GEDANKEN-A Simple Typeless
Language Based on the

Principle of Completeness and the
Reference Concept

Jomn C. ReynoLDs
Argonne National Laboratory,* Argonne, Illinois

GEDANKEN is an experimental programming language with the
following characteristics. (1) Any value which is permitted in

some context of the language is permissible in any other mean-

ingful context. In particular, functions and labels are permissible
results of functions and values of variables. (2) Assignment and
indirect addressing are formalized by introducing valves,
called references, which in turn possess other values. The as-
signment operation always affects the relation between some
reference and its valve. (3) All compound data structures are
treated as functions. (4) Type declarations are not permitted.

The functional approach to data structures and the use of
references insure that any process which accepts some data
structure will accept any logically equivalent structure, regard-
less of its intemal representation. More generally, any data
structure may be implicit; i.e. it may be specified by giving an
arbitrary algorithm for computing or accessing its components.
The existence of label variables permits the construction of co-
routines, quasi-parallel processes, and other unorthodox control
mechanisms.

A variety of programming examples illustrates the generality
of the language. Limitations and possible extensions are dis-
cussed briefly.

KEY WORDS AND PHRASES: programming language, data structure, refer-
ence, assignment, coroutine, quasi-parallel process, typeless language, applica-
tive language, lambda calculus, list pr ing, nondeterministic algorithm

CR CATEGORIES: 4.20, 4.22, 5.23, 5.24

Introduction

The recent development of programming languages
suggests that the simultaneous achievement of simplicity
and generality in language design is a serious unsolved
problem. This paper describes an experimental language,
called GEDANKEN, which was developed to attack this
problem. '

GEDANKEN is not intended to be a generally useful ‘

language, althoughit could beeffective insituations wherea
fair degree of object program inefficiency is tolerable. Its
major purpose (reflected in its name, which is meant as an
analogy to gedankenexperiments in physics) is to explore
the consequences of two basic design principles:

(1) Completeness. Any value which is permitted in some

* Applied Mathematics Division. Work performed under the
auspices of the US Atomic Energy Commission.

308 Communications of the ACM

context of the language is permissible in any other mean-
ingful context. In particular, functions and labels are per-
mitted to be results of functions or values of references
(e.g. variables), without imposing restrictions which main-
tain a stack discipline for run-time storage allocation.

(2) The Reference Concept. Assignment and indirect
addressing are formalized in the following manner: among
the possible values which may occur in a program are
objects called references, which in turn possess other values.
The assignment operation always affects the relation be-
tween some reference and its value.

Neither of these principles is novel. Lisp [la and 1b}
(in its interpretive implementations), Iswmm [2], and PAL
[3] all satisfy the principle of completeness, and the refer-
ence concept is used in ALcoL 68 [4] and BaseL [5]. But
GEDANKEN goes beyond these languages in exploiting the
power of these principles, i.e. in eliminating other language
features which are rendered redundant by completeness
and references. Specifically:

(1) The existence of function-returning and reference-
returning functions allows all compound data structures to
be treated as functions. For example, a one-dimensional
Avcor-like array is treated as a function whose domain is a
finite set of consecutive integers and which maps each of
these integers into a unique reference. This approach in-
sures that any process which accepts some data structure
will accept any logically equivalent structure, regardless of
its internal representation. More generally, any data struc-
ture may be implicit; i.e. it may be specified by giving an
arbitrary algorithm for computing or accessing its compo-
nents. (Functional data structures have been suggested by.
Balzer [6], but his realization of the concept is quite differ-
ent than GEDANKEN.)

(2) The existence of label variables permits the construc-
tion of coroutines, quasi-parallel processes, and other un-
orthodox control mechanisms. This is a direct consequence
of not imposing a stack discipline en the program control
information.

The main limitation of GEDANKEN is that declara-
tions are not allowed to restrict the value ranges of identi-
fiers, references, or function results. Languages with this
property are usually called “typeless,” although the types
of values may be tested during execution. We do not sug-
gest that type declarations are unimportant or that it is
trivial to.add them to GEDANKEN without destroying
the generality of the language; this is a major theoretical
problem.

The originality of GEDANKEN lies primarily in the
language features which have been excluded, and the main
aim of this paper is to demonstrate that these exclusions
(except typelessness) do not impair generality. For this -
purpose, we include extensive programming examples.

A formal definition of GEDANKEN is given in [7]). A
complete but extremely inefficient implementation has
been produced by translating this formal definition into
Lisp; this implementation has been used to check all

examples given in this paper.

Yolume 13 / Number 5 / May, 1970

Copyright © 1970, Association for Computing Machinery, Inc.

After describing the syntax of the language and the types
of values which are manipulated during program execution,
we discuss the applicative part of the language, i.e. the
evaluation of expressions and the application of functions.
Finally, the imperative aspects, such as references, assign-
ment, labels, and jumps, will be introduced.

