!} • 

(As pointed out in Section 2.3.1, this is a ludicrously inefficient way of 
computing a table of factorials. However, it serves nicely to illustrate the 
points we are trying to make.) 

We assume that fact has been declared to be either of the procedures in 
Section 3.3.9 that use call by name, so that the appropriate procedure 
assumptions 2 p r o c

 a r e 

(V integer exp n) (V integer var / ) 
(gv ( / ) & / # n = > { « ^ 0 } factin, f ) {/=»!}) 

& (V exp-like e) fact #e . 

Then we may infer by quantifier elimination 



2 5 4 P R O C E D U R E S CHAP 3 

X p r o c & gv(*(*)) & X(k)#k^>{k> 0} fact(k, X(k)) {*(*) = A:!} 

and by rule (R31) 

2
p r o c

 & X(k)#k^>{k>0} fact(k, X(k)) {X(k) = A:!} . 

Next we develop some relevant noninterference specifications. The 
rather complicated reasoning used here is typical of programs in which array 
designators are used as actual parameters. Let z be an integer variable 
identifier and Y be an integer array expression (») identifier. By noninterfer-
ence decomposition we have 

fact#k &fact#Y & z#k & z#Y^> 
fact(k, z ) # ( V i € [ o 3 ) Y(i) = i\ , 

since the occurrence of k in fact(k, z) is not statement-like. Thus since Xproc 

contains (V exp-like e) fact #e, we have 

X p r o c & z#k & z# Y=>fact(k, z ) # ( V i e [ T ] * ) Y(i) = i! . 

Then by substituting X(k) for z and X 1 for Y we get 

X p r o c & X(k)#k & X(k)#X 1 [ ( T > = > 

fact(k, X(k))#(V i € [T>) (X 1 fo \k)(i) = /! . 

To deal with the third assumption, we use rule (R33) to obtain 

{k * [ T > } & X(k)#^\k^X(k)#X 1 [TjA: . 
Here the first assumption is a mathematical fact and the second assumption 
is implied by X(k) # k. Thus we have 

X p r o c & X(k)#k^> 
fact(k, X(k)) # (V i e \(T\k) (X 1 [o |fc)(/) = i! . 

The results of the last two paragraphs may be combined by using the 
rule of constancy: 

X p r o c & X ( k ) # k=> 

{(V i e [T]*) (X 1 fo |fc)(*') = f! and A:>0} 
fact(k, X(k)) 

{(V i e \fT]k) (X 1 [p |A:)(i) — i\ and X(k) = k\\ . 

Then another application of the rule of constancy gives 

X^oc & X{k)#k & fact(k, *(*))# [o 
{|0 M n\ and (V i e [(T]*) (X 1 fo |A:)(/) = /! and 

0} 
fact(k, X(k)) 
{ [ 0 \k\ n\ a n d ( V i e [ T ] * ) ( X 1 | o ~ ~ | * ) ( I ) = I ! a n d 

X{k) = k\} . 
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<proc" >fact#k & fact#n 

and the noninterference decompositions 

fact#k & factttn &X#k& X#n^>fact(k, X(k))#%[ 

and 

X#k^>X{k)#k , 

the result of the previous paragraph gives the main step in the following 
tableau: 

{[0 k\ n\ and (V i e |o k\) X(i) = i\ and k<n} 
{|0 [*+l| «1 and (V i e jtTJfc+l) Z(/) = i!} 
k: = k +1; 

and (V i e [<•*) X(i) = i$ gv(fc). 
& k#n & k#X 

& 2 proc 
& & 

{ 
{jO H n\ and 

(V i e 1 [o |fc)(i') = i! and k> 0} 
fact(k X(k)) 
{[o |fe| n\ and 
(V i e %T]k)(X 1 [o |/c)(f") = ft and *(*:) = £!} 

{|0 n[ and (V i e [(Pfe]) *(i) = i!} • 

Then the application of the while-statement rule to the result of this tableau 

gives the main step in 

gv(A0 

& k#n& k#X 

& 2 proc 
& X#k & 

{true} 
{|0 -l| n\ and (V i e 
k:=-1; 

0 - 1 ) = *•'•} 

{|0 «1 and (V i e [ojfc]) *(i) = *!} 
while A; < n do 

begin k: = k+1; factij^Xik)) end 
3 and (V i e [o X(i) = i\ and { |0 k 

1 k<n} 
{(V i 6 \ 0 n \ ) * ( / ) = *!} , 

and the application of the rule for simple variable declarations gives 
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Sproc & X#n=> 
{true} 
begin integer k; 
k:=-1; 
while k<n do 

begin k:=k+1; fact(k, X(k)) end 
end 
{ ( V / € Q ) A - ( i ) = /!} . 

This matches the informal description of the program except for the 
absence of the initial assumption |0 nj ^ dom X, which is only needed to 
insure against subscript errors. 

To complete the treatment of arrays we must deal with their declara-
tions. The following rule is a straightforward generalization of rule (R25) for 
simple variable declarations; the only novelty is the treatment of array 
bounds: 

(R34) Array Declarations 

If X is a r array variable(») identifier, B is a statement, P and Q 
are assertions, L and U are integer expressions, Ex, ... , Em are 
expression-like phrases, Su ... , Sn are statement-like phrases, 
and X does not occur free in 2 , P, Q, L, U,EU ... , Em, Si, ... , 
S„, then 

2 & X#Ei & ... & X#Em & Sx#X & ... & Sn # X 
=>{P and dom X= \L u\} B {Q} 

2=>{P} begin r array X (L::U); B end { Q } . 

Finally, the following axiom expresses the fact that, once an array has 
been declared, its domain cannot be changed by executing any statement. If 5 
is an identifier of any statement-like type and x is a r array variable (*) 
identifier, then 

(R35) Domain Constancy (Axiom) 

s # dom x 

Exercises 
1. Derive rule (R30) from (R30'). 

2. Let 2proc be the procedure assumption obtained in Exercise 2 after Section 3.3.9. 
Infer the following universal specification: 

Sproc & S v(0 & i # *o & i #y0 & x #i & X#xQ & Z#y 0=> 
0 = x o and *(/)=y0} swap(i, X(i)) and i=y0} . 

What goes wrong when one tries to infer a similar specification about 
swap(X(i), /)? 
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* 3 3.14 Inference for Function Procedures 

To complete our discussion of specification logic, we consider function 
procedures. At the abstract level, the appropriate axiom is identical to axiom 
(R29) for nonrecursive proper procedures, except for a change of types. Let 
p and q be assertion identifiers, m be a r procedure , . . . , 6n) identifier, and 
a be a procedure ( r procedure (0X, ... , 0„)) identifier. Then: 

(R36) Function Procedure Declarations (Axiom) 

{/?} o-(m) {<?}=> 
to 
begin r procedure h(6xfx\ ... ; 0nfn); ra(/i, ... ,/„); 
cr(h) 
end 
{«} • 

At a more concrete level we need a rule that is similar in nature to (R26) 
for proper procedures. However, the concrete rule for function procedures 
is simpler than that for proper procedures. For a proper procedure, the main 
part of the procedure assumptions embodies some property that must be 
proved about the procedure body. But for a function procedure the corres-
ponding property is self-evident; it is just that the value of any procedure call 
will be equal to the value of the procedure body (after appropriate substitu-
tions). Since this property is independent of the state, it can be expressed by 
a static assertion of equality. 

This idea is captured by the following rule: 

(R36 ) Function Procedure Declarations 

Suppose 
Fu ... , Fn, H are distinct identifiers of phrase 

types OI, ... , 0N, T procedure^, ... , 0N), 
BipTOC is a r expression, 
B is a statement, 
P, Q are assertions, 
2 is a finite set of specifications, 

such that H does not occur free in 2 , P, Q, or fifpr0c-
Let Xfproc be 

(V 0&) ... (V 6nFn) {H(FU ... 5 Fn)-Bfproc} 
& (V sta-like S) {S#h & ... & 5 # / w = > 5 # / / ) , 

where { / l f . . . , Im} = ^exp-.ike(£fproc) - ... , and 5 is some 
identifier that is distinct f rom Iu ... , Im and H. Then 

2 & Sfproc=>M B {Q} 

2=>{P} begin r procedure H{exFi\ ... ; 9nFn); Bfpioc; B end {Q} . 
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Notice tha t ne i ther rule ( R 3 6 ) nor ( R 3 6 ) permi ts recursion. For the 
reasons discussed in Section 3.2.5, recursive funct ion p rocedures cannot be 
t r ea ted by specificat ion logic. 

Exercise 

1. Derive rule (R36 ) from (R36). The following is an outline of the derivation: 

(a) Assume that the premiss of ( R 3 6 ) is universal. Use beta reduction back-
wards to replace B by ( \ ( r p r o c e d u r e ^ , ... , dn) H). B) (//). Then 
substitute \(6lFl-, ... ; 6nFn). B{pTOC for H. 

(b) In the result of (a), use rule (R9) for introducing mathematical facts to 
eliminate the assumption containing a static assertion, and use rule (R22) 
for right-side noninterference decomposition to eliminate the assumption 
about noninterference. 

(c) In axiom (R36), use alpha conversion to replace fu ... ,/„ and h by Fx, ... , 
Fn, and H, and then substitute 

p^P 

m^kid^i, ... ; 6nFn). Bipioc 

c r — T procedure(0x, ... , On) H). B . 
After appropriate beta reduction, use modus ponens to combine this result 
with the result of (b) to infer the conclusion of (R36'). 



4 ADDITIONAL CONTROL 
MECHANISMS 

In this chapte r , we will consider addi t ional language facilities for describing 
control s t ructures . O n the one hand , we will in t roduce an iterative state-
ment, called the for s t a tement , tha t is more specialized than the while 
statement. O n the o the r hand , we will consider labels and goto s ta tements , 
which can be used to describe a wider variety of control s t ructures than the 
language used in previous chapters . 

4 . 1 for S T A T E M E N T S 

4.1.1 for Statements in Algol W 

In the p rograms we have seen so far , some (but not all) of the while 
s ta tements have served a part icularly simple purpose : to cause some state-
ment within their bodies to be repea ted ly executed while some integer 
variable t akes on successive values in a p r e d e t e r m i n e d interval. This is such a 
common si tuation in p rog ramming tha t Algol W (like most higher-level 
p rogramming languages) provides a special kind of i terative s ta tement for 
describing it. 

Let K be an ident i f ier , L and U be integer expressions, and 5 be a 
s ta tement . T h e n the for s t a t ement 

for K : = L until U d o S 

2 5 9 
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causes the following actions: First L and U are evaluated, and then the 
integers in the interval L u\ are sequenced through in ascending order. For 
each such integer, the integer is made the value of K, and the statement 5 is 

executed. 
For example, the program in Section 2.2.4 for summing an array seg-

ment can be rewritten as follows using a for statement: 
{ 

c dom X} 
begin s : = 0; 
for k : = a until b do s : = s + X(k) 
end 

Although nearly every higher-order programming language provides an 
iterative construct that is roughly similar to the for s tatement, the precise 
meaning of these constructs varies significantly from one language to 
another. (As an extreme example, the D O statement in F O R T R A N always 
executes its body at least once.) Fortunately, the for statement in Algol W is 
unusually clean and elegant. 

The simplest way to specify the precise meaning of the Algol W for 
statement is to define it to be an abbreviation for some statement built out of 
previously understood language constructs. However, since a correct defini-
tion of this kind is surprisingly subtle, we will approach it through several 
stages of plausible though inaccurate definitions. This approach will also 
suggest why the analogous constructs in other languages exhibit such diver-
sity. 

At first sight, one might expect that for K :=L until UdoS should have 
the same meaning as 

begin K : = L — 1; 
while K< U do n 

begin K :=K+1; 5 end ^ 
end 

However, this definition is inaccurate in several respects. In the first place, it 
does not have the correct binding structure. In the for statement, the initial 
occurrence of K is a binder whose scope is the entire for s tatement, excluding 
L and U. Thus if K is declared in some block enclosing the for statement, 
then the variable defined by this declaration will be unaffected by execution 
of the for s tatement. 

This binding structure is captured by the following definition: If K does 
not occur free in L or U, then for K: = L until £/do S has the same meaning as 
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begin integer K; K : = L — 1; 
while K<U do 

begin K := K+l \ S end 
end 

(If K does occur free in L or U, one must alpha-convert the for statement 
before applying this definition.) 

In the second place, Algol W syntactically prohibits S f rom performing 
any action that could affect the value of K. This insures that successive 
executions of S will be performed for successive integers. To express this 
prohibition we add to our definition the requirement that all f ree occur-
rences of K in S must have the phrase type integer expression (as opposed to 
integer variable). 

It is slightly surprising that Algol W enforces this requirement for for 
statements, even though it does not make a syntactic distinction between 
expressions and variables as procedure parameters. (In [Sites 72] the 
occurrences of K in S are described by the nonterminal symbol (control 
identifier), which is equivalent to our (integer expression identifier).) 

Finally, Algol W evaluates the upper bound U once before any execu-
tion of S, but not repeatedly after each execution of S. Not only does this 
improve the efficiency of the for s tatement, but it insures that S cannot alter 
the interval being iterated over by interfering with U. 

To capture this characteristic, we introduce a local variable U' to save 
the initial value of U. For the sake of symmetry, we also introduce L' to save 
the initial value of L. Thus we define for K: = L until U do 5 to have the same 
meaning as 

begin integer L', U'; L' : = L; U'•: = U\ 
begin integer K\ K : = L' — 1; 
while K<U' do 

begin K : = K + 1; 5 end ^ ) 

end 
end , 

where L' and U' are distinct identifiers that do not occur in the original for 
statement. 

Except for overflow considerations, (3) is a precise definition of the 
Algol W for s tatement. It implies that (in contrast to many programming 
languages) there is a firm guarantee on the number of times a for statement 
will execute its body. Let N be the size of [L U] before the execution of 
for K : = L until U do S. Then 5 will be executed at most N times, and if S 
terminates without an error stop or a goto to an external label, then it will be 
executed exactly N times. As a consequence, a for statement will always 
terminate if its body always terminates. This is the most important distinc-
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tion between the for statement and the more general iterative mechanism 
provided by the while statement. 

The for statement is closely related to the procedure iterate which was 
defined in Section 3.1.7 and used as an example in Section 3.3.11. In fact 
for K : = L until U do S is equivalent to the statement 

iterate(L, U, ^(integer {exp} K). S) , 

where iterate is defined by 

procedure iterate (integer value a, b\ procedure p {integer exp}); 
begin integer k; k : = a — 1; 
while k < b do 

begin k : = k +1; p(k) end 
end 

By using the call-by-value transformation of Section 3.1.5, the copy 
rule, and beta reduction, it can be seen that this definition is equivalent to 
(3). Moreover, if the parameters a and b of iterate are called by name, rather 
than by value, then this definition becomes equivalent to (2). For this reason, 
we will say that (2) and (3) define the call-by-name and call-by-value variants 
of the for s tatement, respectively. 

4 .1 .2 Inference for for Statements 

As with t he while s t a t e m e n t , t he key to r ea son ing a b o u t the for 
statement for K: = L until U do S is an invariant that holds both initially and 
after each execution of the body S. The most obvious approach is to take this 
invariant to be a function of K that holds for K = L - 1 before execution, and 
for the succession of integers in |L u\ after each iteration. But this approach 
leads to a complication: One must pursue separate lines of reasoning for the 

is regular and irregular. two cases where the interval L U 
A more elegant approach, given in [Hoare 72b], is to regard the 

invariant as a function of the interval |L K.\ of integers that have been 
"processed so fa r" . We will follow Hoare 's approach since it unifies the 
regular and irregular cases, and meshes nicely with the use of interval and 
partition diagrams. 

As an example, the invariant of the array summation program given in 
the previous section is s = 2 , e X(i), which asserts that 5 is the sum of the 
elements of X over the processed interval. The for-statement body 5 : = 

maintains this invariant in the following sense: If the invariant 
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holds for |a \k (and if k e \a before execution, then the invariant holds 
for after execution, i.e. 

X(i) and \a [ft] b\} 

As a consequence, if the invariant holds for the empty interval before 
execution of the entire for statement, then it will hold for [a], \a a + 1 

~a + 2|, ... after successive executions of the body, and for the complete 
interval |a b\ after the entire for statement has finished. Thus we may infer 

{5 = £ i e {} X(i')} for k : = a until b do s : = s + X(k) 

In specification logic, the general case of this reasoning is given by the 
following rule of inference: 

(R37) for Statements 

Suppose 

K and N are distinct identifiers of phrase types 
integer expression and integer set expression, 

L and U are integer expressions, 
S is a statement, 
1 is an assertion, 
2 is a finite set of specifications, 

such that K does not occur free in L, U, I, or 
Let {SU ... , Sm} = -^sta-iike(S) and SM+L, ... , SN be any other 
identifiers distinct f rom K. Then 

S & Si # K & ... & SN # K=> 
{ / | J V - ^ K and 1L \K\ t / |} S { / | 

X & SI # L & ... & SM # L & SJ # U & ... & SM # U 
{ /U_>{}} for K: = L until U do S {/ | \ T u \ } . 

Notice that in defining the type of N we are using integer set as a data 
type. The identifier N, which serves to indicate the dependence of / upon 
the interval of processed integers, never actually occurs in the premiss or 
conclusion of the inference rule, since it is always replaced by either { } or 
some interval diagram. (In most applications, n will be equal to m.) 

As an example of the formal use of this rule, let 
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K be A: 
N be v 
Si be s 
L be a 

Ube b 
S be 5 + 
1 be s= e v X(i) 
2 be g v(s) & 

Then the premiss of rule (R37) matches the result of the tableau 

gv(s) & s # a 
& s # X & s # k ) 

{s = l i e * ( 0 and \a ~b\} 

fr+ * ( * ) = S 6 |T~*1 * ( 0 > 
s :=s + X(k) 
{*= I , G Q > 

so that we may infer the conclusion 

gv(j) &s # a &s # X &s # b^> 
{s=lie{}X(i)} 
for k := a until b do s := s+X(k) 

The remainder of a correctness proof for the summation program is obvious. 
Less formally , a clearly annota ted program should include the 

invariants of nontrivial for statements. For this purpose, we will adopt the 
convention of writing the invariant of a for statement in the f o r m / | ^ ^ [F~K]> 
labeling it with the symbol forinv, and placing it immediately before the for 
statement. For example, the array summation program would be annotated: 

{|q b\ e dom X} 
begin s := 0; 
{forinv: s = 2 / € Q X(i)} 
for k := a until b do s: = s+X(k) 
end 

Notice that, in contrast with the while case, the invariant of a for statement 
does not contain range information such as a<k<b. Essentially, this infor-
mation is built into the structure of the for statement itself. 

Also notice that, since K must not occur free in I, it can only occur 
free in I\N L K This in the context of the interval expression 
restriction insures that the invariant is actually a function of the interval 
of processed integers rather than of K itself. Although it is occasionally 
nontrivial to express the invariant in this way, the advantage of doing so is 
that the inferred specification of the for statement will include the case 
where L U] is irregular. For example, an appropriate invariant of the 
following factorial-computing program is t h a t / i s the product II, g i of 
the members of the processed interval (which is 1 when the processed 
interval is empty): 
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{true} 
b e g i n / : = 1; 
{forinv: / = II, € ^ i} 
for k := 1 until n d o / : = kxf 
end 
{ / = I l i e q z = if n > 0 then n! else l } . 

Similarly, the invariant of a (slow) exponentiation program can be expressed 
in terms of the size of the processed interval: 

{true} 
begin y := 1; 
{forinv: y=x# Ql} 
for k := 1 until n do y := xxy 
end 
[y=x# [OH = if n > 0 then xn else l } . 

Note that for both examples, in contrast with the program specifications 
given for similar programs in Chapter 1, the case n < 0 is included without 
any extra analysis. 

A more complicated example is a for-statement version of the program 
for finding the subscript of a maximum element of an array, which was 
developed in Section 2.2.7 and encapsulated as a procedure in Section 3.1.6. 
In this case, one might expect the invariant of 

for k := a+1 until b do if X(k) > X{j) then j := k 
to be 

j E \a k\ and {X 1 [a fc|} <* X(j) . 

But this invariant must not depend upon k except through the interval of 
processed elements, which is | a+ l k\=a\ k\. Thus we must replace 
by @ U which gives 

procedure max (integer value a, b\ integer result;; 
integer array {exp} ^(*)); 

{ 0 u < G - d o m x } 
begin 
j := a; 
{forinv: ; 6 g U a\^k\ and {X 1 @ U a Q X(j)} 
fork : = a+1 until b do if X{k) > X(j) then j := k 
end 
{; e @ U a | j ] and {JV 1 @ U a[J>\} <* X(j)} . 
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In this case the reasoning seems rather unnatural, but it correctly reflects the 
"unnatura l" behavior of the procedure when a > b. 

Exercise 

1. Review the examples and exercises of previous chapters to determine which 
instances of iteration can be clarified by use of the for statement. In these 
instances, formulate an appropriate invariant. In one or two cases, give a formal 
proof using specification logic. 

*4.1.3 A Stronger Rule of Inference 

Consider the statement 

for k : = 1 until n do n : — n + k 

Unlike the examples given previously, the body of this for statement changes 
its upper bound. Thus its behavior distinguishes between the call-by-value and 
call-by-name variants of the for statement defined in Section 4.1.1. With the 
call-by-value variant, the upper bound of the iteration is fixed by the initial 
value of n, so that the for statement increases n by the sum of the numbers 
between one and its initial value. With the call-by-name variant, if the initial 
value of n is greater than zero, then the upper bound keeps increasing and 
never drops below the current value of k, so that the statement never 
terminates. 

With the call-by-value variant, which is actually used in Algol W, the 
specification 

g v ( n ) & n # n0 

{n = n0} 
for k : = 1 until n do n : = n + k 
{w = w0+X,-e [T~]i} 

is universal. However, this specification cannot be proved by using inference 
rule (R37) given in the previous section. The difficulty is that, if we take U to 
be n and S to be n : = n + k, then the unsatisfiable assumption n # n appears in 
the conclusion of the rule. 

In fact, (R37) is a valid rule of inference for both the call-by-name and 
call-by-value variants of the for statement, and therefore it cannot be used to 
reason about programs whose behavior is different in these two cases. 
However, it is possible to give a stronger rule that is specific to the call-by-
value variant: 
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(R38) Strong for Statement Rule 
Suppose 

K and N are distinct identifiers of phrase types 
integer expression and integer set expression, 

L, U, L0, and U0 are integer expressions, 
5 is a statement, 
1 is an assertion, 
2 is a finite set of specifications, 

such that K does not occur free in L 0 , U0, / , or 2 . 
Let {$!, ... , Sw} = ^ s t a_ l i ke(S) and S m + 1 , ... , Sn be any other 
identifiers distinct from K. Then 

2 & Si # K & ... & Sn # 

M a t - U T I * - a n d 1L0 1*1 ^ol} S { / U - > [ Z m } 

2 & Si # L 0 & ... & Sm # L 0 & Sx # U0 & ... & Sm # U0-=> 
{ / | N {} and L = L0 and (7= t/0} 

for K := L until U do S [ z ^ l } . 

By taking L 0 to be the same as L and U0 to be the same as U, and 
strengthening the precedent of the conclusion to eliminate L = L and U= U, 
it is easy to derive rule (R37) f rom rule (R38). However, although (R38) is 
stronger than (R37), it is also more complicated, so that it is usually simpler 
to use (R37) in the cases where it suffices, i.e. where S does not interfere with 
L or U. (Indeed, the greater complexity of (R38) directly mirrors the fact 
that for statements that alter their bounds are unnecessarily difficult to 
understand.) 

Exercise 

1. Use rule (R38) to prove the universal specification given in the beginning of the 
above section. 

*4.1.4 Deriving the Inference Rules 

Since the for s tatement can be defined in terms of previously introduced 
features of Algol W, we can "check" its inference rules by deriving them 
from the definition. In this section we will show that (R37) holds for the 
call-by-name variant of the for statement. An analogous but somewhat more 
complicated demonstrat ion that (R38) holds for the call-by-value variant is 
left to the reader (as Exercise 2 below). 

Suppose that the premiss of rule (R37), 

2 & Si # K & ... & Sn # 

M a n d E H 3 ) 
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is a universal specification in which the metavariables stand for phrases that 
satisfy the restrictions in the rule. By noninterference decomposition, we 
have 

S } # L & ... & Sm # L & SI # K & ... & SM # K 
& Si # U & ... & Sm # U 

R > S # K U 

From this specification and the premiss of rule (R37), we may use the rule of 
constancy (R23) to infer the main step in the following tableau: 

gv(K) &K#L&K#U' 
& K # Ex & ... & K # E[ 

&Si # L& ... &SW# L 
& Si # K & ... & Sn # K 
&S:# U& ... &Sm# U 

and {/I 
{ / U - i n g + i a n d 

K : = K+ 1; 
{ / [ T ^ A 
S 
M N - [ Q ] and 
Wa t^ 0 3 and 

L A: c/ 
K + i 

and K < U } } 
U 

and K U } 
K 

L K } U 

where {Eu ... , £,} = ^xp-iike(/)"(M-

Next, the while statement rule gives the main step in 

gy(K) & K # L & K # U 
&K# El&...&K# Et 

& S } # L & . . . & S m # L 
&Si# K& ... &S„# K 
&Si # U&... & S m # Uj 

\L L- and L L-l 

L K U 

{/I 
K := L - l ; 
M N - > 0 Q ] and 
while K < t / d o 

begin K := K+1; S end 
{ / U 
{/u 

} 

3 and L K U and 1 K<U} 

L U il 
Here K is distinct f rom Eu ...,£/, Su ..., Sn, and does not occur f ree in 2 , L, 
U, or the initial or final assertion. Thus we may use the rule for simple 
variable declarations to infer 

2 & SI # L & ... & SM # L & SI # U & ... & SM # U 

begin integer AT; ^ : = L — 1; 
while K<U do begin X := K + 1 ; S end 
end 
M a t - fzTT7)} • 

The statement in this specification is the definition (2) of the call-by-name 
variant of the for statement given in Section 4.1.1. Thus we may replace this 
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statement by for K : = L until U do S, which converts the specification into 
the conclusion of rule (R37). 

Exercises 

1. The following statement can be used in place of (2) in Section 4.1.1 as an 
alternative definition of the call-by-name variant of the for statement: 

begin integer K; K := L; 
while K< U do 

begin S; K : = £ + 1 end 
end 

(Except for overflow considerations, the two definitions are equivalent.) Show 
that this alternative definition can be used in place of (2) to derive rule (R37). 

2. Derive rule (R38) for the definition of the call-by-value variant of the for 
statement. Notice that, since (R37) can be derived from (R38), this implies that 
(R37) describes the call-by-value, as well as the call-by-name variant. 
(Hint: The derivation follows the same lines as that given in the preceding section. The 
invariant of the while statement should be / | |L o and | lq t/o| and L' = L 0 and 
U' = U0, where L' and U' are distinct identifiers that do not occur in (the instance of) rule 
(R38).) 

3. At the beginning of Section 4.1.2, we said that the most obvious approach to 
reasoning about for K \ = L until U do S was to take the invariant to be a function 
of K. However, since this approach requires separate lines of reasoning for the 
two cases where | L u\ is regular and irregular, we chose instead to regard the 
invariant as a function of the processed interval. 

Nevertheless, the "most obvious approach" is more natural when only the 
regular case is relevant, as for example in the maximum-finding program. This 
approach is embodied in the following rule of inference: 
Suppose 

K is an identifier of type integer expression, 
L and U are integer expressions, 
S is a statement, 
J is an assertion, 
X is a finite set of specifications, 

such that K does not occur free in L, U, or X. 
Let {$!, ... , Sm} = ^sta.like(S) and Sm+1, ... , SN be any other identifiers distinct 
from K. Then 

2 & # K & ... & SN # K => 
{^1 K-> K-I a n d L<K< V) S { / } 

X & SL # L & ... & SM # L & SI # U & ... & SM # U 
{/IK-H.-, andL-l=£l/} 

for K : = L until U do S { / | K _ J . 

Derive this rule from rule (R37). 
(Hint: Replace 1 in rule (R37) by J\K-*L-\ + # N.) 
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*4.1.5 The Descending for Statement 

Occasionally it is useful to iterate through an interval in descending rather 
than ascending order. For this purpose, one can use a for statement with the 
form 

for K := U step - 1 until L do S 

which is equivalent to 

begin integer U', L'; U' : = U; L' := L; 
begin integer K; K := U'+1; 
while K>L' do 

begin K := K- 1; S end 
end 

end , 

where L' and U' are distinct identifiers that do not occur in the original for 
statement. As in the ascending case, occurrences of K in S must have the type 
integer expression, so that S cannot change the value of K. (Actually, Algol 
W provides a more general for statement with an arbitrary integer step size, 
but in this book we will only use the simple cases that correspond to the step 
sizes + 1 and — 1.) 

The following rule of inference describes the descending for statement: 

(R39) Descending for Statements 

Suppose 
K and N are distinct identifiers of phrase types 

integer expression and integer set expression, 
L and U are integer expressions, 
5 is a statement, 
1 is an assertion, 
2 is a finite set of specifications, 

such that K does not occur free in L, U, / , or 2 . 
Let ... , SOT}=^ s t a . i i ke(S) and SM+L, ... , SN be any other 
identifiers distinct from K. Then 

X & SI # K & ... & # K => 

M a t - J Q I a n d 1*1 S {/ | jv^[7rj7j} 

2 & 5J # L & ... & SM # L & SI # U & ... & SM # U => 
{ / | {}} for K: = Ustep - 1 until L do S { / | N—> \L £/[} • 

A n example of the use of the descending for statement is provided by 
the following version of the program for sorting by maximum finding, which 
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w a s originally developed in Section 2.3.3 and encapsulated as a procedure in 
Section 3.1.6: 

procedure maxsort{integer value a, b\ integer array {var} A'(*)); 
{\a b\ c dom X and X=X0} 
{forinv: ord< X \ \ m b\ and X \ | a b\ ~ X0 ] \ a b\ 

and {X 1 a b m b } < * { * 1 wTb}} 
for m : = b step - 1 until a do 

begin integer j; 
max(a, m, j, X); 
begin integer t; t := X(j); X(j) := X(m); X(m) := t end 
end 

{ord< X 1 a b and X 1 \a b\ ~ 1 l « H } • 

Notice the convention of writing the invariant in the form I\ N 

The developments of the preceding sections can be recapitulated for the 
descending case: call-by-name and call-by-value variants of the descending 
for statement can be defined, rule (R39) can be derived from the call-by-
name definition, and a stronger rule can be derived from the call-by-value 
definition. The details are left to the reader. 

4.1.6 A Caution 

When it is necessary to iterate an action over a predetermined interval, the 
for statement provides a notation that is clearer and more concise than the 
while statement. However, a significant number of the iterations in well-
written programs do not fit this pattern. The danger of the for statement is 
that it can narrow the programmer 's viewpoint to a particular kind of 
iteration that, though often useful, is also often inappropriate. 

It is all too easy to approach a programming task with the unspoken 
assumption that the main loop will be a for statement. In many cases—parti-
tion in Section 2.3.5 is a good example—this assumption seems perfectly 
reasonable, yet it precludes any simple or efficient solution. In all but the 
most cut-and-dried situations, the programmer must constantly remind him-
self that there is more to iteration than the for statement. 

For this reason, some authors, notably [Dijkstra 71, 72, 76], avoid the 
for statement completely. We are unwilling to go so far, but have postponed 
its introduction until after the reader has been exposed to a substantial 
number of programs that cannot be fit into the mold of the for statement. 

I M l 
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4.2 goto STATEMENTS AND LABELS 

In contrast with the for statement, goto statements and labels can be used to 
construct a wider variety of control structures than the language described in 
previous chapters. Although their use has been the subject of considerable 
controversy [Dijkstra 68]—precisely because of their generality—we 
believe there are programming situations where their judicious employment 
can be beneficial. Certainly their use is compatible with the basic nature of 
structured programming. 

4.2.1 goto's and Labels in Algol W 

As discussed in Section 1.5, a block has the form 

begin Dx; ... ; Dm; Sx; S2; ... ; Sn end 
t t t 

where Dx;...; Dm is a sequence of zero or more declarations and S j ; . . . ; Sn is 
a sequence of one or more statements. In front of each statement in this 
sequence, i.e. at the positions indicated by the arrows, one can place any 
number of label definitions of the form 

L: 

where L is an identifier which is said to label the following statement. Strictly 
speaking, one cannot place a label definition between Sn and end, but the 
same effect (and appearance) can be achieved by making Sn a labeled empty 
statement. 

A label definition L: is a binder of L whose scope is the immediately 
enclosing block. Within this scope the goto statement 

goto L 

can be used to interrupt the normal control sequence and cause the computa-
tion to " j u m p " to the statement following the label definition that binds the 
occurrence of L in goto L. 

For example, the array summation programs given in Sections 2.2.4 and 
4.1.1 could be rewritten as 

begin integer k; 
k := a — 1; s := 0; 

loop: if k>b then goto done; 
k := k+1; s := s + Z(A:); 
goto loop; 

done: end . 
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(Note that done labels an empty statement.) However this program, which is 
harder to understand than either previous version, is an obvious misuse of 
the goto. It is typical of the kind of poor programming style that has been 
fostered by obsolete languages with inadequate control mechanisms. 

On the other hand, the following program for linear search is rather 
clearer than that given in Section 2.2.9: 

begin 
for k := a until b do 

if X(k)=y then 
begin present := true; j := k\ goto out end; 

present := false; 
out: end . 

Here the use of a goto clearly conveys the basic idea of aborting a sequential 
examination of array elements when the search criterion is met. 

In the latter example, the goto statement causes a jump out of the scope 
of a binder of the identifier k. In general, such a jump causes the meaning of 
the identifier to become inaccessible just as when control leaves a scope in 
the normal manner. In this particular case, the value of k is saved by 
assigning it to the variable j before leaving the scope of the binder of k. 

The syntax of Algol W prohibits any jump from entering a scope. 

4.2.2 Using Assertions with goto's and Labels 

In the next section, we will extend specification logic to encompass programs 
containing goto statements and labels. Before doing so, however, it is useful 
to examine the use of assertions in such programs from a more intuitive 
viewpoint. In particular, we will consider the use of assertions as formal 
comments, as originally discussed in Section 1.3.3. 

From this viewpoint one thinks of the flow of control as passing through 
assertions, and the fundamental property of a correctly annotated program 
is that, once control has passed through some assertion P with a current state 
of the computation which satisfies P, then at any later time when control 
passes through an assertion P' the current state of the computation will 
satisfy P'. 

Now consider a goto statement with its surrounding assertions: 

. . .{/>} goto L {Q} ... , 

and suppose that L is bound by a label definition attached to a statement S 
with precedent P': 

L:{P'}S... . 
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Suppose that control passes through P with a current state of the computa-
tion which satisfies P. Then the goto statement will send control through P' 
without changing the state of the computation. Thus, to insure that the state 
satisfies P', it must be the case that P implies P'. 

On the other hand, consider Q. Since it immediately follows a goto 
statement, control will never pass through Q, and Q can be any assertion. In 
particular, Q can be the strongest possible assertion, false, which is not 
satisfied by any state of the computation, and therefore can only appear at a 
program point through which control will never pass. 

In summary, the precedent of goto L must imply the precedent of the 
statement following the label definition that binds L, and the consequent of 
goto L can be any assertion, even false. 

For example, the following is a thoroughly annotated version of the 
linear search program: 

{|a b\ £ dom Z } 
begin 
{forinv: {X \ \a y} 
for k :— a until b do 

if X(k)=y then 
begin 
present := true; j : — k; 
{present and 
goto out 
{false} 
end; 

{{*1 \a~b\}^*y) 
present := false; 

b\ and X(j)=y} 

{~l present and {X 1 a 6 } y] 
out: {if present then 

end 
{if present then 

b\ and X(j)=y else {X ] \a b\} y} 

and X(j)=y else {X 1 a b 

Here the assertion preceding goto out implies the assertion preceding the 
empty statement labeled by out. In addition, the latter assertion is also implied 
by the assertion following the statement present:— false; this reflects the fact 
that control can pass to the labeled statement from the preceding statement, as 
well as from the goto statement. The assertion immediately following goto out is 
false, indicating that control will never pass through this point in the program. 
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These assertions suggest that, in reasoning about the for statement, its 
body 

if X(k) = y then begin ... ; goto out end 

can be thought of as a statement that "achieves" X(k)^y by jumping to a 
free label if this condition is false. Then the for statement itself can be 
thought of as a statement which achieves X{k)^y for all k in |a b\. 

From the use of assertions as comments, we turn to the use of assertions 
to specify statements. Here the basic question is when the specification {P} 
goto L {Q} is true. At first sight, since regardless of the state of the computa-
tion control will never reach the end of the goto statement, one might expect 
that this specification would be true for any P and Q, even in the extreme 
case {true} goto L {false}. However, as suggested by the preceding discus-
sion, P must insure that the computation will behave correctly after control 
reaches the statement labeled by L, so that P must imply the precedent of the 
labeled statement. 

The problem is that this is a condition on P that is not a property of goto 
L by itself, but rather of the context in which goto L occurs. This kind of 
context dependency cannot be described by the logic used in Chapters 1 and 
2. However, it can be described in specification logic, where the truth of {P} 
goto L {0\ depends upon an environment that can reflect the context in 
which goto L occurs. 

*4.2.3 Inference for goto's and Labels 

We now describe the extension of specification logic to encompass goto 
statements and labels. The basic idea behind this extension was first pre-
sented in [Clint 72]. To avoid a full-fledged exposition of continuation 
semantics, which is beyond the scope of this book, our description will be 
somewhat informal. 

Since labels are identifiers, an environment must specify some kind of 
meaning for labels. We define the meaning of a label to be a set of states, and 
say that a state belonging to the meaning of a label is permissible for that 
label. In other words, an environment specifies whether a state is permissible 
for a label. Intuitively, when [goto L\v is executed, the current state will 
cause the rest of the computation to behave correctly if it is permissible for L 
in rj. 

Next we enlarge the variety of circumstances in which a specification of 
the form {P} S {(>} is true. Specifically,we define [{P} S {gJIt, to be true if 
and only if, starting with any state described by [P], , , executing IS]V will 
either: 

(1) Never terminate, 
or (2) Terminate with a final state described by JQ],, , 
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or (3) Execute a jump to a label L occurring free in S with a 
current state that is permissible for L in 17, i.e. that belongs 
to the set [[LJ^. 

From this definition, it is evident that |[{p} goto L {£?}]],, will be true if every 
state described by [[P]]^ belongs to [[L]^. Notice that there is no dependency 
upon Q. 

We must now develop a rule of inference that will enable us to infer a 
universal specification about a block of the form 

begin 50; Lx\ ... ; Ln: Sn end 

from universal specifications about the statements S0 , ... , Sn. The essential 
idea is that in reasoning about the component statements we will assume that 
a state is permissible for L t if it satisfies the precedent of 5,-. 

To carry out this argument in detail, suppose that the following specifi-
cations are universal: 

2 & 2 l a b e i^>{P0} S0 {Pi} 

2 & 2 l a b e l=>{Pn} S„ {P„+ 1} , 

where 2iabei is the set of assumptions 

{ P j goto Li {false} & ... & {P„} goto Ln {false} . 