Syntax

Although the importance of GEDANKEN lies in its
semantics, a definite syntax must be specified so that pro-
gramming examples can be given. A GEDANKEN program
is a sequence of fokens separated by zero or more blanks,
with at least one blank used as a separator whenever the
juxtaposition would otherwise be ambiguous. The tokens
are sequences of characters classified as follows:

constants digit strings (denoting integers), quoted strings
reserved words AND, OR, IF, THEN, ELSE, CASE, OF,

IS, ISR
identifiers all other alphanumeric strings beginning with

a letter
punctuation tokens N, = : () ;:=

Certain predefined identifiers have standard meanings.
These include: TRUE, FALSE, LL, and UL, which denote
specific primitive values; ERROR, which denotes a built-in
label value causing program termination; and the names of
all built-in functions. (These predefined identifiers differ
from reserved words in that the programmer can override
the standard meanings by declarations.)

The set of token sequences which are well-formed
GEDANKEN programs is specified by the context-free
grammar (over an infinite vocabulary of tokens) in Table
1. The syntactic variables in this grammar are subseripted
to distinguish among phrases with a similar semantic role
but different levels of precedence. Thus phrases of the
classes {expo), - - - , {exps) are all called expressions, while
phrases of the classes (pformo) and (pform;) are called
parameter forms. The notation {a}* is used to indicate an
arbitrary number (including zero) of occurrences of the
string a.

It should be noted that a block can consist of a single
expression; this permits any expression to be parenthesized
without changing its semanties.

Primitive Values and Functions

TI'he items of data which are manipulated during the
oxeention of 4 GEDANKEN program are called values.

Phe st of all values is partitioned into seven types: nfe- .

gers, Booleans, characters, and atoms (collectively called
primitive values), and functions, references, and label values
(vollectively enlled nonprimitive values). (Floating-point
numbers are excluded, but their inclusion would not raise
any significant problems.) Although the language does not
contain type declarations, a complete set of built-in fune-
tions is avuilable for testing the type of a value during
program execution.

Among the primitive values, only afoms are unusual;

Volume 13 / Number 5 / May, 1970

TABLE I. A GramMar ForR GEDANKEN

{expy ::= {(constant) | (identifier) | (block))
{expy) ::= (expo) | {function designator)
{function designator) ::= {(expo) {(expy)

(exps) ::= {expy) | (exp1) = (exp)
{exps) ::= (exps) | (exps:) AND (exps)
{expy) ::= {exps) | {exps) OR (expy)

(exps) ::= {exps) | {conditional exp) | (lambda exp) | {exps) := (exps)

{conditional exp) ::= IF (exps) THEN (exps) ELSE (exps)

{lambda exp) ::= A {pformg) (exps)

{expe) ::= (exps) | {sequence exp) | (case exp)

(sequence exp) ::= (empty) | {exps), (exps) {, (exps)}*

{case exp) ::= CASE (exps} OF {exps) {, (exps)}*

{pformy) ::= (identifier) | ({(pform))

(pformy) ::= {pforme) | (sequence pform)

(sequence pform) ::= {empty) | (pforme), (pformo) {, (pformo)}*

{decl) ::= (pform,) IS (exps)

{recursive decl) ::= (identifier) ISR {lambda exp)

(label) ::= (identifier) :

{statement) ::= {({label)}* (exps) :

(block) ::= {{decl);}* {{recursive decl);}* {(statement);}*
(statement)

{program) ::= (block)

they are similar to atoms in Lisp, except that they lack
property lists and print names. More precisely, the atoms
are a denumerably infinite set of values which may be
tested for equality, but which do not possess any ordering
or arithmetic operations. Two particular atoms, denoted
by the predefined identifiers LL and UL, play a special role
in the language. Additional atoms are created by the
built-in function ATOM, which returns a distinct atom
each time it is applied.

A function is a value which may be applied to another
value called its argument. When so applied, the function
will either: (i) return a value called its result, (ii) transfer
control to a label value without returning a result, (iii)
cause an error stop, or (iv) initiate a nonterminating com-
putation. (The application of a function may also alter the
state of a computation by producing various side effects,
which will be discussed later.) The set of arguments for
which a funetion will return a result is called the domain
of the function. A number of built-in functions are pro-
vided which may be used without being defined ; additional
“user-defined” functions are produced by the evaluation of
various expressions.

(Proper procedures, in the sense of ALGOL, are not pro-
vided in GEDANKEN, since they are equivalent to func-
tions which execute useful side effects but return an irrele-
vant result. Functions with multiple arguments are not
provided, since they are equivalent to functions whose
arguments are sequences, as described below.)

The functional approach to data structures is reflected in
the absense of a distinet type of value corresponding to the
conventional notion of a vector or array; the analogous
values in GEDANKEN are functions. Thus we will use
the word “vector” to denote those functions which are
logically equivalent to conventional vectors.