Here P 0 , . . . , P„+ 2 are assertions and 2 is a finite set of assumptions such that 
neither the P / s nor 2 contain free occurrences of L1? ... , Ln. 

Let 17 be any environment in which the assumptions 2 are true. For each 
assertion Ph let A, be the set of states described by [[P,],,. Then let 

r / = fr I W- A i | ... | Ln: A„] 

be the environment that is similar to 17 except that it maps each L t into A,-. 
Since the assumptions 2 contain no free occurrences of the Lh they will 

be true in 17'. Similarly, since each assertion P, contains no free occurrence of 
the Lh [P/l,, ' = [PiUr, will describe the set of states A , = [[L,]]^. As a consequ-
ence, the assumptions 2iabei will be true in 17'. 

Thus by our universal specifications about the Sh for 0 < / < « , {P,} 5, 
{P J + 1} will be true in rj ' . It follows from axiom (R12) for statement com-
pounding that, for ( ) < * < « , the specification 

{^Yf S,-; ... ; Sn {P„+I} 
will be true in 77'. 

Thus, starting with any state described by [[PJ,,', executing . . . ; Sn}v ' 
will either: 

(1) Never terminate, 
or (2) Terminate with a final state described by | P „ + i ]],,', 
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or (3) Execute a jump to a label other than Li, ... , Ln, with a 
current state that is permissible for that label in TJ', 

or (4) Execute a jump to some L h with a current state that belongs 
to [Lj]]^, and is therefore described by [P,]]?,'-

Now consider the execution of 

[begin S0; Lx: Sx\ ... ; Ln: Sn end],, , 

starting with a state described by [Pol*,'- This execution will be the same as 
that of S 0 ; Sf , ••• > u n t d when and if a jump to some L, occurs, at which 
point the current state will be described by IP , ] , / . Thereafter the continued 
execution will be the same as that of S ( ; . . . ; Sn until when and if another jump 
to some Lt occurs, again with a current state described by the corresponding 

I ^ l i r 
Repeating this argument, it is evident that every time a jump to an L t 

occurs, the state will satisfy [P,]*/ and the continued execution will be the 
same as that of S , ; . . . ; Sn until the next jump. Ultimately, there will either be 
an endless sequence of jumps, in which case the execution will never termi-
nate, or there will be a last jump, after which the continued execution will be 
the same as that of some S , ; . . . ; Sn and will lead to one of the conditions (1) to 
(3) given above. 

Either way, starting with a state described by [PollV' executing [begin 
S0; L\. Si; ... ; Ln: Sn end]],,' will lead to one of the conditions (1) to (3). It 
follows that the specification 

{P0} begin S0 ; Lx: Sx\ ... ; Ln'. Sn end {P„+i} 

will be true in r / . Moreover, since this specification contains no free occur-
rences of Li, ... , Ln, it will also be true in TJ. 
Thus, since r? can be any environment in which 2 is true, 

2=>{P 0 } begin S0; Lx: Su ... ; Ln\ Sn end {Pn+i} 

is a universal specification. 
This argument leads to the following rule of inference: 

(R40) goto Statements and Labels 

Suppose 
L j , ... , L„ are distinct identifiers of phrase type label, 
S0, ... , S„ are statements, 
PQ, ... , PN+L are assertions, 
2 is a finite set of specifications, 

such that Lu . . . , Ln do not occur free in P0, ... , Pn+1> or 

Let 2iabei be 

{ p j goto Li {false} & ... & W goto Ln {false} . 

Then 
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2 & 2 l a b e l =>{P 0 } So { p i } 

2 & 2label=>to} SH {Pn+1} 

CHAP. 4 

2=>{P 0 } begin 5 0; Lx: S i ; ... ; Ln: Sn end {P„+i} . 

Notice that we have introduced label as an additional phrase type in 
specification logic. Phrases of type label, which will always be identifiers, are 
neither statement-like nor expression-like. 

Unfortunately, label is not a full-fledged phrase type in Algol W, since 
labels cannot be used as parameters to procedures. This is a minor anomaly 
in the design of the language. It causes no harm in practice, since in place of a 
label parameter one can always use a goto statement that refers to the label. 
However, it complicates the description of the language by introducing a 
usage of identifiers with unnecessarily different behavior than all other 
usages. 

*4.2.4 An Example of a Formal Proof 

To illustrate the use of the inference rule derived in the previous section, we 
will prove that the linear search program of Section 4.2.1 satisfies an approp-
riate specification. We begin by defining the appropriate assumption for the 
label out: 

~b\ and X(j)=y else {X1 \a *>|} y} 
^label = 

{if present then 
goto out 
{false} . 

Then the inmost block of the program satisfies the tableau 

{{X 1 [ 7 > } y and 

gv (present) & present # a 
& present # k & present # b 
& present # X & present # y 
& gv(y') & j # present 
& j # a & j # b 
& j # X & j # y 

& X label 

and X(k)=y } 
{true and k\ b\ and X(k)=y} 
present := true; 
{present and 
/ := k; 
{ present and 
{if present 

then 

a k b 

a j b 

^ and X(k)=y] 

and X(j)=y} 

b\ and X(j)=y 
else {X 1 \cTJ\} y } 

goto out 
{false} 
{{x 1 O } y} 
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From the result of this tableau and the mathematical fact 

({X 1 y and [7 k\ b\ and 1 *(A:)=y) 
implies {X \ \a y 

we may use rule (R17) for the one-way conditional statement to infer 

gv {present) & present # a & present # k & present # b 
& present # X & present # y & gv(;') & j # present 
&.j#a8tj#b&.j#X & ; # y & 2 labei => 

{ { * 1 Q f c } y and ^ 
if *(A:)=y then 

begin present :— true; j := k; goto out end 
{{X 1 O } # * y} . 

Next we use rule (R37) for the 
X \ This discharges the 
step in the following tableau: 

gv {present) & present # a 
& present # b 
& present # X & present # y 
& gv(y') & ; # present 
8i j # a &. j # b 
&j# X & j # y 
& Siabel 

for statement, taking the invariant I to be 
assumption present # k and gives the main 

{|a b\ e dom X} 
{true} 
{{X 1 {}} * * y} 
for k: = a until b do 

if X(k) = y then 
begin 
present := true; 
j := goto owf 
end; 

{{X 1 O i J* 
{l false and {X ] \a b\} y} 
present := false 
{"I present and {X ] \a b\} y) 
{if present 

then |a |;j b\ and X(j) = y 
else {X 1 \a~b\} y } . 

Notice that the initial assertion |a b\ c dom X is irrelevant here. Its only 
purpose is to insure against subscript errors in the evaluation of the logical 
expression X(k) = y, and such errors are not treated formally in our logic. 

Now we apply rule (R40) for goto 's and labels, taking Lx to be out, S0 to 
be the statement sequence in the above tableau, Si to be the empty state-
ment, P0 to be a b\ £ dom X, Pi and P2 to both be 
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if present then |a |/| b\ and X(j) = y else {X \ |a y 

and X to be all of the assumptions in the above tableau except 2iabe l . Then the 
first premiss of rule (R40) is the result of the above tableau and the second 
premiss is an obvious consequence of rule (R18) for the empty statement 
We may therefore infer the conclusion 

g\{present) & present # a & present # b & present # X & present # y 
& gyp) & j # present & j # a & j # b & j # X & j # y = > 

{|a b\ £ dom X} 
begin 
for k: = a until b do 

if X(k) = y then 
begin present := true; j := k\ goto out end; 

present \ = false; 
out: end 

{ifpresent then |a \j| b\ and X(j) = y else {X ] |a b\} y ) 

Specification logic, and rule (R40) in particular, can be used to prove 
program correctness even in situations where goto's and labels interact with 
the full generality of the procedure mechanism (as in Exercise 2 below). By 
itself, however, a logic for proving program correctness says little about how 
to create programs in the first place. In the rest of this chapter we will deal 
with this prior question with regard to goto 's and labels. Since we will not be 
using procedures, we will leave specification logic in abeyance, and return to 
the use of assertions as comments in the style of Section 4.2.2. 

Exercises 
1. Definition (2) of the call-by-name variant of the for statement, given in Section 

4.1.1, will overflow unnecessarily if L is the smallest representable integer. 
Similarly, the definition given in Exercise 1 after Section 4.1.4 will overflow 
unnecessarily if U is the largest representable integer. 

Write two definitions of the call-by-name variant of the for statement that 
avoid these problems. One version should use goto's and labels, and should only 
contain a single occurrence of the for-statement body S. The other version 
should not use goto's or labels, but will contain more than one occurrence of S. 

2. The following program performs linear search by using a subsidiary recursive 
procedure containing a jump to a global label. It is a complicated and inefficient 
way to search an array segment, but it illustrates a basic method that is useful for 
searching recursively defined data structures such as trees or list structures. 

Prove that this program satisfies the same specification as the linear search 
program considered in the preceding section. 
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{1 a bj S dom X} 
begin 

begin 
procedure search(integer {exp} c, d)\ 

{pa: present # c & present # d & j # c & j # d} 
{\a \c d\ fr[} 
if c < d then 

begin integer k; 
k := (c + d) div 2; 
if *(*:)=y then 

begin present true; j := k; goto owf end 
else 

begin search(c, fc-1); search(k+1, d) end 
end; 

search(a, b) 
end; 

{{Z 1 [ 7 3 } y} 
present := false; 
end r 

{if present then 3 and else {Ĵ  1 |a y} 

4.2.5 Fast Exponentiation Revisited 
For most p rogramming , an a d e q u a t e variety of control s t ructures can be 
formed by using condi t ional and while s ta tements , as i l lustrated in the earl ier 
chapters of this book . Occasionally, however , one needs a control s t ructure 
that is difficult or even impossible to express with these constructs , and it is 
necessary to use the more genera l mechanism of goto s t a tements and labels. 
Nevertheless, one can still const ruct p rog rams systematically. In part icular , 
the concept of an invar iant is still re levant [van E m d e n 79, Reynolds 78b]. 

A s an example , consider the fast exponent ia t ion p rogram in t roduced in 
Section 1.3.5. It can be wri t ten in the overall f o r m 

{ « > 0} 
begin integer k, z; 
k := n; y := 1; z := x\ 
w 
" A c h i e v e k= 0 while preserving / " 
end 

{y = xn} , 

where I is t he invariant 
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yxzk=xn and k>0 . 

Moreover, there are two invariant-preserving operations which can be used 
to construct "Achieve k = 0 while preserving / " : 

k := k-l;y := yxz rS x 
and ' 

k := k div 2; z := zXz , (5div) 

which satisfy the specifications 

{ / a n d k ^ O ) 5_ {/} 
and 

{ / and even(kj\ 5div {/} . 

In Section 1.3.5, we constructed two versions of "Achieve k= 0 while 
preserving / " : 

while k ^ 0 do 
if odd(k) then else 5div 

and 
while ky£ 0 do 

begin if odd(k) then ; 5div end . 

However, each of these versions has a deficiency: In the first, there are 
unnecessary executions of the test odd(k), while in the second, the last 
execution of Sdiv is unnecessary (and can cause unnecessary overflow). We 
now want to devise a version of "Achieve k = 0 while preserving / " that 
overcomes both of these deficiencies. 

The first step is to determine the exact precedent under which each 
invariant-preserving operation will be performed. If k is zero, then an exit 
should occur, since the desired goal has been achieved. If k is nonzero and 
even, then Sd i v should be performed. Finally, if k is odd (and therefore 
nonzero) should be performed. (Of course, it would also be correct to do 

when k was nonzero and even, but Sdiv is faster.) 
Having established their precedents, we can reexamine Sdh and to 

see if we can strengthen their consequents. In fact, it is easily seen that Sdiv 

will never give k = 0, and that S_ will always give an even k, i.e. 

{ / and ky^O and even(k)} Sdiv { / and k^O} 
{ / and odd(k)} { / and even(k)} . 

These specifications encapsulate all we need to know about the 
invariant / in order to write "Achieve k = 0 while preserving / " . As long as 
we use 5d i v and S_ in accordance with these specifications and do not use any 
other statements which interfere with / , we can be sure that I will be 
preserved. Indeed, at the level of abstraction where Sdiv and S_ are consi-
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dered as indivisible actions, the invariant I will hold continuously. In this 
situation we say that I is a general invariant. 

At this level of abstraction, we can forget the invariant and concentrate 
on the remaining conditions k= 0 and odd{k) that occur in the above 
specifications. We intend to realize "Achieve k = 0 while preserving / " by a 
sequence of labeled statements in which the assertion at each label is a 
conjunction built out of k = 0 and odd{k) or their negations. The key point is 
that the variety of such conjunctions that might be relevant to our program is 
so small that we can reason about it exhaustively. 

First we must enumerate all possibly relevant assertions. Suppose for a 
moment that we were only interested in the conditions k = 0. Then there 
would be three possibly relevant assertions: 

true 
k^O 
k = 0 . 

Informally, these describe the "states of information" in which it is unknown 
whether k is zero, k is known to be nonzero, and k is known to be zero. 

If the conditions k = 0 and odd(k) were independent of each other, then 
the three assertions about each condition would combine to give 3 x 3 = 9 
composite assertions: 

true even{k) odd(k) 
k^ 0 k ^ 0 and even(k) k^ 0 and odd{k) 
k = 0 k — 0 and even(k) k = 0 and odd(k) . 

However, since zero is an even number, the conditions are not independent, 
and the number of relevant assertions is less than nine. In general, we need 
not consider an assertion that is impossible, i.e. that is not satisfied by any 
state of the computation (that satisfies the invariant). Moreover, we need 
not distinguish between two assertions that are equivalent, i.e. that are 
satisfied by the same set of (invariant-satisfying) states. In this particular 
case, k = 0 and odd{k) is impossible, k^ti and odd{k) is equivalent to 
odd'(k), and k = 0 and even(k) is equivalent to k= 0. Thus there are only six 
relevant assertions: 

true 
k^O 
even(k) 
odd(k) 
k^ 0 and even(k) 
k = Q . 

As a consequence, "Achieve A: = 0 while preserving / " will contain six 
labels, so that our program has the form: 
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{ « > 0} 
begin integer k, z; 
k := n; y := 1; z := x; 
{geninv: y X z k —xn and &>()} 
... , 

tr: {true} ... ; 
nz: {k^Q} ... ; 
ev: {even (A:)} ... ; 
od: {odd(k)} ... ; 

nzev: and even (A:)} ... ; 
zr. {fc=0} ... 

end 
{y=x»} . 

Here we have used the symbol geninv to indicate that I is a general 
invariant. We adopt the convention that an assertion prefixed by geninv 
must hold continuously from the occurrence of the assertion to the end of the 
immediately enclosing block. 

The specification 

{ / and kj±0 and even(k)} Sdiv {/ and k^ 0} 

shows that Sdiv can be performed at the label nzev, and followed by a jump to 
nz. Similarly, 

{ / and odd(k)} { / and even(k)} 

shows that S_ can be performed at od, and followed by a jump to ev. 
Since the initialization k := n; y := 1; z x achieves the invariant 

without providing any knowledge about k= 0 or odd(k), it must be followed 
by a jump to tr. On the other hand, since an exit should occur when k = 0, the 
label zr should be attached to an empty statement at the end of the block. (In 
fact, we have had the foresight to place zr in this position.) 

At this stage our program has the form 

{ « > 0 } 
begin integer k, z; 
k := n;y := 1; z : = x; 
{geninv: y x z k = x n and fc>0} 
goto tr; 

tr: {true} ... ; 
nz: {k^ 0} ... ; 
ev: {even(k)} ... ; 
od: {odd(k)} goto ev; 

nzev: {k^ 0 and even(k)} Sdiv; goto nz; 
zr: {&= 0} 

end 
{y = x"} . 
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At the remaining labels, the assertions are insufficient to imply the 
precedent of any operation, so that testing must be performed. At nz one can 
obviously test odd{k) and go to either od or nzev. Similarly, at ev one can test 
Jc=Q and go to either zr or nzev. At tr, either test will provide useful 
information; if we choose the test k = 0, then our final program is: 

{ n > 0 } 
begin integer k, z; 
k := n; y := 1; z := x; 
{geninv I: y X z k = x n and 
goto tr; 

tr: {true} if k = 0 then goto zr else goto nz; 
nz: {k^ 0} if odd(k) then goto od else goto nzev, 
ev: {even(k)} if k = 0 then goto zr else goto nzev; 
od: {odd(k)} begin7 k := k-1; y := y x z end; 

goto ev; 
nzev: {k^O and even(k)} begin7 & : = A : d i v 2 ; Z : = Z X Z end; 

goto nz; 
zr: {A: = 0} 

end 
{y=x»} . 

Here we have expanded S_ and Sd i v into blocks. In doing so, we have 
dropped below the level of abstraction at which the general invariant is 
continuously true, i.e. there will be points in the interior of these blocks at 
which the general invariant does not hold. 

To indicate this situation we adopt the following notational convention: 
When an assertion is used as a general invariant, it is given a name (e.g. I in 
this example). Then this name is placed as a subscript at the beginning of 
each block within whose interior the general invariant may be momentarily 
falsified. Such blocks must be regarded as indivisible actions when we say 
that the general invariant holds continuously from its point of occurrence to 
the end of the immediately enclosing block. 

For clarity, we have used goto statements whenever control passes to a 
labeled statement, so that control never passes through a label from the 
previous statement. As a consequence, except for the attachment of zr to the 
end of the block, the meaning of the program is independent of the order of 
the labels. 

In fact, this order has been chosen to clarify the proof that the program 
terminates. Since the only backward jumps (from a goto statement to a 
lexically preceding label definition) follow the occurrences of and Sd i v , it 
follows that every loop must contain an occurrence of 5_ or Sd i v . Thus 
termination is based on k, which will be decreased by and by 5d iv 

whenever their precedents are satisfied. 
This program avoids both the redundant testing and unnecessary execu-

tion of Sdiv that occurred in the versions of Section 1.3.5. On the other hand, 
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it is longer and more difficult to write than the earlier versions, and it would 
only be justified in a programming situation where execution speed was 
extremely important . 

Nevertheless it is still a structured program. There is a clear separation 
between two levels of abstraction: a detailed level at which the invariant-
preserving operations S_ and Sdiv are formulated, and a gross level at which 
the invariant can be ignored since it is preserved by the primitive operations. 
Indeed, this kind of invariant suppression is essential to the program 
development, since it permits the programmer to limit his attention to the 
conditions beyond the invariant—fc = 0 and odd(k)—which are so simple 
that one can treat them exhaustively by enumerating all relevant assertions. 

4.2.6 Transition Diagrams and Indeterminacy 

When control structure becomes as complex as in the previous example, it is 
helpful to use a graphical representation such as a flowchart. For many 
purposes, however, a clearer graphical representation is provided by a 
transition diagram. 

In a transition diagram, labels and other program points where asser-
tions can occur are represented by nodes, whilst statements and tests are 
represented by arrows or arcs f rom one node to another. As shown in Figure 
4.1, a statement S is represented by a solid arc, marked with S, from the 
program point where its precedent occurs to the program point where its 
consequent occurs. As shown in Figure 4.2, a test L is represented by a pair 
of dashed arcs: an arc marked with L f rom the point before testing to the 
point to be reached if L is true, and an arc marked with the negation of L 
f rom the point before testing to the point to be reached if L is false. 

One can think of a computer executing a transition diagram by moving 
from node to node along arcs. When a test arc marked with L is encountered, 
it is only traversed if L is true. When a statement arc marked with S is 
encountered, the statement S is executed. 

Transition diagrams are given in Figure 4.3 for the basic control con-
structs used in Chapter 1. These diagrams may be compared with the 
equivalent flowcharts given in Figure 1.2. 

P S Q 
o +—o 

Figure 4.1 {P} S {Q} as a Transition Diagram. 
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Figure 4.2 A Test L Performed in a State Satisfying P. 

if L then 5 

O 

1L 

if L then 5 j else S2 

-O 
U ! Si 

while L do 5 

1L • 

5 5 
begin 5X; . . . ; Sn end — . . . - — • » — O - * -

Figure 4.3 The Basic Control Constructions Defined by Transition Diagrams. 
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enter 

odd(k) 

Figure 4.4 A Transition Diagram for Fast Exponentiat ion. 

Figure 4.4 gives a transition diagram for the fast exponentiation prog-
ram developed in the previous section. The diagram reveals the logic behind 
the program more directly that the Algol W program itself. The nodes 
correspond to the relevant assertions, and the arcs for S_ and Sd i v are directly 
attached to the appropriate precedents and consequents. 

In order for a transition diagram to determine the behavior of a compu-
ter completely, there must be exactly one way out of each node—either a 
single statement arc or a pair of complementary test arcs. Suppose we say 
that a test arc marked with L is permissible for those states of the computa-
tion in which L is true, and that a statement arc (or exit arc) is permissible for 
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all states of the computa t ion . T h e n a transition diagram will completely 
determine computa t iona l behavior if, for each node and each possible state 
of the computation, there is exactly one permissible arc emana t ing f rom the 
node. 

However , t ransit ion diagrams that violate this condit ion are still mean-
ingful and somet imes useful . Fo r a given node , if there are any states of the 
computation for which no outgoing arc is permissible, then the node is a dead 
end, whose effect is a kind of nontermina t ion . More interestingly, if there are 
any'states of the computa t ion for which more than one outgoing arc is 
permissible, then the node (and the transit ion diagram containing it) is said 
to be indeterminate. 

In executing an inde te rmina te transit ion diagram, the compute r is 
"a l lowed" to t raverse any permissible arc, so that its behavior is only partly 
determined. Nevertheless , such a diagram is correct if every possible 
behavior that it allows meets the program specification. 

For example, when developing the fast exponent ia t ion program in the 
previous section, we m a d e an arbi t rary choice be tween the tests k = 0 and 
odd(k) at the label tr. Avoiding this choice leads to the inde terminate 
transition diagram shown in Figure 4.5. At the node tr in this d iagram, the 
computer is f r ee to t raverse e i ther of two test arcs, both of which lead to 
correct behavior . 

Fur the r indeterminacy would be in t roduced by adding an arc marked 
5 f rom nz to tr, as indicated by the do t ted line in Figure 4.5. This change still 
leaves the p rogram correct , but it in t roduces serious inefficiencies—essen-
tially it allows the compu te r to choose be tween fast and slow exponent ia t ion. 

In recent years, the impor tance of indeterminacy in p rogramming has 
increased, and at least one au thor has advocated a p rogramming language 
with inde te rmina te control mechanisms [Di jks t ra 75, 76]. The re are at least 
three reasons for this deve lopment : 

(1) A s shown in the next section, the intelligibility of a p rogram can be 
enhanced by avoiding unnecessary choices that do not affect cor-
rectness. 

(2) A s discussed in Chap te r 5, it is o f t en prof i table to at tack complex 
p rob lems by first writing an abstract p rogram using problem-
or iented types of da ta , and then translat ing this program into a 
concrete p rogram using a part icular da ta representa t ion . In this 
approach , it is o f t en vital to leave the abstract p rogram indetermi-
na te in o rde r to pos tpone choices tha t require knowledge of the 
da ta representa t ion . 

(3) In some kinds of parallel processing, the actual p rogram executed 
by the c o m p u t e r may be indeterminate . Consider , for example , 
searching a large da ta file, s tored on several magnet ic tapes or 
disks, for any of several records giving the age of a part icular 
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enter 

k: = n; 
y.= l ; 
z\ — x 

t r u e A " -
/ \ \ 

/ / . \ \ 

/ / .. \ \ 
/ \ \ 

/ 
odd(k) / k^O / 

/ 

//&-) \ 
lodd(k) \ \ k=0 

odd(k) k=0 0 zr 

exit 

Figure 4.5 An Indeterminate Transition Diagram for Fast Exponentiation. 

person. The particular record examined might not be determined 
by the program, and could depend upon factors such as the rela-
tive speeds of motors in different storage devices. 

In all of these situations, the key point is that an indeterminate program 
is only correct if all of its possible executions are correct. (This point requires 
special emphasis since there is another notion of indeterminacy used in 
au tomata theory and artificial intelligence in which—roughly speaking—a 
program is correct if some possible execution is correct [Floyd 67b].) 
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*4.2.7 Merging Revisited 
In Section 2.3.6, we developed a program for merging two ordered array 
segments. Just as with fast exponentiation, a more efficient version of this 
program can be obtained by considering transitions among all relevant 
assertions built out of certain simple conditions. 

The overall program can be written in the form: 

{ax bx ^ dom X and ly by Q dom Y and az bz ^ dom Z 
and ord< X \ ax b t and ord< Y ] ay by\ 
and # ax bx + # ay by | = # az bz | } 

begin integer kx, ky, kz; 
kx : — ax; ky : = ay; kz := az; 

to 
"Achieve kx>bx and ky>by while preserving / " 
end 
{ord< Z 1 \az 

where I is the invariant 

ax kx bx and ay ky by and az kz bz 

and ord< Z \ 
and {Z 1 

az kz 
kz) <* {X 1 \kx bx\} U {Y 1 I ky by |} 

and # |kx bx\ + # ky by = # kz bz 

(As in Section 2.3.6, we are ignoring the rearrangement condition.) 
The real work of "Achieve kx > bx and ky > by while preserving / " will 

be done by two invariant-preserving operations that copy the leftmost 
element of either X ] \kx bx| or Y 1 |ky by\into the rightmost position of 

Z 1 \az |kz: 

Z(kz) := X(kx); kx := kx+l; kz := kz + \ (Copy X) 
Z{kz) := Y(ky); ky := ky+1; kz := kz+1 . (Copy Y) 

These operations satisfy the specifications 

{ / and kx<bx and ( k y > b y or ( k y < b y and X{kx)< Y(/:y)))} 
"Copy Z " {/} 

{ / and ky <by and ( k x > b x or (kx<bx and Y(ky)<X(kx)))\ 
"Copy Y" {/} . 

In effect, if either \kx bx\ or |ky by\ is empty one must copy the leftmost 
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element of the other nonempty segment, while if both segments are 
nonempty, then one must copy the lesser of their leftmost elements. 

In Section 2.3.6, "Achieve kx > bx and ky > by while preserving / " W a s 

realized by 

while kz < bz do 
if (if ky > by then true else if kx > bx then false else 

X(kx) < Y(ky)) 
then "Copy X" else "Copy Y" . 

This clearly involves redundant testing. For example, after executing "Copy 
X", the program will test ky>by, although the outcome of this test cannot 
differ from its previous outcome before executing "Copy X" . 

Saying that "Copy A"' preserves the outcome of ky>by is tantamount 
to saying that it satisfies the following pair of specifications: 

{/ and kx<bx and ky>by} "Copy A"' {/ and ky>by) 
{ / and kx < bx and ky < by and X(kx) < Y{ky)} 

"Copy A " {/ and ky<by} . 

Similarly "Copy Y" satisfies 

{ / and kx>bx and ky<by} "Copy Y" {/ and kx>bx} 
{ / and kx < bx and ky < by and X(kx) > Y(A:y)} 

"Copy Y" {/ and kx<bx] . 

The significant condi t ions are obviously kx<bx, ky<by, and 
X(kx) < Y(ky). The first two are obviously independent, and give rise to nine 
relevant assertions. However, the condition X(kx)<Y(ky) is only well-
defined when both kx bx and ky by are nonempty, i.e. when kx < bx and 
ky<by. In general, an assertion of the form C{ and ... and Cn is not relevant 
if there is any (invariant-satisfying) state for which no C, is false and some C, 
is undefined. Thus in this particular case, X(kx)<Y(ky) gives rise to only 
two more relevant assertions: kx<bx and ky<by and X(kx)<Y(ky), and 
kx < bx and ky < by and X(kx) > Y(ky). (Strictly speaking, X{kx) > Y{ky) is 
not the negation of X(kx)<Y(ky), but the "over lap" between the two 
conditions will not cause any difficulties.) 

Thus we have the eleven assertions shown in the transition diagram in 
Figure 4.6. The operations "Copy X " and "Copy Y" each occur twice, in 
accordance with their specifications. The placement of tests is obvious. 
Entrance after initialization occurs at the node marked true, since none of 
the significant conditions is known. Exit occurs when the goal kx>bx and 
ky > by has been achieved. 

The transition diagram is indeterminate at two points: at true, where it is 
immaterial whether one tests the emptyness of kx bx or of ky by , and at 
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kx<bx and ky < by, where one can p e r f o r m ei ther " C o p y X" or " C o p y y» 
when X(kx)=Y(ky). ( H e r e we are ignoring the ques t ion of stability, dis-
cussed in Section 2.3 .9 . ) In this f o r m the t ransi t ion d iagram reveals the 
symmetry be tween X and Y which is characterist ic of the merging problem: 
In terchanging X and Y, ax and ay, bx and by, and kx and ky has the same 
effect as ref lect ing the t ransi t ion d iagram along a diagonal . 

The d iagram has b e e n drawn so tha t every test arc moves fu r the r from 
the centra l node m a r k e d true. This m a k e s it evident tha t every loop contains 
e i ther " C o p y X " or " C o p y Y". Thus te rmina t ion is insured since bo th of 
these opera t ions decrease the sum of the sizes of \kx bx and ky by 

A f t e r resolving the indeterminacies arbitrari ly, it is s ta ight forward to 
t ransla te the t ransi t ion d iagram into an Algol W program. 

4.2.8 Another Caution 

In Sections 4 .2 .5 to 4 .2 .7 , we have p resen ted a m e t h o d of programming 
based u p o n the e n u m e r a t i o n of re levant assert ions which eventual ly become 
labels in the p rog ram. T h e m e t h o d is systematic, and the re are occasions 
when its e m p l o y m e n t gives a worthwhi le improvemen t in execut ion speed. 

Never the less , exper ience shows that this m e t h o d should be used with 
great discret ion. It usually yields a modes t gain in execut ion speed at consid-
erab le cost in p rog ram length, complexity, and oppor tun i ty fo r e r ror . Execu-
t ion speed is rare ly tha t impor tan t . Even when the speed of a complete 
p rog ram is vital, it is usually d o m i n a t e d by the speed of a small n u m b e r of 
key par t s of the p r o g r a m . O n the o the r hand , complexity always has its price, 
which is usually unde res t ima ted . 

O n e should never try to write the fastest p rog ram until one has writ ten 
the simplest p rog ram, and then examined it to f ind where speed is wor th its 
price in complexi ty . 

Exercises 

1. Without using goto statements or labels, write a program that is equivalent to the 
fast exponentiation program given in Section 4.2.5, in the sense that for any 
given input both programs execute the same sequence of tests and assignment 
statements. You may need to use more than one occurrence of S_ or Sdiv. (The 
author is indebted to D. Gries for showing him that this can be done.) 

2. Show that the fast exponentiation program in Section 4.2.5 is free of redundant 
testing. More precisely, show that for every path through the transition diagram 
in Figure 4.4, there is an input value of n which will cause the program to execute 
that path. 
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Apply the methodology of Sections 4.2.5 to 4.2.7 to eliminate redundant testing 
in the array partitioning program devised in Section 2.3.5. The relevant asser-
tions are built out of the conditions c<d, X(c)<r, and X(d)<r. You should be 
able to take advantage of the fact that the statement d: = d-1 cannot change the 
outcome of the test X(c)<r. 

The speed of the partitioning program discussed in the previous problem can be 
further improved by using "stoppers". Once c: = c+ 1 has been executed, {X ] 
[ 7 ] c } will be nonempty and will contain a "stopper" whose value is less than or 
equal to r. Thus X(d) will be welf-defined, and if X(d)>r, \c d\ will be 
nonempty. Similarly, once d =d-1 has been executed X(c) will be well-
defined, and if X(c)<r then \c d\ will again be nonempty. As a consequence, 
one can frequently avoid any explicit test of the emptiness of 

To take advantage of this situation, one must consider the conditions a <c, 
c<d,d<b, X(c)<r, and X(d)<r. The total number of possibly relevant asser-
tions is unworkably large, but the problem becomes tractable if one only consid-
ers assertions for labels that can be reached from the initial state, and if potential 
indeterminacy is resolved as soon as it is encountered. Even so, this problem 
represents an extreme case of complexity for the sake of speed, in which 
"exhaustive reasoning" becomes a double-entendre. (It should be compared 
with the much simpler use of stoppers in Exercise 1 after Section 3.2.3, where the 
initialization insures the existence of stoppers.) 

c-

I 





DATA REPRESENTATION 
STRUCTURING 

The programs developed in previous chapters have all been expressed 
directly in terms of concepts that are provided by Algol W and most other 
programming languages. In more complex and realistic programs, however, 
this kind of direct expression is often unworkable, and one must consider 
concepts that are germane to the problem being solved but are not provided 
by the language in which the program must ultimately be written. For 
example, in writing a program to perform geometric calculations, one would 
expect to consider entities such as points and lines. 

Such entities are data types, in exactly the same sense as integer, real, 
and logical. Although they are not provided by our programming language, 
it is conceptually straightforward to extend that language to include them. In 
particular, everything we have learned about constructing and verifying 
programs remains applicable to such an extended language. 

At the outset, it should be emphasized that there are two complemen-
tary aspects to data types. On the one hand, for any data type there must be a 
mathematically well-defined set that serves as the range of values of vari-
ables and expressions of that type. On the other hand, for any data type or 
family of related data types, there must be a collection of primitive opera-
tions. For instance, for the data types integer and logical, Algol W provides 
primitive arithmetic operations such as +, relational operations such as 
and logical operations such as and. Similarly, for the data types point and 
line, an extended language might provide primitive operations for finding 
the line connecting two points or the point that is the intersection of two 
lines. 

2 9 7 
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Our main thesis is that the introduction of "problem-oriented" or 
"user-defined" data types separates the development of a program into two 
phases. In the first phase one writes—and shows the correctness of—an 
abstract program in which the new types appear on the same footing as the 
built-in types. For example, there might be point and line variables, whose 
values are computed by connecting points and finding intersections. In the 
second phase, one designs representations for the new data types, and then 
uses these representations to transform the abstract program into a concrete 
program in which the new types have been eliminated. For example, a point 
might be represented by its x- andy-coordinates, so that each point variable 
in the abstract program would be transformed into a pair of real variables in 
the concrete program. 

Over the last decade, data representation structuring has been the 
subject of considerable research. The earliest roots of this work lie in the 
design of specific programming languages, notably SIMULA 67 [Dahl 68] 
and even Algol W (in the record and reference facilities, which are not 
discussed in this book). However, as typified by [Dahl 72], [Hoare 72a], and 
[Hoare 72c], the subject was soon viewed as a fundamental aspect of 
programming methodology, independent of specific languages. More recent 
work has included both language design to support this methodology, e.g. 
[Liskov 75] and [Wulf 76], and language-independent developments, e.g. 
[Guttag 77] and [Jones 80]. 

In this book, by using Algol W (indeed a subset of Algol W that excludes 
the record and reference facilities) we perforce view data representation 
structuring as a methodology, i.e. as a way of constructing programs. This 
choice of language will not inhibit our development of programs, since we 
are free in our thinking about programs to extend or modify a programming 
language in any consistent way. But our final concrete programs will be less 
clear in Algol W than they would be in a more modern language. In effect, 
we will still develop programs in a structured manner, but the structure will 
be less apparent in the final programs. 

In compensation, we will be free to transform abstract programs into 
concrete programs in ways that go beyond the work mentioned above. For 
example, we will occasionally use distinct representations for different abs-
tract variables of the same type, compound representations that simultane-
ously represent more than one abstract variable, incomplete representations 
that leave some abstract values unrepresented, and even ambiguous rep-
resentations that give the same representation to distinct abstract values. We 
will also make considerable use of indeterminate abstract programs. 

One small warning is needed to avoid getting off on the wrong foot. Just 
because an abstract program is abstract does not imply that it is more 
profound or difficult to write than a concrete program. In many cases the 
intellectual heart of a program lies in an ingenious choice of data representa-
tion rather than in the abstract algorithm. 
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5 1 FINDING PATHS IN DIRECTED GRAPHS 

5.1.1 Directed Graphs 

To illustrate data representation structuring, it is useful to explore a variety 
of programs in the same problem area. Thus most of this chapter will be 
devoted to several programs for finding properties of directed graphs. How-
ever, it should be emphasized that our primary purpose is to demonstrate a 
methodology for constructing programs, and that we will only skim the 
surface of the subject of direct-graph algorithms. A much more comprehen-
sive discussion of this subject is given in [Aho 74]. 

A directed graph consists of a set node whose members are called nodes, 
and a set edge whose members are called edges (or sometimes arcs). Each 
edge is an ordered pair (x, y) of nodes which is said to go from x to y. We will 
only consider finite directed graphs. More specifically, we will assume that 
the sizes of node and edge are bounded by integers N and E respectively. 

Conventionally, a directed graph is pictured by using points to represent 
nodes and arrows to represent edges. For example, Figure 5.1 illustrates the 
directed graph such that 

node = {A, B, C, D, E, F, G} , 
edge = {(A, B), <A, D), <B, B), <B, C), <B, E), 

<C, A), <C, F), (D, E), (D, G>}, 
7 , 

E>9 . 

B 
O o c A O 

D O O E O F 

O G 

Figure 5.1 A Picture of a Directed Graph. 
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A node y is said to be an immediate successor ofx if and only if there is an 
edge from x toy. We write T for the function from nodes to sets of nodes such 
that T(x) is the set of immediate successors of x. Thus y € r (x) if and only if 
(x,y) e edge. 

For our purposes it will be convenient to regard the function T, rather 
than the set edge, as the fundamental description of the edge structure of a 
directed graph. It will also be convenient to extend this function to accept 
sets of nodes. When S is a set of nodes we write T(5) for the set of nodes that 
are immediate successors of some member of S. Thus, y € r(S) if and only if y 
€ T(x) for some x e S. For example, for the graph in Figure 5.1, T({A, B, 
F}) = {B, C, D, E}. 

A nonempty sequence <JC0, X\, ... , xn) of nodes is said to be a path of n 
steps from JC0 to xn if and only if each adjacent pair of nodes is an edge, i.e. if 
xi e r f o - x ) for each i in |l n\. For example, in Figure 5.1: 

(A, B, C, F),is a path of three steps from A to F, 
(B, C, A, B, B) is a path of four steps from B to B, 
(B, E) is a path of one step from B to E, 
(G) is a path of zero steps from G to G. 

Notice that the step number is the number of edges in a path, which is one 
less than the number of nodes, that the minimum step number is zero, and 
that a path of one step is just an edge. 

A node y is said to be reachable from a node x if and only if there is a 
path (of any number of steps) from x to y, Just as the edge structure can be 
represented by the function T, so reachability can be represented by the 
function T*, from nodes to sets of nodes, such that r*(x) is the set of nodes 
that are reachable from x. Thus y e r*(x) if and only if there is a path from x 
to y. (This use of the asterisk is unrelated to its use, in Section 2.2.8, for 
indicating the pointwise extension of relations.) For example, T* for the 
graph in Figure 5.1 is given by 

X T*(x) 

A {A, B, C, D, E, F, G} 
B {A, B, C, D, E, F, G} 
C {A, B, C, D, E, F, G} 
D {D, E, G} 
E {E} 
F {F} 
G {G} . 