Communications of the ACM 309

It is evident that the domain of s GEDANKEN function
which is a vector must include a finite set of consecutive
integers; these integers are the analogue of the subscripts of
a conventional vector. But a conventional vector also has
the property that its set of subscripts is explicit; i.e. there
must be some method of testing the vector to determine its
least and greatest subscripts. To reflect this property in
GEDANKEN, we require that the domain of a vector
must include, in addition to the subscript set, the atoms
LL and UL, and that the results of applying the vector to
LI and UL must be the least and greatest subscripts.

This leads to the following definition. A function F is
called a vector whenever: (1) its domain includes the atoms
LL and UL; (2) the results of applying F to LL and UL
are integers such that F(UL) > F(LL) - 1; (3) the domain
of F includes all integers ¢ such that F(LL) < ¢ < F(UL).

If F is a vector, then the integers F(LL), F(UL), and
F(UL) — F(LL) + 1 are called the lower limit, upper limsi,
and length of F, respectively, and for each integer Z such
that F(LL) < ¢ < F(UL), the result of applying F to <
is called the sth component of F.

A vector is called a sequence if its lower limit is 1.

Although a vector is a kind of function, and a sequence
is a kind of vector, neither ‘“vector’” nor “sequence” is a
“type” in the usual sense, since one cannot write a program
which will test whether an arbitrary function is a vector or
a sequence. Certain operations in GEDANKEN (e.g.
evaluation of sequence expressions or application of the
built-in function VECTOR) are guaranteed to produce
vectors, but equally valid vectors may also be produced by
more general mechanisms (e.g. evaluation of lambda ex-
pressions). Vectors produced in the latter manner are said
to be implicit. .

(The realization of vectors in GEDANKEN is in con-
trast to several languages, such as Pax, in which subscript
limits are obtained by applying built-in functions to vec-
tors. In the latter approach vectors are not purely funec-
tional, since they are amenable to other operations than
application. The practical effect is to prohibit implicit
vectors.)

The existence of sequences in GEDANKEN justifies the
elimination of functions with multiple arguments. The
analogue of a conventional function with & arguments,
when either £ = 0 or k¥ > 2, is a function whose single
argument is a sequence of length &. For example, the do-
main of the built-in function ADD is the set of sequences
of length two whose components are both integers. (This
approach is a direct borrowing from Pav.)

The remaining types of nonprimitive values, references

and label values, will be defined later.

Applicative Semantics

To describe the semantics of GEDANKEN, we follow
Landin [2] and Evans [3] in dividing the language into an
applicative part, involving the evaluation of expressions
and the application of functions, and an imperative part,
involving assignment and control jumps. We first consider

310 Communications of the ACM

the applicative sublanguage, which is obtained by dis-
regarding references, label values, and the operations which
manipulate them.

Within this sublanguage, the basic operation is the
evaluation of expressions. Since the evaluation of an ex-
pression will usually involve the evaluation of its sub-
expressions, the definition of this operation is inherently
recursive. Also, when an expression contains freeidentifiers,
its evaluation is only meaningful in the presence of some
mapping of these identifiers into values; such a mapping is
called an environment and is said to bind each identifier to a
value.)

A complete program is always evaluated in an environ-
ment which binds the predefined identifiers into their
standard values. Whenever the evaluation of an expression
¢ involves the evaluation of an immediate subexpression
¢/, then, unless ¢ is a lambda expression or a block, ¢’ is
evaluated in the same environment as e. The evaluation of
lambda expressions and blocks (described in detail below)
involves the concept of extension: if 7 is an identifier, vis a
value, and 7 and %’ are environments such that »” binds ¢
to v and specifies the same binding as » for all other identi-
fiers, then 7’ is called the extension of # formed by binding
t to v

We now describe the evaluation of each nontrivial form
of expression. The application of a function to an argument
is performed by a function destgnator: ’

(function designator) ::= {exps) {(exp:)
funchion srgument
part part

which is evaluated by first evaluating its function part and
its argument part to obtain values v; (which must be a
function) and v, , and then applying v, to v.. (Since the
argument part is evaluated before the function is applied,
this form of evaluation is similar to call by value in ALcor,
rather than call by name.) Since function designators have
a right-associative syntax, the usual composition of func-
tions may be written without parentheses; e.g. F(G(X))
may be written as F G X.

Functions may be produced by the evaluation of lambda
expressions:

{lambda exp) ::= A {pformg) {(exps)
body

Basically, the value of a lambda expression is a function
which (when it is applied to an argument at some later
point during the computation) computes its result by
binding the parameter form to its argument and then eval-
uating the body. More precisely, if f is the function ob-
tained by evaluating A(p)e in the environment 7, then the
result of applying f to an argument a will be obtained by
evaluating e in an environment which is the extension of n
formed by binding p to a. (The meaning of binding p to a,
when p is not an identifier, will be defined below.)

This binding mechanism is quite conventional (it is
called FUNARG binding in Lisp and is similar to the
mechanism used in Arcor and in PL/I), but a clear under-

Volume 13 / Number 5 / May, 1970

standing of its implications is vital. There are two separate
actions: (i) the evaluation of the lambda expression to
produce a function, and (ii) the application of this function
to its arguments. The body of the lambda expression is not
evaluated until (i), but the environment in which the body
is evaluated is an extension of the environment used during
(i) rather than (ii). As a result, when a lambda expression
contains free identifiers, its evaluation in different environ-
ments will produce different functions. For example, in an
environment where Y is bound to an integer k, the evalua-
tion of A(X) ADD(X, Y) produces a function which in-
creases its argument by k.

Funetions which are sequences may also be produced by
the evaluation of sequence expressions:

(sequence exp) ::= {empty) | (exps), {exps) {, {exps)}*

Let n be the number of subexpressions. Then the sequence
expression is evaluated by first evaluating its subexpres-
sions to obtain values v;, - -+, v, and then producing a
sequence of length n whose 7th component (for 1 < ¢ < n)
18 0; .

Because of their low precedence, sequence expressions
are usually parenthesized, but the parentheses themselves
do not indicate a sequence expression. Thus the expressions
() and (X, Y) both produce sequences, but (X) has the
same value as X. There is no sequence expression which
produces a sequence of length one, but such sequences can
be produced by the built-in function UNITSEQ, which
returns a sequence whose only component is the value of its
argument.

As noted earlier, a function of n arguments (n # 1) is
treated in GEDANKEN as a function of a sequence of
length n. This suggests that when a function produced by a
lambda expression expects to receive a sequence as its
argument, the parameter form within the lambda expres-
sion should be able to bind several different identifiers to
the components of the sequence. To provide this capability
we extend the notion of a parameter form to include a
sequence parameter form (which is a rough analogue of a
formal parameter list in AugoL):

{(sequence pform) ::= (empty) | (pformy), (pforms) {, {pformo)}*

The relevant semantics are given by defining (recur-
sively) the extension of an environment n formed by bind-
ing an arbitrary parameter form p to a value v. This
extension is computed as follows:

(1) If p is an identifier, then 5 is extended by binding
p to v.

(2) If p has the form (p’), then 7 is extended by binding
p’ tov.

(3) 1f p is a sequence parameter form, p1,..., P
(n 5 1), then v, which must be a function, is applied
to each integer from 1 to n, and 9 is repeatedly
extended by binding each p; to the result of »(7).

The syntax of sequence expressions and sequence param-
eter forms preserves conventional notation for functions
of several arguments. Thus in the evaluation of (A\(X, Y)

Volume 13 ; Number 5 ; May, 1970

body) (3, 4), X is bound to 3 and Y is bound to 4. However,
the sequence argument approach also provides useful
unconventional capabilities, e.g. (A\X, Y) body) (IF P
THEN (3, 4) ELSE (5, 6)). More importantly, the ability
to bind a single identifier to an entire sequence provides
the equivalent of a funetion with an indefinite number of
arguments, e.g. A\X body) (IF P THEN (3, 4) ELSE
(5, 6, 7). '

GEDANKEN is similar to EvLER [8] in treating all
types of unlabeled statements as expressions. In particular,
a block is a form of expression with a meaningful value:

{block) ::= {{decl);}* {{recursive decl);}*
{(statement);}* (statement}

where

(decl) ::= (pformi) IS {(exps)
{recursive decl) ::= (identifier) ISR {lambda exp)

Basically, a block is evaluated by first carrying out the
bindings indicated by its declarations, recursive declara-
tions, and labels, and then evaluating the statements in
order from left to right. The value of the block is the value
of the rightmost statement. The values of preceding state-
ments are ignored; in the absence of imperative features,
these statements have no effect.

More precisely, a block is evaluated as follows (we in-
clude the binding of labels although it is an imperative
aspect of the language): '

(1) For each declaration ({decl)), in order from left to
right: the right side of the declaration is evaluated, and
then the current environment is extended by binding the
left side of the declaration to the value of the right side.

(2) The current environment is further extended by
binding each identifier which occurs on the left of a recur-
sive declaration ((recursive decl)), or as the label of a
statement, to a distinct “dummy”’ value.

(3) The right side of each recursive declaration is
evaluated, and its value replaces the corresponding dummy
value.

(4) For each label, an apropriate label value is created
and replaces the corresponding dummy value.

(5) The statements are evaluated in order from left to
right.

(6) The value of the block is the value of the rightmost
statement.

In steps 2 to 4, the device of binding identifiers to
dummy values and then replacing the dummy values
allows an environment to be cyclic, i.e. to bind an identifier
to a value which is produced by evaluating a lambda
expression (or label) in the same environment.

The essential difference between (nonrecursive) declara-
tions and recursive declarations is that the right side of a
declaration “feels” only the bindings caused by preceding
declarations, while the right side of a recursive declaration
feels the bindings caused by all declarations in the block,
including implicit label declarations. Recursive declara-
tions are needed to define recursive functions conveniently,
including families of functions which call one another.

Communications of the ACM 311

(They also permit the definition of functions which jump
into the immediately enclosing block.)