As with T, we will extend T* to act on sets of nodes by defining T*(5) to be the 
set of nodes that are reachable from some member of S. 
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Exercise 

1 The transition diagrams introduced in Section 4.2.6 are directed graphs, and 
programs for finding their properties play an important role in compilers which 
attempt to optimize machine code. Tabulate T and T* for the transition diagram 
in Figure 4.4. 

5.1.2 An Abstract Program for Reachability 

As a first example of a program dealing with a directed graph, we consider 
computing, for a given node x, the set T*(x) of nodes that can be reached 
from*. Such a computation is called single-source to emphasize that is 
to be computed for a particular x rather than for all nodes in the graph. (Of 
course, a multiple-source computation could be obtained by iterating a 
single-source computation over different nodes, but this approach would be 
inefficient. In fact, the best multiple-source algorithms [Warshall 62, Aho 
74] are quite different from the single-source algorithms considered in this 
chapter.) 

In the abstract version of our program, we will use two new data types: 
node, whose values are nodes of the graph, and set, whose values are sets of 
nodes. The relevant primitive operations will be conventional mathematical 
operations on sets and their members. The input will be the node x and the 
function Y that describes the edge structure of the graph. The output will be a 
set variable T whose final value will be T*(x). 

The basic idea of the algorithm is to "grow" the set 7by starting with the 
set {JC} and repeatedly adding nodes that can be reached from x. Thus T will 
always satisfy the invariant 

I: T ^ T*(x) and x e T . 

The growth will be carried out by repeatedly adding to T nodes that can be 
reached in a single step from some node that is already in T, and the 
algorithm will stop when such growth is no longer possible. This will occur 
when T( r ) ^ T, i.e. when every node that can be reached in one step from a 
member of T is already a member of T. 

Thus an initial version of the abstract algorithm is 
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node {exp} x; set procedure I {node exp}; set {var} T; 

{true} 
begin 
T: = {x}; 
{geninv /: T e r*(x) and x e T} 
while ir(I)c T do 

begin node y; 
y:= a member of T; 
{geninv II: y e r*(x)} 
T:=T U T(y) 
end 

end 
{T= r*(x)} . 

Since they describe input and output, the identifiers x, T, and T are not 
bound in this program. We adopt the convention of specifying the phrase 
types of such identifiers in a preface to the program. 

As discussed in Section 4.2.5, the symbol geninv indicates that I and II 
are general invariants. This means that each of these assertions holds con-
tinuously (at the present level of abstraction) from its point of occurrence to 
the end of the immediately enclosing block. 

The outer invariant I insures that the statement y : = a member of T will 
achieve the inner invariant II. In turn, II insures that T:=T U T(y) will 
preserve I, since y g r*(jc) implies r (y ) ^ T*(x). 

Notice that y : = a member of T is an indeterminate operation, since it 
does not specify which member of T is to become the value of y. This 
indeterminacy will turn out to be useful when we transform our program into 
concrete form, since it will provide a degree of freedom that will permit us to 
construct a faster program. 

When the program terminates, the invariant I will insure x e T and the 
falsity of the while-statement test will insure T(T) £ T. It follows that 
T, i.e. that T contains every node that can be reached from x. The proof is by 
induction on the number of steps. The only node that can be reached in zero 
steps is x itself, whose presence in T is insured by x e T. If a node w can be 
reached in n +1 steps, then it can be reached in one step from some node z 
that can be reached in n steps. By the induction hypothesis z belongs to T, so 
that w belongs to T(r) , and the halting condition T(T) Q j implies that w 
belongs to T. 

On the other hand, the invariant I insures T*^ r*(x), i.e. that every node 
in T can be reached from x. In conjunction with T*(x) ^ T, this implies the 
desired consequent of the program. 

The next step in developing an abstract algorithm is to express the 
statement T:—T U T(y) in terms of more elementary operations. For this 
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purpose, we introduce an extension of the for statement that describes 
iteration over the members of a finite set. In general, we write for K e S do B 
to indicate that B is to be performed once for each member of the set 5, with 
# denoting each member in turn. The order in which the members of S are 
iterated over is left indeterminate. 

This construct can be used to express the addition of T(y) to T as an 
iteration over T(y) of a statement that adds individual nodes to T. Thus we 
replace T:=T U r ( y ) by 

for z € T(y) do T: = T U {z} . 

The virtue of this replacement is that it decouples the representations of 
T and T. If we left T:=T U T(y) in the abstract program, then in the 
transformation to a concrete program the realization of the union operation 
would depend upon both the representation of T and the representation of 
T(y). Thus the choice of these representations would have to be made jointly 
to ensure that the union could be performed efficiently. But in transforming 
for z e T(y) do T:= T U {z}, one can deal separately with the transformation 
of T: = T U {z}, which only involves the representation of T, and the trans-
formation of the iterative control mechanism for z 6 T(y) do . . . , which only 
involves the representation of T(y). 

This decoupling is particularly advantageous since T is an input and T is 
an output of our program. Although we will not consider the matter 
explicitly when we choose representations, in the "real world" the represen-
tation of T has to be suitable for some program segment that computes T, and 
the representation of T has to be suitable for some other program segment 
that uses T. In this situation, anything which couples the choice of these 
representations could complicate the programming task disastrously. 

On the other hand, by replacing T: = T U T(y) by a for statement, we are 
excluding certain ways of implementing the union operation. Although it 
will turn out that these implementations are not desirable, this is not evident 
from the abstract algorithm. Our arguments for the replacement are merely 
heuristic, and do not guarantee that it is a step in the right direction. More 
generally, while data representation structuring is a systematic way of con-
structing programs, it is not a magic tool that insures optimal design choices. 

At this point we must admit that, although the initial version of our 
abstract algorithm is conditionally correct, it is possible that it may never 
terminate. The difficulty is that y : = a member of T may repeatedly set y to 
the same member of T. But once for z 6 T(y) do T:=T U {z} has been 
performed for a particular y, it is a waste of time to repeat this operation for 
the same y. Indeed if y is chosen to be the same node ad infinitum, the 
program will never terminate. 

To overcome this difficulty we will partition T into a set P of processed 
nodes that have already been chosen as y, and a set U of unprocessed nodes 
that have not yet been chosen. Then, by always choosing y to be an unpro-
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cessed node, we can guarantee that each execution of the while-statement 
body will increase the number of processed nodes, so that termination must 
occur within N steps. 

The first step is to modify the abstract program by introducing P and V 
as local set variables, along with appropriate statements for maintaining 
their values: 

node {exp} x; set procedure F {node exp}; set {var} 7; 

{true} 

begin set P, U; 
r : = {jc};P: = {}; £/: = {*}; 
{geninv I: T c r*(x) and x e T and P U U= T and P n £/={}} 
{whileinv: T(P) c T} 
while 1 r ( J ) c T do 

begin node y; 
y: = a member of T; 
begin/ P:=P U {y}; U: = U-{y} end; 
{geninv II: y e T*(x) and y e P and T ( P - { y } ) c 7"} 
for z 6 r ( y ) do 

if z T then 
begin/ T:= T U {z}; U:= U U {z} end {T(y) ^ T} 

end 
end 
{ r = r * ( x ) } . 

Since only the new variables P and U are affected by this modification, the 
assertions in the original abstract program remain valid. 

Initially x, which is the only member of T, is unprocessed. Each time a 
member of T is chosen asy, it becomes processed. Each time a new node z is 
added to T, it is unprocessed. (Note the necessity of the qualification "new", 
which is reflected in the test z £ T in the body of the for statement. If z 
already belongs to 7, it may be a processed node.) It is easy to see that P and 
U will always form a partition of T, so that P U U= T and P f) £/={} can be 
added to the general invariant I. However, this invariant is only continuously 
true if the two blocks subscripted with I are regarded as indivisible actions. 
As discussed in Section 4.2.5, we will subscript the beginning of a block with 
the name of a general invariant whenever that invariant may be temporarily 
falsified within the block. 

Just prior to the for statement, y is placed in P, and neither y nor P are 
changed by the for statement body. Thus y € P can be added to the general 
invariant II. 

Initially T(P) ^ T holds since P is empty. Assume that this condition 
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holds at the beginning of the while-statement body. Then T(P-{y}) S Twill 
hold after y is added to P, and will continue to hold throughout the for 
statement since y and P are never changed and T is only enlarged. Thus 
r (F-{y}) — T can be added to II. Then since this condition still holds upon 
completion of the for statement, and the for statement achieves T(y) e T, 
the condition T(P) Q J will again hold upon completion of the while-
statement body. Thus T(P) £ T is an invariant of the while statement (but not 
a general invariant). 

If U is empty then the partition condition implies P=T, and the 
invariant Y(P) S T implies T(T) £ T, which is a sufficient condition for 
terminating the while statement. Thus we may replace 

while 1 Y(T) £ T do ... 

by 
while "1 empty(£/) do ... . 

Of course, the old test "I Y(T) ^ T may become false while U is still 
nonempty, but this only means that our program may continue to loop 
unnecessarily. Correctness is not affected, since we never used the assump-
tion that "1 T(T) £ T held at the beginning of the while-statement body. 

At this stage, it is clear that U will be a nonempty subset of T when a 
member of T is chosen as y. Thus we may replace 

y: = a member of T 

by 
y: = a member of U . 

By restricting the choice of y to U, we insure that each execution of the 
while-statement body will add a new node to P. Thus the number of such 
executions cannot exceed the bound N on the number of nodes in the graph. 

Each execution of the for-statement body iterates over the immediate 
successors of y or, equally well, over the edges that emanate from y. Thus, 
since the for statement is executed for distinct nodes y, the total number of 
executions of its body cannot exceed the bound E on the number of edges in 
the graph. 

The body of the conditional statement within the for statement always 
adds a new node to T, which initially contains the single member*. Thus the 
total number of executions of this body cannot exceed N—1. 

These bounds on the number of executions of various parts of our 
program are as close as we can come to understanding efficiency on the 
abstract level, since time and space requirements, even to an order of 
magnitude, will depend upon the choice of representations and the realiza-
tion of primitive operations. In fact, since they determine the relative fre-
quency with which various primitive operations will be performed, the 
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bounds on number of executions will be crucial for deciding which represen-
tations should be used to obtain an efficient concrete program. 

The intermediate assertions have served their purpose in demonstrating 
the correctness of our abstract program, and can now be discarded. Actually 
there is a small but significant exception. Since P U U= T and z £ T will hold 
just prior to T: = T U {z}, the assertion z£U will hold afterwards, so that the 
following statement U: = U U {z} will insert a new member into U. This fact 
will turn out to be significant for the choice of the representation of U 

At this stage the abstract program illustrates a concept that will reap-
pear in later sections and play a central role in the development of data 
representation structuring. Consider a variable that is local to a program (or 
at least whose final value is not used outside of the program). Such a variable 
is said to be auxiliary if all of its occurrences lie within statements whose only 
effect is to assign to the variable. More generally, a set of variables is said to 
be auxiliary if all of their occurrences lie within statements whose only effect 
is to assign to members of the set. 

The importance of this concept is that the value of an auxiliary variable 
cannot affect the flow of control or the values of any nonauxiliary variable. 
As a consequence, one can eliminate auxiliary variables, by deleting their 
declarations and the statements that assign to them, without affecting the 
behavior of the program. 

(Auxiliary variables are defined in [Owicki 76]. However, the basic 
concept goes back at least as far as [Lucas 68].) 

The set variable P is easily seen to be auxiliary in our abstract program, 
and can therefore be eliminated. Thus, stripped of the scaffolding used to 
construct it, the abstract program is 

node {exp} x; set procedure Y {node exp}; set {var} T; 

{true} 
begin set U; 
T:={x}; £/: = {*}; 
while "1 empty (U) do 

begin node y; 
y : = a member of U; 
U:=U-{y}; 
for z G T(y) do if z £ T then 

begin 
T:=T U {z}; 
{z t U} 
U:=U U {z} 
end 

end 
end 
{ r = r * ( * ) } . 
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Exercises 

1 The call-by-name variant of the set-iterating for statement 

for K G 5 do B 

can be defined as 
begin set 5'; 5': = {}; 
while 1 empty ( 5 - 5 ) do 

begin node K\ 
K: = a member of 5—5' ; 
B', 
S': = S' U {K} 
end 

end 

where 5' is an identifier that does not occur in the original for statement. Use this 
definition to derive the following inference rule of specification logic [Hoare 
72b]: 
Suppose 

K and 5' are distinct identifiers of phrase types 
node expression and set expression, 

5 is a set expression, 
B is a statement, 
1 is an assertion, 
2 is a finite set of specifications, 

such that 
K does not occur free in 2, 5, or I, 
5' does not occur free in 5, or B. 

Let {5X ... , 5m}=^sta.like(fl) and 5m+1>, ... , 5„ be any other identifiers distinct 
from K and S\ Then 

2 & ST#K & ... & 5„'# K & 5j#5' & ... & 5„#5'=> 
{/ and 5' c 5 and KG 5 - 5 ' } B { / | G^G „ {K]} 

X & SR # 5 & ... & SM # 5 ^ { / | for KG5 do B { / | • 

2. Weaken the inference rule given above to describe the more indeterminate 
situation where B can be executed more than once (but at most a finite number 
or times) for the same member of 5. Show informally that the abstract program 
given in the previous section remains correct with this more indeterminate kind 
of for statement. 

3. Transform the fast division program described in Exercise 4 after Section 1.3.5 
to make n an auxiliary variable that can be eliminated from the program. 

4. Write an abstract program to solve the "single-source single-sink" reachability 
problem, i.e. write a program that accepts two nodes x and v and the function T, 
and sets a logical variable reachable to true if and only if vg r*(x). The simplest 
approach is to modify the program developed in the previous section to termi-
nate with an appropriate goto when and if v is added to T. 

A more complex but efficient approach is possible if the input also includes 
an "immediate predecessor function" T+ such thaty e T+(*) if and only if <y, x) G 
edge. Then one can alternate between generating the set of nodes that can be 
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reached from x and generating the set of nodes that can be reached backwards 
from v. Termination occurs when these sets intersect or when either set is 
complete. 

5.1.3 The Representation of Finite Sets 

We have purposely chosen an algorithm involving finite sets since there is no 
universally "best" way of representing such sets. Inevitably, choosing a 
representation to make one primitive operation as efficient as possible will 
force other primitive operations to be less efficient than in some other 
representation. Thus a wise choice of a representation can only be made in 
light of the particular needs of the abstract program, i.e. which primitive 
operations are used and with what relative frequencies. Moreover, it is often 
advantageous to choose distinct representations for different set variables. 

The following are four fairly obvious ways of representing a set S: 

(1) One can enumerate S with an array. Thus S might be the image of the 
segment of an array W over the interval \a bj: 

5 = {W 1 Q } . 

This representation has the advantage that one can insert an element into S 
in constant time, i.e. in a time independent of the size of S, by simply 
appending the element to the array segment at one end or the other. One can 
also test whether S is empty in constant time by simply testing a>b. 

However, unless there is some control over the number of times a set 
member may occur in the array segment, the size of the segment can grow far 
larger than the size of S. This is a sufficiently serious defect to make this 
representation unsuitable for our purposes. 

(2) One can enumerate S by an array segment without duplicate elements: 

S={W 1 a b] and ord^ W 1 

Prohibiting duplication insures that # |a b\ = # S, so that any bound on the 
size of S provides a bound on storage requirements. Not only can the 
emptiness of S be tested in constant time, as in (1), but more generally the 
size of S can be determined in constant time. On the other hand, to test 
whether a particular element belongs to S one must perform a linear search, 
in time of order # S. 

The price of avoiding duplication is the time required to insert an 
element into 5. In general, one must perform a linear search, in time of order 
# S, to see if the element is already present. However, this search can be 
avoided if it is known that the element being inserted does not belong to S, so 
that a new element can be inserted in constant time. This is one of several 



SEC. 5.1 FINDING PATHS IN DIRECTED GRAPHS 3 0 9 

cases where a fine distinction in the nature of a primitive operation can have 
a major effect on its efficiency. 

Another case is deletion. To delete a specified element from S one must 
perform a linear search to locate the element, in time of order # S. However, 
to delete an unspecified member, i.e. to choose an arbitrary member of S and 
delete it, one can simply remove an element from one end of the array 
segment, in constant time. 

Finally, consider iterating over the set S, i.e. executing for K e S do B. 
Excluding the time required to execute B repeatedly # S times, the control 
of this iteration will require an array scan taking time of order # S. 

(3) If an ordering relation can be defined for the type of elements in S, then 
one can enumerate 5 by a strictly ordered array segment: 

5 = {W 1 \a b\} and ord< W ] \a b\ . 

Now binary search can be used in place of linear search, so that an element 
can be tested for membership in time of order log # 5. On the other hand, 
when an element is inserted or a specified element is deleted, it may be 
necessary to move a sizeable subsegment of the array to preserve the 
ordering. Thus the time required to insert an element, even when it is known 
to be new, is of order # 5 in the worst case. The order of magnitude times for 
the other operations discussed in (2) remain unchanged. 

(4) Suppose S is known always to be a subset of some fixed, finite universe 
°ll (which would be node in the case of a set of nodes). Then S can be 
represented by a logical array C with domain such that C(x) records 
whether x belongs to S: 

(Vx C(x) = (xeS) • 

Of course, Algol W does not permit the domain of an array to be an arbitrary 
finite universe such as node, but conceptually this is a straightforward 
extension of the language. 

The number of elements in C is # °IL, which may be much larger than the 
maximum size of S. In many cases, however, this is compensated by the fact 
that an individual logical array element is much smaller than an array 
element that must represent a member of S. 

In general this kind of representation, called a characteristic vector, is 
complementary to enumeration by an array. Testing membership, or insert-
ing or deleting a specified element can be done in constant time by testing or 
setting a single array element. However, testing emptiness or deleting an 
unspecified member requires searching C up to the first true element, which 
needs time of order # °li - # S in the worst case and #<U / # S on the average. 
(Note that the situation deteriorates as S becomes smaller.) Even worse, 
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determining size or iterating over all members of S requires a scan of the 
entire array, using time of order # °lL, regardless of the size of S. 

There are many other useful representations of sets, often involving 
tree or list structures. These include heaps, which will be introduced in 
Section 5.2.3, hash tables [Morris 68], and binary search trees [Nievergelt 
73]. Good general references are [Aho 74] and [Knuth 73]. 

Exercises 

1. To each of the representations we have discussed, one could add an integer 
variable recording the size of S. For each representation, how would this affect 
the time requirements for the various primitive operations? 

2. Suppose that a primitive operation is needed that replaces a set by its union with 
another set, i.e. that achieves the effect of 5 := S U T. Assume that the same 
representation is used for S and T. For each of the representations discussed 
above, what would be an efficient method for realizing this operation, and what 
would be the order of magnitude time requirement? In which cases would it be 
seriously inefficient to expand S : = S U T into for z € T do S : = S U {z}? 

3. Suppose that a set is represented redundantly by giving both an enumerating 
array without duplicates and a characteristic vector. What are the order of 
magnitude time requirements for the primitive operations discussed in the above 
section? 

5.1.4 Representation of the Set Variables T and U 

Having discussed the general properties of several representations of sets, 
we return to the specific problem of determining reachability in a directed 
graph. We have established the correctness of the abstract program given at 
the end of Section 5.1.2. Now we must choose representations for the 
abstract variables in this program and use these representations to transform 
the program into concrete form. 

Fortunately, this kind of problem is not monolithic. In many cases, the 
representations of different data types, or even of different variables of the 
same type, can be considered in isolation from one another. In this case, we 
will separately consider the representations of the set variables T and U, the 
set function Y, and finally the representation of nodes themselves. 

Consider T. In the abstract program it is subject to three operations: the 
initialization T: = {*}, which is only performed once, the membership test z £ 
T, which is performed at most E times, and the insertion T:=T U {z}, which is 
performed at most N—l times. It is obviously more important to optimize 
the membership test and insertion than the initialization. For this purpose, 
the best of the four representations discussed in the previous section is 
clearly the characteristic vector (4), which permits both a membership test 
and an insertion to be performed in constant time. 
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Actually, this conclusion is premature. Since T is an output variable, its 
representation must be suitable, not only to the program we are writing to 
produce its value, but also to some other program that will use this value. In a 
real application, this might cause us to choose a different representation for 
j or to simultaneously compute T in more than one representation (see 
Exercise 1 below), or to convert Tto another representation after it has been 
computed. But to keep our example tractable we will assume that a charac-
teristic vector is suitable for the program that will use the value of T. 

Now we must transform our program to replace the abstract variable T 
by a concrete variable representing its value. To do this, we will use the 
following general method: 

(1) One or more concrete variables are introduced to store the representa-
tion of one or more abstract variables. 

(2) A general invariant called the representation invariant is introduced, 
which describes the relationship between the abstract and concrete 
variables. 

(3) Each assignment to an abstract variable (or more generally, each 
assignment that affects the representation invariant) is augmented with 
assignments to the concrete variables that reestablish the representa-
tion invariant (or achieve it, in the case of an initialization). 

(4) Each expression that contains an abstract variable but occurs outside of 
an assignment to an abstract variable is replaced by an expression that 
does not contain abstract variables but is guaranteed by the representa-
tion invariant to have the same value. 

The last step will render the abstract variables auxiliary, so that their declara-
tions and assignments can be eliminated. 

In the present case, the concrete variable will be a characteristic vector 
whose domain is node: 

logical array {var} C (node) 

This array must be specified globally since it represents the output of our 
program. The representation invariant is 

CI: (Vz € node) C(z) = (z € T) . 

To achive CI the initialization T: = {x} can be augmented with 

for z e node do C(z): = (z = x) . 

The only other assignment to T is T: = T U {z}. To reestablish CI after this 
assignment, we add C(z): = true. 

The only occurrence of T in an expression outside of an assignment to T 
is in the test z £ T. According to CI this test is equivalent to, and can therefore 
be replaced by, "I C(z). 

I The result of this transformation is 
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node {exp} x; set procedure I {node exp}; 
set {var} T; logical array {var} C (node); 

{true} 
begin set U; 
T: = {*}; for zenode do C(z): = (z=x); 
{geninv CI: (Vzenode) C(z) = {zeT)} 
C/: = W; 
while "I empty(U) do 

begin node y; 
y: = a member of U; 
U:=U-{yh 
for z e r(y) do if 1 C(z) then 

begin 
beginc/ T:=T U {z}; C(z): = true end; 
{ztU} 
U:=U U {z} 
end 

end 
end 
{T= T*(x) and (Vz € node) C(z) = (z e r*(x))} • 

Again we have used a subscript to indicate that a general invariant may be 
temporarily falsified in the interior of a block. We have also extended the 
consequent of the program to express the result T*(JC) in terms of the 
concrete variable C. 

At this stage T is an auxiliary variable and can be eliminated from the 
program. The representation invariant CI can also be dropped, since it has 
served its purpose in demonstrating the correctness of the program trans-
formation. 

Next we consider the set variable U. Besides the initialization U: = {*}, it 
is subject to three operations, each of which will be performed no more than 
N times: the emptiness test "I empty(U), the choice and deletion of an 
unspecified member y: = a member of U\ U:—U-{y}, and the insertion 
U: = U U {z}, in which z is guaranteed to be a new member by the preceding 
assertion z ^ U. 

Because of the emptiness test and the choice of an unspecified member, 
a characteristic vector would be an unsuitable representation for U. In fact, 
of the representation methods discussed in Section 5.1.3, only enumeration 
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by an array without duplicate elements (2) permits all three of the frequent 
operations to be performed in constant time. (Since U is a local variable, we 
do not need to consider the requirements of an external program.) 

To implement this representation we introduce, at the same block level 
a s U, the concrete variables 

node array W(1::N); integer a, b 

and the representation invariant 

WI: | l |a b\ and U={W ] \a b\} and ord^ W 1 \a b 

(Here the partition diagram insures that 1 is a suitable lower bound for the 
domain of W. The fact that N is a suitable upper bound will be established 
later.) To achieve this invariant, the initialization U:={x} is augmented with 
a: = l;b:=l-,W{l):=x. 

The transformation of the abstract operation of choosing and deleting 
an unspecified member of U is somewhat complicated, since it involves both 
replacing an expression containing U and augmenting an assignment to U, 
and since indeterminacy must be resolved. The representation invariant 
implies that the indeterminate expression "a member of £/" can be replaced 
by W{k) for any value of k in |a b\ (which must be a nonempty interval since 
Uis nonempty). Then after the next operation U:= U-{y}, the representa-
tion invariant can be regained by deleting the A:th element from the segment 
of W over \a b\. 

Clearly this deletion can be done more easily if W{k) is located at one 
end or the other of the array segment. Thus we may either (1) replace "a 
member of U" by W{a) and add a: = a + 1 after U:= U~{y}, or (2) replace "a 
member of U" by W{b) and add b\ = b- 1 after U:= U-{y}. Notice that the 
freedom to make these especially efficient choices is a consequence of 
leaving "a member of U" indeterminate at the abstract level. 

The only other assignment to U is U:= U U {z}. Here, since the prece-
dent z£U insures that duplication will be avoided, WI can be regained by 
appending z to the upper end of the array segment, i.e. by adding the 
statements b: = b +1; W(b): = z. (Note that appending z to the lower end of 
the array segment might violate the partition diagram |l a b|.) 

Finally, WI implies that the test 1 empty (U) can be replaced by a < b. 
Thus we have 
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node {exp} x\ set procedure T {node exp}; 
logical array {var} C (node); 

{true} 
begin set U; node array W(1::N)\ integer a, b; 
for z e n o d e do C(z): = ( z - x ) ; 
[/: = {*}; a:= 1; b: = 1; W(l):=x; 
{geninv W/: jl |a and £/={W 1 [a and ord,, W ] 
while a<£> do 

begin node y; 
w(fl) (Di 

©J' 
«: = a + l © 
b: = b-1 

'(z) then 

y: = 

b e g i n t / : = f / - { y } ; end; 

for z e T ( y ) do if 1 C 
begin 
C(z): = true; 
{ztU} 
beginw/ U:=U U {z}; = 6 + W(b): = z end 
end 

end 
end 
{ ( V z e n o d e ) C(Z ) = ( Z GT* ( X ) ) } 

The variable b is initialized to one and is only increased by the statement 
b: = b +1, which can be performed at most N-l times. Thus b < N will hold 
throughout the program. This implies |l b\c |l N\, which in conjunction 
with FL la b\ implies a b\ Q |l N\, SO that the declared bounds of W are 
adequate to avoid subscript errors. 

The circled numbers represent the alternative ways of implementing the 
choose-and-delete operation. When option © is used, nodes are added to 
one end of W ] \a b\ and removed from the other. As a consequence, 
W behaves as a queue, i.e. its element values are removed in the same order 
as they are entered. When option (2) is used, nodes are added and removed 
from the same end of W1 |a b\. As a consequence, Wbehaves as a stack, i.e. 
when a node is removed it is always the most recently entered node remain-
ing in the stack. 

The difference between CD and (2) has a profound effect upon the order 
in which the members of T*(JC) are processed by our algorithm. When © is 
used, the nodes in r*(x) enter J in a breadth-first order, i.e. in increasing 
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order of the minimum number of steps from x. When (5) is used, these nodes 
enter T in a depth-first order, i.e. after a node y has entered T, all nodes that 
can be reached from y (via a path which does not go through a member of T) 
will enter T before any other nodes. 

In our further development of the reachability program, we will only 
consider option © , which causes breadth-first search. We will return to the 
topic of depth-first search in Section 5.4.1. 

At this stage, U is an auxiliary variable that can be eliminated, along 
with the intermediate assertions. 

The transformation method illustrated in this section is similar in spirit 
to that of [Hoare 72c] and [Jones 80]. The relationship between abstract and 
concrete variables that we call a representation invariant is divided by these 
authors into two components: a function (called an abstraction function by 
Hoare and a retrieve function by Jones) mapping concrete into abstract 
values, and an invariant relationship that is limited to concrete values. 

E x e r c i s e s 

1. Suppose that the abstract variable T is retained while the concrete variables W, 
a, and b are introduced, and option © is used so that Wbehaves as a queue. Show 
that the representation invariant WI can be strengthened to 

b\ a n d U={W ] \a b\} and T={W ] [l b\} 

a n d ord , W \ 1 b\ 

This indicates that W, a, and b provide a compound representation of U and T, 
where the representation of T is redundant since T is also represented by the 
characteristic vector C (as in Exercise 3 after Section 5.1.3). By making Wand b 
nonlocal one can produce the redundant representation of T=T*(x) as output. 

2. Since the abstract reachability^rogram never looks at nodes or edges that 
cannot be reached from x, the bounds on the number of executions of various 
operations can be tightened from N and E to # T*(x) and the number of edges 
that emanate from members of T*(x). If these numbers are much smaller than N, 
then the use of a characteristic vector to represent T becomes undesirable since 
the slowest part of the program will be the initialization f or z e n o d e d o 
C(z): = (z—x). In this situation it is better to dispense with the characteristic 
vector and to use W to enumerate both T and U, as discussed in the previous 
exercise. 

Transform the abstract program by using this representation. 
(Hint: You will need to implement the test z g T by a l inear search. This can be 
accomplished by in t roducing a logical variable present and insert ing a s ta tement , 
immediate ly be fo re the condi t ional s ta tement tha t tests z $ T, t o achieve the assert ion 
present =(zeT).) 

3. Transform the abstract programs discussed in Exercise 4 after Section 5.1.2 to 
introduce representations for the set variables. In the version that searches both 
forward from x and backwards from v, you should be able to fit two enumerating 
array segments within a single array with domain 1 N 
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5.1.5 Representation of the Function T 

Next we consider the representation of the input function T. In this case the 
abstract-to-concrete transformation will have a rather different flavor than 
in the previous section, since T is used but not changed by our program, and 
since its usage controls an iteration. Once we have decided upon a represen-
tation and introduced appropriate concrete variables and a representation 
invariant, there will be no assignments to be augmented, and our only task 
will be to use the representation invariant to eliminate the single occurrence 
of T in our program without changing its behavior. 

This occurrence of T controls the iteration in 

for z e r ( y ) do if 1 C(z) then 
begin C(z ) : = true; b: = b+ 1; W(b): = z end . 

To clarify the way in which this statement depends upon T, it is helpful to 
define 

procedure itersucc{node {exp} y; procedure p {node exp}); 
for z ^ r ( y ) do p(z) . 

Then the above statement can be replaced by the call 

itersucc{y, \(node {exp} z). 
if 1 C(z) then 

begin C(z) : = true; b: = b +1; W(b): = z end) . 

The advantage of this transformation is that the dependence of our 
program upon T is localized in the procedure itersucc, so that the effects of 
the representation of Y can be considered without reference to the rest of the 
program. The unusual aspect of the transformation, which is typical of 
the encapsulation of iterative constructs, is that itersucc is a higher-order 
procedure. Indeed, the transformation of for z€T(y) do S into itersucc(y, 
\(node {exp} z). S) is completely analogous to the transformation of for K: = 
L until U do S into iterate(L, U, ^(integer {exp} K). S) which was discussed in 
Section 4.1.1. 

Frequently in this chapter we will call parameters by name, as in 
itersucc, even when call by value would have the same effect. Although call 
by value would be more efficient in the final executable version of the 
program, it is even more efficient to eliminate the procedure from the final 
version by using the copy rule, and for this purpose call by name is simpler. 

Since T is a function from nodes to sets of nodes, its representation must 
provide, for each node y, a representation of the set T(y). Suppose we 
choose to represent each T(y) by a characteristic vector, which is a logical 
array with domain node. Then T itself can be represented by an array of 
characteristic vectors with domain node, which is equivalent to a two-
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dimensional logical array with domain node x node. Thus we may represent 
f by a concrete variable 

logical array {exp} G(node, node) , 

with the representation invariant 

(Vy, zenode) G(y, z) = ( zeT(y ) ) . 

With this representation, an obvious realization of itersucc is 

procedure itersucc(node {exp} y; procedure p {node exp}); 
for zenode do if G(y, z) thenp{z ) 

This is a standard way of representing the edge structure of a graph; the 
array G is often called an adjacency matrix in graph theory. Unfortunately, it 
is seriously inefficient for the algorithm we are considering, as well as many 
other algorithms for determining properties of graphs. As we have already 
pointed out in Section 5.1.3, characteristic vectors can be an inefficient way 
of controlling iterations over sets. In this case, a call of itersucc{y, p) will 
execute p exactly # T(y) times, but itersucc itself, since it must test G(y, z) 
for each node z, will require a time of order N, which may be far larger than 
# r ( y ) . 

As an alternative, suppose we represent each T(y) by an enumerating 
array without duplication. Since the size of these arrays will vary for different 
y, it would be undesirable to collect them into an array of arrays. Instead we 
will concatenate the array segments for different y into a single array G, 
which will contain one element for each edge in the graph. Then we will 
introduce two auxiliary arrays GL and GU such that GL(y) and GU(y) 
delimit the segment of G that enumerates T(y). 

Thus we introduce the concrete variables 
node array {exp} G(1 ::£"); integer array {exp} GL, GU(node) 

and the representation invariant 

(Vy e node) ( r ( y ) = {G 1 \GL(y) GU(y)\} 
and ord^ G 1 \GL(y) GE/QOp \ 

With this representation, itersucc can be realized by 

procedure itersucc(node {exp} y; procedure p {node exp}); 
for i:=GL(y) until GU(y) do p(G(i)) . 

GL(y) GUjy) 
GU(y)\) \ 

Now the time required by itersucc(y, p), exclusive of the time required for 
executing p, is of order # | GL{y) GU(yj\ = # T(y). It is easy to see that this 
leads to an execution time for the entire reachability program of order N + E . 
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Exercises 

1. Although the two transformations of itersucc given above have only been jus-
tified informally, a transformation similar to the second of these can be carried 
out formally in the style of Section 5.1.4. We begin by rewriting the abstract 
version of itersucc, using the definition of the set-iterating for statement given in 
Exercise 1 after Section 5.1.2, as 

procedure itersucc(node {exp} y; procedure p {node exp}); 
begin set S!', S1 := {}; 
while 1 empty(r(y) - S') do 

begin node z; z: = a member of T(y) - S'; 
: = X U {z} 

end 
end 

Now suppose G,GL, and GU are introduced to represent T as a concate-
nated sequence of enumerating arrays, so that the representation invariant 

(Vy e node) (r(y) = {G j \GL(y) GU(y)\} 
and ord^ G 1 \GLjy) GE/QOp 

holds throughout the body of itersucc. To represent S1, introduce the concrete 
integer variable i as a local variable of the procedure body, with the representa-
tion invariant 

i GU(y)\ and S ^ G j \GL(y) ji} . 

Then transform the body of itersucc, in the manner illustrated in Section 5.1.4, to 
eliminate T and make £ auxiliary. 

2. What happens to the second realization of itersucc given in the above section if 
the prohibition of duplicate elements is removed from the representation 
invariant for T? How does this affect the reachability program? 

GL(y) 
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5 .1 .6 Representing Nodes 

At this stage, we have developed the following program: 

node {exp} JC; node array {exp} G(1::E); 
integer array {exp} GL, GU(node); logical array {var} C(node); 

{ (Vy e node) ( r ( y ) = {G 1 \GL(y) GU(y)|} 
and ord^ G 1 \GL{y) GE/QOl) } 

begin 
procedure itersucc(node {exp} y; procedure p {node exp}); 

for i:= GL(y) until GU(y) do p(G(i))\ 
node array W(1::7V); integer a, b\ 
for z G node do C(z) : = ( z = x ) ; 
a:= 1; b:= 1; W(1): = jc; 
while a<b do 

begin node y; 
y: = W(a); a: = a +1; 
itersucc(y, \(node {exp} z). 

if 1 C(z) then 
begin C(z): = true; b: = b +1; W(b): = z end) 

end 
end 
{ (Vz € node) C(z) = (z e T*(JC))} . 

Notice that, since it is a requirement to be met by the external program that 
computes G, GL, and GU, the representation invariant for T occurs as the 
precedent of this program. 

Our final task is to represent nodes themselves. All that happens to 
nodes in our program is that they are tested for equality and used to index 
arrays. This reflects the fact that, as far as a directed graph is concerned, 
nodes are anonymous objects with no structure or arithmetic. 

In this situation an obvious and reasonable decision is to represent 
nodes by integers. Indeed since N is a bound on the number of nodes, we can 
represent nodes by integers in the interval 1 N\. 

We could carry out the kind of transformation used previously, in which 
each node variable, node-valued array, and node-subscripted array would be 
replaced by a corresponding concrete entity. But this would be formal 
overkill. Since node is in one-to-one correspondence with a subset of [l JV 
the logic of our program will be unaffected if we simply assume that node is a 
subset of |l N\. Then node can be replaced by integer when it is used as the 
data type of a variable, expression, or array element, and by |l N\ when it is 
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used as an array domain or as a set to be iterated over. (If node is smaller 
than | l N\ then C will contain extra elements and the initializing for state-
ment will assign to these elements, but this will not affect the correctness of 
the program.) 

Thus the final concrete version of our program for reachability is 

integer {exp} x\ integer array {exp} G(1: :E); 
integer array {exp} GL, GU(1::N); logical array {var} C(l::/V); 

{nodes |l N\ and (Vyenode) (T(y)={G 1 GL(y) G£/(y)]} 
and ord^ G 1 \GL(y) Gu(j)]) } 

begin 
procedure itersucc{integer {exp} y; procedure p {integer exp}); 

for i:= GL(y) until GU(y) do p(G(i)); 
integer array W(1::N)\ integer a, b\ 
for z: = 1 until N do C(z): = ( z=x ) ; 
a: = 1; b:= 1; W(l): = x; 
while a < b do 

begin integer y; 
y:= W(a); a\ = a +1; 
itersucc(y, X(integer {exp} z). 

if 1 C(z) then 
begin C(z): = true; b: = b +1; W(b): = z end) 

end 
end 
{(Vz € node) C(z) = (z e r*(x) )} . 

Of course, to obtain a highly efficient version of this program one would 
eliminate the procedure call and lambda expression by applying the copy 
rule and beta reduction. 

The reader may wonder why we did not take nodes to be integers at the 
beginning of our development. The reason is not that it would have made 
anything we needed to do more difficult, but rather the converse. The data 
type integer has primitive operations, such as addition or the ordering 
relation, that are meaningless for nodes. By keeping track of node as a 
distinct data type, we have made it obvious that these operations are not to 
be applied to the representation of nodes. 

We leave it to the reader to check that the execution time of this 
program is of order N + E . 



SEC. 5.1 FINDING PATHS IN DIRECTED GRAPHS 321 

Exercise 

1. Implicit in the above discussion is the assumption that the representation of 
nodes by integers in |l N\ is suitable for the external programs which produce T 
and use T*(JC). Assuming that the needs of the external programs require it, how 
might one handle each of the following situations? 

(a) Nodes are represented by pairs of integers in the block |l N^ x |l N: 

(b) Nodes are represented by pairs (i, j) of integers such that i e |l Nj\ and 
/ e O -

(c) Nodes are represented by a small set of integers that is not a subset of any 
small interval. 

5.1.7 The Computat ion of Paths 

Although the program developed in the preceding sections determines the 
set of nodes that can be reached from a given node, it does not compute the 
paths by which these nodes can be reached. In this section we will extend this 
program to record such paths. First we will extend the abstract program by 
adding an abstract array of paths. Then we will transform the program to 
replace this array by a more concrete and efficient encoding. 