Nonrecursive declarations are less essential, but they
permit convenient constructions such as X IS ADD(X,
1). More important, their existence allows the right sides
of recursive declarations to be limited to lambda expres-
sions, so that meaningless constructions such as X ISR
ADD(X, 1) are syntactically illegal.

Conditional expressions have the same meaning as in
AvgoL. Case expressions have a rather unorthodox mean-
ing (which is convenient for defining implicit sequences):
CASE ¢ OF ey, . . ., e, is evaluated by first evaluating e
to obtain a value 7; then if 7 is an integer satisfying 1 < ¢
<'n, the value of the case expression is obtained by
evaluating e; ; if 7 is LL or UL the value is 1 or n respec-
tively; all other values of ¢ give an error stop.

The remaining forms of expressions are most easily
defined as abbreviations. Except for coercion (discussed
later), they can be eliminated from a program by applying
the following transformations:

e = € =» EQUAL(GI , €3)

e; AND ¢; = (IF ¢, THEN ¢; ELSE FALSE)
é; OR e; = (IF ¢, THEN TRUE ELSE e,)

ey := 6. = SET(e1,)

The built-in function SET will be defined later. EQUAL
tests the equality of primitive data, but if either com-
ponent of its argument is a function or a label value, it
will return FALSE. Its action on references will be de-
scribed later.

Theoretically, nonrecursive declarations, sequence pa-
rameter forms, and sequence expressions can also be
regarded as abbreviations. Their occurrences in a program
can be eliminated by repeated application of the following
equivalences:

pISe; b= O@ O

Ap1, -+, Pa) b (when ns 1)
= M@ IS<1; - paISin'; b)
e, + , e, (whenn = 1)
= (@ ISe; ---; tnISeq; N(CASEZOF i1, - ++ , %a))

where 7’ is an integer constant whose value is 7, and 7, 7,
..., iy are distinct identifiers which do not occur in the
program being transformed.

It should be noted that GEDANKEN does not include
certain features, such as infix arithmetic operators or for
statements, which would enhance the conciseness of the
language without expanding the range of programs which
could be expressed. Such features could be added easily,
but they are not germane to the basic purposes of the
language.

Functional Data Structures

Even the applicative part of GEDANKEN is sufficient
to demonstrate the power and flexibility which can be
obtained by treating data structures functionally.

As a first example, consider Lisp-like list structures. To
define analogues of the Lisp functions CONS, CAR, and

312 Communications of the ACM

CDR, we treat the two-field list cell produced by CONS as
a function whose domain contains two elements (e.g. 1
and 2) and which maps these elements into the values of its
CAR and CDR fields. This viewpoint leads directly to the
definitions:

CONS ISAX,Y)NZ IF Z = 1 THEN X ELSE Y;

CAR ISAX X 1;

CDR IS X X 2;

These definitions imply an ability to do list processing
without special built-in functions. In a conventional list-
processing system (e.g. compiled Lisp 1.5 [la and 1b] or
some extensions of ALGOL [4, 9]) user-defined functions are
restricted so that storage for the values of their identifiers
obeys a stack discipline. Then list structures, which do not
obey a stack discipline, must be allocated in a separate
storage area, and built-in functions or operations must be
provided for accessing this area. But in GEDANKEN, the
user may develop list-processing by defining function-
returning functions (such as CONS above) which violate
a stack discipline. In effect, all storage is potentially list-
structured.

Although the above approach is workable and theoreti-
cally attractive, it is more convenient to use sequence
expressions to create list elements and direct application
to obtain their subfields. Thus, we write (X, Y) instead of
CONS (X, Y), X 1 instead of CAR X, and X 2 instead of-
CDR X. Following this approach, we introduce lists by
first creating an atom to denote the empty list:

NIL IS ATOMC();

and then defining a list to be either the atom NIL or a
sequence of length two whose second component is a list.
The following functions will return the length of a list,
find the ith element of a list, and append one list to
another:

LISTLENGTH ISR AL IF L. = NIL THEN 0
ELSE INC LISTLENGTH L 2;
LISTELEM ISR A(I, L) IF L = NIL THEN GOTO ERROR
ELSE IF I = 1 THEN L 1 ELSE LISTELEM(DEC I, L 2);
APPEND ISR (X, Y) IF X = NIL THEN Y
ELSE (X 1, APPEND(X 2, Y));

Hence INC and DEC are built-in functions which increase
or decrease an integer by one.

As a second example, consider one-dimensional arrays.
We have defined a type of function called a vector which is
the analogue of a one-dimensional array, and we have

. introduced sequence expressions for creating vectors. But

a sequence expression can only produce a vector which is a
sequence, and it is inconvenient for producing very long
vectors. What is needed is a function which will produce a
vector from a functional specification of its components,
i.e. which will accept another function, tabulate its results
over a finite range, and return a “lookup” function for the
resulting table.

Thus we define a function VECTOR which accepts an
argument (L, U, F), where L and U are integers and Fisa

Volume 13 / Number 5 ; May, 1970

funetion. If U < L, VECTOR returns an empty vector V
such that V(LL) = L and V(UL) = L — 1. Otherwise,
VECTOR evaluates F(I) for each integer I between L and
U inclusive, and returns a vector V such that V(LL) = L,
V(UL) = U and for L < I < U, V(I) is the value of F(I).
The basic approach is to recur on the length of the vector,
tabulating a single value (bound to T) at each level of
recursion,

VECTOR ISR A(L, U, F)
IF GREATER(L, U) THEN
MIIFI=LLTHENLELSE IFI = UL THEN DECL
ELSE GOTO ERROR
ELSE (V IS VECTOR(L, DEC U, F); TIS F U;
MIIFI= UL THEN UELSEIFI = U THEN T ELSE V I);

It is evident that this function, although theoretically
correct, will be extremely inefficient in any reasonable
implementation. For this reason, a built-in function
VECTOR is provided which is defined to be equivalent to
the function above (except for coercion).

(This question of efficiency may be clarified by consider-
ing implementation mechanisms. In a simple implementa-
tion, functions would possess two distinct internal repre-
sentations: If a function was produced by evaluating a
lambda expression, it would be represented by a “lambda
record” containing a pointer to code which was compiled
from the lambda expression plus values for each free
identifier in the lambda expression (i.e. a representation of
the environment in which the lambda expression was
evaluated). On the other hand, if a function was created by
evaluating a sequence expression or by the application of
VECTOR, it would be represented by a ‘“vector record”
containing domain limit and indexing information plus a
contiguous array of component values. It is evident that
the above definition of VECTOR would yield a vector
whose internal representation was a linked list of lambda
records, each containing one component value, rather than
a contiguous array.)

Using lists and vectors, we may illustrate our assertion
that any process which accepts some data structure will
accept any logically equivalent structure. Suppose that P
is a function which expects a sequence as its argument, and

[IDENTIFIERS] [IDENTIFIERS]
@ 2
Zz 4
o o
;1‘ 3 g 3 2
- a a
VALUES H 3 VALUES 3
N : N
A 3 2 3
9 @ 3 a
3 ﬁ 1] O m
2) i 3 ?
IDENTIFIERS VALUES (ReFERENCES)]
FUNCTIONS FUNCTIONS FUNCTIONS
m (2) (3)

Fia. 1. Three approaches to assignment

Volume 13 / Number 5 / May, 1970

that we wish to give it a sequence whose 7th component is
the 7th element of a list L. This can be done in a conven-
tional manner by evaluating P VECTOR (1, LIST-
LENGTH L, A I LISTELEM(I, L)), which copies the
elements of L into a contiguous array. But it is also possible
to evaluate P MAKESEQFROMLIST L, where

MAKESEQFROMLIST IS A L
A IFI=LLTHEN1ELSE IF I = UL THEN LISTLENGTH L
ELSE LISTELEM(], L);

MAKESEQFROMLIST does not copy the components of
L; instead, it returns an implicit sequence which will look
up the appropriate element of L each time one of its com-
ponents is accessed.

It is equally possible to produce an implicit list from a
sequence:

MAKELISTFROMSEQ ISR A S MLFS1(1, 8);
MLFS1 ISR A(I, 8) IF GREATER (I, S UL) THEN NIL
ELSE A K (CASE K OF 8 I, MLFSI(INC I, 8));

(Here MLFS1 is a subsidiary function which produces an
implicit list from the subsequence of S that begins with
the Ith component.)

The data structures shown so far have the limitation that
once a structure has been created, its components or ele-
ments cannot be altered. To overcome this limitation we
must introduce the imperative aspects of GEDANKEN.

References

In any programming language which permits assign-
ment, there is a class of objects which are affected by
assignment. We will call these objects references; other
terms used commonly in the literature are “name’” and
“L-value.” At any time during the execution of a program,
each reference possesses some value. The effect of an assign-
ment operation r:= v is to cause the reference denoted by
r to possess the value denoted by .

Within this definitional framework, there are at least
three distinet approaches to assignment (see Figure 1):

(1) Identifiers are used as references. This approach is
used in SNoBoL [10], where a form of indirect addressing
is achieved by allowing identifiers to occur as values. Un-
fortunately, the approach does not mesh well with block
structure; a discussion of the difficulties is given by Kain
[11].

(2) References are distinct from either identifiers or
values, and are interposed between all other value-denoting
entities and their values. Thus the bindings of identifiers,
the arguments and results of functions, and the com-
ponents of vectors are all references, and the values
denoted by these entities are actually the values possessed
by the references. This approach is used in PaL, and to a
large extent in ForTrAN and PL/I, except that in the latter
languages function results are values, and identifiers may
be bound directly to functions and label values, but not to
primitive values. The approach meshes well with block
structure but is rather inflexible; one moves from the
applicative situation, where assignment is impossible, to

Communications of the ACM 313

the opposite extreme, where every value-denoting entity
can be affected by assignment.