As defined in Section 5.1.1, a finite nonempty sequence <JC0, ... , xn) of 
nodes is a path from to xn if xt is an immediate successor of x for each i in 
[l n\. We wish to compute an array Path such that, for each node w e r*(x), 
Path(w) is a path from x to w. 

Thus we extend the abstract program developed in Section 5.1.2 by 
introducing the abstract nonlocal array 

node sequence array {var} Path(node) , 

where node sequence is a new data type whose values are finite sequences of 
nodes. Each time a node is added to T, a path from x to that node will be 
recorded in Path. Thus the program will maintain the general invariant 

PP. (Vwe T) Path(w) is a path from x to w , 

which will imply the desired property of Path when T= T*(x) at the conclu-
sion of the program. 

Initially, since T is set to {*}, PI can be achieved by setting Path{x) to (x). 
Each time a new node is added to T, this node will be an immediate successor 
of y, and y will already belong to T. Thus Path(y) will be a path from x to y, 
and the concatenation Path(y) © s e q (z) will be a path from x to z, so that the 
assignment Path(z) := Path(y) © s e q <z) will regain PI. Thus our extended 
abstract program is 
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node {exp} x; set procedure I {node exp}; set {var} T; 
node sequence array {var} Path (node); 

{true} 
begin set U; 7: = {x}; Path(x): = (x); 
{geninv PI: (Vwe T) Path(w) is a path from x to w} 
U: = {x}; 
while "1 empty(U) do 

begin node y; y : = a member of U; U:= U—{y); 
for z g T(y) do if z £ T then 

begin 
{xeT and y e T and z e T(y) and z £ T} 
Path(z): — Path(y) © s e q <z); T:= T U {z}; 
{ztU} 
U:= U U {z} 
end 

end 
end 
{T=Y*(x) and ( V w e r * ( * ) ) Path(w) is a path from x to w} . 

Here the assertion x e T and y e T and z e T(y) and z£T is a consequence of 
the reasoning in Section 5.1.2 that will be needed to establish the correctness 
of the transformation of our path-recording extension into a more concrete 
form. To simplify the exposition of this transformation, we have chosen the 
order of the two assignment statements following this assertion so that the 
general invariant PI will hold continuously. 

It would be straightforward to represent Path by a two-dimensional 
array with a row for each path, but this would be grossly inefficient in both 
space and time. A much more compact representation can be obtained by 
taking advantage of the fact that each path stored in Path consists of a 
previously stored path plus a single additional node. Thus Path can be 
represented by an array of "back links", 

node array {var} Link(node) , 

such that each Path(w), except the initial Path(x) = (x), consists of the previ-
ously stored Path(Link(w)) plus the single node w. 

More precisely, we add to PI the representation invariant 

Path(x) — (x) and ( V W G T - { X } ) 

(Link(w) e T and Path(w) = Path(Link(w)) ©seq <w)) . 

To maintain this invariant it is sufficient to assign Link(z): = y each time z is 
added to T. Thus 

Path(z):= Path(y) © s e q <z>; T:= T U {z} 
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becomes 

Link(z):= y; Path(z): = Path(y) © seq <z); T: = T U {z} . 

Actually, the reason why PI is preserved by these assignments is more 
subtle than it might appear at first glance. It depends critically upon the fact 
that, since z is a new node being added to T, the assignments to Link(z) and 
Path(z) do not overwrite previously stored information. 

Assume that 

PI and xeT and yeT and z e Y(y) and z$T 

holds before executing Link(z): = y. Since z£T, the assignment Link(z): = y 
will not affect Link(w) for any weT-{x}, so that PI will remain true and 
Link(z): = y will give 

PI and x e T and yeT and z € and z £ T and Link(z) =y . 

Then, since z<£T and xeT and yeT, the assignment Path(z): = Path(y) ©seq 
(z) will not affect Path(x), or Path(y), or Path(w) for any weT-{x}, or 
Path(Link{w)) when Link{w) e T. Thus PI will remain true and the assign-
ment to Path(z) will give 

PI and xeT and yeT and zeY(y) and z£T 
and Link(z)=y and Path(z) = Path{y) ©seq (z) . 

At this point Path(z) will be a path from x through y to z, and Link(z) e T and 
Path(z) = Path(Link(z)) ©seq (z) will hold. In conjunction with PI, this 
implies that PI will continue to hold after z is inserted into the set T. 

The representation of Path by Link is unusual in being incomplete. 
There are arrays of paths such that no value of Link would make the 
representation invariant true. However, such arrays never occur as the value 
of Path, so that the incomplete representation is adequate for this particular 
program. Indeed, this incompleteness is the underlying reason why we can 
obtain such a compact representation. 

At this stage Path is an auxiliary variable in our program and can be 
eliminated. The rest of the transformation into concrete form follows Sec-
tions 5.1.4 to 5.1.6. 

Since Link is an output variable and the way in which it represents Path 
is rather implicit, it is useful to give a procedure which will make any 
particular path explicit. A convenient approach is to give a higher-order 
procedure iterpath such that, after our path-finding program has been 
executed to obtain Link, the call iterpath(y,p) for any y e T*(x) will cause the 
execution o fp{x^ ) ,p (x i ) , ... ,p(xn) for some path ... , xn) from x to y. 

It is difficult to formulate iterpath iteratively since the back links in Link 
lead from y towards x rather than x towards y. Fortunately, the problem can 
be solved by a straightforward use of recursion: 
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procedure iterpath(node value y; procedure p {node exp}); 
if y=x then p(x) else 

begin iterpath(Link{y), p); p(y) end . 

Exercises 

1. Using the logic of Chapter 1 and the rule for array assignment given in Section 
2.3.2, give a formal proof of 

{PI and xeT and y&T and z e T(y) and z T} 
Link(z) : = y; Path(z):= Path(y) ® s e q <z>; T =T U {z} 
{/>/} . 

2. Introduce the recording of paths into the single-source single-sink programs 
derived in Exercise 4 after Section 5.1.2. In the version that searches both 
forward from x and backward from v, you will obtain backward links from some 
intermediate node to x and forward links to v. This will lead to a more interesting 
version of iterpath. 

5.2 FINDING SHORTEST PATHS 

5.2.1 Directed Graphs wi th Edge Lengths 

So far, we have been concerned with finding paths in directed graphs. We 
now turn to a more difficult but closely related problem: finding shortest 
paths in directed graphs whose edges have lengths. 

In addition to the set node and the function T which have been used to 
describe a directed graph, we will assume that there is a function 8 from 
edges to nonnegative real numbers. Specifically, if y e r(jc), we say that 
8(x, y ) > 0 is the length of the edge from A: t o y 

For example, Figure 5.2 illustrates the same graph as Figure 5.1, with 
the addition of edge lengths given by the function 8 such that 

JC: A A B B B C C D D 
y: B D B C E A F E G 

8(x,y): 3 4 1 2 3 7 3 1 2 . 

„ For a path (x0, ••• ,xn), we define the length of the path to be the sum 
£ 8(x,-_i, x ^ of the lengths of its edges. Then if y is reachable from x the 
«=i 
minimum of the lengths of all paths from x to y is called the minimum 
distance from x to y and is written 8*(x, y). 

For example, in Figure 5.2 there are an endless number of paths from A 
to E: (A, D, E) with length 5, <A, B, E) with length 6, <A, B, B, E) with length 7, 
etc. The minimum distance 8*(A, E) is the length of the shortest of these 
paths, which is 5. 
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Figure 5.2 A Directed Graph whose Edges have Lengths. 

Since edge lengths are nonnegative, path lengths and minimum dis-
tances are also nonnegative. However, the length of a path will be zero 
(which is obviously a minimum distance) if either the path contains zero 
steps or all of its edges have zero length. 

5.2.2 An Abstract Program for Minimum Distances 

We now consider the obvious extension of the problem posed in Section 
5.1.2: Given a directed graph with edge lengths, to determine the minimum 
distance from a given node x to each node that can be reached from x. At the 
abstract level, the input to our program will be the node x, the function T 
from nodes to sets of nodes, and the function 8 from pairs of nodes to reals. 
The output will be a set variable T whose final value, as before, will be r*(x), 
and a real array D with domain node, whose final value will be D(z) = 8*(x, z) 
for all zer*( j t ) . 

The single-source abstract algorithm we are going to describe was 
originally given in [Dijkstra 59]. However, we will begin with an intuitive 
explanation that is based on a conversation many years ago with R. W. Floyd 
(who is also responsible for an efficient multiple-source algorithm [Floyd 
62]). 

Imagine the directed graph being traversed by racing amoebas. Initially 
there is a single amoeba at node x. The amoebas travel at a fixed speed (of 
one distance unit per time unit), and whenever an amoeba reaches a node it 
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fissions into enough amoebas to traverse all of the outgoing edges. Intui-
tively, it is evident that the first amoeba to reach a node will have traversed 
the shortest path from x to that node in a time equal to the minimum 
distance. 

For example, suppose the amoeba race occurs in the graph of Figure 
5.2, starting at node A. Figure 5.3 shows the state of the race 3.5 time units 
after the start. At time zero, two amoebas left A moving towards B and D. 
The latter amoeba is still enroute, but the former has arrived at B and 
fissioned into three descendents which are now traversing the edges emanat-
ing from B. 

Our abstract program will simulate such an amoeba race. The program 
will keep track of the instantaneous state of the race by executing a sequence 
of state changes reflecting the events that would change the state of an actual 
race. Most critically, these state changes will be executed in the same order 
as the corresponding events would occur in an actual race. 

For our purposes, the state of the amoeba race can be characterized by 
four variables: 

(1) The set P of nodes that have already been reached by amoebas. 
(2) The set U (disjoint from P) of nodes that have not yet been reached, 

but have amoebas racing towards them. 
(3) The set T, which is the union of P and U. 
(4) A real array D with domain node, such that: 

(a) For all yeP, D(y) is the time node y was first reached by an 
amoeba. 

(b) For all ye U, D{y) is the future time at which node y will first be 
reached by an amoeba that is currently racing towards it on an 
incoming edge. 

For example, the state of the race shown in Figure 5.3 is 

P={A, B} 
U={C, D, E} 
r = { A , B, C, D, E} 

y: A B C D E F G 

D(y): 0 3 5 4 6 - - . 

For the nodes in P, the array D records the first time of arrival, which is 
the minimum distance from x. However, this may not be the case for nodes in 
U. For example, in the above state D(E) = 6, reflecting the fact that the first 
currently existing amoeba will reach E at time 6. But as the race unfolds, a 
descendent of the amoeba currently racing towards D will reach E at time 5. 

The state does not specify the status of losing amoebas, i.e. of amoebas 
that will not reach their target node until after some other currently 
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Figure 5.3 A n A m o e b a Race 3.5 T ime Uni ts a f te r Start ing at N o d e A. 

existing amoeba. Ultimately we are only interested in the arrival times of 
winners, and a loser or its descendents can never catch up with a winner since 
all amoebas travel at the same speed. 

If U is empty, then there is no amoeba racing towards a previously 
unreached node, so that the race is over except for the irrelevant behavior of 
losers. Otherwise, the next state-changing event will be the next arrival of an 
amoeba at a previously unreached node. This nodey will be the member of U 
for which D(y) has the smallest value, and it will be reached at time £>(y). 

When the node y is reached, it leaves U and enters the set P. Then, for 
each z e T(y), a descendent amoeba is created which will reach z at time 
D(y) + 8(y, z). If z is not in T, then the new descendent is the first amoeba to 
move towards z, so that z must be added to T and to U, and D(z) must be set 
to Z)(y) + 8(y, z). If z is already in U, then some other amoeba is already 
racing towards z and will arrive there at time D{z), so that D(z) should only 
be reset to D(y) + 8(y, z) if this new arrival time is less than the current value 
of D(z). Finally, if z is in P then z has already been reached, and the new 
descendent is clearly a loser who will not affect the state. 

To start the race, we can use the initial state P={}, U={x}, T={x}, 
D(x) = 0, in which a single amoeba is scheduled to arrive at node x at time 
zero. 

This argument leads to the following abstract program: 
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node {exp} x\ set procedure V {node exp}; 
real procedure 8 {node exp, node exp}; 
set {var} T; real array {var} D(node); 

{(Vy € node)(Vz e T(y)) 8(y, z ) > 0} 
begin set P, U; 
T: = M; P: = {}; U: = {x}; D(x):= 0; 
while "1 empty(U) do 

begin node y; 
y : = a member of U for which D(y) is a minimum; 
begin P : = P U {y}; U:= V-{y} end; 
for z e T(y) do 

if z g T then 
begin T:=T U {z}; U:=U U {z}; 
D(z):=£>(y) + 8(y, z) 
end 

else if z e U and (Z)(z) > D(y) + 8(y, z)) then 
D(z): = D(y) + 8(y, z) 

end 
end 
{T= T*(x) and ( V z e T * ^ ) ) D(z) = 8*(x, z)} 

A program of this kind, in which events within the computer mimic 
events in the "real" world, is called a simulation program. The development 
of such programs is an important and intensely studied subject which goes 
far beyond the scope of this book. Two good introductory texts are [Fishman 
78] and [Pritsker 79], 

In the present instance, however, our real goal is to find minimum 
distances rather than to simulate amoebas. Since the connection between 
these goals is only intuitive, it is desirable to buttress this intuition with 
assertions. 

The minimum-distance program is closely related to the abstract 
reachability program given in Section 5.1.2 (before the removal of the 
auxiliary variable P). The only difference is that the minimum-distance 
program keeps track of the array D and uses this array to constrain the 
indeterminate choice of a member of U. Since constraining an indeterminacy 
cannot destroy the validity of assertions, all of the assertions in the reacha-
bility program are equally valid for the minimum-distance program. But 
now we must augment these assertions with appropriate properties of the 
array D: 
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node {exp} x; set procedure F {node exp}; 
real procedure 8 {node exp, node exp}; 
set {var} T; real array {var} D(node); 

{ (Vygnode)(VzeT(y)) 8(y, z ) > 0 } 
begin set P, U; 

= P: = {}; U:={x}; D(x): = 0; 
{geninv /: T c r*(x) and xeT and P U U=T and P fl £/={} 

and (VZG T) D(z)>8*(x, z) (1) 
and D(x) = 0 (2) 
and (Vv G P) (VW G U) D(v) < D(w) } (3) 

{whileinv: T(P) S T 
and (VVGP) (V Z G I » ) D(Z) < D{v) + 8(v, z) } (4) 

while ~l empty(L/)do 
begin node y; 
y: = a member of U for which D(y) is a minimum; 
begin/ P:=P U {y}; U:= U-{y} end; 
{geninv IT. yer*(jc) and yG P and Y(P-{y}) S T 

and D(y) > 8*(x, y) (1) 
and (VVGP) D(v)<D(y) and (VWG U) D(y)<D{w) (3) 
and (VVGP-{y}) (VZGT(V)) D(Z) < D(V) + 8(V, Z) } (4) 

for z G R ( Y ) do 
if z £ r then 

begin//7 T:= T U {z}; U:=U V {z}; 
D(z):=D(y) + 8(y,z) 
end 

else if ZG U and (D(z)>D(y) + 8(y, z)) then 
D(z): = D(y) + 8(y,z) 

{r 0>)<= r 
and (Vz G r(>>)) D(z) < Z>(y) + 8(y, z) } (4) 

end 
end 
{ r = r * ( * ) 

a n d ( V z G T*(JC)) D(Z) = 8*(x, z) } . ( 5 ) 

Here the lines containing new parts of assertions are numbered. These 
numbers refer to the following arguments: 

(1) Upon initialization, (VZGJ) D(Z) > S*(X, z) holds since T={x}, 
D(Jt) = 0, and the minimum distance from x to itself is zero. Assume this 

I 
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condition holds at the beginning of an iteration of the while-statement body. 
Then, since y is chosen from a subset of T, D(y) > S*(x, y) will hold when the 
for statement begins. Moreover, this condition will continue to hold 
throughout the execution of the for statement, since y will be a member of 
p=T-U, so that D(y) will not be assigned to. Thus for each z e r ( y ) , 
D{y) + 8(y, z) will be at least 8*(x, y) + 8(y, z), which is the length of a path 
from X through y to z, and therefore at least 8*(x, z). Thus the assignments 
D(z):=D(y) + 8(y, z) will preserve (Vze T) D(z) > 8*(x, z), which will con-
tinue to hold throughout the iteration of the while-statement body. 
(2) Initially D(x) = 0. Since no element of D is ever increased or made 
negative, this condition is preserved throughout the program. 
(3) Initially, (Vve P) (Vwe U) D(v) < D(w) holds since P is empty. 
Assume this condition holds at the beginning of an iteration of the while-
statement body. Then the choice ofy to be a member of U for which D(y) is a 
minimum gives (Vv e P) D(v) < D(y) and (VweU) D(y) < D(w), and since 
this condition is preserved by moving y from U into P, it will hold at the 
beginning of the for statement. 

Within the for statement, since y e P and the for statement does not 
change P or D(z) for any zeP, the condition ( V v e P ) D(v)<D(y) will 
continue to hold. Moreover, since the for statement does not change D(y) 
and never sets an element of D to a value less than D(y), the condition 
(Vwe U) Z>(y)<D(w) will also continue to hold. Finally, since these two 
conditions imply (Vv e P) (Vw e U) D(v) < D(w), this condition will continue 
to hold throughout the iteration of the while-statement body. 

This argument is illustrated in Figure 5.4. 
(4) Initially ( V v e P ) (VzeT(v)) D(z) < D(v) + 8(v, z) holds since P is 
empty. Assume that this condition holds at the beginning of an iteration of 
the while-statement body. Then at the beginning of the for statement, after 
y has been added to P, the condi t ion ( V v € P - { y } ) ( V z e T ( v ) ) 
D(z) < D(v) + 8(v, z) holds. Moreover, this condition is preserved since the 
for statement does not change P or y or D(v) for any v e P-{y}, and never 
increases D(z) for any z. 

Each execution of the for-statement body achieves D(z) < D(y) + 8(y, 
z) in one of the following ways: 

(a) If z£ T, then D(z) will be set to D(y) + 8(y, z). 
(b) If z e U, then D(z) will be set to D(y) + 8(y, z) unless it already 

possesses a smaller value. 
(c) If z 6 P, then D ( z ) < D ( y ) + 8(y, z) is assured by the condition 

( V v e P ) D(v)<D(y) in II. 
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Once D(z) < D(y) + Sly, z) has been achieved for some z it will remain 
true since the for statement does not change D{y) and never increases D(z) 
for any z. Thus when the for statement terminates every z e T(y) will satisfy 
D(z)<D(y) + 8(y, z). In conjunction with ( V v e P - { Y } ) ( V Z G T ( V ) ) 

D ( z ) < D ( v ) + 8(v, z), this implies that ( V v e P ) ( V z e T ( v ) ) D(Z)< 
Z)(v) + 8(v, z) will again hold at the end of the while-statement body. 

(5) When the program terminates U will be empty, so that P will be equal 
to T=T*(x). Then the invariant of the while-statement implies 

(Vv € T*(x)) (Vz e r(v)) D(z) < D(v) + 8(v, z) . 
Moreover, the general invariant I insures that D(x) = 0. It follows that 
(Vz e r*(x)) D(z) < 8*(JC, z), i.e. that every path from x to a reachable z will 
have a length at least D(z). The proof is by induction on the number of steps. 
The only path of zero steps goes from JC to itself, and its length is given exactly 
by D(x) = 0. Any path of n + 1 steps from JC to z can be divided into a path of n 
steps from JC to v and an edge from v to z, for some v such that v e T*(x) and 
zeT(v). The length of the n-step path is at least D(v) by the induction 
hypothesis, and the length of the edge is 8(v, z). Thus the length of the 
(«+l)-step path is at least D(v) + 8(v, z), which is in turn at least D(z). 

In conjunction with the condition ( V z e T ) Z)(z)>8*(x, z) in I and 
T=r*(jc) in the consequent of the program, the above result implies 
(Vzer*(jc)) D(z) = 8*(x, z). 

As with the reachability program, the body of the while statement can 
be performed no more than N times, since it adds new nodes to P, the body 
of the for statement can be performed no more than E times, since it 
processes distinct edges, and the statement following if z$T then can be 
performed no more than N-1 times, since it adds new nodes to T, which 
s tar ts with one member . However , the second occurrence of 
D(z) := D(y) + 8(y, z) can be performed up to (almost) E times. 

In addition to establishing the correctness of the abstract program, the 
assertions we have developed indicate a useful simplification. Consider the 
test z € U and (D(z) > D(y) + 8(y, z)). When this test is executed, the general 
invariant II insures that (Vv € P) D(v) < D(y), the general invariant I insures 
p u JJ= T, and the prior test in the conditional statement insures zeT. Thus 
D(z)>D(y) + 8(y, z) implies z£P, and therefore zeU.lt follows that the 
test zeU is unnecessary and can be eliminated. 

Our intermediate assertions have served their purpose and can now be 
deleted, with the exception of two assertions about membership in U that 
will influence the transformation to concrete form. As in the reachability 
program, P is an auxiliary variable and may be eliminated. Thus the final 
form of the abstract program is 
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node {exp} x; set procedure Y {node exp}; 
real procedure 8 {node exp, node exp}; 
set {var} T\ real array {var} Z)(node); 

{(Vy g node) ( V z € T ( y ) ) 8(y, z ) > 0 } 
begin set U; 
T: = {x}; U: = {xh D(x) :=0; 
while "1 empty(L0 do 

begin node y; 
y: = a member of U for which D(y) is a minimum; 
U:=U-{y}; 
for z e T(y) do 

if z £ T then 
begin 
T:=T U {z}; 
{z £ U} 
U:=U U {z}; 
D ( r ) : = D ( j O + 8(y, z) 
end 

else if D(z)>D(y) + 8(y, z) then 
{zeU} 
D(z):=D(y) + 8(y, z) 

end 
end 
{T= T*(x) and ( V z € r*(jc)) Z)(z) = 8*(x, z)} . 

Exercises 

1. Where does the reasoning in the above section depend upon the precedent that 
edge lengths must be nonnegative? 

2. Extend the abstract minimum-distance program to compute shortest paths from 
x to each member of r*(;t) by adding an array Path satisfying the general 
invariant 

(Vwe T) Path(w) is a path from x to w of length D(w) . 

Show that the resulting program can be transformed into a more concrete form 
by representing Path by an array of back links satisfying the representation 
invariant 

Path(x) = (x) and ( V t v e l - W ) 
(Link{w) e P and Path(w) = Path(Link(w)) ©seq <w)) . 

I 
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3. Write an abstract single-source single-sink minimum-distance program, i.e. one 
which determines whether a specific node v can be reached from x and, if so, 
computes the minimum distance 8*(x, v). As in Exercise 4 after Section 5.1.2, 
one can either develop a straightforward modification of the program given 
above or, if an immediate predecessor function Tf is supplied as input, develop a 
more complex program that searches both forward from x and backwards from 
v. The latter version can be thought of as a simulation of a race with amoebas 
running forward from x and backwards from v, so that the shortest path from x to 
v will be traversed by a pair of amoebas that meet at an intermediate point. 
(Note, however, that this meeting point might not be a node.) 

5.2.3 Representing U by a Heap 

Since the usage of the set variable T in the abstract minimum-distance 
program is the same as in the reachability program, the representation of T 
by a characteristic vector, as discussed in Section 5.1.4, will permit all the 
primitive operations on T except its initialization to be executed in constant 
time. Similarly, the usage of T is the same as in the reachability program, so 
that the argument in Section 5.1.5 in favor of a representation by enumerat-
ing arrays remains valid. 

However, the usage of U in the minimum-distance program is changed 
by the fact that y must be chosen to be the (usually) specific member of U for 
which D(y) is a minimum, rather than an arbitrary member of U. If we were 
to represent U by an enumerating array without duplicates this choice and 
deletion operation would require a time of order N, and the entire program 
would require a time of order N2. A similar problem would arise with the use 
of a characteristic vector. 

On the other hand, the choice and deletion operation could be done in 
constant time if U were represented by an enumerating array that was 
ordered in accordance with the values of D. But the primitive operation of 
inserting a new element into U would require a time of order N and, even 
worse, each change in the value of an element of D would necessitate 
rearranging the enumerating array in time of order N. Thus the entire 
program would require time of order E • N. 

A way out of this dilemma is to represent U by an entity called a heap, 
which was invented by [Williams 64] and refined by [Floyd 64]. The basic 
idea is to arrange the nodes in U as an almost-balanced binary tree such that 
D(y) < £>(z) whenever z is a subnode of y in the tree. In this representation it 
is possible to delete the node with minimum D, to insert a new node, or to 
alter the value of D at a given node all in time of order log N. Thus the entire 
program will require a time of order (N + E) • log N. This will be better than 
the alternatives discussed above as long as the graph is reasonably sparse. 
(However, when E comes close to its maximum possible value N2 , the use of 
an enumerating array without duplicates, with total time of order N2, 
becomes superior.) 
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A heap is considerably more complex than the kinds of representations 
discussed previously. As a first step in its formulation we must define binary 
trees. Conventionally, such trees are defined to be directed graphs of a 
certain kind. For our purposes, however, it is simpler to regard all binary 
trees as subsets of a particular directed graph called the completely infinite 
binary tree, which is illustrated in Figure 5.5. 

O father(p) 

f 
O P 

o 
leftson(p) 

O 
rightson(p) 

Figure 5.5 The Complete ly Infini te Binary Tree and its Primitive Opera t ions . 
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To avoid confusion with the directed graph that is being examined by 
our program, we will call the nodes of the completely infinite binary tree 
positions, and we will introduce the data types position and position set to 
range over positions and sets of positions respectively. Each position p has 
exactly two immediate successors, called leftson(p) and rightson(p). A par-
ticular position called root has no immediate predecessors, while every other 
position p has exactly one immediate predecessor called father{p). 

We write p E q if the position q is reachable from the position p (i.e. if 
q e r * ( p ) ) . The use of the symbol e emphasizes that this relation is a partial 
ordering, i.e. that it obeys the laws 

(1) Transitivity: (p £ q and q E r) implies p e r , 
(2) Reflexivity: p E p, 
(3) Antisymmetry: (p E q and q E p) implies p = q. 

(Only the first two laws hold for arbitrary directed graphs, but antisymmetry 
holds for the completely infinite binary tree since it contains no cyclic paths.) 

The special position root can be characterized in terms of reachability: 
It is the only position from which every position can be reached, i.e. such that 
(V/?G position) root E p. 

Let S be a set of positions. If every finite path that ends in S belongs 
entirely to S, then 5 is called a tree. More formally, we define 

Tree(S) = (VrG S) (Vtf e position) q^r implies qeS . 

It is easy to see that a nonempty tree must contain root, and that if p is a tree 
member other than root, father(p) must also belong to the tree. 

The idea of arranging the nodes in U to form a binary tree can be 
formalized by saying that there must be a one-to-one correspondence bet-
ween U and a finite set S of positions that is a tree. Thus we will augment our 
program by introducing 

position set S 

along with two arrays for keeping track of the correspondence between U 
and S: 

node array nodeof{position); 
position array posof(node) 

The relationship between U and these concrete variables is asserted by the 
representation invariant 

77: Tree(S) 
and {nodeof ] 5}= U and {posof 1 U} = S 
and ( V p e i ) posof (nodeof\p))=p 
and (Vy e U) nodeof (posof (y)) =y . 

Here the last three lines define the concept of a one-to-one correspon-
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dence. This concept can also be expressed in terms of the notions of inverse 
and bijection described in Section 2.3.4: The second line implies that there is 
a function nodeof from S to U such that (VpeS) nodeof ip) = nodeofip), 
and a function posof from U to S such that (Vye U)posof' (y) = posofiy). 
Then the last two lines imply that nodeof' and posof are inverses of one 
another, and therefore bijections. 

The main primitive operation to be performed upon this representation 
is the interchange of the nodes associated with two positions. This operation 
is accomplished by the following procedure, which exchanges the array 
elements nodeofip) and nodeofiq) and then modifies posof to reestablish the 
one-to-one correspondence: 

procedure su>ap(position {exp} p, q)\ 
{pa: nodeof # p & nodeof # q & posof # p & posof # q} 
{77 and p,qeS} 
begin node m, n\ 
m: = nodeofip); n: = nodeof (q); 
nodeofip) : = n; nodeof(q): = m; 
posofXn) : = p; posofim): = q 
end 
{77} . 

We must now formalize the relation of the heap to the array D. As a first 
step, we note that the value of D that "occurs" at a tree position p is 
D(nodeof(pj). This composition of nodeof with D will be used so often that 
it is useful to declare it as a functional procedure: 

real procedure ^(position {exp} p); D(nodeofip)) • 

Henceforth, we will call V(p) = D(nodeof(p)) the weight of p. 
Since swap exchanges nodeofip) and nodeofiq) without changing D, it 

has the effect of interchanging the weights V(p) and V(q). In effect, we can 
think of swap as an exchange operation for the "abstract array" V that 
preserves the invariant 77. More precisely, if a is a ghost parameter of type 
assertion procedure (real procedure (position exp)), then swap satisfies 

procedure su>a/?(position {exp} p, q)\ 
{pa: nodeof # p & nodeof # q & nodeof # a 

& posof # p & posof # q & posof # a } 
{77 and p, q e 5 and a([V \ p: V{q) \ q: V(p)])} 
begin node m, n; 
m: = nodeofip); n: = nodeofiq)\ 
nodeofip)- = n; nodeofiq) -=m; 
posof{n) :=p; posof(m): = q 
end 
{77 and a{V)} . 
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The relationship of the heap to D is that, whenever q^r holds between 
two positions in S, the weight of q is at most the weight of r. This heap 
property is expressed by the representation invariant 

HI: Heap(S, V) , 

where Heap is defined by 

assertion procedure Heap 
(position set {exp} S\ real procedure V {position exp}); 

( V ? , r e 5) (q = r implies V(q) < V(r)) . 

More succinctly, Heap(S, V) asserts that V ] S is a monotone function, as 
defined in Section 2.3.4. (However, some of the consequences of monoton-
icity discussed in that section hold only for total, rather than partial order-
ings.) 

Notice that Heap(S, V) is meaningful even when 5 is not a tree. Also 
notice that although HI, in conjunction with TI, describes the representation 
of U by S, nodeof, and posof, it also involves the array D via the procedure 
V, so that D can be thought of as a "parameter" of the representation of U. 

The invariant HI expresses the heap property by relating arbitrarily 
distant positions in S. An alternative is to focus on the relationship between a 
member of S and its immediate neighbors. Suppose we define 

logical procedure upgood 
(position {exp} p; real procedure V {position exp}); 
if father(p) e S then v(father{p)) < V(p) else true; 

logical procedure downgood 
(position {exp} p; real procedure V {position exp}); 
(if leftson(p) e S then V(p) < V(leftson(p)) else true) 
and (if rightson(p) e S then V(p) < V{rightson{p)) 

else true); 
logical procedure goleft 

(position {exp} p; real procedure V {position exp}); 
leftson(p) € S and (V(lef tson(p)) < V(p)) and 
(if rightson(p) e S then V(leftson(p)) < V(rightson(p)) 

else true); 
logical procedure goright 

(position {exp} p\ real procedure V {position exp}); 
rightson(p) e S and (V{rightson{p)) < V(p)) and 
(if leftson(p) e S then V(rightson(p)) < V(leftson(p)) 

else true) 

Then, as the reader may verify, the following properties hold: 
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Heap(S, V) and p e S implies ( ] . 
upgood(p, V) and downgood{p, V) , 

Heap(S, V) implies Heap{S-{p}, [V \ p: w]) , (2) 
upgood(p, V) and V(p)<w implies upgood(p, [V \ p: w]) , (3) 
downgood(p, V) and w<V(p) implies . . . 

downgood(p, [V \ p: vv]) , 
"I downgood(p, V) implies (gole f t (p , V) or goright(p, V)) , (5) 
upgood{root, V) . (6) 

A much less trivial property is: 

Theorem 1 If Tree(S) and Heap(S-{p}, V) and upgood(p, V) 
and downgood{p, V), then Heap(S, V). 

Proof: We assume peS since otherwise the theorem is obviously true. 
Suppose qeS and reS and q^r. Then we must show V(q)< V{r). 

(a) If neither q nor r is p, then Heap(S-{p}, V) gives V(q)< V(r). 
(b) If both q and r are p, then trivially V(q) = V(p) = V(r). 
(c) Suppose q^p and r=p. Then there must be a path of at least one 

step from q to p, and this path must contain father(p), so that 
q^father(p)^p. Moreover, since p belongs to 5, which is a tree, 
father(p) must belong to S. Since q and father(p) belong to S, 
neither is p, and q^father(p), Heap(S-{p}, V) implies 
V(q)<V{father(p)). Sinee father{p) belongs to S, upgood{p, V) 
implies V(father(p))<V(p). Thus V(q) <V(father(pj) <V{p) 
= V{r). 

(d) Suppose q=p and r^p. Then there must be a path of at least ofie 
step from p to r, and this path must contain either leftson(p) or 
rightson(p). We assume the first case (the argument for the second 
case is completely analogous), so t h a t p ^ l e f t s o n ( p ) ^ r . Then since r 
belongs to S, which is a tree, leftson(p) must belong to S. Since 
leftson(p) and r belong to S, neither is p, and leftson(p)^r, 
Heap(S-{p}, V) implies V(leftson(p)) < V(r). Since leftson{p) 
belongs to S, downgood{p, V) implies V(p)<V(leftson(p)). Thus 
V(q) = V(p) < V(leftson{p)) < V{r). • 

In this theorem, Heap{S ~{p), V) can be thought of as asserting that 5 is a 
heap with a "hole" at p, and the theorem as saying that such a hole will 
vanish if it satisfies both upgood(p, V) and downgood{p, V). 

The next theorem shows how a hole in a heap can be removed by 
changing its weight to that of a neighboring position: 
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Theorem 2 Suppose Tree(S) and Heap(S-{p}, V). Then: 

(a) If 1 upgood(p, V) then Heap(S, [V\p: V(father{p))]) 
(b) If goleft(p, V) then Heap(S, [V\p: V(leftson(p))]) 
(c) If goright(p, V) then Heap(S, [V\p: V(rightson{p))]). 

Proof: We assume peS, since otherwise the theorem is obviously true. 

(a) Suppose 1 upgood(p, V), and let V'=[V\p: V(father(p))]. From 
Heap(S-{p}, V) we have Heap(S-{p}, V'). Then by Theorem 1, 
to show Heap(S, V') we need only show upgood(p, V') and 
downgood(p, V'). To show upgood(p, V'), we note that 
V (father{p)) = V{father{pj) = V\p). To show downgood(p, V'): 
(i) Suppose leftson(p) belongs to S. From "1 upgood(p, V) we 

know that father(p) also belongs to S. Moreover, since 
father(p) and leftson(p) are both distinct from p, these posi-
tions belong to S-{p}. Thus Heap(S-{/?}, V) implies 
V(father(p)) < V(leftson{p)), which implies 
V (leftson(p)). 

(ii) Suppose rightson(p) belongs to S. By an argument analogous 
to (/), we have V(/?)<V'{rightson(pj). 

(b) Suppose goleft(p, V) and let V' = [V\p: V(leftson(p))]. Again 
Heap(S-{p}, V) implies Heap{S-{p}, V'), so that by Theorem 1 
we need only show upgood{p, V') and downgood{p, V ). 
To show upgood{p, V'): 

Suppose father(p) belongs to S. From goleft{p, V) we know 
that leftson(p) also belongs to S. Moreover, since father(p) and 
leftson(p) are both distinct from p, these positions belong to 
S-{p}. Then Heap(S-{p}, V) implies V(father(p)) < 
V(leftson(p)), which implies V\father{p))<V'(p). 

To show downgood(p, V ): 
(i) V\p) = V(leftson(p)) = V' (leftson(p)). 

(ii) Suppose rightson(p) belongs to S. From goleft{p, V) we have 
V{leftson{p)) < V(rightson(p)). Then V\p) < V (rightson(p)). 

(c) The argument here is analogous to (b). • 

From this theorem, we can go on to determine when a hole in a heap can 
be moved by exchanging its weight with that of an adjacent position: 
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Theorem 3 Suppose Tree(S) and Heap(S-{p}, V). Then: 

(a) If "1 upgood(p, V) then 
father(p) E S and Heap(S-{father(p)}, V") 
and downgood(father{p), V"'), 

where V" = [V\p: V{father{p)) | father(p): V(p)]. 
(b) If goleft(p, V) then 

leftson(p) E S and Heap(S - {leftson(p)}, V") 
and upgood(leftson(p), V"), 

where V" = [V\p: V(leftson(p))\ leftson(p): V(p)]. 
(c) If goright(p, V) then 

rightson(p) E S and Heap(S - {rightson(p)}, V") 
and upgood(rightson(p), V"), 

where V" = [V\p: V(rightson{p)) \ rightson(p): V(p)]. 

Proof: 

(a) Since "1 upgood{p, V), we know father(p) E S and V(father(p)) 
> V(p). From Theorem 2a, we have Heap(S, [V\p: V(father{p))]) 
and, by property (1), downgood(father(p), [V\ p: V(father(p))]). 
Then by property (2) we have Heap(S-{father(p)},V") and by 
property (4) we have downgood(father{p), V"). 

Parts (b) and (c) are left to the reader. 0 

Now suppose we have a heap with a hole that satisfies downgood. If 
upgood is also satisfied, then Theorem 1 shows that the hole vanishes. 
Otherwise, Theorem 3a permits us to move the hole upwards by exchanging 
weights with its father and insures that the new hole will also satisfy 
downgood. Thus we can repeatedly move the hole along an upward path 
until it vanishes. 

On the other hand, suppose we have a heap with a hole that satisfies 
upgood. If downgood is also satisfied, then Theorem 1 shows that the hole 
vanishes. Otherwise, property (5) insures that either goleft or goright is 
satisfied, so that Theorem 3b or 3c permits us to move the hole downwards 
by exchanging weights with one of its sons, and insures that the new hole will 
also satisfy upgood. Thus we can repeatedly move the hole along a down-
ward path until it vanishes. 

This reasoning leads to the following pair of procedures for eliminating 
holes from heaps: 
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procedure ascend{position {var} p); 
{pa: nodeof # p & posof # p} 
{TI and peS and Heap(S-{p}, V) and downgood(p, V)} 
{whileinv: TI and peS and Heap(S-{p}, V) 

and downgood(p, V) } 
while "1 upgood{p, V) do 

begin swap(p, father(p)); p:=father{p) end 
{TI and Heap(S, V)}; 

procedure descend(position {var} p)\ 
{pa: nodeof # p & posof # p) 
{TI and peS and Heap(S-{p}, V) and upgood(p, V)} 
{whileinv: TI and peS and Heap(S-{p}, V) 

and upgood(p, V) } 
while "I downgood(p, V) do 

if goleft{p, V) then 
begin swap(p, leftson(p))-, p: = leftson(p) end 

else {goright{p, V)} 
begin swap(p, rightson(p)); p: = rightson(p) end 

{TI and Heap(S, V)} . 

In each of these procedures the successive values of p trace out a path 
within the finite set S. Thus termination is insured by the fact that a finite set 
of positions cannot contain an infinite path. 

The condition peS is needed in the precedents of ascend and descend to 
insure that peS will hold for the first call of swap. 

At this point it is convenient to use the copy rule to eliminate the calls of 
upgood, downgood, and goleft. In the procedure ascend, the presence of 
peS and Tree(S) in the invariant implies that father(p) e S can be replaced by 
p ̂  root: 

procedure ascend{position {var} p); 
{pa: nodeof # p & posof # p} 
{TI and peS and Heap{S-{p), V) and downgood(p, V)} 
while (p^root) and ( V ( f a t h e r ( p ) ) > V ( p ) ) do 

begin swap(p, father[p))\ p:=father(p) end 
{TI and Heap(S, V)} . 

A similar treatment of descend reveals redundant testing that can be elimi-
nated by using goto's and labels. The reader may verify that descend can be 
transformed into 
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procedure descend{position {var} p); 
{pa: nodeof # p & posof # p) 
{TI and peS and Heap(S-{p}, V) and upgood{p, V)} 
begin 

loop: if leftson(p) e S then 
begin 
if rightson(p) e S and ( V(rightson{p))<V{leftson{p))) 

then goto tryright else goto tryleft 
end 

else if rightson(p) e 5 then goto tryright else goto quit; 
tryleft: if V(leftson{pj) < V(p) then goto left else goto quit; 

tryright: if V(rightson(p)) < V(p) then goto right else goto quit\ 
left: {goleft(p, V)} 

swap(p, leftson(p)); p: = leftson(p); goto loop-, 
right: {goright(p, V)} 

swap(p, rightson(p)); p:= rightson{p)\ goto loop; 
quit: {downgood(p, V)} 

end 
{TI and Heap(S, V)} . 

Having developed these procedures, we may now transform the abs-
tract minimum-distance program of Section 5.2.2 by using a heap to repres-
ent U. We introduce the concrete variables 

position set S; 
node array nodeof(position); position array posof{node); 

and the representation invariants 

TI: Tree(S) 
and {nodeof 1 S}=U and {posof 1 U} = S 
and (Vp e 5) posof (nodeof (p)) =p 
and (Vye U) nodeof(posof{y))=y 

and 

HI: Heap(S, V) . 

To achieve these invariants initially we augment the assignments 

U: = {x}; D(x): = 0 
with 

5: = {root}; nodeof {root): = x; posof{x): = root . 
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As a consequence of the one-to-one correspondence expressed by 
77, the sets U and S have the same size. Thus the while-statement test 
"1 empty(t/) can be replaced by 1 empty(S). 

Next we consider the abstract deletion operation 

y: = a member of U for which D(y) is a minimum; 
U:=U-{y} . 

Since 5 is a nonempty tree, it must contain the node root. Then the heap 
property Heap(S, V) implies (VqeS) V(root) < V(q), the definition of V 
implies (V^eS) D{nodeof[root)) < D(nodeof(q)), and the fact that nodeof 
is a one- to-one correspondence f rom S to U implies ( V z e t / ) 
D(nodeof(root)) < D(z). Thus we can take y to be nodeof(root). However, if 
we try to maintain the one-to-one correspondence by augmenting 
f j : = U-{y} with S: = S-{root}, then unless root is the only member of 5 its 
deletion will cause S to cease being a tree. 

In this case we must proceed in a more roundabout manner. We begin 
by takingp to be a terminal member of S, i.e. a position whose deletion will 
preserve Tree(S). Next we perform swap(p, root) to make p the member of S 
with least weight. Then, after setting y to nodeof(p) and deleting y from U 
and p from 5, both the one-to-one correspondence and Tree(S) will remain 
true. 

However, the swap operation will leave holes in the heap at the posi-
tions root and p, and the hole at root will remain after p is deleted. Since 
property (6) insures upgood(root, V), this hole can be eliminated by using 
the procedure descend. 

Thus the representation invariants will be preserved if we transform the 
abstract choice and deletion operation into 

if S={root} then 
beginTI y : = nodeof(root); U: = U-{y}; S: = {} end 

else 
beginHI position p\ 
{Heap(S, V) and # S > 2} 
p : = a member of S such that Tree(S-{p}); 
{Heap(S, V) and rooteS and peS and p^root 

and Tree(S-{p}) } 
swap(p, root); 
{Heap(S-{root, p}, V)and V(p)<* {V 1 5} 

and rooteS and peS and p^root and Tree(S-{p}) } 
y : = nodeofip); 
begin77 U:= U-{y}; S: = S-{p} end; 
{Heap(S-{root}, V)and root e S and upgood(root, V)} 
p: = root; descend(p) 
end 



SEC. 5.2 FINDING SHORTEST PATHS 345 

Next we consider the abstract operation 

U:=UU{z};D(z):=D(y) + 8(y,z) , 

which inserts a new member into U and initializes the corresponding value of 
D. Let p be a nonmember of S such that S U {p} is a tree. If we augment 
U : = U U {z} by inserting p into S and setting nodeof and posof to put z and p 
into correspondence, then the one-to-one correspondence between U and S 
will be preserved and S will remain a tree. 

Moreover, before the insertion of p, Tree(S) and p£S will imply that 
leftson(p) and rightson(p) do not belong to S. Since these positions are 
distinct from p they will still not belong to 5 after the insertion of p, so that 
downgood(p, V) will hold. This insures that the hole in the heap at p can be 
eliminated by calling ascend(p). Thus the abstract insertion operation can be 
transformed into 

begin/// position p\ 
{Heap(S, V) and z £ U} 
p:= a nonmember of S such that Tree(S U {/?}); 
{Heap(S, V) and z £ U and p g S and Tree(S U {p}) 

and leftson(p), rightson(p) t S U {p} } 
begin„ U:= U U {z}; S: = S U {/?}; 
nodeof(p) : = z; posof(z): = p 
end; 

D(z):=Z)(y) + 8(y, z); 
{Heap(S-{/?}, V) and peS and downgood(p, V)} 
ascend(p) 
end 

Finally, we consider the second occurrence of 

D(z):=D(y) + 8(y,z) , 

which decreases the value of D for a node in U. This operation creates a hole 
in the heap by decreasing the weight of the position p=posof(z). However, 
property (4) insures that p will still satisfy downgood{p, V), so that the hole 
can be eliminated by calling ascend(p). Thus the above operation can be 
transformed into 

begin/// position p\ 
[Heap{S, V) and zeU and D ( z ) > D ( y ) + 8(y, z)} 
D(z):=D(y) + 8(y, z); 
p:=posof(z); 
{Heap(S-{p}, V) and peS and downgood(p, V)} 
ascend(p) 
end 
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At this stage, the representation invariants and other intermediate 
assertions have served their purpose, and U has become an auxiliary variable 
which can be eliminated. This leads to the following program: 

node {exp} x; set procedure F {node exp}; 
real procedure 8 {node exp, node exp}; 
set {var} T; real array {var} D(node); 

{(Yy G node) (Vz€T(y)) S(y, z )>0} 
begin position set S; 
node array nodeofi position); position array posofinode); 
... Declarations of swap, V, ascend, and descend ... 
7: = {;c}; D(x): = 0; 
S: = {root}-, nodeof(root) : = x; posof(x): = root; 
while 1 empty(S) do 

begin node y; 
if S = {root} then 

begin y: = nodeof(root); S: = {} end 
else 

begin position p; 
p: = a member of S such that Tree(S—{p}); 
swapip, root); y: = nodeof(p); S: = S—{p}; 
p: = root; descend(p) 
end; 

for z e T(y) do 
if z £ T then 

begin T:= T U {z}; 
begin position p; 
p \ - a nonmember of S such that Tree(S U {p}); 
S:=S U {p}; nodeof{p): = z; posof(z):=p; 
D(z): = D(y) + 8(y, z); ascend(p) 
end 

end 
else if D(z) > D(y) + 8(y, z) then 

begin position p; 
D(z):= D(y) + 8(y, z); 
p : = posof(z); ascend(p) 
end 

end 
end 
{ r = r * ( x ) and ( V z e r * ( x ) ) D(z) = 8*(x, z)} . 
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Exercises 
1. Use specification logic to derive the following procedure assumption for the 

procedure swap: 

(V position exp p) (V position exp q) 
(V assertion procedure (real procedure (position exp)) a ) 
(nodeof # p & nodeof # q & nodeof # a 

& posof # p & posof # q & posof # a => 
{77 and p, qeS and a{[V\p: F(<7)l <?: V(p)])} 

swap{p, q) {TI and a ( F ) } ) 
& (V exp-like e) (nodeof # e & posof # e => swap # e) . 

In this derivation you will need to use global assumptions (2' in rule (R26) for 
procedure declarations) including the static assertion {V = nodeof • D}, which 
describes the meaning of the function procedure V, as well as various noninter-
ference assumptions about global identifiers. 

2. Show that Heap(S-{p}, V) implies ( u p g o o d { p , V) or downgood(p, V)). Then 
use this result to write a procedure satisfying 

procedure eliminate ho le(posit\on {var} p)\ 
{pa: nodeof # p & posof # p} 
{TI and p e 5 and Heap(S-{p}, V)} 

{TI and Heap(S, V)} . 

Although the need for this procedure does not arise in the minimum-distance 
problem, it can occur in other simulation problems where the time of a future 
event such as arrival at a graph node may be changed arbitrarily rather than just 
decreased. 

5.2.4 Representing Trees by Intervals 
Since the positions of the completely infinite binary tree form a countably 
infinite set, we can represent them by positive integers, i.e. we can take 
position to be the set of integers that are larger than zero. One particular 
choice for this representation is to number the positions in the order 
obtained by scanning successive levels from left to right, as shown in Figure 
5.6. The advantage of this choice is that the primitive operations on positions 
can be computed easily: 

integer procedure root; 1; 
integer procedure /e/rson(integer {exp} p); p x 2; 
integer procedure rightson(integer {ex p} p);px 2 + 1 ; 
integer procedure father{integer {exp} p); p div 2 

Notice that father(root) = 0 £ position. 

I 
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Figure 5.6 Represen t ing Posit ions by Integers . 

Beyond the definition of these procedures, the only effect of introduc-
ing this representation into our program is to replace the data type position 
by integer and the data type position set by integer set. (The domain of the 
array nodeof must be an interval containing every integer that can ever 
belong to S. The size of this interval will become apparent later.) 

We are left with the problem of representing the integer set S. Here we 
will find that it is not necessary to provide a representation for arbitrary 
finite sets of integers. In fact, by resolving the indeterminacy in our program 
appropriately, we will be able to constrain S so that its value is always an 
interval beginning with 1. 

Thus to represent S we introduce the concrete variable 

integer slim; 

and the representation invariant 

SI: S= 1 slim 

As illustrated in Figure 5.7, the interval 1 slim will always be an almost-
balanced tree. Of course, there are trees (even almost-balanced ones) that 
are not intervals, but this only means that our representation is incomplete, 
i.e. that some members of the range of the abstract variable are unrepresent-
able. If we can transform our program in a way that preserves the invariant 
SI, we will have insured that such unrepresentable values are never assigned 
to S. As an added benefit this will imply that S is always almost-balanced, so 
that ascend and descend can be executed in time of order log N. 
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Figure 5.7 Representing Trees by Intervals. 

The transformation to concrete form involves the following steps: 

(1) In the procedure descend, since leftson(p) and rightson(p) are never 
less than one, the tests leftson(p) e S and rightson(p) e S can be replaced by 
leftson(p) ^ slim and rightson(p) < slim respectively. Moreover, since 
leftson(p) < rightson(p), rightson(p) e 5 implies leftson(p) e S. In other 
words, the invariant SI limits S to trees in which every position with a 
rightson also has a leftson. Thus the conditional expression 

if leftson(p) e S then ... 

else if rightson(p) e S then goto try right else goto quit 

can be simplified to 
if leftson(p) e S then ... else goto quit . 

(2) In the main program, the assignment S: = {root} must be 
augmented with slim: = root. 

(3) The test 1 empty(S) can be replaced by slim> 0. 
(4) The test S={root} can be replaced by slim = root. 
(5) The assignment £: = {} must be augmented with slim:= 0. 
(6) The indeterminate assignment p:= a member of S such that 

Tree{S-{p}) can be replaced by p:= slim. When the indeterminacy is resol-
ved in this way, SI can be preserved by augmenting S:=S-{p} with 
slim: = slim — 1. 
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(7) The indeterminate assignment p: = a nonmember of S such that 
Tree(S U {/?}) can be replaced by p: = slim + 1. When the indeterminacy is 
resolved in this way, SI can be preserved by augmenting S: = S U {p} 
with slim: = slim +1. 

Since S= 1 slim has the same size as U, it is always a subinterval of 
1 N . Thus, since the elements of nodeofip) are only accessed when p e S, 

1 N the domain of nodeof can be taken to be 
At this stage the invariant SI has served its purpose, and 5 has been 

transformed into an auxiliary variable which can be eliminated. Our prog-
ram has the form: 

node {exp} x; set procedure T {node exp}; 
real procedure 8 {node exp, node exp}; 
set {var} T; real array {var} D(node); 

{(Vy e node) (Vz € T(y) ) 8(y, z ) > 0 } 
begin integer slim; 
node array nodeof(l::N); integer array posof (node)] 
integer procedure root; 1; 
integer procedure leftsoniinteger {exp} p); px 2; 
integer procedure rightsoniinteger {exp} p); px 2 + 1; 
integer procedure father(integer {exp} p); p div 2; 
procedure swa/Hinteger {exp} p, q); 

begin node m, n; 
m: = nodeofip); n\ = nodeofiq)» 
nodeofip) : = n; nodeofiq) : = m; 
posofin) :=p; posof(m): = q 
end; 

real procedure ^(integer {exp} p); D(nodeofip)); 
procedure ascendiinteger {var} p); 

while ip^root) and (Vifatherip)) > Vip)) do 
begin swap(p, father(p)); p:=father{p) end; 

procedure descendiinteger {var} p); 
begin 

loop: if leftson(p) < slim then 
begin 
if (rightson{p) <slim) and (Virightson{p)) < V{leftson{p))) 

then goto tryright else goto try left 
end 

else goto quit; 
tryleft: if V{leftsonip)) < Vip) then goto left else goto quit; 
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tryright: if V(rightson{p)) < V(p) then goto right else goto quit; 
left: swap(p, leftson(p)); p : = leftson(p); goto loop; 

right: swap(p, rightson(p)); p: = rightson(p); goto loop; 
quit: end; 

T: = {x}; D(x):= 0; 
slim: = root; nodeof{root): = x; posof{x): = root; 
while slim > 0 do 

begin node y; 
if slim = root then 

begin y: = nodeofiroot); slim: = 0 end 
else 

begin integer p ; 
p: = slim; swap{p, root); y: = nodeof\p); slim: = slim -1; 
p: = root; descend(p) 
end; 

for z e T ( » do 
if z £ T then 

begin T:= T U {z}; 
begin integer p; 
p: = slim + 1; slim: = slim + 1; 
nodeof(p): = z; posof(z) : = p; 
D(z):=D(y) + 8(y, z); 
ascend(p) 
end 

end 
else if D{z) > D(y) + 8(y, z) then 

begin integer p; 
D(z):=D(y) + 8(y,z); 
p := posof{z); ascend(p) 
end 

end 
end 
{T= T*(x) and (VzeT*(x)) D(z) = 8*(x, z)} 

To produce a fully concrete program, representations must be introduced 
for the variable T, the procedure T, and the data type node. The appropriate 
transformations are the same as those discussed in Sections 5.1.4 to 5.1.6. 

*5.3 USING A HEAP TO SORT 

In this section we digress from the topic of directed graphs to show how a 
heap can be used to sort an array segment. Historically, this was the first use 
of the concept of a heap [Williams 64, Floyd 64]. 

' f i t - 4 " M »'*" ' V ' ' 7 J - - r i . 1 ' * 
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The basic idea is to construct a heap by inserting each array element, 
and then to construct an ordered array by repeatedly removing the smallest 
member of the heap. Since both insertion of an arbitrary element and 
deletion of the smallest member can be performed in time of order log n, the 
entire sort requires time of order /z-log n. 

*5.3.1 An Abstract Program 

As in Section 5.2.3, the heap will be a set of positions of the completely 
infinite binary tree: 

position set S 

Now, however, there is no analogue of the one-to-one correspondence 
between S and a set of graph nodes. Instead, the weights of the positions in S 
are specified directly by an array: 

real array position) 

(We assume that the elements of the array to be sorted have data type real.) 
Since there is no one-to-one correspondence, the invariant 77 is simply 

77: Tree(S) . 

The procedure swap is now simply a procedure for exchanging two 
elements of the array V. However, except for the simpler form of 77 and the 
change of V from a procedure to an array, this new version of swap has the 
same abstract behavior as in Section 5.2.3: 

procedure swa/; (position {exp} p, q); 
{pa: V#p&V#q&V# a} 
{77 and p, qeS and a([V| p: V(q)\q: V(p)])} 
begin real t; t: = V(p); V(p):= V(q); V(q): = t end 
{77 and a(K)} , 

where a is a ghost parameter of type assertion procedure (real array {exp} 
(position)). 

As before, the invariant HI is 

HI: Heap{S, V) . 

Aside from the change in the type of V, the definitions of Heap, upgood, 
downgood, goleft, and goright are the same as before, and the theorems 
about these procedures remain valid. Thus, since swap has the same abstract 
behavior, the definitions and specifications of ascend and descend remain the 
same. 

The sorting program performs two iterations over the array segment to 
be sorted. The order of the first iteration has no effect on the abstract 
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algorithm, but we will eventually find that descending order will lead to a 
more efficient concrete program. In each step of the first iteration a new 
position p is added to 5, in a way which preserves Tree(S), and V{p) is set to 
the current element of X. Then, since p is a hole in the heap that satisfies 
downgood(p, V) (because leftson(p) and rightson(p) do not belong to 5), 
ascend(p) is called to eliminate the hole. 

The second iteration scans X in ascending order. Each step removes the 
member p of 5 for which V has the minimum value and assigns this minimum 
value to the current element of X. Thus the processed segment of X will be in 
increasing order and the values in this segment will all be smaller or equal to 
the values remaining in the heap. As in Section 5.2.3, Heap(S, V) insures that 
the minimum of V occurs at root but, unless it is the only member of S, root 
cannot be removed from S without falsifying Tree(S). Again the solution is to 
take p to be a position whose removal will preserve Tree(S) and to swap the 
values V(p) and V(root) before removing p. Then after p has been removed, 
the heap will have a hole at root that satisfies upgood{root, V) (because root 
has no father), so that descend can be called to eliminate the hole. 

This argument leads to the following abstract program: 

{|a b\ Q dom X and X=X0} 
begin position set 5; real array Imposition); integer k; 
...Declarations of swap, ascend, and descend ... 
S: = {}; 
{geninv 77: Tree(S)} 
{geninv HI: Heap(S, V)} 
k: = b + l; 
{geninv II: |a \k b\ and X ] \a~\k © V 1 S -v X0 1 \a b\} 
while a < k do 

begin/// position p; 
p:= some nonmember of S such that Tree{S U {/?}); 
begin71 k: = k-l; S: = S I) {p}; V(p): = X(k) end; 
{Heap(S ~{p], V)and downgood(p, V)and/?e5} 
ascend(p) 
end; 

{£>={}} 
{geninv 12: ord^ * 1 \a^\k and {X ] [7~}k} <* {V 1 S}} 
while k < b do 

if 5={ roo t } then 
beginn /2 X(k): = V(root); : = {}; k: = k+l end 

else 



3 5 4 DATA REPRESENTATION STRUCTURING CHAP. 5 

begin/// position p\ 
/?: = some member of S such that Tree(S—{p}); 
swapip, root); 
{Heap(S—{root, p], V) and V(p) * {V ] S} 

and root e S and peS and p ^ root 
and Tree(S—{p}) } 

begin/ 1 / 2 X(k):=V(p); 5 : = 5 - { p } ; k: = k + 1 end; 
{Heap(S- {root}, V) and rooteS and upgood(root, V)} 
p: = root', descend(p) 
end 

end 
{X] b\ ~ X0 1 |a b\ and ord< X \ |a 

Here we have used the general invariants II and 12 to convey informa-
tion that would otherwise have to be repeated in invariants of the while 
statements and intermediate assertions. Notice that, within the rearrange-
ment condition 

X 1 © V 1 5 ~ XQ 1 \a~b 

the general concatenation operator ©, defined in Section 2.3.7, is applied 
to a function V \ S whose domain is not a set of integers. 

Before transforming the abstract program into concrete form, we note 
two properties of the program that will be relevant to this transformation. 
The first is that whenever swapip, q) is called, the positions p and q will be 
distinct members of S. The second is that the dependency upon X of the 
invariants 11,12, and TI, which must be preserved by calls of swap, is limited 
to the segment of X over the interval a k. 

5.3.2 A Concrete Program 

The transformation of the abstract sorting program into concrete form is 
similar to that described in Section 5.2.4. Again, we represent positions by 
integers as in Figure 5.6, so that root, leftson, rightson, and father have the 
definitions given in Section 5.2.4. Then we represent the set S by the integer 
variable slim, with the representation invariant 

ST. S= 1 slim 

Again, the indeterminacy in the two assignments to p can be resolved in a 
way that preserves this invariant. We replace p :=some nonmember of S 
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such that Tree(S U {/?}) by p: = slim + 1, and we replace p: = some member of 
5 such that Tree(S-{p}) by p:-slim. 

The following program is the result of these transformations. In it we 
have applied the copy rule to eliminate the procedures ascend and descend. 

{[a b\ c dom X and 
begin real array V(l::b — a + l); integer k, slim', 
... Declarations of root, leftson, rightson, and father ... 
procedure swfl/?(integer {exp} p, q); 

{ p e l slim and q e 1 slim and p q} 
begin real t; t:= V(p); V(p):=V(q); V(q): = t end; 

slim:= 0; k\—b+ 1; 
while a < k do 

begin integer p; 
p: = slim +1; k:= k-1; slim: = slim +1; V(p):= X{k); 
while (p root) and (V(father{p)) > V(p)) do 

begin swap(p, father(p)); p :=father(p) end 
end; 

while k<b do 
if slim = root then 

begin X(k): = V(root); slim: = 0; k: = k + 1 end 
else 

begin integer p; 
p: = slim\ swap(p, root)', 
X{k): = V(p)\ slim: - slim-1; k: = k + 1, p:= roof, 

loop: if leftson(p) < slim then 
begin 
if (rightson(p) < slim) 

and (V{rightson(p)) < V(leftson(p))) 
then goto tryright else goto tryleft 

end 
else goto quit; 

tryleft: if V{leftson(p)) < V(p) then goto left else goto quit; 
tryright: if V(rightson(p)) < V(p) then goto right else goto quit; 

left: swap(p, leftson(p)); p: = leftson(p); goto loop; 
right: swap{p, rightson(p)); p := rightson(p); goto loop; 
quit: end 

end 
{ x 1 b\ ~ X0 1 \a b\ and ord< X ] \a b\} 
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5.3.3 Further Transformations to Improve Efficiency 

The program given in the previous section is fully concrete, in the sense that 
all of its data types and primitive operations are provided by Algol W. 
Nevertheless, further transformations can be used to improve its efficiency. 

Consider the sequence of calls of swap that occur during a single 
iteration of either outer while statement. The last assignment in each call of 
swap (except the final call) will set an element of V that will be immediately 
reset during the next call of swap. This is an obvious inefficiency that can be 
eliminated by transformation. 

To represent the array V we introduce two concrete variables: 

real array V l ( l ::b-a + l ) 

in the main program and 

real z 

in each of the blocks in which the integer variable p is declared. Of course, 
these variables are really no more concrete than V itself; we are only calling 
them "concrete" to emphasize the parallel with the transformations dis-
cussed previously. In fact, VI and V will have the same values except that 
within the blocks in which p and z are declared the value of V(p) will be given 
by z rather than by VI (p ) . 

More precisely, the general invariant 

VI: V 1 1 slim = VI 1 1 slim 

will hold during the main program. During the bodies of the blocks where p 
and z are declared, however, this invariant will be in abeyance and, after 
initialization, the general invariant 

VII: V 1 |l slim] =[V1 \ p: z] ] [1 slim 

will hold instead. 
The invariant VII will hold at the beginning of each call of swap(p, q). If 

the body of swap is augmented with the assignment VI(p): = VI(q), then it is 
straightforward to see that 

V 1 |l slim\ = [Vl\q: z] 1 1 slim 

will hold when the body of swap is completed. It follows that each of the 
following blocks will preserve VII: 

beginVI1 swap(p, father(p)); p := father(p) end; 
beginv// swap(p, root); 

X(k): = V(p); slim: = slim-1; k:= k + 1; p: = root end; 
beginVII swap(p, leftson(p)); p : = leftson(p) end; 
beginv// swap(p, rightson(p)); p: = rightson(p) end . 
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1 slim 
In^the main program, the initialization will achieve VI by making 

empty. Then in the first block wherep and z are declared, VII will be 
achieved if we augment V(p): = X(k) with z: = X(k); VI(p): = X(k). (Actu-
ally Vl(p) := X(k) is not needed to achieve VII, but it will serve to simplify 
later developments.) At the end of this block, VI can be regained by the 
assignment Vl(p): = z. 

In the second block where p and z are declared, VII will be achieved if 
p: = slim is augmented with z: = VI(slim). Again, at the end of the block VI 
can be regained by the assignment VI(p): = z. 

At this stage we have 

{|a b\ c dom X and X=X0} 
begin real array V, Vl(l::b — a + 1); integer k, slim; 
... Declarations of root, leftson, rightson, and father ... 
procedure swap(integer {exp} p, q); 

slim\ and p ^ q and VII} {p e 1 slim and q e 
begin real t; 
t:=V(p)-, V(p):=V(q); V(q): 
Vl(p):=Vl(q) 
end; 

slim:= 0; k: = b +1; 
{geninv VI: V 1 
while a < k do 

beginy/ integer p; real z; 
p: = slim + 1; k:= k-1; slim: = slim+ 1; V(p):=V(k)\ 
z: = X(k); VI(p):=X(k); 

~]^ = \Vl\p: z] 1 {geninv VII: V 1 1 slim } 
while (p^root) and (V(father(p)) > V(p)) do 

beginy// swap(p, father(p))\ p := father(p) end; 
VI (p): = z 
end; 

while k < b do 
if slim = root then 

begin X(k): = V(root); slim: = 0; k: = k + 1 end 
else 

begin v/ integer p\ real z; 
p: = slim; z: = VI (slim); 
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{geninv VII: V1 |l slim\ = [Vl\p: z] 1 [l slim\} 
begin VII 
swap(p, root); 
{V 1 |l slim\=[Vl | root: z] 1 |l slim 

and p^root} 
X(k): = V(p); slim: = slim-1; k: = k +1; p:- root 
end; 

loop: if leftson(p) < slim then 
begin 
if (rightson(p) < slim) 

and (V(rightson(p)) < V(leftson(p))) 
then goto tryright else goto try left 

end 
else goto quit; 

tryleft: if V(leftson(p)) < V(p) then goto left else goto quit; 
tryright: if V(rightson(p)) < V(p) then goto right else goto quit; 

left: b e g i n s w a p ( p , leftson(p)); p : = leftson(p) end; 
goto loop; 

right: beginVII swap(p, rightson(p)); p: = rightson(p) end; 
goto loop; 

quit: VI(p): = z 
end 

end 
{X 1 [a b\ 1 \a b\ and ord s X \ [7jb]} . 

To make V auxiliary we must replace all expressions containing V that 
occur outside of assignments to V by equivalent expressions that do not 
contain V. In the cases where VII holds, we may replace V(p) by z and, since 
leftson(p), rightson(p), and father(p) are all distinct from p, we may replace 
V by VI in V(leftson(p)), V(rightson(p)), and V(father(p)). 

There are two other cases. For the assignment X(k):=V(root), the 
invariant VI shows that V(root) can be replaced by VI(root). For the assign-
ment X(k):= V(p), the preceding assertion shows that V(p) can be replaced 
by VI(p). 

Once V has been made auxiliary, its declaration and assignments may 
be eliminated. In particular, the body of swap reduces to 

begin real t; t: = z; V\(p):=Vl(q) end . 

Here t has also become auxiliary, so that the body of swap can be reduced 
further to Vl(p):=Vl(q). 
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The elimination of V and t leads to the following program: 

{[a b\ c dom X and X=X0} 
begin real array Vl(l::b-a + l); integer k, slim', 
... Declarations of root, leftson, rightson, and father ... 
procedure SH>ap(integer {exp} p, q); 

{p € 1 slim\ and qe 1 slim and p^q} 
Vl(p):=Vl(q); 

slim:= 0; k:=b+ 1; 
while a < k do 

begin integer p; real z; 
p: = slim + 1; k: = k -1; slim: = slim +1; 
z: = X(k); Vl(/>): = X(k); 
while (p^root) and ( V I ( f a t h e r ( p ) ) > z) do 

begin swap(p, father(p)); p:=father{p) end; 
VI (p): = z 
end; 

while k < b do 
if = root then 

begin X(k): = VI(root); slim: = 0; k: = k +1 end 
else 

begin integer p\ real z; 
p: = slim; z: = VI(slim); swap(p, root); 
X(k): = VI(p); slim: = slim — 1; k: = k +1; p\— root; 

loop: if leftson(p) < slim then 
begin 
if (rightson(p) < slim) 

and (Vl ( r igh t son (p ) ) < VI(leftson(p))) 
then goto tryright else goto tryleft 

end 
else goto quit; 

tryleft: if VI(leftson(p)) < z then goto left else goto quit; 
tryright: if VI ( r ightson(p) ) < z then goto n'g/zf else goto quit; 

left: swap(p, leftson(p)); p := leftson(p); goto loop; 
right: swap(p, rightson(p)); p:= rightson(p); goto loop; 
quit: VI(p): = z 

end 
end 
{X 1 \a b\ ^ X0 1 |a b\ and ord< X ] \a b\} . 

A final transformation can be used to reduce the storage requirements 
this program. In the first part of the program the active portion of VI, 
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which is the segment over | l slim\, grows at the same rate as the inactive 
portion of X, which is the segment over |k b\. Similarly, in the second part of 
the program the active portion of VI shrinks at the same rate as the inactive 
portion of X. Thus it should be possible to use the inactive port ion of X to 
represent the active portion of VI, so that the program will only use a 
constant amount of local storage. 

Since the inactive port ion of X varies at its left end while the active 
portion of VI varies at its right end, it is necessary for the elements of VI to 
occur in X in reverse order . The situation is described by the representat ion 
invariant 

XI: k = b + l-slim and (V<?e| l slim\) Vl(q) = X(b + 1-q) . 

If we regard the s tatement pairs 

slim: — 0; k:= b + 1 
k: — k — 1; slim: = slim +1 
{slim = root} slim: = 0; k: = k + 1 
slim: = slim — 1; k: = k+1 

as indivisible, then the first part of XI is already maintained by our program. 
To maintain the second part we add assignments to X as follows: 

(1 ) In t h e b o d y of swap, Vl(p) := Vl(q) is a u g m e n t e d wi th 
X(b +1 —p): = Vl(q). 

( 2 ) T h e a s s i g n m e n t Vl{p) : = X(k) is a u g m e n t e d wi th 
X(b + l-p): = X(k). 

( 3 ) B o t h of t h e a s s i g n m e n t s VI(p): = z a r e a u g m e n t e d wi th 
X{b + l-p): = z. 

Here we are adding assignments to the array X, which is already used by our 
program. However , it is easily seen that each of the added assignments only 
affects X 1 \k bj, while the rest of the program only depends upon X \ 

E > 
Now VI can be made auxiliary by replacing VI(q) by X(b + l-q) 

outside of assignments to VI. Similarly k can be made auxiliary by replacing 
k by b +1 — slim. 

Some fu r t he r simplifications occur. The assignments X(b + l - p ) 
:= X(b + l-slim) and X(b + 1-slim) := X(b + 1-p) can be e l imina ted 
since they b o t h occur in con tex t s w h e r e p = slim. T h e ass ignment 
X(b + 1-slim) :-X{b +1 -root) can be eliminated since it occurs in a con-
text where slim = root. 

Af te r the auxiliary variables and the above assignments have been 
eliminated, the second outer while s ta tement has the form 

while b +1 - slim < b do 
if slim = root then begin slim: = 0 end 
else ... . 
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Since root= 1, this is equivalent to 

while slim > 1 do if slim = 1 then slim: = 0 else ... , 

which can clearly be replaced by 

while slim> 1 do ... . 

Our final program is 

{|a b\ c dom X and X=X0} 
begin integer slim; 
... Declarations of root, leftson, rightson, and father ... 
procedure swa/^integer {exp} p, q); X(b +1 -p):=X(b +1 -q); 
slim:= 0; 

while a < b +1—slim do 
begin integer p; real z; 
p: = slim +1; slim: = slim +1; z: = X(b +1—slim); 
while (p^root) and (X(b + l-father(p)) > z ) do 

begin swap(p, father(p)); p:=father{p) end; 
X(b + 1 —p): = z 
end; 

while slim > 1 do 
begin integer /;; real z; 
p: = slim; z: = X(b +1—slim); swap{p, root); 
slim: = slim - 1 ; p : = roof; 

loop: if leftson{p) < slim then 
begin 
if (rightson(p) < slim) 

and (.X(b +1 - rightson(p)) <X(b +1 - leftson(p))) 
then goto tryright else goto tryleft 

end 
else goto quit; 

tryleft: if X(b +1- leftson(p)) < z then goto left else goto quit; 
tryright: if X(b +1 - rightson(p)) <z then goto right else goto quit; 

left: swap(p, leftson(p)); p : = leftson(p); goto loop; 
right: swap(p, rightson(p)); p: = rightson(p); goto loop; 
quit: X(b +1 -p): — z 

end 
end 
{X 1 a b\ ~ X0 ] |a b\ and ord s X \ a b\} 

Like mergesort in Section 3.2.2 and quicksort in Section 3.2.3, this 
program will sort an array segment of n elements in time of order n • log n. Its 
advantage over mergesort is that it requires only a constant amount of 
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storage. Its advantage over quicksort is that the time bound of n • log n 
extends to the worst case. 

Exercises 

1. The program for sorting by repeated insertions, described in Exercise 4 after 
Section 2.3.3, involves successive exchanges of array elements similar to the calls 
of swap whose efficiency was improved by the transformation discussed in the 
above section. Improve the efficiency of the insertion-sorting program by a 
similar transformation. The basic idea is to "represent" the nonlocal array X by 
another nonlocal array XI that satisfies the general invariants X=X1 in the 
outer block of the program and X= [XI \ c: y] in the inner block, where c and y 
are appropriate local variables of the inner block. The result of the transforma-
tion will be a program that sorts XI instead of X. 

2. The inefficiency caused by successive calls of swap also occurs in the program for 
finding minimum distances in a directed graph. Show that this inefficiency can be 
eliminated by a transformation similar to that described in the above section. 
One begins by using the copy rule to expand the calls of ascend and descend in the 
version of the program developed in Section 5.2.3. In the main block of this 
program, one declares the concrete variables 

node array nod<?o/l(position); position array posofl(node)] 

and the procedure 

real procedure Vl(position {ex p} p), D(nodeofl(p)) . 

Then in each subsidiary block in which the position p is declared, one declares 
the concrete variable 

node t; 

In the main program, the general invariant 

NI: nodeof1 S=nodeofl ] S 
and posof ] U=posofi ] U 
and V \ 5 = F 1 1 5 

is imposed. In the subsidiary blocks where p and t are declared, NI is held in 
abeyance, and 

Nil: nodeof] S=[nodeofl\ p: t] 1 S 
and posof ] U=[posofl \ t: p] ] U 
and V 1 S=[Vl\p: D(t)] 1 S 

is imposed. The procedure swap is augmented to satisfy 

{Nil and p £ S and q e S and p^q} 
swap(p, q) 
{nodeof \ S=[nodeofl \ q: t] ] S 

and posof ) U=[posofl\t: q] 1 U 
and V] S=[Vl\q: D(t)] 1 S} . 

Then these invariants can be used to make nodeof and posof auxiliary, and also 
to replace calls of V by VI. 
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5.4 FINDING STRONGLY CONNECTED COMPONENTS 

As a final example , we apply the methodology of da ta represen ta t ion struc-
turing to an unusually difficult and ingenious a lgor i thm [Ta r j an 72] for 
finding the strongly connec ted componen t s of a finite d i rected graph. O u r 
deve lopment was inspired by an unpubl i shed presenta t ion of this a lgor i thm 
by D . E . Knu th . 

T w o nodes x a n d y in a d i rected graph are said to be strongly connected if 
and only if y e r * ( x ) and x e r * ( y ) , i.e. if each n o d e is reachab le f r o m the 
other . T h e set of nodes tha t a re strongly connected to x is called the strongly 
connected component generated by x. 

In the g raph shown in Figure 5.1, for example , each of the nodes A, B, 
and C genera tes the strongly connec ted c o m p o n e n t {A, B , C}. Each of the 
remaining nodes gene ra t e s the strongly connec ted componen t tha t is the 
singleton set containing that node . 

It is easy to see tha t y g T*(x) and x € T*(y) is an equivalence re la t ion. As 
a consequence , the strongly connec ted componen t s genera ted by two nodes 
are e i ther the same or dis joint , and the union of the strongly connec ted 
componen t s gene ra t ed by all nodes is the set of all nodes . In o the r words, the 
strongly connec ted c o m p o n e n t s fo rm a par t i t ion of the set of all nodes in the 
graph. A fu r the r consequence is tha t a strongly connec ted c o m p o n e n t is 
genera ted by each of its m e m b e r s . 

O u r deve lopmen t will progress th rough th ree stages. W e will begin with 
an abstract recursive p rog ram for pe r fo rming depth-f i rs t search. T h e n by 
introducing addi t ional abst ract var iables and opera t ions upon these vari-
ables, we will ob ta in an abstract p rogram for f inding strongly connec ted 
componen t s . Finally, we will in t roduce represen ta t ions for t he abstract 
variables and t r ans fo rm the p r o g r a m into concre te fo rm. 

A l t h o u g h this p resen ta t ion will show why T a r j a n ' s a lgor i thm works, it 
will hardly m a k e it obvious. D a t a represen ta t ion s t ructuring, indeed prog-
ramming me thodo logy in general , canno t provide the ingenuity tha t is 
needed to invent this k ind of a lgor i thm. But it can provide a clear re t rospec-
tive explanat ion . 

5.4.1 Recursive Depth-First Search 

In Section 5.1 we deve loped a p rog ram that , when the set of unprocessed 
nodes was r ep resen ted by a s tack, would sequence th rough the nodes tha t 
were reachab le f r o m a given n o d e in depth-f i rs t order . W e now want to 
accomplish the same task with a recursive p rocedure . 

T h e set T*(jc) of nodes tha t are reachab le f rom x is the union of {x} with 
the sets of nodes tha t are r eachab le f r o m each of the immedia te successors of 
x. Thus o n e might expect tha t , if initially T is the empty set , then the 
p rocedure 
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procedure search(node {exp} x)\ 
begin T : = T U {jc}; for ye T(jc) do search(y) end 

would reset T to r*(jt). But in fact this procedure will never terminate if it 
encounters a cyclic path in the graph. To avoid this problem, it is sufficient to 
make the procedure ignore nodes that are already present in T: 

procedure search{node {exp} x); 
if x£T then 

begin T: = T U {x}; for y e do search(y) end . 