(3) References are treated as a distinet type of value, so
that any value-denoting entity can denote either a con-
ventional value or a reference which in turn possesses a
value. This approach is used in ALgoL 68 and BASEL.
(BaseL also permits a form of assignment which alters
identifier binding.) It is compatible with block structure
and is more flexible than the previous approach, since the
programmer can introduce references in just those con-
texts where he intends to do assignment. Advantages
should accrue in both the optimization of data representa-
tions and the checking of erroneous assignment statements.

(The above categorization must be qualified by the fact
that FortrAN, PL/1, ArGoL 68, and BAsEgL all have type-
declaration mechanisms which affect their treatment of
assignment. A discussion of this interaction is beyond the
scope of this paper.) :

In GEDANKEN we have chosen to use the third ap-
proach to assignment. Thus we introduce a new, denum-
erably infinite set of values called references, and stipulate
that each reference possesses some other value (which may
itself be a reference). Three built-in functions are provided
to manipulate referencos: REF, SET, and VAL. REF X
returns s distinet reference each time it is applied; this
reference is initialized to possess the value X. SET(R, X)
(which can be abbreviated R := X) causes R (which must
be a reference) to possess the value X, and also returns X;
its action on R is an example of a side effect. VAL R returns
the value possessed by R (which must be a reference).

For example, under the scope of the declaration X IS 3,
the identifier X is bound to the integer 3, and this binding
cannot be altered by assignment. Evaluation of the expres-
sion X := 4 would give an error, since 3 is not a reference.
Analogously, under the scope of the declaration X IS
REF 3, the identifier X is bound to the reference created
by REF, and this binding cannot be changed by assign-
ment. But now evaluation of X := 4 is legitimate, and
causes the value possessed by the reference bound to X to
change from 3 to 4. Thus in the execution of the block

XISREF3; VALX =3; X :=4; VALX = 4)

both equality predicates will be true.

The major difficulty with this approach is the frequent
necessity for using the function VAL, For example, under
the scope of the declarations X IS REF 3; Y IS REF 4;
one would write ADD(VAL X, VAL Y) rather than
ADD(X, Y), since ADD acts upon integers rather than
references. To alleviate this difficulty, we introduce
coercion conventions into GEDANKEN; i.e. we stipulate
that references will be replaced by their values in certain
contexts which would otherwise be meaningless.

Specifically, let COERCE be the function

COERCE ISRA X IF ISREF X THEN COERCE VAL X ELSE X;;

(which is available as a built-in function), and define “to
coerce X’ to mean the replacement of X by COERCE X.

314 Communications of the ACM

Then:

(1) All built-in functions which would otherwise be
meaningless coerce their argument or the appropriate
components of their arguments. For example, ADD(X, Y)
is equivalent to ADD(COERCE X, COERCE Y), but
ISREF X is not equivalent to ISREF COERCE X, nor
VAL X to VAL COERCE X.

(2) REF X coerces X, SET(R, X) (and therefore R
:= X) coerces X, and EQUAL(X, Y) (and therefore X =
Y) coerces both X and Y. Since these functions would each
be meaningful for references without coercion, analogous

‘noncoercing functions, named NCREF, NCSET, and

NCEQUAL, are also provided. NCREF and NCSET
permit references to possess values which are also refer-
ences. NCEQUAL can be used to determine whether two
values are the same reference.

(3) Conditional and case expressions coerce the values
of their leftmost subexpressions.

(4) Expressions involving AND and OR coerce the
values of both their subexpressions.

(5) A function designator coerces the value of its function
part.

(6) When a sequence parameter form p1, ..., Pa is
bound to a value a, each p; will be bound to (COERCE a)
).

(7) Vectors which are created by evaluating sequence
expressions or by application of the built-in functions
VECTOR or UNITSEQ will coerce their argument.

Despite their ad hoc appearance, most of these coercion
rules are instances of the general principle that coercion
should only oceur in situations which would otherwise give
an error termination. The exceptions are rules (2) and
(4), which are simply concessions to conventional nota-
tion.

Data Structures with Embedded References

The utility of references becomes apparent when refer-
ence-returning functions are used to embed references
within data structures, yielding structures which can be
altered by assignment.

This approach provides precise control over the ways in
which data structures can be altered. Thus the GEDAN-
KEN equivalent of an ALgor-like one-dimensional array
is a vector whose components are references, e.g.

X I8 VECTOR(1, 100, » I REF 0);

Under the scope of this declaration, assignment can be

. made to the components of X, e.g. X(7) := 10, but not to

X itself. In particular, the subscript limits X LL and X
UL are fixed by the declaration.

On the other hand, the equivalent of a string variable is
provided by a reference whose value is a vector:

S IS REF VECTOR(1, 100, F);

Here assignment can be made to S itself (possibly changing
the subseript limits) but not to its components.
A second consequence of the reference concept is the

Volume 13 ; Number 5 / May, 1970

ability to define data structures or sets of data structures
which share elements, in the sense that assignment to one
element will affect another. Consider a square matrix M.
We could define M as a vector of vectors, i.e.