However, to prove the correctness of this procedure we must describe its 
behavior when T is not initially empty, and to do so we must formalize the 
idea of one node being reachable f rom another via a path that avoids some 
part of the graph. 

Let T be a set of nodes, and consider a path (jt0, ... ,xn) such that none 
of the nodes JC0, ... belongs to T. We call such a path T-free (despite the 
fact that the final node may belong to T). It is easy to see that a path of zero 
steps is T-free for any T, and that an edge is a T-free path if and only if its 
initial node does not belong to T. More interestingly, if a path is viewed as a 
composition of subpaths, then it is T-free if and only if all of the subpaths are 
T-free. 

We write T*(x, T) for the set of nodes that can be reached from x via 
T-free paths. We also write T*(5, T) for the set of nodes that can be reached 
from some member of S via T-free paths. These definitions are a straightfor-
ward generalization of the r*-notat ion introduced in Section 5.1.1, in which 
r*(jt) reappears as the special case T*(jc, {}). 

Our argument about the procedure search will depend upon two rather 
subtle properties of T-free paths. First consider the set 

r*(Si, T) u r*(s2, T u r * ( s u r» . 

Since a T U r * ^ , T)-free path is also a T-free path, every member of this set 
must belong to r* (5 i U S2, T). More surprisingly, the converse also holds. 
For suppose there is a T-free path f rom some member u of U S2 to a node x. 
If any member y of T*(SX, T) occurs on this path, then there is a T-free path 
f rom some 5 e to y and a T-free path f rom y to x: 

^ , 
y 

/ 

S 

so that the composition of these paths shows that x e r * ( 5 x , T). On the other 
hand, if no member of r * ( 5 i , T) occurs on the path from u to x, then this path 
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is T U r*(Su 7 > f r e e and begins with a member of S2, so that XGT*(52, 
T u r*(S1? Tj). Thus 

r * ( s u T) u r*(s 2 , T u r * ^ , r))=r*(5i u s2, T) . (i) 

Secondly, suppose x £ T, and consider the set 

{x} u r * ( r ( * ) , T U {x}) . 

If ze{x} then the zero-step path f rom JC to z, which is T-free, establishes 
z e T*(x, T). If z G T*(r(X), T U {JC}) then there is an edge from x to some y, 
which is T-free since x £ T , and a T-free path f rom y to z. Thus the composite 
path 

x • y • z 

is T-free. so that zeT*(x, T). 
Conversely, suppose z € r*(jt , T), so that there is a T-free path from JC to 

z. If z=x then ze{jt}. Otherwise, the last occurrence of x on the path must 
occur before z, so that the path can be decomposed into a path f rom JC to the 
last occurrence of JC, an edge f rom JC to some distinct nodey , and a T U {jc}-free 
path f rom y to z: 

T-free 

last occurrence of X/ T U {x}-free 

Then. the edge f rom JC to y gives yeT(jc) and the path f rom y to z gives 
z e T * ( y , T U {JC}), SO that z e r * ( r ( j c ) , T U {JC}). Thus 

If JC£ T then {JC} U r*(T(jc), T U {JC}) = T*(JC, T) . (2) 

We can now show that the procedure call search{x) will increase T by 
adding the nodes that can be reached from JC via T-free paths. More pre-
cisely, search will satisfy 

{T= T0} search(x) {T= T0 U T*(JC, T0)} , 

where T0 is a ghost parameter of type set expression and it is assumed that T 
does not interfere with JC or T0. 

As is typical with recursive procedures, we assume this specification 
about calls of search in proving a similar specification of the body of 
the declaration of search. The first step is to show that, for any node sets Tx 

and S, 

{ T = r j for y € S do search(y) {T= Tx U 7^)} . 

This is most easily shown by induction on the size of S. It is trivial 
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when S is empty. Otherwise, there will be a smaller set S' and a node y f inal 

such that S = S ' U {yfinai} a n d f o r yeS d o search(y) is equivalent to 
for yeS' do search(y); search(yfinal). Then if T=TX beforehand , the 
induct ion hypothesis shows that for y e S ' do search(y) will achieve 
T = Tx U Y*(S', Tx), and the assumption about recursive calls, w i thx replaced 
by yfinal and T0 by Tx U Y*(S', 7^), shows that search(yfinal) will achieve 

T=TX U r * ( S \ 7\) U r*(y f i n a l , Tx U Y*(S', T,)) . 

By property (1), this implies 

T=TX U r*(S' U {yf inal}, Tl) = Tl U Y*(S, TO . 

Now suppose that the body of the declaration of search is executed with 
T0 as the initial value of T. If x G T0 then Y*(x, T0) = {*}, since the only T0-free 
path beginning with x G T0 is the zero-step path. Thus T= T0 U T0) will 
hold without any assignment to T. On the other hand, suppose x t T0. Then 
T:= T U {*} will achieve T= T0 U {x}, and the specification we have shown 
about the for s tatement, with Tx replaced by T0 U {*} and S replaced by T(*), 
implies that for y G T(JC) do search(y) will achieve 

T= T0 U {X} U r*(r ( jc) , To U {x}) . 

By property (2), this implies T= T0 U T0). 
Thus we have 

procedure search{node {exp} x); 
{T=T0} 
if x£T then 

begin T:= T U {*}; for y G T(JC) do search(y) end 
{T=T0 U Y*(x, T0)} . 

Strictly speaking, the annotation of this procedure declaration should 
include the parameter assumptions T#x&T# T0. For simplicity, however, 
we will omit the obvious and often lengthy parameter assumptions of the 
procedures developed in this and later sections. 

If search{x) is called with T= T0, then the set of nodes to which search 
will be applied, either directly or recursively, will be T*(*, T0) . For later 
developments, we will need to have this set available just after execution of 
the for s tatement in the body of search. It cannot be obtained from the 
current value of T, which combines r* (x, T0) with T0. Thus we will introduce 
a second global set variable M and extend search so that M = Y*(x, T0) holds 
just after the for s tatement. 

The overall effect of the call search(x) upon M will be to increase M by 
r * ( J T , T0). Upon entrance, if X G T t h e n X will be inserted into M. Otherwise 
the initial value of M will be saved as a local variable and M will be reset to 
{x}, so that the for s tatement will achieve M={x} U r * ( r ( x ) , T0 U {*}) = r*(jr, 
T0)- Then M will be reset to the union of its current value and its initial value: 
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procedure search{node {exp} x); 
{T=T0 and M=M0} 
if xeT then M : = M U {*} else 

begin set Msave; Msave: = M; 
T:=TU{x},M: = {xh 
for ye do search{y); 
{T=T0 U r * ( * , T0) and M=T*(x, T0) and Msave=M0} 
M: = Msave U M 
end 

{T=T0 U r*(jt, T0) and M=M0 U T*(x, T0)} . 

The justification of the assertions that appear here is basically the same 
as before. Beginning with the assumption that recursive calls satisfy 

{T~ TQ and Af=M 0 } search(x) 

{T=T0 U T*(x, T0) and M=M0 U T0)} , 

one can use property (1) to show 

{T= Tx and M=M^} for yeS do search(y) 
{T=TX U T*(5, Tx) and M=MX U T*(S, TJ} . 

Then property (2) can be used to show that the body of the declaration of 
search satisfies the same specification as was assumed for the recursive calls. 
The details are left to the reader. 

Our main program will initialize T and M to be the empty set and then 
apply search to each node of the graph. The overall effect will be to set T (and 
M) to r*(node, {}) = T*(node) = node: 

{true} 
begin set T, M; T: = {}; M: = {}; 

begin 
... Declaration of search ... 
for y e node do search(y) 
end 

{ j = n o d e } 
end 

(The reason for enclosing the declaration of search in a subsidiary block will 
become apparent later.) 

It should be emphasized that the purpose of this program is not just to 
achieve the trivial final assertion, but to produce a sequence of states 
satisfying the intermediate assertion within the body of search. In particular, 
in the next section we will add more statements to the program whose 
correctness will depend upon the validity of the assertion T= T0 U r*(*, T0) 
and M=T*(x, T0) that occurs after the for statement in the body of search. 
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However , fu r the r deve lopmen t s will no t change the calling t ree of our 
p rogram. Thus at this stage we can express the to ta l execut ion t ime of the 
p rogram in t e rms of the execut ion t ime of individual calls. Suppose we refer 
to a call searchix) as terminal if x e T and nonterminal if x £ T. Since a 
non te rmina l call adds the new n o d e x to T, and T grows f r o m the empty set to 
the ent i re set of nodes , there will be exactly one non te rmina l call search(x) 
for each n o d e x, and the n u m b e r of non te rmina l calls will be # n o d e . 

Termina l calls will not p e r f o r m subcalls, and each non te rmina l call 
search{x) will p e r f o r m # immedia te subcalls. Thus the total n u m b e r of 
calls f r o m within the body of search will be £ ; c e n o d e # r ( * ) = # e d g e . In 
addi t ion, the re will be # node calls f r o m the main p rog ram, so tha t the total 
n u m b e r of calls will be # node + # edge, and the n u m b e r of te rminal calls will 
be # edge. 

N o w suppose the re are cons tants a, (3, and 8 such tha t the t ime requi red 
by a call search(x), exclusive of the t ime fo r subcalls, is b o u n d e d by a if the 
call is t e rmina l and by /3 + 8 • # T(JC) if the call is non te rmina l . T h e n the total 
t ime for the p rog ram will be b o u n d e d by 

a . # e d g e + 2 * e „ o d e (/3 + 8 - # I » ) 
= a • # e d g e + /3 • # n o d e + 8 • ( X * € node 
= • # n o d e + ( a + 8) • # e d g e 
</3>N+(a + 8)'E , 

which is of o rde r N + E. 
Of course , this result depends u p o n our ability to p roduce a concre te 

p rogram in which a te rminal call can be p e r f o r m e d in cons tant t ime and a 
non te rmina l call search{x) can be p e r f o r m e d in t ime of o r d e r # W e will 
eventual ly achieve this goal by int roducing an unusual da ta represen ta t ion . 

Exercise 

1. Use specification logic to formalize the correctness argument for the program 
developed in the above section. In your proof you will need to use rule (R26) for 
proper procedure declarations with 

2Proc=(Vnode exp x) (Vset exp T0) (Vset exp M0) 
( r # x & r # r 0 & T # M 0 & M # j t & A f # : r 0 & M # M 0 = > 

{T=T0 and M=M 0 } 
search{x) 
{T=T0 U T*(x, T0) and M=M 0 U T*(x, T0)}) 

& (Vexp-like e ) ( I # e & M # e = > search # e) 

and 

2 ' = g v ( r ) & gv(M) & M # r & r # r & M # r . 

You will also need to use the rule for the abstract for statement given in Exercise 
1 after Section 5.1.2. 
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5.4.2 An Abstract Program for Strongly Connected Components 

We now want to extend the program developed in the previous section to 
compute the set of strongly connected components. We introduce an output 
variable SCC, of type set of sets (of nodes), which is initialized to the empty 
set. Within the procedure search(x), immediately after execution of the for 
statement, we will be able to determine whether a certain subset of T is the 
strongly connected component generated by x and, if so, we will insert this 
component into SCC. 

We will also introduce a set variable U to keep track of the members of 
T which have not yet been placed in SCC. Since the strongly connected 
components are disjoint and we do not wish to output the same component 
more than once, each time a component is inserted into SCC it will be a 
subset of U which will then be deleted from U. In fact, the component will 
consist of the members of U that were not present in U when the current call 
of search began execution. 

Thus we have 

set procedure Y {node exp}; 
set of sets {var } SCC; 

{true} 
begin set T, U, M; SCC: = {}; T: = {}; U:={}; M:={}; 
{geninv UI: SCC is a set of strongly connected components 

and T - U = U SCC and t / c T } 
begin 
procedure search(node {exp} JC); 

if xeT then M:= M U {x} else 
begin set Usave, Msave; 
Usave U; Msave : = M; 
begin w T:= T U {x}; U:= U U {x} end; 
M : = { J C } ; 

for y e T(JC) do search(y); 
{T=T0 U T*(JC, T0) a n d M=T*(JC, T0)} 
if U— Usave is the strongly connected component 

generated by JC then 
begin m 

SCC: = SCC U {U- Usave}; U:= U-(U-Usave) 
end; 

M: = Msave U M 
end; 

for y 6 node do search(y) 
end 

{ r = n o d e } 
end 
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Whenever a new member is added to T it is also added to U. The only other 
operat ion affecting U is the removal and output of a subset that is a strongly 
connected component . Thus as indicated by the general invariant UI, U will 
always be a subset of T such that T - U is the union U S C C of the strongly 
connected components that have been placed in SCC. By placing this gen-
eral invariant before the block in which search is declared, we indicate that it 
is a global invariant, i.e. that it holds throughout the execution of search at all 
recursive levels. 

Of course, the test " U - U s a v e is the strongly connected component 
generated by x" begs the question of how one finds strongly connected 
components . However , we will eventually be able to replace it with a more 
constructive test. 

Next, we want to show that a call search(x) will increase bo th of the sets 
U and T - U, i.e. that 

{T= T0 and U= U0} search{x) {U0 c U and T0- U0 c T - U} . 

As usual we will assume this specification about recursive calls while proving 
that it is met by the body of the declaration of search. 

Consider an execution of the procedure body beginning with a state in 
which 7 = To and U= U0. If x e T t h e n the procedure body will not change T 
or U and will obviously meet the above specification. On the other hand, if 
x£T then the assignment Usave:= U will achieve the general invariant 

HIT. Usave = U and T0- U0^T- U . 

Assignments to M will obviously preserve UII. Since x is not a member of T 
or its subset U, the assignments T:= T U { 4 ; U:=U U {JC} will preserve UII 
and also achieve x e U— U0. Since each recursive call is assumed to increase 
U and T-U, the sequence of such calls per formed by for y e T(x) do search(y) 
will also preserve UII and xeU-U0. Finally Usave £ U implies that 
U:=U-(U- Usave) is equivalent to (and can be replaced by) the simpler 
s tatement U: = Usave, which obviously preserves UII. 

Thus we have 
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set procedure Y {node exp}; 
set of sets {var} SCO, 

{true} 
begin set T, U, M; SCC: = {}; T: = {}; £/: = {}; M: = {}; 
{geninv UI: SCC is a set of strongly connected components 

and T - U = U SCC and I / c T } 
begin 
procedure search{node {exp} JC) ; 

{ J = T0 and U= U0} 
if xe T then M:= M U {JC} else 

begin set Usave, Msave] Usave: = U; 
{geninv UII: Usave =U0^ U and T0-U0<= T-U} 
Msave: = M; 
begin w T:= T U {X}; U:= U U {JC} end; 
M : = {JC}; 

{xeU-U0} 
for yer(jc) do search{y)\ 
{T= T0 U T*(JC, r 0 ) and M=Y*(x, T0) and jce U - U0} 
if U— Usave is the strongly connected component 

generated by JC then 
begin w SCC:=SCC U {U-Usave}; U:= Usave 
end; 

M\~ Msave U M 
end; 

{U0 ^ U and T0-U0 £ T— U} 
for y e node do search(y) 
end 

{T=node} 
end 

Notice that UII is a local invariant of the procedure search, since it contains 
the local variable Usave and the ghost parameters T0 and U0. Thus it 
describes a particular level of recursion, in contrast to the global assertion UI 
which holds for all levels of recursion. 

Finally we come to the crux of the behavior of the abstract program. We 
will show that, if JC is reachable f rom every member of U before a call of 
search(x), then there will be a path f rom every member of U after the call to 
some member of U before the call. In other words, we will show that the 
specification of search can be strengthened to 

{T= T0 and U=U0 and ( V w e U) jce Y*(u)} 
search{x) 
{ l / 0 c U and TQ — U0c T- t /and (V « e t / ) (3 v e U0) veY*(u)} . 
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In proving this specification, we will also be able to find a constructive 
equivalent of the test that U- Usave is the strongly connected component 
generated by x. 

Suppose T= T0 and U= U0 and (V u e U) x e T*(w) holds before execu-
tion of the procedure body. If x e T, then U will not be changed, so that 
(V UEU) (3 VG UQ) v e r * ( w ) will hold since there is a path f rom every 
member of U to itself. 

On the other hand, suppose x£ T. Then we can show that ( V u e C / ) 
xeT*(u) holds throughout the execution of the procedure body and can 
therefore be added to the local invariant UII. This condition is preserved by 
adding x to U since x is reachable f rom itself, and it is obviously preserved if 
U is replaced by its subset Usave. The critical point is to show that it is 
preserved by the recursive calls of search(y) within the for s ta tement . 

Let Ubefore and t / a f t e r be the values of U before and af ter such a call, and 
suppose x is reachable f rom every member of Ubeiore. Then its immediate 
successor y e V(x) will also be reachable f rom these members , so that the 
assumption about recursive calls implies that f rom every u e £/after one can 
reach some v e t / b e f o r e . By path composition it follows that x can be reached 
f rom every member of f / a f t e r : 

u +-x • y . 

^ ^after ^ ^before 

Now consider the situation immediately af ter execution of the for 
s ta tement . From UI, UII, the assertion following the for s ta tement , and the 
argument given above, we know that the following conditions will hold: 

SCC is a set of strongly connected components 
and T - U = U SCC and (/<= T 
and Usave = U0 c U and T0-U0^T-U 
and T= T0 U T*(x, T0) and M=T*(x, T0) and xeU- U0 

and (Vwe U)xeT*(u) . 

Let z be any member of U— U0. Since z belongs to U, it does not belong 
to T - U, nor to its subset T0 - U0. Then since z does not belong to U0, it does 
no t be long to T0. Thus T0 is dis joint f r o m U-U0. Moreove r , since 
zeU^T=T0 U Y*(x, T0) = T0 U M, we have z e M. Thus U- U0 is a subset 
of M. 

Since M = T*(JC, T0), every node in M is reachable f rom x. O n the other 
hand, since (Vwe U)xeT*(u), x is reachable f rom every node in U. Thus 
every node in M fl U is strongly connected to x, so that M fl U is a subset of 
the strongly connected component genera ted by x. 

Since U0^U, M CI U is the union of the disjoint subsets M n (U- U0) 
and M n U0. Moreover , since U- U0c M, the first of these subsets is U- U0. 
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Thus every node in U-U0 is strongly connected to x, and if U-U0 is the 
entire strongly connected component generated by x then M fl U0 is empty. 

On the other hand, if U - U 0 is not the entire strongly connected 
component generated by x, then there must be a cyclic path from xe U— U0 

back to x which passes outside of U— U0. Let v be the first node on this path 
which lies outside of U- U0. Then there is a path f rom x to v in which every 
nonfinal node lies in U-UQ and, since T0 is disjoint from U— UQ, this path is 
To-free. Thus v belongs to T*(jc, T0) = M, and since T*(jc, T0) e T, v also 
belongs to T. But v cannot belong to T— U, since this would violate the fact 
that T— U is the union of a set of strongly connected components by establ-
ishing a strong connection between a member oiT—U and x, which lies in 
U— U0 and therefore outside of T— U. Moreover, v does not belong to 
U- U0. Thus v belongs to T-(T- U)-(U- U0)=U0 and also to M, so that 
M H U0 is nonempty. 

Thus the test of whether U—Usave = U— U0 is the strongly connected 
component generated by x is equivalent to, and can be replaced by, a test of 
whether MR U0 = M fl Usave is empty. Moreover, if these tests are false then 
there is a path from x to a node v in U0 that in conjunction with the existence 
of a path from any node in U to x, implies the desired consequent of 
search(x): 

( V w e U) ( 3 VEU0) v e P ( « ) . 

On the other hand, if the tests are true then the consequent will obviously be 
achieved by the assignment U:— Usave. 

As a special case of the specification we have proved for search, if U is 
empty before executing search(x) then the precedent will be satisfied and the 
consequent will imply that U will again be empty after execution. Thus each 
execution of search in the main program will satisfy the specification for this 
procedure and will leave U empty. At the conclusion of the program we will 
have U={} and 7 = node, so that the set T—U, which is the union of the 
strongly connected components which have been placed in SCC, will be the 
entire set of nodes in the graph. 

Thus our abstract program is 
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set procedure I {node exp}; 
set of sets {var} SCC; 

{true} 
begin set T, U, M; SCC: = {}; T: = {}; £/: = {}; M: = {}; 
{geninv UI: SCC is a set of strongly connected components 

arid T-U = U SCC and l / c T } 
begin 
procedure search{node {exp} x)\ 

{T= T0 and U= U0 and (Vwe t/)*er*(w)} 
if xeT then M:=M U {x} else 

begin set Usave, Msave; Usave : = U; 
{geninv UII: Usave =U0 c £7 and T0— U0 S T— U 

and (VueU) xeY*(u) } 
Msave: = M; 
begin(;/ T:= T U {*}; U:=U U {x} end; 
M: = {x}; 
{xeU-U0} 
for y e T(x) do search(y); 
{T= T0 U T*(JC, T0) and M=Y*(x, T0) and xeU- U0} 
if empty(M fl Usave) then 

{U— Usave is the strongly connected component 
generated by x } 

beginw SCC:=SCC U {U-Usave}; U:= Usave 
end; 

M: = Msave U M 
end; 

{ t / 0 ^ U and T0-U0c T-U 
and (VMG U) (B veU0) veY*(u) } 

for y e node do search(y) 
end 

end 
{SCC is a set of strongly connected components 

and U SCC=node } . 

5.4.3 Transformation to a Concrete Program 

In preparation for the transformation of our abstract program into concrete 
form, we omit the intermediate assertions, which have served their purpose, 
except for the occurrence of U S T in the global general invariant UI. We 
also move the assignment M\ = Msave U M backward into both branches of 
the preceding conditional statement: 
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set procedure I {node exp}; 
set of sets {var} SCC: 

{true} 
begin set T, U, M; SCC: = {}; T: = {}; £/: = {}; M: = {}; 
{geninv UI: U^ T} 

begin 
procedure search(node {exp} JC) ; 

if jce T then M: = M U {JC} else 
begin set Usave, Msave-, Usave := U; 
Msave := M,T:=T U {x}; U:=U U {JC}; M : = {JC}; 
for y € T(JC) do search(y); 
if empty(M f! Usave) then 

begin SCC:=SCC U {U-Usave}-, 
U: = Usave\ M:= Msave U M 
end 

else M: = Msave U M 
end; 

for y e node do search(y) 
end 

end 
{SCC is a set of strongly connected components 

and U SCC=node } . 

To represent U we introduce the concrete variables 

node array A(1::N); integer p . 

The segment of A over | l p\ will enumerate the members of U without 
duplication. This leads to the global representation invariant 

AI: | l p\ #T\ and U={A 1 [l p\} and ord^ A ] [l p 

(where the partition diagram precludes subscript errors, since # T < N ) . 
To achieve this invariant initially, when U is empty, we s e t p to zero. To 

maintain the invariant we augment the assignment U:=U U {JC}, which 
inserts a new member into U, w i t h p : = p +1 ]A(p): = x. We also augment the 
assignment U: = Usave with p: = psave, where psave is a local variable of 
search used to save the value possessed by p when search began execution. 

The argument that the latter augmentation preserves the representa-
tion invariant is more subtle than it might seem at first glance. It depends 
upon the fact that the recursive calls of search performed by the for statement 
will not decrease the interval | l p\ nor alter the segment of A over the initial 
value of this interval. To demonstrate this, we must show that search satisfies 
the specification 
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{A=AQ and p = p 0 } 
search(x) 
{ | l Po| p\ and A ] \l p0\=A0 ] |l p0 |} 

As usual, we will assume this specification about recursive calls in proving 
that it is met by the body of search. 

Suppose A =A0 and p =p0 holds before execution of the body of search. 
If xeT this condition will obviously be preserved, since there will be no 
assignments to A or p , and it will imply the consequent of the above 
specification. Otherwise , the assignments Usave := U; psave: = p will 
achieve the local general invariant 

All: l p0 p and A ] | l p0 =A0 ] 1 P o 
and Usave = {A i | l p0|} and psave =p0 . 

It is easy to see that this invariant is preserved by the only assignments 
within its scope which interfere with it: 

and 

p : = p + 1; A(p): = x 

p: = psave 

Less trivially, it is also preserved by the recursive calls of search in the for 
statement. To see this, let^before^Pbeforo ^ after* and paf t er be the values of A 
and p before and after such a call. If AH holds beforehand, then 

P o P b e f o r e and Ab e f o r e 1 1 p0 = A 0 ] P o 
and Usave={Abefoie ] [1 p0[} and psave=p0 

The specification of recursive calls gives 

1 Pbefore Pafter and 

^ after 1 1 Pbefore —-^before 1 | l Pbefore 

From these conditions, we may infer 

and Aaf t er 1 Po P after Po = A 0 1 1 Po 
and Usave={AaiteT ] 1 p^} and psave =p0 

which shows that All will hold after the call of search. 
The local invariant All implies the desired consequent of the body of 

search: 

Po p and A \ 1 p0 =A0 1 1 p0 

It also implies that the global invariant Al will be preserved by the assign-
ments U: = Usave; p: = psave. 
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Next, we introduce the concrete variable 

integer array Q(node) 

This array will provide two items of information. In the first place, if u e U 
then Q(u) will give the position of u in the array A, i.e. Q(u)e | l p\ and 
A(Q(u)) = u. In the second place, for any node u, Q(u) will indicate whether 
u belongs to T— U, U, or neither set. For this purpose, if u £ T then Q(u) will 
be zero, and if u e T— U then Q(u) will be some integer that is so large that it 
cannot occur in | l p\. In practice, a sufficiently large integer is N+ 1, but to 
show the logic of our program more clearly, we will write °° for this integer. 

Thus we introduce the global representation invariant 

QI: (Vw € node) if u$T then Q(u) = 0 
else if ue U then Q(u) e [l p\ and A(Q(u)) = u 
else Q(u) = oo . 

Since T is empty initially, QI can be achieved by setting all elements of Q to 
zero. To preserve QI when a new node is added to T and U, we must 
augment U: = U U {*}; p: = p +1; A(p): = * with Q(x) : = p. To preserve QI 
when U is reset to its subset Usave, we must reset Q{u) to °° for each u in the 
set U— Usave, which is equal to the set {A \ psave\ p\) as a consequence of 
Al and All. 

At this stage, we have 

set procedure T {node exp}; 
set of sets {var} SCC; 

{true} 
begin set T, U, M; 
node array A(\wN); integer array <2(node); integer p; 
SCC: = {}; T: = {}; £/: = {}; M: = {}; 

{geninv UI: U c T} 
p:= 0; 

{geninv Al: 1 P #T 
and U={A ] 1 p } and ord^ A ] [l_ 

for y e node do Q(y): = 0; 
{geninv QI: (VM e node) if u $ T then Q(u) = 0 

a n d A(Q(U)) = U else if u e U then Q(u) e [l_ 
else Q(u) = °o } 
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begin 
procedure searchinode {exp} x); 

{A=A0 and p=p0} 
if JCG 7 then M:=M U {*} else 

begin set Usave, Msave; integer psave; 
Usave := U; psave : = p; 
{geninv AII: 1 P o and A ] \l p0\=A0 ] 

} and psave =p0 } 
Po 

P o 

fll 

and Usave = {A ] [l 
Msave: = M; 

begin^/T:= 7 U {x}; 
U:=U U { . x } ; p : = p + l ; A ( p ) : = x; Q(x): = p-, 
M: = {x} 
end; 

for y g r(jc) do search{y)\ 
if empty(M (1 Usave) then 

begin^/ SCC: = SCC U {U- Usave}; 
U: = Usave; 
for k: = psave + 1 until p do Q{A(k)): = o°; 
p :=psave; M: -Msave U M 
end 

else M: = Msave U M 
end; 

= A ) 1 Po p and A \ Po Po } 
for yGnode do search(y) 
end 

end 
{ s e e is a set of strongly connected components 

and U SCC=node} . 

Finally we must deal with the set Af. To represent M we introduce the 
concrete variable 

integer mp , 

whose value will be the smallest integer in |l p\ such that A(p) G M, or °° if 
no such integer exists. (Again, o° can be taken to be any integer, such as 
N + l , that is too large to ever belong to |l p\.) Thus we introduce the global 
representation invariant 

MI: mp = Min 2P{M, A ] \l p\) . 
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Here Min 5 denotes the smallest integer in the set 5 if S is nonempty, or o° if 5 
is empty. As defined in Section 2.3.8, X) denotes the preimage of M 
under X, i.e. the set of members of dom X that are mapped by X into 
members of M. 

Notice that the variable mp gives an ambiguous representat ion of M, 
i.e. we cannot express M in terms of mp and the other concrete variables. 
Nevertheless, we will see that mp provides just the information about M that 
is actually needed by the algorithm. 

Since M is empty initially, we can achieve MI by setting mp to Within 
search, when xeT, QI implies 

M i n 0>({JC}, A 1 | T J > \ ) = Q(X) 

(even when JC€ T - U), which with MI implies that 

Min 0>(M U {JC}, A 1 [T~3) 
is the minimum of mp and Q(x). Thus MI will be preserved if M : = M U {x} is 
augmented with if Q(x) < mp then mp: = Q(x). 

O n the o t h e r h a n d , if J C t h e n a u g m e n t i n g Msave:=M with 
mpsave :=mp, where mpsave is a local integer variable, will achieve the local 
invariant 

MIL mpsave = Min 9>{Msave, A 1 jl p0 |) , 

which will be maintained by the rest of the body of search since, by All, the 
segment of A over | l p0\ will not be changed. 

The global invariant MI may be falsified by p: = p + 1; A{p): = x, but it 
will be regained if we augment M: = {x} with mp: = p. 

N o w c o n s i d e r t h e t e s t w h e t h e r M n Usave is e m p t y . S ince 
Usave= {A 1 [l PQ|}, law (4) in Section 2.3.8 shows that M O Usave will be 
empty if and only if 0>(M, A ] | l p j ) is empty. But MI and | l p0 | p\ imply 
that this set will be empty if and only if mp >p0 

Thus if M n Usave is empty then Min <3>{Msave U M, A \ [l p0|) will be 
Min PiMsave, A \ | l p0 |), which is mpsave according to MIL Since 
pQ = psave, it follows that MI will be preserved if p : = psave\ M: = Msave U M 
is augmented with mp:= mpsave. 

On the other hand, suppose M n Usave is nonempty, so that mp<p0. 
The integer Min 0>(Msave U M, A 1 [ T ^ ) is the minimum of the three 
quantit ies 

Min <3>{Msave, A \ [l Po\) = mpsave , 
Min 0>{Msave, A 1 p0[~p\) , 
Min 0>(M, A 1 [l p\) = mp . 
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However, since mp <p0, the second of these quantities must be larger than 
the third. Thus MI will be preserved if M: = Msave U M is augmented with 
the assignment to mp of the minimum of mpsave and mp. 

Thus we have 

set procedure Y {node exp}; 
set of sets {var } SCC; 

{true} 
begin set T, U, M; 
node array A(1::N); integer array £)(node); integer p, mp; 
SCC: = {}; T: = {}; £/: = {}; M: = {}; 
{geninv Ul: U^T} 
p:= 0; 

{geninv Ah | l p\ #T 

} and U={A 1 1 p 1 P } and ord^ A \ 
for y Gnode do Q(y): = 0; 
{geninv QI: (Vw G node) if u $ T then Q{u) = 0 

else if u e U then Q(u) G [l p\ and A(Q(u)) = u 
else Q(u) = 00} 

mp: = 00; 

{geninv ML mp = Min 9\M, A ] |l p|)} 
begin 
procedure searchinode {exp} JC); 

{A=AQ and p=p0} 
if x G T then 

begin^ M: = M U {x}; 
if Q(x) < mp then mp: = Q(x) 
end 

else 
begin set Usave, Msave; integer psave, mpsave; 
Usave := U; psave : = p; 
{geninv AIL 1 Po\ p\ and A 1 1 Po = A 0 1 

and Usave = {A 1 |l p0|} and psave=p0 } 
Msave: = M; mpsave: = mp; 
{geninv MIL. mpsave = Min 2P(Msave, A ] 1 p0 

Po 

)} 



SEC. 5.4 FINDING STRONGLY CONNECTED COMPONENTS 3 8 1 

beginAJ,QI,MI T:=T \J {x}; 
U:=U U {x}\p:=p + \\A{p): = x\ Q(x): = p; 
A/: = {x}; mp: = p 
end; 

for y e T(JC) do search(y)-, 
if empty(Af n Usave) then 

beginslQIM1 SCC:=SCC U {U- Usave}-, 
U: = Usave; 
for k: = psave + 1 until p do Q{A(k)): = 
p : = psave; M:= Msave U M\ mp: = mpsave 
end 

else 
beginM/ M:= Msave U M; 
if mpsave < mp then mp: = mpsave 
end 

end; 
{[l Po\ p\ and A ] [l Po\=A0 1 | l p0\} 

for y e n o d e do search(y) 
end 

end 
{SCC is a set of strongly connected components 

and U SCC= node } . 

Now we can replace the expressions involving abstract variables that 
occur outside of assignments to these variables by equivalent expressions 
involving concrete variables. By QI, the test xeT can be replaced by 
Q(x) ^ 0. By All and MI, as we have already seen, the test empty(Af n Usave) 
can be replaced by mp>psave. Finally, by AI and All, the set expression 
U- Usave in the assignment to SCC can be replaced by {A ] psave\~~p\}. 

These replacements render the abstract variables T, U, M, Usave, and 
Msave auxiliary. Af te r their elimination, we have 

set procedure Y {node exp}; 
set of sets {var} SCC; 

{true} 
begin node array A(l::iV); integer array Q(node); integer/?, mp-, 
SCC: = {}; p: = 0; for y e node do Q(y): = 0 ; m p : = 

begin 
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procedure search{node {exp} x); 
if Q(x)^ 0 then 

begin if Q(x) <-mp then mp: = Q{x) end 
else 

begin integer psave, mpsave; 
psave \—p; mpsave: = mp; 
p:=p + 1; A(p): = x; Q(x): = p; mp:=p; 
for y G T(JC) do search(y); 
if mp >psave then 

begin SCC:= SCC U {{A 1 psave| 
for k: = psave + 1 until p do Q(A(kj): = <»; 
p: = psave; mp: = mpsave 
end 

else if mpsave < mp then mp: = mpsave 
end; 

for y e node do search(y) 
end 

end 
{SCC is a set of strongly connected components 

andU S C C = n o d e } . 

Representations for the function T and for nodes can be provided as in 
Sections 5.1.5 and 5.1.6. (Note, however, that if node is a proper subset of 
1 Nj then the iteration for y e node do search(y) must exclude integers in 
1 N that do not represent nodes.) A possible representation of the output 

SCC is left to the reader as an exercise. 
If we assume that the output of a strongly connected component via 

SCC requires a time proportional to its size then, since each node belongs to 
exactly one component , the total time required for output statements will be 
of order N. A similar argument applies to the for statement that sets Q(A(k)) 
to oo for each k in the outputted component . The rest of the program obeys 
the timing restrictions discussed in Section 5.4.1, and therefore requires a 
time of order N + E. 

Exercise 

1. Transform the above program to represent the output variable SCC by an array 
out, with domain node, using the representation invariant 

Se SCC if and only if (3 x e U SCC) S=9>{{out(x)}, out) . 

This is a s tandard method for representing a partition of a finite set. 



APPENDIX A 
NOTATION FOR SYNTACTIC DEFINITION 

A.1 BACKUS-NAUR FORM 

One of the most significant aspects of the development of Algol 60 [Naur 60, 
63] was the use of a precise and formal notation, called Backus normal form, 
Backus-Naur form, or simply BNF, to specify syntax. Although the concept 
underlying B N F was already known in mathematical linguistics [Chomsky 
56], it was independently discovered by J. Backus, who first suggested its 
application to the definition of programming languages [Backus 59]. Since 
then, with occasional extensions or modifications, BNF has become the 
standard tool for describing the syntax of programming languages. In this 
appendix we give an explanation of this notation, including several exten-
sions that will be used in Appendix B. 

The underlying idea is best seen through simple examples (which are 
not meant to describe the actual syntax of Algol W). Consider the fragment 
of a programming language used in Section 1.1. Its syntax might be 
described in English as follows: 

(1) A statement can be: 
(a) An action, 

or (b) if L then S, where L is a logical expression and S is a 
statement, 

or (c) if L then Sx else S2, where L is a logical expression and and 
S2 are statements, 

or (d) while L do S, where L is a logical expression and S is a 
statement, 

or (e) begin Q end, where Q is a statement sequence. 

3 8 3 
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(2) A statement sequence can be: 
(a) A statement, 

or (b) S; Q, where 5 is a statement and Q is a statement sequence. 
In BNF, the above description becomes 

(statement) : := (action) 
(statement) : := if (logical expression) then (statement) 
(statement) : := if (logical expression) then (statement) 

else (statement) 
(statement) :: = while (logical expression) do (statement) 
(statement) :: = begin (statement sequence) end 
(statement sequence) : := (statement) 
(statement sequence) : := (statement) ; (statement sequence) 

The names in angular brackets, such as (statement) and (logical expression), 
are called nonterminal symbols or phrase class names, and denote sets of 
language phrases that have the same syntactic behavior. On the other hand, 
symbols such as if and then and the semicolon, which actually belong to the 
language being described, are called terminal symbols. A syntax description 
is given by a set of formulas, called productions, with the form N:: = S, where 
N is a nonterminal symbol and 5 is a string that can contain both nonterminal 
and terminal symbols. Roughly speaking, a production of the form N ::= S 
means that 5 is a possible form for a phrase in the set denoted by N. 

More precisely, every syntactically correct phrase p in the set denoted 
by the nonterminal symbol N can be derived by the following process: 

(1) Let p be N. 
(2) As long as p contains one or more nonterminal symbols, 

replace some nonterminal N in p by the right side of some 
production whose left side is N. 

For example, a derivation of a phrase in the set denoted by (statement) might 
consist of the following steps: 

(statement) 
if (logical expression) then (statement) else (statement) 
if (logical expression) then begin (statement sequence) end 

else (statement) 
if (logical expression) then begin (statement) ; 

(statement sequence) end else (statement) 
if (logical expression) then begin (statement) ; 

(statement) end else (statement) 
if (logical expression) then begin (action) ; 

(statement) end else (statement) 
if (logical expression) then begin (action) ; 

(action) end else (statement) 
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if (logical expression) then begin (action) ; 
(action) end else while (logical expression) do (statement) 

if (logical expression) then begin (action) ; 
(action) end else while (logical expression) do (action) 

Of course, to complete this derivation we would have to replace the remain-
ing nonterminals, using productions for (logical expression) and (action) that 
would be available if we had a description of a complete language instead of 
just a fragment. Ultimately, we would obtain a string of terminal symbols 
that, by definition, would be a syntactically correct statement. 

The derivation of a phrase can be displayed more perspicuously by a 
derivation tree, in which nonterminal symbols occur as nonterminal nodes, 
terminal symbols appear as terminal nodes, and the subnodes of each 
nonterminal node describe the replacement of that node. The tree for the 
above derivation is given in Figure A . l . (Of course, to complete the deriva-
tion tree we would have to add subtrees below the five remaining nontermi-
nal nodes.) 

begin (statement sequence) end while (logical expression) do (statement) 

(statement) 

if (logical expression) then (statement) else (statement) 

(statement) ; (statement sequence) (action) 

(action) (statement) 

(action) 

Figure A. l Derivation Tree for if (logical expression) then begin (action) ; 
(action) end else while (logical expression) do (action) . 
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A derivation tree provides a proof that the string obtained by reading its 
terminal nodes from left to right is a syntactically correct phrase. Beyond this 
however, it displays the way in which a phrase is divided into its immediate 
subphrases, which obviously affects its meaning (at least, if we make the 
plausible assumption that the meaning of a phrase is a function of the 
meanings of its subphrases). For example, the tree in Figure A . l shows the 
following decomposition into subphrases: 

if ^logical expression) | then begin (action) ; (action) end | 

else while (logical expression) do (action) 

At this point, the problem of ambiguity arises. Consider the statement: 

if (logical expression) then if (logical expression) 
then (action) else (action) 

For this phrase, there are two distinct derivation trees, shown in Figure A.2, 
which describe two different decompositions into subphrases: 

if (logical expression^ then 
if (logical expression) then (action) else (action) | 

and 
if (logical expression) | then 

if (logical expression) then (action) | 

else, (action) | 

which in turn imply different meanings. The existence of more than one 
derivation tree for the same phrase (from the same nonterminal) is called 
ambiguity, and is normally a defect in a language design. 

In this particular case, one way of removing the ambiguity is to limit the 
forms of statements that can occur between then and else to a phrase class 
called (simple statement). The following productions give an unambiguous 
syntax: 

(statement) : := (simple statement) 
(statement) : := if (logical expression) then (statement) 
(statement) : := if (logical expression) then (simple statement) 

else (statement) 
(statement) : := while (logical expression) do (statement) 
(simple statement) : := (action) 
(simple statement) : := begin (statement sequence) end 
(statement sequence) : := (statement) 
(statement sequence) : := (statement) ; (statement sequence) 
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(s ta tement ) 

if (logical expression) then ( s t a tement ) 

if (logical expression) then ( s ta tement ) else ( s t a tement ) 

(act ion) (act ion) 

( s ta tement ) 

if (logical express ion) then ( s t a tement ) else ( s t a tement ) 

if (logical expression) then ( s t a tement ) (act ion) 

(act ion) 

Figure A.2 Two Derivation Trees for if (logical expression) then 
if (logical expression) then (action) else (action) 

I n t h i s s y n t a x , t h e o n l y p e r m i s s i b l e s u b p h r a s e d e c o m p o s i t i o n is 

i f / l o g i c a l e x p r e s s i o n ) , t h e n 

t if ( l o g i c a l e x p r e s s i o n ) t h e n ( a c t i o n ) e l se ( a c t i o n ) , 

w h i c h is d e s c r i b e d b y t h e d e r i v a t i o n t r e e in F i g u r e A . 3 . 

II 
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(statement) 

(action) (simple statement) 

(action) 

Figure A.3 Derivation Tree for if (logical expression) then 
if (logical expression) then (action) else (action) 
with an Unambiguous Set of Productions. 

To explore fur ther the relation between syntax, subphrase decomposi-
tion, and meaning, consider a simple language in which expressions are 
sequences of identifiers separated by + or —. Both of the following produc-
tion sets describe the correct set of phrases: 

(expression) : := (identifier) 
(expression) : := (expression) + (identifier) 
(expression) : := (expression) — (identifier) 

or 
(expression) : := (identifier) 
(expression) : := (identifier)-!-(expression) 
(expression) : := (identifier) —(expression) 

But there is a difference in subphrase decomposit ion, as can be seen for 
the expression x-y + z. Unde r the two production sets, this phrase is given 
the distinct derivation trees shown in Figure A.4. According to the first 
se t of p r o d u c t i o n s , t he o p e r a t o r s + a n d - a s soc i a t e t o t he l e f t , 
e.g. x—y+z = ( x - y ) + z, while according to the second set of productions, 
t h e s e o p e r a t o r s a s s o c i a t e t o t h e r i g h t , e .g . x - y + z = x — (y + z) . 
Since + and — a r e l e f t - a s soc ia t ive in c o n v e n t i o n a l m a t h e m a t i c a l 
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(expression) 

(identifier) y 

i 
l 
i 
i 
x 

(expression) 

y s (identifier) 

z 

Figure A.4 Derivation Trees for x-y + z with Two Different Production Sets. 
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no ta t ion (and in Algol W) , only the first set of p roduc t ions descr ibes sub-
phrase decompos i t ion correctly. 

N o w suppose tha t we wish to add a mult ipl icat ion ope ra to r . T o reflect 
convent iona l no ta t ion we want decomposi t ions such a s x x + |z |and | j r+ |yx jz | , 
i.e. we want mult ipl icat ion to "b ind m o r e t ight ly" than addi t ion or subtrac-
t ion. T h e solution is to say tha t an expression is a sequence of t e rms 
sepa ra ted by + or - , where a t e rm is a sequence of ident if iers separa ted 
by x : 

(express ion) : : = ( te rm) 
(express ion) : : = (expression) + ( term) 
(express ion) : : = (expression) - ( term) 
( te rm) : : = ( identif ier) 
( te rm) : : = ( t e r m ) x ( i d e n t i f i e r ) 

Next , to add the use of paren theses , we want to say tha t a paren thes ized 
express ion can occur anywhere tha t an ident i f ier can. If we in t roduce 
(pr imary) to d e n o t e " a n y w h e r e an ident i f ier can occur" , we get: 

(express ion) : : = ( term) 
(express ion) : : = (expression)-!-(term) 
(expression) :: = ( e x p r e s s i o n ) - ( t e r m ) 
( te rm) : : = (pr imary) 
( te rm) : : = ( t e r m ) x ( p r i m a r y ) 
(pr imary) : : = ( identif ier) 
(pr imary) : : = ((expression)) 

N o n t e r m i n a l symbols like (expression), ( term) , and (pr imary) , that are 
used to show the subphrase decompos i t ion of var ious opera t ions , are o f t en 
called levels of precedence. In the descript ion of Algol W in A p p e n d i x B, six 
such non te rmina l s a re n e e d e d to descr ibe the syntax of expressions. 

This genera l m e t h o d of describing syntax has b e e n s tudied extensively 
in theore t ica l c o m p u t e r science, whe re f ini te sets of p roduc t ions of the fo rm 
N : := S a re called context-free grammars [ H o p c r o f t 69]. T h e subjec t is also of 
cons iderab le pract ical impor tance , since a m a j o r c o m p o n e n t of any compiler 
is a p rocedu re , called a parser, tha t conver ts the input p r o g r a m into its 
(hopeful ly un ique ) der ivat ion t ree [ A h o 72, Gr ies 71, Backhouse 79]. 

Exercise 

1. The following set of productions describes an unorthodox language of expres-
sions which is quite different from either Algol W or conventional mathematical 
notation, despite the fact that the same symbols are used: 
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(expression) ::= (term) 
(expression) ::= — (expression) 
(term) ::= (factor) 
(term) ::= (factor) + (term) 
(term) ::= (factor)x(term) 
(factor) ::= (primary) 
(factor) ::= / (primary) 
(primary) ::= a 
(primary) ::= b 
(primary) ::= c 
(primary) ::= ((expression) ) 

Determine which of the following strings are syntactically correct according to 
this set of productions, i.e. which strings can be derived from the nonterminal 
symbol (expression). Give derivation trees for the correct strings. 

-a+b+c 
a + b—c 
axb + /c 
— /c 
~l/c 
(ia + b) / c 

A.2 EXTENSIONS OF BACKUS-NAUR FORM 

Although Backus-Naur productions can be used to describe a real prog-
ramming language such as Algol W, an extremely large number of produc-
tions is required. Indeed, to describe precisely the rules for parameter and 
subscript matching it is necessary to use an infinite number of productions. 
Thus we introduce several extensions of our notation to permit a single 
production to stand for a set of productions. 

To condense a group of productions with the same left side, we write 

N::= SX | ... | SN 

as an abbreviation for 

N ::= 

N Sn 

For example, the productions used in the previous section to describe a 
simple language of expressions can be written as 

(expression) : := (term) | (expression) + (term) 
| (express ion)- ( term) 

(term) : := (primary) | ( te rm)x(pr imary) 
(primary) : := (identifier) | ((expression)) 
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M o r e generally, to indicate several al ternatives within par t of the right 
side of a product ion , we write 

J V : : = S 0 I S i I - I 

(where some of the strings 5, may be empty) as an abbrevia t ion for 

N ::= 5 0 5 1 5 „ + 1 

N : := 5 0 5 „ 5 n + 1 

For example , 

(scale factor) :: = ' | | + | — ] ( integer number ) 

abbrevia tes 

(scale factor) : : = ( integer number ) 
(scale factor) : : = ' + ( integer number ) 
(scale factor) :: = — (integer number ) 

It is also useful to in t roduce a nota t ion fo r repet i t ion. We write [SJ f c , 
where A: is a nonnega t ive integer , to s tand for the string SS ... S containing k 
occurrences of S. For example , 

( identif ier) : : = (letter) ([(letter or digi t ) ] 3 

is an abbrevia t ion fo r 

( identif ier) :: = 
( let ter) ( let ter or digit) ( let ter or digit) ( let ter or digit) 

A slight extension of this nota t ion is part icularly useful for describing 
languages, such as Algol W, in which lists of i tems separa ted by commas play 
a m a j o r role. For k>\, we write [ 5 ] k

Q t o s tand for the string S,S,... ^ c o n -
sisting of k occurrences of S separa ted by commas . For example , 

(real variable) : : = (real array variable ( |*] ]q)) ( [ ( subsc r ip t ) ]^ ) 

is an abbrevia t ion fo r 

(real variable) : := (real array variable (*, *, *)) 
((subscript), (subscript), (subscript)) 

(He re (real array var iable (*, *, *)) is the n a m e of a class of phrases tha t 
deno te three-d imens ional real arrays.) No te that repet i t ion can occur e i ther 
inside or outs ide of the angular brackets tha t enclose non te rmina l symbols. 

Finally, we in t roduce the concept of production schemas. A product ion 
schema looks like a product ion except tha t it contains occurrences of one or 
more special symbols called metavariables. T h e schema also gives a descrip-
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tion of the ranges of these metavariables. It stands for the set of those 
productions that can be obtained by replacing all occurrences of each 
metavariable by some member of its range. 

Numeric metavariables will be used to indicate varying numbers of 
repetitions. For example, the schema 

(identifier) : := (letter) [(letter or digit)J' 
where 0 < / < 2 5 5 

stands for the 256 productions 

(identifier) : := (letter) 
(identifier) : := (letter) (letter or digit) 
(identifier) : := (letter) (letter or digit) (letter or digit) 

Similarly, 

(real variable) : := (real array variable (|[*]Q> ([[(subscript) f 0 ) 
where n>l 

stands for the infinite sequence of productions 

(real variable) : := (real array variable (*)> ((subscript)) 
(real variable) : := (real array variable (*, *)) 

((subscript), (subscript)) 
(real variable) : := (real array variable (* ,* ,*)> 

((subscript), (subscript), (subscript)) 

We will also use symbolic metavariables, denoted by Greek letters, 
which range over sets of symbol strings. For example, the schema 

(r term) : := (r factor) 
where r e {integer, real, long real, logical} 

stands for the four productions 

(integer term) : := (integer factor) 
(real term) : := (real factor) 
(long real term) : := (long real factor) 
(logical term) : := (logical factor) 

It is important to notice that, when forming an instance of a production 
schema containing several metavariables, occurrences of distinct metavari-
ables may be replaced by different integers or symbol strings, but occurrences 
of the same metavariable must be replaced by the same integer or symbol 

string. 
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A few metavariable ranges will be used in many schemas. For this 
reason, we introduce the following standard metavariables, whose ranges 
will be fixed throughout the description in Appendix B: 

m: ranges over integers at least one. 
n: ranges over integers at least one. 
r : ranges over the data types, i.e. integer, real, long real, and logical. 

Tnum: ranges over the numeric data types, i .e. integer, real, and long 
real. 

a : ranges over dimension lists, i.e. lists of one or more asterisks, 
separated by commas. 

0: ranges over phrase types (defined in Section B.3.1). 
7r: ranges over lists of one or more phrase types, separated by 

commas. 

Exercise 

1. The following productions and production schemas appear in Appendix B. In 
each case describe the set of productions being abbreviated. 

(real number) : := (unsealed real) 
| [[(unsealed real) | (integer number) | 1 (scale factor) 

(unsealed real) : := [(digit)]1 ' . |(digit)]|>' 
where i > 0 , / > 0 , and / + / > 1 

(simple variable declaration) : := r [ ( r variable binder)]]^ 
(elementary r n u m expression) : := [ + | - J ( r n u m term) 
(T0 term) : := {TX term) / (T2 factor) 

where T0, TX, and R2 are given by column 6 of Table B . l 
(array declaration) :: = 

T array [ ( r array variable ( | * J J ) binder) J j 
([(lower bound) :: (upper bound) J ^ ) 



APPENDIX B 
THE SYNTAX OF A SUBSET OF ALGOL W 

This appendix describes the syntax of the portion of Algol W used in this 
book. It also includes a few additional facilities for input-output and real 
ari thmetic that are likely to be needed in simple programs. As much as 
possible, we have used the notat ion discussed in Appendix A, but a few 
constraints on the syntax are stated in informal English. The order in which 
language features are presented follows the division of the book into chap-
ters. 

In order to emphasize programming methodology rather than a particu-
lar programming language, we have purposely avoided many interesting and 
useful aspects of Algol W. These include complex numbers , character and 
bit strings, references and records, subarray designators, expression blocks, 
certain forms of the for s ta tement , case statements, assert s tatements, 
character-oriented input-output , exception handling, and a miscellany of 
implicitly declared procedures and variables. Those aspects of interest to a 
language designer are discussed in [Wirth 66]. However , this reference is a 
pre l iminary descr ip t ion d i f fe r ing in many detai ls f r o m the actual ly 
implemented language, which is thoroughly described in [Sites 72]. 

Our product ions f requent ly deviate f rom those given in either [Wirth 
66] or [Sites 72]. We have tried to choose nonterminal names that match the 
terminology used in the main text, to unify the description of several con-
structs, to make the behavior of types and binders as explicit as possible, and 

395 
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to formalize the parameter and subscript matching rules. For the last pur-
pose, we have used the extended parameter specifiers which were intro-
duced in Section 3.1.2. 

Our description assumes that a complete program is a single string of 
characters, al though in reality this string is b roken up by a division into 
individual punched cards. However , the breaks between cards are ignored 
by the compiler, except that the last eight columns of each card are skipped. 
(For large or important programs, it is convenient to place sequential card 
numbers or identifying symbols in these columns as a protect ion against 
missing or out-of-order cards.) Thus the first column of each card immedi-
ately follows the 72nd column of the preceding card. 

It is unwise to try to pack a program onto a minimal number of cards; 
line breaks and indentat ion should be used to reveal the structure of the 
program as clearly as possible to human readers. However , one must 
r emember that these visual cues, which do not influence the Algol W 
compiler, can mask syntactic errors. The omission of a semicolon or comma 
is especially hard to perceive at the end of a line. Even harder is a missing 
blank at the end of a line that runs all the way to column 72 and is followed by 
a line beginning in column one. 

We continue to show reserved words in lower-case boldface and 
implicitly declared identifiers in lower-case italics, although these words are 
actually punched in upper case. Aside f rom this convention, and the use of 
extended parameter specifiers, the symbols in the productions are those 
used for the I B M 3 6 0 / 3 7 0 implementat ion of the language (with an 029 
keypunch) . However , in many cases one or more alternative symbols, not 
used in the actual implementat ion, are shown below the correct symbol. For 
example, 

(logical factor) : := "I (logical primary) 
not 

Some of these alternative symbols, such as lower case letters, < , > , x , {, 
and } are used in this book, the others occur frequent ly in the computing 
l i t e ra tu re or in o the r Algol- l ike languages . Hope fu l l y this will pro-
vide—without confusion—a limited ability to read Algol-like languages in 
general . 

It should be emphasized that the symbols ( , ) , : : = , | , [[, and J, Greek 
letters (symbolic metavariables) , and superscripts (numeric metavariables) 
are part of the syntactic notat ion and do not occur in Algol W programs. 
(Actually the symbol | is used as an opera tor in a part of Algol W not used in 
this book. ) 
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B.1 SYNTAX FOR CHAPTER 1 

B.1.1 Basic Symbols 

(letter) ::= A \ B \ C \ D \ E \ F \ G \ H \ I \ J \ K \ L 
a b c d e f g h i j k l 

\ M \ N \ 0 \ P \ Q \ R \ S \ T \ U \ V \ W \ X \ Y \ Z 
m n o p q r s t u v w x y z 

(digit) : := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
(letter or digit) : := (letter) | (digit) 
(reserved word) : := true | false | integer | real | logical 

| long | array | procedure | begin | end | if | then 
| else | div | rem | abs | short | and | or | go | to 
j goto | for | until | do | while | comment | value 
| result | step | (extra reserved word) 

(extra reserved word) : := null | complex | bits | string 
| reference | record | case | of | shr | shl | is 
| assert | algol | fortran 

(identifier) : := (letter) [[(letter or digit)]' 
where 0 < / < 255 

(integer number) : := [(digit)]' 
where i ^ 1 

(unsealed real) :: = [[(digit)]', i(digit) f 
where i > 0, j > 0, and i +j > 1 

(scale factor) : := ' [ | + | - ] (integer number) 
10 

(real number) : := (unsealed real) 
| [(unsealed real) | (integer number) | ] (scale factor) 

(long real number) : := (real number) L \ (integer number) L 
(string character) : := (normal string character) | 
(string) : := " [(string character)] ' " 

where 1 < i < 256 
(comment) : := comment (comment body) ; 

(comment body) : := [(comment character)] ' 
where i s: 0 

An identifier must not be the same as any reserved word, including the 
extra reserved words, which are used in full Algol W but not in the sublan-
guage used in this book. 

II 
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Strings denote sequences of characters. Although we will not discuss the 
string-manipulation facilities of Algol W (in which strings are an additional 
data type), we will use strings as constant parameters in output statements. 
(See Section C.2.) 

A (normal string character) is any keypunch character except the quota-
tion mark ". A (comment character) is any keypunch character except the 
semicolon. 

Blanks (unpunched card columns) can be interspersed freely in an 
Algol W program, without changing its syntactic structure or meaning, 
except for the following restrictions: 

(1) Blanks must not occur within reserved words, identifiers, or num-
bers. 

(2) Blanks occurring within strings are meaningful components of the 
strings. 

(3) When a reserved word, identifier, or number is immediately fol-
lowed by a reserved word, identifier, number, or comment body, 
they must be separated by at least one blank. 

Comments may be interspersed freely in a program, without affecting 
its syntactic structure or meaning, except in the middle of a reserved word, 
identifier, number, string, or comment. 

B.I.2 Simple Variable Declarations 

(declaration) : := (simple variable declaration) 
(simple variable declaration) : := r [ ( r variable binder) 
(r variable binder) : := (r variable identifier) 
(r variable identifier) : := (identifier) 

The last three productions are schemas in which r is a standard symbolic 
metavariable ranging over the four data types integer, real, long real, and 
logical. (However, note that reserved words such as integer are not written in 
boldface when they occur within the names of nonterminal symbols.) In the 
second production, n is a standard numeric metavariable ranging over the 
integers 1, 2, 3, ... . 

The scope of a declaration and its binders is the immediately enclosing 
block (excluding lower and upper bounds of array declarations that are 
immediately enclosed by this block). Two binders with the same scope must 
be distinct identifiers. Except for implicitly declared identifiers, every iden-
tifier occurrence in a complete program must be bound. 

Each binder establishes the (phrase) type of the identifier occurrences 
that it binds. For example, any occurrence of x that is bound by the declara-
tion real x must appear in a derivation tree as 
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(real var iable identif ier) 
I 

( identif ier) 
I 

( let ter) 
I 
x 

B.l.3 Variables and Expressions 

( r variable) : := ( r var iable identif ier) 
( r expression) :: = (simple r expression) 

| (condi t ional r expression) 
(condi t ional r 0 expression) : : = if (logical expression) 

then {Tx expression) else ( r 2 expression) 
where r 0 , r 1 } and r 2 are given by column 1 of Tab le B . l 

(simple r expression) : := (e lementa ry r expression) 
(simple T0 expression) : : = (e lementary expression) 

tt = I ~ l = 1 ( e lementa ry r 2 expression) 

where r 0 , r l 5 and r 2 are given by column 2 of Tab le B . l 
(simple r 0 expression) : : = (e lementary t x expression) 

l < \ < = | > | > = ! (e lementa ry r 2 expression) < > 

where r 0 , r 1 } and r 2 a re given by column 3 of Tab le B . l 
( e l ementa ry T expression) :: = ( r te rm) 
(e l ementa ry r n u m expression) : : = [ + | - ] ( r n u m term) 
(e l ementa ry T0 expression) :: = 

(e lementa ry r x expression) [[ + | - 1 ( r 2 t e rm) 
where r 0 , T\, and r 2 are given by column 4 of Tab le B . l 

( e l ementa ry logical expression) :: = 
(e lementa ry logical expression) or (logical te rm) 

V 
( r te rm) :: = (r factor) 
(TQ te rm) : : = (T2 t e rm) * ( r 2 factor) 

x 
where r 0 , T1? and r 2 a re given by column 5 of Tab le B . l 

( r 0 te rm) : : = ( j ! t e rm) / ( r 2 factor) 
where r 0 , t 1 ? and r 2 are given by column 6 of Tab le B . l 

( integer t e rm) : : = ( integer te rm) [[ div | r em ] ( integer factor) 

(logical t e rm) : : = (logical t e rm) and (logical factor) 
A 

( r factor) : : = (r pr imary) 
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(long real factor) : := ( r n u m factor) ** (integer primary) 
t 

(logical factor) : := "I (logical primary) 
not 

(r primary) : := (r constant) | (r variable) | ((r expression)) 
( T n u m primary) : := abs ( r n u m primary) 
(real primary) : := short <Tnum primary) 
(long real primary) : := long <T n u m primary) 
( T n u m constant) : := ( r n u m number) 
(logical constant) :: = true | false 

The standard metavariable r n u m ranges over the three numeric data 
types integer, real, and long real. When a production schema contains the 
metavariables r 0 , r1? and r 2 , it stands for the set of productions that can be 
obtained by replacing these metavariables in accordance with the appropri-
ate column of Table B . l , which expresses r 0 as a function of Ti and r 2 . A n 
occurrence of " — " in Table B . l indicates that the corresponding values of Tx 

and r 2 are not permitted. 
The syntax of logical expressions in Algol W is somewhat different than 

conventional mathematical notation. There are no multiple relations, and 
relations must be parenthesized when joined by and or or. For example, 
x<y<z must be written as (x<y) and (y < z ) . In this book we have not 
followed this syntax in the logical expressions that occur within assertions. 

The operators short and long can be used to convert any type of number 
to a single or double precision floating-point representation. 

B . l . 4 S t a t e m e n t s 

(complete program) : := (statement) 
(statement) : := (simple statement) | (conditional statement) 

| (while statement) 
(simple statement) : := (empty statement) | (block) 

| (assignment statement) 
(empty statement) :: = 
(block) : := begin [[(declaration) ;] ' (statement sequence) end 

where i > 0 
(statement sequence) : := [[(statement) ;] ' (statement) 

where i > 0 
(assignment statement) : := (Tx variable) : = ( r 2 expression) 

where r x and r 2 are given by column 7 of Table B . l 
(conditional statement) :: = 

if (logical expression) then (statement) 
| if (logical expression) then (simple statement) 

else (statement) 
(while statement) : := while (logical expression) do (statement) 
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A s discussed in Section A . l , the distinction be tween s t a t ements and 
simple s ta tements is m a d e to avoid ambiguit ies involving condi t ional state-
ments . The only context that requi res a s t a tement to be simple is the par t of 
the two-way condi t ional s t a tement be tween then and else. 

T h e empty s t a t emen t is simply an empty string of characters . Its execu-
tion leaves the s tate of the computa t ion unchanged . 

A block (excluding lower and uppe r bounds in immedia te ly enclosed 
array declara t ions) is the scope of the b inders in the declara t ions and label 
defini t ions tha t it immedia te ly encloses. Since these b inders have the same 
scope, they must be distinct identif iers . 

In the schema describing ass ignment s ta tements , the permissible values 
of the metavar iab les are descr ibed by co lumn 7 of Tab le B. 1. W h e n and r 2 

are pe rmi t t ed in this schema, r 2 is said to be assignment compatible with Tx. 
It is impor tan t to distinguish the th ree symbols = , : = , and :: = . T h e first 

is the re la t ional o p e r a t o r of equali ty, the second is the ass ignment ope ra to r , 
and the third is a symbol of the syntax-defining nota t ion , which never occurs 
in Algol W programs . 

Probably the most c o m m o n trivial syntactic e r ro r in Algol W is a 
misplaced semicolon. As ide f r o m its use within p rocedure declara t ion head-
ings, the semicolon plays two distinct roles: it marks the end of commen t s 
and it separa tes ad j acen t declara t ions and s ta tements in a block. In the lat ter 
role, it behaves m o r e like a c o m m a in English than a per iod . 

T o check tha t the usage of semicolons in a p rog ram is correct , first 
e l iminate all comments , including the semicolons tha t t e rmina t e the com-
ments . T h e n the re should be a semicolon a f te r every declara t ion, and af ter 
every s t a t emen t tha t is fo l lowed by ano the r s t a t emen t (or a label def ini t ion) , 
but no t a f t e r those s t a tements tha t a re fol lowed by end, else, a c o m m a , or a 
right parenthes is . 

B.1.5 Implicitly Declared Procedures 

(simple s ta tement ) :: = 
[ read | readon ]] ( [ ( r e a d paramete r ) ] ]^ ) 

| [ write | writeon ] ( [ (wr i t e p a r a m e t e r ) ] ^ ) 
| iocontrol ((integer express ion)) 

( read p a r a m e t e r ) : : = ( r variable) 
(wri te pa rame te r ) : : = (r expression) | (string) 
( integer pr imary) :: = 

[ entier | truncate | round ] ( ( r n u m express ion)) 
( real pr imary) :: = 

[ sqrt | exp | In | log | sin | cos | arctan ]] 
(<Tnum e x p r e s s i o n ) ) 
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(long real pr imary) :: = 
[ longsqrt \ longexp \ longln | longlog \ longsin 

| longcos | longarctan ]] ( ( r n u m express ion)) 
(logical pr imary) : : = odd ((integer express ion)) 

T h e ident if iers read, readon, write, writeon, and iocontrol a re implicitly 
declared p rocedure ident if iers denot ing built-in p rocedures fo r input and 
ou tpu t (whose mean ing is descr ibed in Append ix C). Thus the first p roduc-
tion above is actually a special case of t he genera l syntax fo r p rocedure 
s ta tements , which will be given in Section B.3.5. Similarly, t he remain ing 
identif iers above are implicitly dec lared func t ion-procedure identif iers , and 
the last four product ions are special cases of the genera l syntax for func t ion 
designators . 

T h e func t ions entier, truncate, and round provide three me thods fo r 
convert ing real n u m b e r s to integers. entier(x) gives the un ique integer i such 
that i<x<i + l. T h e n 

truncateix) = if x > 0 then entier(x) else -entier{-x) 
round(x) = if x > 0 then truncate(x + 0.5) else truncate{x - 0.5). 

Most of the remaining func t ions are single-precision and double-precis ion 
versions of c o m m o n e l emen ta ry func t ions f r o m mathemat ics . In and longln 
produce logar i thms to the base e, while log and longlog p roduce logar i thms 
to the base 10. 

Exercise 

1. In each of the following cases, we give a nonterminal symbol of Algol W along 
with a phrase that is supposed to be derivable from the nonterminal symbol, but 
that in fact contains one or more syntactic errors. In each case, correct the 
syntactic errors without changing the intuitive meaning, and without changing 
the form of the phrase more than necessary. In the first two cases, give a 
derivation tree for the corrected phrase from the designated nonterminal. 
Assume that nonlocal identifiers behave as though declared by integer k, n; real 
x, y. (Note that Greek letters, superscripts, and the symbols [, J, and | are all 
part of notation for abbreviating sets of productions, and should not appear in 
derivation trees.) 

(logical expression) 
(statement) 
(real expression) 
(statement) 
(statement) 

(statement) 

0 <k<n 
begin real z; z := x/—y\ end 
- 3 x ' - 3 x - 3 
n := n ** n 
if n > 0 then 

while n ^ O d o n := n — 1; 
else n := 1 
begin integer i, real z; 

begin i : = 0; z : = 1 end 
begin i :— i + 1; z := z div 2 end 

end 
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B.2 

T H E S Y N T A X O F A SUBSET OF A L G O L W 

SYNTAX FOR CHAPTER 2 

APPDX. B 

B.2.1 Array Declarations 

(declarat ion) :: = (array declarat ion) 
(array declarat ion) :: = 

r array |[(r array var iable (J*]]q) b inder) []™ 

([[(lower bound) :: (upper bound) J ^ ) 

( lower bound) : : = ( integer expression) 
(uppe r bound) : : = ( integer expression) 
( r array var iable ( a ) binder) : := ( r a r ray var iable ( a ) identif ier) 
(T array variable ( a ) identif ier) : : = ( identif ier) 

It is a syntactic er ror to use an n-d imens ional array in an ar ray desig-
na to r with the wrong n u m b e r of subscripts. T o m a k e this explicit in our 
syntax, we mus t include dimensional i ty as par t of the type of an array 
identif ier . For this pu rpose we will use a dimension list, which is a list of n > 1 
asterisks separa ted by commas . (This ra ther unusua l no ta t ion is chosen 
because of its similarity to specifiers fo r ar ray pa rame te r s . ) T h e s tandard 
symbolic metavar iab le a ranges over d imens ion lists. 

B.2.2 Variables and Expressions Involving Arrays 

( r variable) : : = ( r ar ray variable (1*1 Q)) ( [ [ (subscr ipt)]^) 
(subscript) : := ( integer expression) 
( t ar ray variable (a ) ) :: = ( r array var iable ( a ) identif ier) 
( r pr imary) : := ( r a r ray expression ( |*[]Q)) ([[(subscript)]n

Q) 
( r array express ion (a ) ) : : = (T array var iable ( a ) ) 

These p roduc t ions in t roduce an in tent ional ambigui ty . For example , 
Figure B.2 shows two der ivat ion t rees for a (real pr imary) of the f o r m 
(real a r ray var iable (*)) ((subscript)) . T h e first t r ee ref lects t he view tha t the 
value of the pr imary is the value of a variable tha t is ob t a ined by applying the 
array to a subscript . T h e second t ree ref lects the view that the value of the 
pr imary is ob ta ined by applying to a subscript the func t ion tha t is t he value of 
the ent i re ar ray. 

This ambigui ty is permissible since bo th der iva t ion t rees give rise to the 
same mean ing . It must be included to permi t t he full variety of p a r a m e t e r s 
discussed in Section B.3. 
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(real primary) 

(real variable) (1) 

(real array variable (•)) ((subscript)) 

(real primary) 

(real array expression (*)) ((subscript)) 

(real array variable (*)) 

Figure B.2 Two Derivation Trees for a (real primary) of the 
Form (real array variable (•)) ((subscript)). 

(2) 

B.3 SYNTAX FOR CHAPTER 3 

In Section 3.1.2, we c la imed that the use of ex tended specifiers insures tha t 
the copy rule will p rese rve syntactic correctness . In this sect ion, we give a 
syntactic descr ipt ion tha t is sufficiently formal to permi t this claim to be 
demons t r a t ed . In this descr ip t ion we use p roduc t ion schemas containing 
metavar iab les whose ranges are in tu rn descr ibed by product ions . This k ind 
of two-level g r a m m a r was invented by A . van W i j n g a a r d e n and first used 
extensively in the def in i t ion of Algol 6 8 [van W i j n g a a r d e n 69]. 

T o or ient the r eade r to the detai ls tha t follow, we begin with an explana-
t ion of why the copy rule p rese rves syntactic correctness . In this explanat ion 
we will ignore call by value and result . 

T h e set of ph rase types, which is the range of the metavar iab le 0, is 
de f ined by the p roduc t ions in Section B.3 .1 . Fo r each phrase type 0, t he re is 
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a nonterminal (0 binder) describing binders that establish 0, a nonterminal 
(0 identifier) describing identifier occurrences that are bound by a (0 binder), 
and a nonterminal (0) describing phrases of type 0. In Section B.3.5, we show 
that syntactic correctness is preserved by a type-correct substitution, which is 
a substitution that replaces free occurrences of (0 identifier), after appropri-
ate parenthesization, by phrases that can be derived f rom (0). Thus we must 
show that the substitution prescribed by the copy rule is type-correct. 

Consider a declaration procedure P{FL)\ S, where the formal parame-
ter list FL binds the formal parameters FX,... , FN. By the syntax of formal 
parameter lists, the type information in FL determines unique 6 1 , . . . , 6 n such 
that the occurrence of each FT in FL is a <0, binder), so that the binding 
structure insures that each free occurrence of F{ in 5 is a (0, identifier). At the 
same time, this syntax also establishes that (excepting the anomalous 
behavior of call by value) FL is a ( 0 ! , . . . , 6N formal parameter list). Then the 
syntax of procedure declarations establishes that P is a ( p r o c e d u r e ^ , ... , 
0„) binder), so that the binding structure insures that each occurrence of P 
bound by the procedure declaration is a ( p r o c e d u r e ^ , ... , 0„) identifier). 

Now suppose P(AX , ... , AN) is a procedure statement containing such 
an occurrence. Then the syntax for procedure statements establishes that 
AX , ... ,AN is a (0X , ... , 0„ actual parameter list), and the syntax of actual 
parameter lists establishes that each AT must be a (0,). Thus the substitution 

prescribed by the copy rule is type-correct. 

B.3.1 Phrase Types 

(phrase type) : := r variable | r expression 
var exp 

| r array variable ((dimension list)) 
var 

| r array expression ((dimension list)) 
exp 

| statement | procedure ((phrase type list)) 
| r procedure ((phrase type list)) 

(phrase type list) : := [(phrase t ype ) J 0 

(dimension list) : := 

The standard metavariables 0, tt, and a respectively range over the sets of 
phrase types, phrase type lists, and dimension lists which are described by 
these productions. The phrase type statement includes parameterless proper 
procedures, since the two notions are equivalent in Algol W. Similarly, the 
phrase type r expression includes parameterless r function procedures. 
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B.3.2 Formal Parameter Lists 

<[0JQformal parameter list) : := ( [0]^specif ier) 
(77, formal parameter list) :: = 

(77 formal parameter list) ; ([[flj^specifier) 
([ T variable ^ s p e c i f i e r ) :: = 

r [ {var} | result | value result ]| [ ( r variable b inder ) ]^ 
( | r expression specifier) :: = 

r [ {exp} | procedure J [ ( r expression binder)]]^ 
( | r expression }n

Qspecifier) :: = 

r value | ( r variable binder)]]^ 
([ T array variable (a ) |n

Qspecifier) :: = 
r array {var} [ ( r array variable (a ) binder) J j ( a ) 

( | r array expression (a) ^ s p e c i f i e r ) :: = 

r array {exp} [ ( r array expression (a) binder)]]^(a) 
([ statement specifier) :: = 

procedure [(statement b inder) ]^ 
([ procedure (77) ^ s p e c i f i e r ) :: = 

procedure [(procedure (77) binder)] |0 w 
([ T procedure (77) ^ s p e c i f i e r ) :: = 

r procedure [(T procedure (77) binder)]]Q M 

The schemas given above are complicated by the need to describe 
compound specifiers. The reader who has difficulty should first try to under-
stand the productions that are obtained by taking n= 1; these productions 
describe a sublanguage in which each specifier contains a single formal 
parameter . 

When n is restricted to one, the first two schemas imply that a (0 ! , . . . ,6n 

formal parameter list) has the form <0t specifier); ... ; (0„ specifier), and the 
remaining schemas imply that each (0, specifier) contains a (0, binder), along 
with appropriate information determining 0,. The only exception is r value F, 
which is a (T expression specifier) containing a (r variable binder). This 
reflects the fact that a formal parameter called by value can be used as a 
variable, e.g. on the left of an assignment statement, while the corresponding 
actual parameter can be an expression, e.g. a constant or compound expres-
sion. 

As an illustration of the description of compound specifiers, consider 
deriving the formal parameter list integer {exp} i, /'; real {var} x, y from the 
nonterminal symbol (integer expression, integer expression, real variable, 
real variable formal parameter list). The necessary productions are obtained 
from the following substitutions: 
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Tr —> integer expression, integer expression 
6 —* real variable 
n —* 2 

in the second 
schema 

6 —*• integer expression 
n 2 in the first schema 

in the fourth schema 

in the third schema 

The scope of the binders in a formal parameter list consists of the formal 
parameter list itself and the immediately following procedure body. Since 
binders with the same scope must be distinct identifiers, the same identifier 
must not occur more than once in the same formal parameter list. 

Although the parts of specifiers in curly brackets are used throughout 
this book, they are not actually part of Algol W and must be replaced by 
comments in real programs. Because of their omission from Algol W, certain 
syntactic errors are only detected during program execution. 

B.3.3 Procedure Declarations 

(declaration) : := (procedure declaration) 
(procedure declaration) :: = 

procedure (statement binder) ; (statement) 
| procedure (procedure (TT) binder) 

((77- formal parameter list)) ; (statement) 
| r procedure (r expression binder) ; (r expression) 
| r procedure (r procedure (n) binder) 

((7r formal parameter list)) ; (r expression) 

In general, a proper procedure declaration establishes the phrase type 
procedure(77) for the identifier that it binds, and a r function procedure 
declaration establishes the phrase type r procedure (N), where in each case 7T 
is determined by the formal parameter list. However, a parameterless 
proper procedure declaration establishes the phrase type statement, and a 
parameterless r function procedure declaration establishes the phrase type 
r expression. 

B.3.4 Binders and Identifiers 

These production schemas show that identifiers and their binders are 
classified by phrase type. Several particular instances of these schema have 
occurred in previous sections. 

(0 binder) : := (0 identifier) 
(6 identifier) : := (identifier) 
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Without additional restrictions, the second schema would lead to ambi-
guity. This ambiguity is resolved by the proviso that the phrase type of an 
identifier occurrence is determined by the type of the binder which binds it. 
More precisely, for each phrase type 0, the production (0 identifier) :: = 
(identifier) can only be used to described identifier occurrences that are 
bound by binders which are described by the production (0 binder) :: = 
(0 identifier). 

In a complete program, all f ree identifier occurrences must be implicitly 
declared identifiers. The type of such occurrences is given in Table B.3. The 
types of read, readon, write, and writeon are special cases, since these 
identifiers stand for "generic" procedures that can accept a variety of 
number and types of actual parameters. In the context of calls of write and 
writeon, string is an additional data type, so that strings can be used as 
constant write parameters, i.e. 

(string expression) : := (string) 

Implicitly declared identifiers cannot be used as actual parameters. 

Identifier 

entier 
truncate 
round 

sqrt 
exp 
In 
log 
sin 
cos 
arctan 

longsqrt 
longexp 
longln 
longlog 
longsin 
longcos 
longarctan 

odd 

read 
readon 

write 
writeon 

iocontrol 
intfieldsize 

Phrase Type 

integer procedure(real expression) 

real procedure(real expression) 

long real procedure(long real expression) 

logical procedure(integer expression) 

p r o c e d u r e ^ variable, . . . , rn variable) 
where and rx , ... , T„ G 

{integer, real, long real, logical} 
p r o c e d u r e ^ expression, . . . , r„ expression) 

where and r l 5 ... , T„ e 
{integer, real, long real, logical, string} 

procedure(integer expression) 

integer variable (See Sect ion C .2 ) 

Table B.3 Phrase Types of Implicitly Declared Identifiers. 
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B.3.5 Procedure Statements and Function Designators 

(simple s ta tement ) : : = ( s t a tement identif ier) 
( r pr imary) : : = ( r expression identif ier) 
( r a r ray expression (a) ) : : = ( r array expression (« ) identif ier) 
(simple s ta tement ) : : = (p rocedure s ta tement ) 
(p rocedure s ta tement ) :: = 

(p rocedure (77-) ) ((7r actual p a r a m e t e r list)) 
( p rocedure (77)) : : = (p rocedure (77) identif ier) 
( r pr imary) :: = ( r funct ion designator) 
( r func t ion designator) :: = 

( r p rocedure (77)) ((77 actual p a r a m e t e r list)) 
( r p r o c e d u r e (77)) : : = ( r p rocedure (77) identif ier) 
(0 actual p a r a m e t e r list) : : = (0) 
(77, 0 actual p a r a m e t e r list) :: = 

(77 actual p a r a m e t e r list), (0) 

T h e first two p roduc t ions show the contexts in which s t a t emen t and r 
express ion ident i f iers can occur ; such occurrences can be viewed as calls of 
pa ramete r l e s s p rocedures . T h e third p roduc t ion shows tha t ar ray expression 
ident i f iers can occur as array expressions in much the same way tha t simple 
express ion ident i f iers can occur as pr imaries . (The analogy would be be t te r if 
we could view these occurrences as calls of pa ramete r l ess " a r r a y " proce-
dures , bu t Algol W does not permi t p rocedures tha t r e tu rn array values. In 
fact , a r ray express ion ident i f iers are the only kind of ident i f iers tha t can be 
b o u n d by specif iers bu t not by declarat ions . ) 

T h e remain ing p roduc t ions describe p rocedure calls tha t conta in actual 
pa rame te r s . 

W e can n o w show tha t type-correct subst i tut ions preserve syntactic 
correctness : 

(1) Let 0 be any phrase type o the r than r expression or statement, and 
consider any occur rence of a 0 ident i f ier tha t is no t a b inder . A m o n g all 
the p roduc t ions we have given, the only p roduc t ion tha t can describe 
such an occur rence has the f o r m 

(0) : : = (0 identif ier) 

T h u s syntact ic co r r ec tnes s will be p r e se rved if the occu r rence is 
rep laced by any phrase tha t can be der ived f r o m the non te rmina l (0). 

(2) Cons ide r an occur rence of a r express ion ident i f ier tha t is not a 
b inder . T h e only p roduc t ion tha t can descr ibe such an occur rence has 
the f o r m 

( r pr imary) :: = ( r expression identif ier) 

T h u s the p roduc t ion 

(R p r imary) : : = ((T express ion)) 
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shows that syntactic correctness will be preserved if the occurrence is 
replaced by (E) , where E is any phrase that can be derived f rom 
(T expression). 

(3) Consider an occurrence of a statement identifier that is not a 
binder. The only production that can describe such an occurrence is 

(simple statement) : := (statement identifier) 

Thus the productions 

(simple statement) : := (block) 
(block) : := begin (statement sequence) end 
(statement sequence) : := (statement) 

show that syntactic correctness will be preserved if the occurrence is 
replaced by begin S end, where S is any phrase that can be derived from 
(statement). 

In summary, any nonbinding occurrence of (0 identifier) can be replaced by 
any phrase derived f rom (0), providing that the phrase is parenthesized if 0 is 
r expression, enclosed in begin ... end if 0 is statement, and left unchanged 
otherwise. 

In real Algol W, the parameter matching rules for call by value and 
result are slightly more relaxed than is indicated by this syntactic description. 
Consider a procedure statement or function designator beginning with an 
identifier that is bound by a procedure declaration containing the specifier r i 
value. Then the corresponding actual parameter may be a phrase of type r 2 

expression, where r 2 is assignment compatible with Tx (i.e. where r i and r 2 

are permitted by column 7 of Table B . l ) . Similarly, for the specifier Tx result 
the corresponding actual parameter may be a phrase of type r 2 variable 
where Tx is assignment compatible with r 2 , and for the specifier Tx value 
result the corresponding actual parameter may be a phrase of type r 2 

variable, where Tx and r 2 are each assignment compatible with the other. The 
general intent is that rx and r 2 must insure the syntactic correctness of the 
initial and final assignment statements in the expansion of the procedure 
body caused by call by value or result. 

In our formal syntactic description, we have ignored this relaxation of 
the parameter matching rules, since its formulation would introduce exces-
sive complications. 

Exercise 

1. Give a derivation tree for the following block: 

begin real array Af(l::10); 
procedure P(real array {exp} Y(*); real {var} Z); Z := Y( 1); 
p(x, m ) 
end 
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B.4 SYNTAX FOR CHAPTER 4 

B.4.1 The for Statement 

(statement) : := (for statement) 
(for statement) : := for (integer expression binder) : = 

[[(lower bound) until (upper bound) 
| (upper bound) step - 1 until (lower bound)] 

do (statement) 

The scope of the binder in a for statement is the for s tatement itself, 
excluding lower and upper bounds. Note that, since the identifier occur-
rences bound by this binder have type integer expression, they cannot be 
assigned to within the body of the for statement. 

B.4.2 Labels and goto Statements 

(statement sequence) : := (statement) 
| (statement) ; (statement sequence) 
| (label definition) (statement sequence) 

(label definition) : := (label binder) : 
(label binder) : := (label identifier) 
(label identifier) : := (identifier) 
(simple statement) : := (goto statement) 
(goto statement) : := [ goto | go to ] (label) 
(label) : := (label identifier) 

The first production replaces the production for (statement sequence) 
given in Section B. l .4 . 

The scope of a label binder is the immediately enclosing block, with the 
usual exclusion of array bounds. 

The syntax permits a label to be attached to the end of a block, so that 
jumping to the label f rom within the block causes an exit f rom the block, e.g. 

begin ... finish: end 

Strictly speaking, finish labels an empty statement that is the last statement 
in the block. 

Although it is consistent to regard label as an additional phrase type, 
Algol W is anomalous in this regard. Although labels are represented by 
identifiers, they cannot be used as formal or actual parameters. In practice, 
this limitation does not cause difficulties since, in any situation where a label 
parameter would be useful, one can use a goto statement as a statement 
parameter instead. 



APPENDIX 
INPUT AND OUTPUT IN ALGOL W 

In this appendix we describe enough of the input and output facilities of 
Algol W to permit the writing of complete programs for testing and using 
simple algorithms. Input-output is the main aspect of Algol W that , although 
adequate for teaching purposes, is insufficient to support many practical 
programming applications. Except for the possibility of combining Algol W 
programs with F O R T R A N or machine-language subroutines, the only input 
which can be read by an Algol W program is a sequence of punched cards, 
and the only output which can be written is a sequence of printed pages. (Of 
course, the program really reads images of cards and writes images of pages 
which are stored on magnetic disks or tapes, but this fact is irrelevant to the 
programmer . ) 

There are two fundamental ly different facilities for reading cards. One 
method treats the input as a sequence of data items, each of which denotes a 
numerical or logical value. The other method , not described here, t reats the 
input as a sequence of individual characters. There is a similar dichotomy of 
output facilities; in this case we will say enough about character-oriented 
output to permit the printing of titles and headings. 

4 1 3 
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C.I INPUT 

The input to be read by an Algol W program must be contained on a deck of 
punched cards that is separate f rom the program itself. In contrast to the 
program, all 80 card columns are used. For most purposes, the separation 
between cards is ignored; for example, a data item can start on one card and 
finish on the next. 

Except for string-oriented input, the input data is a sequence of items 
denoting numerical or logical values. The format for each data item is exactly 
the same as for numerical or logical constants in a program, except that 
numerical items can be prefixed with an optional + or - sign: 

(data item) : := [ | + | - J < T n u m constant) | (logical constant) 

Adjacent data items must be separated by one or more blanks, while 
individual data items must not contain blanks. 

The data items in the input sequence are read, in order, by a succession 
of read operations. Within the program, the statement 

readon ( [(read pa ramete r ) ]^ ) 

where 

(read parameter) :: = (r variable) 

performs one read operation for each parameter , f rom left to right. Each 
operation reads one data item from the input and makes it the current value 
of the corresponding parameter . Corresponding data items and parameters 
must be assignment compatible, i.e. their types must satisfy the following 
relationship: 

read parameter data item 

integer integer 
real integer, real, or long real 
long real integer, real, or long real 
logical logical 

The implicitly declared identifier read may be used instead of readon. 
The only difference is that, before the first data item is read, the input 
medium will be advanced to the first column of the next card, unless it is 
already positioned at the first column of a card. This facility has a potential 
for inadvertently skipping data items, which makes its use inadvisable. 

If a program attempts to read beyond the end of the input data card 
deck, it is terminated with an error message. Regrettably, there is no way in a 
program to test whether the input has been exhausted. 
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C.2 OUTPUT 

A statement of the form 

| write | writeon J ([(write parameter)]]^) 
where 

(write parameter) : := (r expression) | (string) 

causes the value of each parameter , f rom left to right, to be printed as a data 
item. 

Suppose that the printed representation of a data item uses n characters. 
Then, according to the type of the corresponding write parameter , this 
printed representation will be preceded and followed by blanks: 

type number of blanks on left number of blanks on right 
integer intfieldsize — n 2 
real 1 4 - n 2 
long real 22 -n 2 
logical 6 -n 2 
string 0 0 

Here intfieldsize is an implicitly declared integer variable that can be set by 
the program to determine the width of printed integer data items; if it is not 
reset its value will be 14. Note that, aside f rom the possibility of resetting 
intfieldsize, the total width of the character sequence printed by a nonstring 
write parameter is determined by the parameter itself, independently of the 
data being printed. An at tempt to print an integer data item such that 
n > intfieldsize will cause an asterisk to be printed. 

Scale factors are only used in the printing of real and long real numbers 
with very large or very small magnitudes. Strings are printed exactly as 
written, except that the enclosing quotation marks are removed, and the 
pairs " " are replace by single quotation marks . 

For example, the statement 

write('" " T E S T " " = " , 25, -25 .0 , 25'9, true) 

would print the following sequence of characters: 

" T E S T " = @ 25 (7) - 25 .00000 ® 2 .500000 '+10 (4) T R U E © 

where the circled integers indicate numbers of blank spaces. 
In printing, characters are divided into lines of up to 132 characters, and 

lines are grouped into pages of up to 60 lines. The following rules determine 
when a data item (including its preceding blanks) will begin a new line or 
page: 

(1) A data item will begin a new line if the item (including the 
blank spaces placed on its right) will not fit into the remain-
ing space of the current line. 
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(2) A new line will begin a new page if it will not fit into the 
remaining space of the current page. 

(3) The first data item printed by each execution of a write 
statement (as opposed to writeon) will begin a new line. 

(4) An execution of the statement iocontrol(2) will cause the 
next data item to be printed to begin a new line. 

(5) A n execution of the statement iocontrol(3) will cause the 
next data item to be printed to begin a new page. 

The use of iocontrol(2) is illustrated by the following complete program 
for printing the squares of the integers 1 to 100: 

begin integer n ; 
write ('THE F IRST H U N D R E D S Q U A R E S " ) ; 
iocontrol( 2 ) ; 
n := 0; 
while n # 100 do begin n := n + 1; writeon(nXn) end 
end 

Performing iocontrol(2) forces the first execution of writeon(n x n) to begin 
a new line. Thereaf ter , the lines are filled out with integers. 

C.3 AN EXAMPLE OF A COMPLETE PROGRAM 

Consider writing a complete program for testing a statement that computes 
factorials. More specifically, the program is to execute some number of 
"cases", where each case consists of reading an integer, computing its 
factorial, and printing the integer and its factorial. Even though this is a 
rather vague specification, it is useful to construct the program in a top-down 
fashion. 

The first step is to determine the number of cases and iterate over them. 
The simplest approach is to require the first input item to be a count of the 
number of cases. Then we have 

begin integer cases; 
readon(cases); 
"Write heading"; 
{whileinv: cases is the number of cases yet to be done} 
while cases > 0 do 

begin 
cases : = cases - 1; 
"Process one case" 
end 

end 
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We have included a step that prints a heading for the output, but we 
postpone the details until we see what the output for each case will be like. 
Note that the concept of an invariant assertion is still valid, even though the 
assertion has been written in English. 

At first sight, one might expect the following form for "Process one 
case": 

"Read input" ; 
"Compute Factorial"; 
"Write ou tpu t" . 

But this neglects the possibility that the factorial may be undefined for the 
input value. A better plan for "Process one case" is: 

begin integer n; 
readon(n); 
if n<0 then "Process invalid input" 
else "Process valid input" 
end 

Then "Process valid input" expands easily into 

begin long real / ; 
" S e t / t o «!" ; 
write (n, short / ) 
end 

Here we have chosen to m a k e / a long real variable, since the factorial 
function can easily exceed the range of an integer variable. To insure 
adequate accuracy, we c o m p u t e / i n double precision, but print it in single 
precision. Then " S e t / t o n!" is simply the program given in Section 1.3.1, 
except that / is a long real variable rather than an integer variable. (Of 
course, we are lucky that we do not have to modify this program to accompl-
ish the change in arithmetic.) 

Next we fill in "Process invalid input" : 

write{n, " (5) U N D E F I N E D " ) . 

The circled integer indicates the number of blanks; it is chosen to make 
U N D E F I N E D line up (on the right) with the values o f / p r i n t e d for valid 
cases. Finally "Write heading" can be filled in with 

write(' ® N (D F A C T ( N ) " ) ; 
write (" ") . 

The blanks in the first statement are chosen to line up N and FACT(N) with 
the values of n a n d / p r i n t e d for valid cases. The second statement inserts a 
blank line between the heading and the lines for each case. 
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The complete program is 

comment Test Program for Factorial Computat ion; 
begin integer cases; 
readon(cases)\ 
comment write heading; 

write(' ® N <D F A C T ( N ) " ) ; 
write(' "); 

{whileinv: cases is the number of cases yet to be done} 
while cases > 0 do 

begin 
cases : = cases - 1; 

begin integer n\ 
readon(n)\ 
if n < 0 then 

comment process invalid input; 
write(n, " (5) U N D E F I N E D " ) 

else comment process valid input; 
begin long real / ; 
{ n > 0} 

begin integer k; 
k := 0 ; / : = 1; 
{whileinv: f=k\ and 0 < k < n } 
while k ^ n do 

begin k := k + l;f:= kxf end 
end; 

{ / = « ! } 
write(n, short / ) 
end 

end 
end 

end 
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Exercises 

1. Write a complete program to read the number of cases to be performed and then, 
for each case, read a real number x and an integer n, and output 

(a) The values of x and n. 
(b) xn, computed by evaluating the expression x**n. 
(c) xn, computed by one of the slow algorithms in Exercise 1 after 

Section 1.3.3. 
(d) xn, computed by one of the fast algorithms in Section 1.3.5. 
(e) A count of the number of multiplications performed by the fast 

algorithm. 

Provision should be made for giving an error message if n < 0 . 

2. Write a procedure for producing a readable table of a real function of two 
arguments. The procedure should have the form 

procedure printtable(integer value nx, ny; 
real value minx, miny, stepx, stepy, 
real procedure / {real exp, real exp} ); ... . 

The procedure should tabulate f(x, y) for 

x = minx + i x stepx where i e [O nx-1| 
and 

y = miny + j x stepy where /' e |0 ny-1| . 

The table should be organized into rows and columns so that each value of x 
corresponds to a row, and appears at the left of the row, and each value of y 
corresponds to a column, and appears at the head of the column. 

This problem becomes harder if ny is so large that the table is wider than the 
paper on which it is printed. In this case, one can print out the table as a sequence 
of vertical strips which can be pasted together. 
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58, 
proper procedure, 157-60, 

181,207-10,406,408, 
inference rule, 228-43, 

231-32 ,246-50 ,249, 
347,368, 

simple variable, 53-54,69, 
398, 

inference rule, 226-27, 
251. 

Decreasing order, 103,144. 
Deletion, 308-9 ,313-14,334, 

344. 
Depth, 189-90. 
Depth-first search, 315, 

recursive program, 363-68 . 
Derivation, 384,see also 

Inference rule. 
Derivation tree, 222,385, 

385-91 ,398-99 ,403 , 
404-5,411. 

descend (procedure), 342-43 , 
349. 

Describes, 205. 
Diagram, 7 8 - 8 5 , 2 8 6 - 9 0 . 
Difference,see Subtraction. 
Differentiation, 68-69. 
Dijkstra, E. W., 1,7,22,32,185, 

271,272,289,325. 

Dimension list, 172,182-83, 
404,406. 

Direct semantics, 210. 
Direct substitution, 84. 
Directed graph, 299-301, 

324-25 ,335-36. 
Discharging assumptions, 

227. 
Disjoint, 81. 
Disjoint union, 131,131-34, 

136,139. 
Disjunction of specifications, 

inference rule,52,221. 
Distance,see Minimum 

distance. 
div, 14,59,70,107,399. 
Dividing line, 83. 
Division, 14,59,70,107, 

399-401, 
programs, 13-14 ,27-30 ,35 , 

307. 
do, 5,259,401,412. 
dom, 79,95,see also Domain. 
Domain: 

of array, 74,75,79,149,256, 
309, 

of funct ion ,95,96-98,112. 
Domain constancy, inference 

rule, 256. 
Double precision, 63-65, 

69-71,401,417. 
downgood (procedure), 338. 
Duplicate values, 103,308, 

318, 
program for removing, 118. 

Dynamic array allocation, 
75-76. 

Dynamicscope, 54. 

Edge, 299 ,324-25 . 
Efficiency,see Execution time, 

Storage. 
Element, of array, 74. 
Elementary function, 402-3 , 

409. 
eliminatehole (procedure), 

347. 
else, 3,16,399,401. 
van Emden, M. H., 281. 
Emptyarray,75,97. 
Empty function, 97 ,98,134, 

141-42. 
Empty set, 8 0 , 8 2 , 9 0 , 9 7 - 9 8 , 

150,218. 
Empty statement, 51 ,272-73, 

401-2,412, 
inference rule, 51,221. 

end, 4,401. 
Endl ine ,83 . 
entier (procedure), 402-3 ,409. 
Enumerat ion, 308-9,310, 

312-15,317-18,334, 
375. 
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Environment, 203-10,204, 
221,275. 

Equality, 15-16,74,95, 
399-401,402. 

Equivalence, 41,100,122,363. 
Erasure,83. 
Error, 61, 

input, 65-68,414,417-19, 
numerical, 61-69,71, 
parameter matching, 

160-61,167, 
propagation, 65-69, 
subscript, 61,74-75,77, 

87-88,112,128,171, 
251,375, 

syntactic, 10-11,396,403, 
408, 

Evaluation, avoided or 
repeated, 129-30, 
170-71,181,240-43. 

Exchange, 114,115-17,119, 
122-23,125-26,146, 
174,362,see also swap. 

Execution time, 32-34,107, 
114,160,170,172,173, 
177,187,189-95, 
197-99,200-1,286, 
291,294,305,308-10, 
313,316-17,332,334, 
348,356,361-62,368, 
382. 

Existential quantifier,see 
Quantifier, 

exp, 161-63,173,180,182-83, 
406-7. 

Exponential function, 402-3 , 
409, 

program, 71. 
Exponentiation, 70,401, 

program, 26-27,166-67, 
265,419. 

fast, 30-35,201,281-86, 
288-90,294,419, 

proof, 226,228,239. 
Expression, 12,14-16,15, 

70-71,161-63,180,182, 
205,214,388-91, 
399-401 ,404-5 ,406 , 
410, see also 
Conditional expression, 
Function designator, 
Lambda expression, 
Relation, 

array, 114,173,183,216, 
404-6,410, 

block, 180-81,395, 
logical,3,15,20,24,212, 

401. 
Expression-like, 215,215-16, 

222. 
Extended specifier, 161,173, 

177-78,180,182,202, 
396,405,408. 

Factorial, programs, 17-22,89, 
109-10,201,264-65, 
416-18, 

procedures, 163-67,168-69, 
172,184-85, 

proof,113,224-25,227, 
232-39,253-56. 

Factors, program for finding, 
118. 

false, 8,15,41,219-20,401. 
father (procedure), 336, 

347. 
Fibonacci numbers, programs, 

36-37,111,187, 
proof, 47,48,49-51. 

Final state, 205. 
Fixed point representation, 

61-62. 
Fixed-point theory, 210, 

250. 
Floatingpoint 

representation, 
62-65,69. 

Flowchart, 7 -10 ,38-42 ,286 . 
Floyd, R.W., 38,43,155,290, 

325,334,351. 
for statement, 259-62,259-71, 

280,412, 
binding by, 182,260-61,412, 
bound-altering, 266-67, 
descending, 270-71, 
inference rules, 262-71,263, 

267,270, 
invariant, 262-66,264,271, 
set-iterating, 303,316, 

365-66, 
inference rule, 307,368, 

variants, 262,266-69. 
forinv, 262-66,264,271. 
Formal definition, 172, 

204-10,213-17. 
Formal parameter, 158-59, 

160-70,181-83,207, 
278,406,407-8,412, 

binding by, 159,182-83,244, 
406,408. 

FORTRAN, 148,171,260, 
413. 

Free occurrence, 56,159,213, 
222,302,409. 

Free substitution, inference 
rule,211,219,221. 

Function, 95 ,95-98,102-3 , 
108,112-14,119-24, 
130-34,136,137-42, 
150,204, 

as array value, 95-96, 
112-14,149,404. 

Function designator, 180,182, 
402-3,410. 

Function procedure, 157, 
180-83,201,216, 
402-3,406-10, 

inference rule, 257,258. 

Gadbow, W. J., 137,195. 
General invariant, 283,284, 

285,302,304,311, 
354. 

Generic procedure, 409. 
geninv, 284, see also General 

invariant. 
Gentzen, G., 214. 
Ghost identifier,see Identifier. 
Ghost parameter, 230,232, 

237-38,241-43,337, 
352,365. 

Global invariant, 370. 
Global occurrence, 159, 

164-67,182,215-16, 
232,239,245. 

goleft (procedure), 338. 
Good array designators, 

inference rule, 252, 
252-55. 

Good variable, 216-17,223, 
226,233,251, 

inference rule, 248,252. 
goright (procedure), 338. 
goto 210,272,272-95,307, 

342,412, 
inference rule, 276-81, 

277-78. 
Grammar, 390. 
Graph, 95, see also Directed 

graph. 
Greatest common divisor, 

program, 38. 
Greekletter, 393,396. 
Gries, D., 29,203,294,306. 
Group, 121 
gv, 216-17, see also Good 

variable. 

Heap, 310,334,334-54. 
Heap (assertion procedure), 

338. 
Higher-order procedure, 

177-81,179,183,187, 
203-4 ,240-43,316-18, 
323-24. 

Hoare,C. A .R . ,20 ,43 ,60 , 
112,195,198,203, 
240,262,275,298, 
307,315,395. 

Hole, 110,124,339-42, 
344-45,353. 

IBM 360/370,59,63-65,396. 
Idealized computer, 60-61. 
Identifier, 14,163,204-5,213, 

222,397-99,406, 
408-9, 

collision, 91-92,159, 
163-65, 

control, 261, 
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ghost,29,110,123,230,232, 
237,241, 

implicitlydeclared,55,395, 
396,398,402-3,409, 

primed, 164. 
Identity function, 119,119-20, 

121,138. 
if, 3,16,399,401. 
Image, 97,97-100,114,120, 

123,133,138,141-42. 
Immediate successor, 300, 

316-18. 
Implication, 41,52,103,210, 

213-14 ,218-19,223-24. 
Implicit declaration,see 

Identifier. 
implies, 103,171,180,214, 

219-20. 
Inclusion, of relations, 99,100, 

104. 
Increasing order, 102-3,212. 
Increasing zero, program, 

108-9. 
Independence, of assertions, 

283,292. 
Indeterminacy, 289,289-90, 

292-94,298,302,303, 
307,313-14,328,348, 
354, 

of specifications, 95,145-46. 
Indivisible action, 283,285, 

304. 
Induction, on tree depth, 

191-93. 
Infer, 43. 
Inferencerule ,42-52,55,58, 

112,150, 
in specification logic, 

217-24,226-27, 
231-32,246,248-49, 
251-53,256,257,263, 
267,270,277-78,307, 

derivation, 219,223-24, 
248-52,256,258, 
267-69,307. 

Infinity, 3 7 7. 
Injective, 108,120,121. 
Input, 402-3,409,413-14, 

416-19. 
Input-preserving program, 29, 

110,155. 
Insertion, 308-9,313,334, 

345. 
Instance,43,217. 
Integer, 14-16,54,58-60,394, 

397-98,414-15. 
integer set (data type), 213, 

253,263,348. 
Integration, notation, 91. 
Interchange,see Exchange. 
Interference, 166,166-7 3, 

176-77,188,203-6, 
210-11, see also 

Specification of 
noninterference. 

Intermediate line, 82,83. 
Intersection, 66,131,138,141, 

of array with interval, 
program, 142-43, 

of arrays, program, 137,143, 
of function with set, 140, 

140-43,146. 
Interval,78,124,259-60, 

262, 
diagram, 78-80 ,79,81-82, 

85-88,213,253, 
262-63. 

Invariant, 281. 
of for statement, 262-66, 

264,271, 
general, 283,284,285,302, 

304,311,354, 
global and local, 370-71, 

representation, 311,315, 
of while statement, 18, 

20-21,23,25,31,48-49, 
51,417. 

Inverse, 120,120-22,337. 
Irregular, 80,87,262,264. 
iterate (procedure), 178-79, 

243-45,262. 
Iteration, 5 ,199-200,259-60, 

271,see also Set. 

Jensen's device, 171,241-43, 
246-47. 

Jones,C.B. ,298,315. 

Key, ordering by, 144-48,201. 
Knuth, D. E., 200,363. 

L-value,204. 
Label, 210,272,272-95,342, 

412, 
binding,272,412, 
inference rule, 276-81, 

277-78. 
Lambda calculus, 56,244. 
Lambda expression, 243-47, 

244 ,316,320. 
Landin, P. J., 202,204. 
Left shift, program, 110,114, 

124,136. 
leftson (procedure), 336,347. 
Length, 130,324. 
Less than, 108. 
Levin, G., 29,203. 
Lexicographic ordering, 132, 

136. 
Linear search, program, 100-2 

273-75,278-81,308. 
LISP,56,130,201,245. 
Local invariant, 371. 
Local variable, 52-55,53,168, 

172,194. 
Logarithm, 34,402-3,409. 

logical, 15,54,394. 
Logical word, 59. 
London, R.L. , 203 
long, 401. 
long real, 69-71,394. 
Longest run, program, 109. 
Lower-case letter, 12,396. 
Lucas, P., 306. 

McCarthy, J., 112,155,201. 
Macro, 157,160. 
Map, 95. 
Mathematical facts, 45-46, 

219-20, 
inference rule for 

introducing, 219. 
Maximum finding, program, 

93-95,99-100,102, 
115-17,174-75, 
265-66. 

Meaning, 162,203-10, 
213-17,275,386-88. 

Membership, 308-9. 
Memory, 58,see also Storage. 
Merging, programs, 127-30, 

176-77,187-89, 
291-94, 

withkeys,145, 
with overwriting, 137,195, 
proofs,135,146-48, 
strict, 137. 

Metavariable, 43,217,392-94, 
396,405. 

Min,379. 
Minimax of an array, program, 

150-55. 
Minimum and maximum 

finding, program, 95. 
Minimum distance, 324, 

program, 325-51,362. 
Modus ponens, inference rule, 

218,221. 
Monoid, 121,134. 
Monotone, 108,121,121-22, 

338. 
Monotonicity argument, 107, 

108,189,197. 
Morris, F.L., 82,95. 
Multidimensional array, 

148-49 ,148-50. 
Multiple-source, 301,325. 
Multiplication, 14,68,70-71, 

399-401, 
programs, 27,35. 

Myhrhaug, B., 298. 

, Naur,P.,38,157,383. 
Negation, logical, 15,90,214, 

401. 
Node, 299,301,319-21. 
Noninterference decompo-

sition, inference rules, 
222. 
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Nonterminal symbol, 384,392, 
396. 

Normalization, 63. 
Numeric metavariable, 

393-94,396. 
Numerical analysis, 69. 
Nygaard,K. ,298. 

odd (procedure), 15-16,213, 
403,409. 

One-dimensional array, 74. 
One-to-one correspondence, 

see Bijection. 
Open subroutine, 160. 
Operator, 14-15,399-401. 
or, 15,129-30,214,399-401. 
ord, 103,see also Ordered 

function. 
Order of magnitude, 33-34, 

107,160,198. 
Ordered array,see Ordered 

function. 
Ordered function, 102-4,103, 

108,120,123-24,133, 
144,212,309. 

Ordering relation, 15,82,98, 
100,102-4,108,132, 
136,144,336,396, 
399-401. 

Output ,402-3,409,413, 
415-16,416-19. 

Overflow, 34,59,60-61,65, 
261,280. 

0wicki , s . ,306 . 

pa, 167,see also Parameter 
assumption. 

Painter, J., 112. 
Pair, 131. 
Parallel computation, 168, 

289-90. 
Parameter, 158-59,158-83, 

278,405-10. 
Parameter assumption, 166-67, 

176,226,229,233,240, 
366. 

Parameter matching, 160-63, 
180,202,391,396, 
405-6,411. 

Parameterless procedure, 178, 
180,182-83,406,408, 
410. 

Pardee, O .O 'M. , 144. 
Parenthesization,4-5,21,92, 

410-11. 
Parser, 201-2,390. 
Partial order, 100,336. 
Partition, 81 ,82-83 ,303-4 , 

363,382, 
diagram, 79-88,80-81, 

103-4,134,262, 
program, 125-26,148,175, 

196-97,200,271,295. 

Pascal, xii, 148,157,178. 
Path, 300,321,324-25, 

cyclic, 336,364,373, 
T-free, 364,364-65. 

Path finding, programs, 
321-24,333. 

Permissible, 275,288. 
Permutation, 121. 
Phrase class name, 384. 
Phrase type 162-63,182-83, 

204-5,211-13,217,278, 
302,405-6. 

Physical word, 59. 
PL/1,16,56,114,171. 
Pointwise extension, 98, 

98-100,103-4. 
Position, 336,347-48. 
Precedence, 390. 
Precedent, 20. 
Predecessor, immediate, 

307-8 ,334. 
Predicate calculus, 89. 
Preimage, 137,137-43,146, 

379. 
Premiss, 43,217. 
Preorder,100. 
Primitive operation, 297, 

308-10,320. 
Problem-oriented type, 144, 

213 ,297-98 ,301,320, 
321,336,369. 

Procedure, 157-202,158-60, 
181-83 ,203-4,207-10, 
212,215-16,243-45, 
405-11, 

built-in, 16,395,402-3,409, 
414-16, 

implementation, 160,172, 
inference rules, 228-43, 

231-32 ,246-50 ,249, 
257 ,258. 

Procedure assumption, 
228-32. 

Procedure parameter, 177-79, 
180,182-83,243,407, 
409. 

Procedure statement, 157, 
158-60 ,182,207-10, 
233-34 ,402-3 ,406 , 
410. 

Product, 131,149-50,171, 
of interval, program, 89. 

Production, 384,396. 
Production schema, 392-94, 

405. 
Program proving, xii, 42, 

51,172,181,201, 
203-4. 

Propagation of errors, 65-69. 
Proper procedure, 157-60, 

181-83,207-10, 
215-16,402-3, 
405-10, 

inference rule, 228—43, 
231-32 ,246-50 ,249, 
347,368. 

Punchedcard, 396,413-14. 

Quantifier, 78 ,89,89-93, 
162-63, 

binding by, 89,162-63, 
introduction and removal, 

inference rule, 219, 
of specification, 214,216, 

219,223-24. 
Queue,314-15. 
quicksort (procedure), 

195-200. 
Quotation mark, 398,415. 
Quotient, 14,134. 

Radix, 58. 
Range information, 20 ,26 ,40 , 

264. 
Reachability, 300,336,363, 

364 ,364-65, 
program, 301-8,310-24, 

328 
real, 69-71,394. 
Real number, 61-71,397-98, 

414-15. 
Real-time programming, 60, 

198. 
Realignment, 119,122,122-24, 

130,132,133-36,139, 
141-42. 

Rearrangement, 119,122, 
122-23,131,133-35, 
139-42, 

stable, 146,146-48,195,198. 
Record, 144,201,298,395. 
Recursion, 160 ,184,184-202, 

209-10,231-32, 
235-36,239,250,258, 
280-81,323-24, 
363-82, 

mutual, 195,232. 
Recursive function, 201. 
Redex, beta, 244,246. 
Reductio ad absurdum, 

inference rule, 219. 
Redundant testing, 34,130, 

282,292,294. 
Reflexivity, 100,104,108,122, 

336. 
Regular, 80,82,262,269. 
Relation, 15,98-100,102-4, 

396,399-401. 
Relative error, 62 ,66-68. 
rem, 14,59,70,399. 
Remainder, 14,see also 

Division. 
Removing duplicate values, 

program, 118. 
Removing squares, program, 

144. 
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Renaming,see Alpha 
conversion. 

repeat (procedure), 178, 
240-41. 

Repetition, in productions, 
392 ,394,396. 

Replication, 83. 
Representation, 298,319-21, 

322-24,347-49,382, 
ambiguous, 298,379, 
compound, 298,315,377, 
decoupling, 303,310, 
incomplete ,298 ,323,348, 
invariant,311,315, 
of numbers, 5 8-65, 
redundant, 310,315,377, 
of sets, 308-18,334,375-82. 

Reserved word, 12,396, 
397-98. 

Restriction, 96,96-100,103-4, 
114,120,131-34, 
138-42. 

Result, of function, 95. 
result, (specifier), 169-70,407. 
Retrieve function, 315. 
Reynolds, J. C„ 78,203,250, 

281. 
rightson (procedure), 336,347. 
Rimkus,C.J., 108-9. 
rnd,61. 
root, 336,347. 
round (procedure), 402-3,409. 
Roundoff, 61-62. 
Row, 149,150. 
Rule of inference,see Inference 

rule. 
Run, program for finding 

longest, 109. 

S-expression, parser, 201-2. 
Satisfies, 205. 
Scale factor, 70,397,415. 
Scaling, 62. 
Schema, 392-94,405. 
Scope, 53-54,56,75-76,see 

also Binding. 
Search,see Binary search, 

Depth-first search, 
Linearsearch. 

Segment, 76,80,96,150. 
Self-implication, inference 

rule, 218. 
Semantics, 172,204-10, 

213-17. 
Semicolon, 162,396,398,402. 
Separating assumptions, 

inference rule, 218. 
Sequence, 130,148,205-6. 
Sequence concatenation, 130, 

131-33,136. 
Set: 

iteration over, 303,308-10, 
316-18, 

representation, 308-18,334, 
375-82. 

set (data type), 301. 
set of sets (data type), 369. 
Shift, 124,see also Left shift. 
short, 401. 
Side effect, 181. 
Simple assignment, inference 

rule, 44,47-48,91, 
111-12 ,223 ,226 ,248. 

Simple parameter, 162,170, 
182,407. 

Simple statement, 386-88, 
401-2. 

Simple variable declaration, 
53-54,69,398, 

inference rule, 226-27,251. 
SIMULA 67,298. 
Simulation, 326-28 ,328,347. 
Single-argument function 

variation, 112-14,120, 
122-23,150. 

Single precision, 63-65,69-71, 
401,417. 

Single-source, 301,325. 
Single-source single-sink, 

307-8,315,324,334. 
Singleton set, 79,98-99,103, 

122. 
Sites, R.L. , 180,261,395. 
Size, 79-80,82-83,98,103, 

131,140,150,308-10, 
of problem, 185,186,187, 

195,200. 
Smallest factors, program, 

118. 
SNOBOL, 56. 
Sorting, programs: 

using a heap, 351-62, 
by insertion, 118,123,148, 

362, 
by maximum finding, 

115-18,119,123,124, 
148,174-75,271, 

by merging, 187-95, 
by partitioning, 195-200, 
by range partitioning, 200-1. 

Specification, 19-23,24, 
39-40 ,203-4 ,206 , 
210-17, see also 
Inference rule, 

of good variable, 216-17, 
223,226,233,248,251, 
252, 

implication, 210,213-14, 
218,223-24, 

indeterminate, 95,145-46, 
limitations of, 22 ,87-88, 

251, 
ofnoninterference, 166-67, 

176,206-7,210,214-16, 
221-23,226,230-31, 
234,251,252-53, 

quantified, 214,216,219, 
223-24, 

of statement, 20,24,39,206, 
213,275-76, 

of static assertion, 213,219-20, 
241-43,253,257, 

universal, 203,210,210-11, 
217,220. 

Specification logic, 203-4, 
210-58,263-64, 
266-71,275-81,307, 
347,368. 

Specifier, 160,160-63,167,169, 
172-73,177-78, 
180-83,207,226, 
407-8, 

binding by, 159,182-83,244, 
406,408. 

Square, program for finding 
largest, 155. 

Square removal, program, 144. 
Square root, 402-3,409, 

programs, 30,35. 
Stability, 146,146-48,195,198. 
Stack,314. 
Standardform,79,81. 
Standard metavariable, 394, 

406. 
Standard ordering, 98,108, 

132,136. 
State, 12-14,24-25,204, 

204-10,275. 
Statement, 3 ,3-6 ,12 ,20 ,51 , 

158,178,183,205-6, 
214,259,272,383-88, 
401-2,406,410,412. 

Statement compounding, 
inference rule, 44,220. 

Statement-like, 215,215-16, 
222 ,234. 

Statement parameter, 178,183, 
203,240,407. 

Static assertion, 213,219,241, 
253,257. 

Static implication, inference 
rule, 219. 

Staticscope, 54. 
step, 270,412. 
Step (of path), 300. 
Stepwise refinement, 7,19,20, 

416. 
Stopper, 198,295. 
Storage, 54 ,55 ,58 ,60-61 ,75 , 

114,157,160,173,177, 
194-95,199-200,305, 
308-9 ,322-23 ,359-60 , 
361-62. 

Store, 204. 
Strachey,C.,204. 
Strengthening precedent, in-

ference rule,45,220. 
Strict order, 103,108,121. 
Strictly monotone, 108,121. 
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String, 202,395,397-98,409, 
415. 

Stronger (relating assertions), 
40-41. 

Strongly connected 
component, 363, 

program for finding, 369-82. 
Structured program, 7,157, 

272,286,298. 
Subphrase, 92 ,385-90. 
Subr6utine, 157,160. 
Subscript: 

of array, 74,114,149,216-17, 
404, 

ofblock ,285 ,304, 
error, 61,74-75,77,87-88, 

112,128,171,251,375, 
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150. 
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