M IS VECTOR(1, 10, A I VECTOR(1, 10,A J REF 0));

but this leads to the inconvenience of referring to an ele-
ment of M by (M I) J. It is more natural to define M as a
reference-returning function of pairs of integers:

M IS (M1 IS VECTOR(1,10,A IVECTOR(1, 10, J REF 0));
AT, 3y ML) J);

s0 that an element is referred to as M(I, J). Now consider
the additional declarations:

MT IS A(I, J) M{J, I); MD ISA I M(I, D);

Here MT and MD denote the transpose and diagonal of M,
in the sense that assignment to an element of one matrix
affects the corresponding elements of the others.

Elements may also be shared within the same data
structure. For example,

S IS(S11I8S VECTOR(1, 10, IVECTOR(, I,AJREF 0));

A1, J) IF NOT GREATER(J, I) THEN (811) J ELSE (81J) I);
defines a symmetric matrix in which assignment to S(I, J)
also alters S(J, I).

The embedding of references in list structures also pro-
vides control over the ways in which these structures may
be altered. An example is the property list, which is a list
of property-value pairs subject to two operations: the
value paired with a given property may be looked up; or
the value paired with a given property may be changed,
adding a new pair to the list if the property is not already
present. It is evident that references must occur in the
property list at two points: each value must be a reference,
so that it can be changed; and the entire list must be a
reference, so that new pairs can be added.

The following function manipulates such property lists.
Given a property P and a (reference to a) property list L,
PROPVAL(P, L) searches L for an occurrence of P. If P is
found, the reference paired with P is returned. Otherwise,
a pair consisting of P and a new reference (initialized to
zero) is added to L, and the new reference is returned. The
argument P is coerced.

PROPVAL IS (P, L)
(P IS COERCE P;
SEARCHL ISR A X
IF X = NIL THEN
(NEWYV IS REF 0; L := ((P, NEWV), VAL L); NEWYV)
ELSE IF (X 1) 1 = P THEN (X 1) 2 ELSE SEARCHL X 2;
SEARCHL VAL L);

An application of this function can occur on either side of
an assignment operation; on the right side it will act to
look up a value, on the left side it will act to alter a value.

A further step can be taken by viewing the property list
itself as a reference-returning function which accepts a
property and returns a reference to the corresponding
value. The following function (of no arguments) returns

Volume 13 ; Number 5 / May, 1970

such functional property lists:
MAKEPROPLIST ISA() (L IS REF NIL; AP PROPVAL(P, L));

Each application of MAKEPROPLIST returns a new
instance of PROPVAL, with L bound to a private “own
variable.” Since a property can be any primitive value, a
functional property list is similar to a reference-valued
vector, except that it has an indefinite domain. Indeed,
functional property lists can be used to provide an efficient
implementation of sparse vectors.

As a final example of the use of references, suppose that
READ is a function such that each application of READ
produces the next item of data from some input stream,
and that we wish to produce an implicit list of the succes-
sive items in the stream. The following function (of no
arguments) returns such a list:

MAKERLIST ISR A()
(B ISREF 0; 2 I
(IF B = O THEN B := (READ (), MAKERLIST()) ELSE ();
B I);

The result of MAKERLIST is an implicit list (whose
implicit length is infinite) which only applies READ as
items of data are actually needed, and only stores pre-
viously read items which are still accessible.

Implicit References

The utility of implicit data structures suggests the
introduction of an analogous facility for references. Thus
we introduce the concept of an ¢mplicit reference, ie. a
value whose external appearance is the same as a reference,
but which may carry out an arbitrary computation each
time it is set or evaluated. (Implicit references are related
to doublets in Pop-2 [12].)

To specify an implicit reference, the programmer must
provide two functions: a “setting function” S which will
be executed each time a value is assigned to the implicit
reference, and an “evaluating function” V which will be
executed each time the implicit reference is evaluated. Thus
an implicit reference is produced by applying the built-in
function IMPREF(S, V), where S and V may be arbitrary
functions of one and zero arguments respectively. Each
application of IMPREF produces a distinct implicit
reference, and these implicit references satisfy the predicate
ISREF and are coerced in the same manner as conven-
tional references. But the effect of SET or VAL on an
implicit reference is to execute S or V. Specifically, if R
is the result of IMPREF(S, V), then

NCSETR, X) = 8 X; X)
SET(R, X) = (X IS COERCE X; S X; X)
VALR =V ()

To illustrate the use of implicit references, consider the
problem of protecting a reference-valued vector. Suppose
that P is a function which accepts a vector whose com-
ponents are references. We wish to apply P to such a
vector V, but to protect the components of V from being

Communications of the ACM 315

affected by P; i.e. we want these components to revert to
their original values after the application of P is finished.
The simplest approach is to copy V by executing P
VECTOR(V LL, V UL, A I REF V I), but this will be
inefficient if V is large and only a few components are reset
by P. An alternative approach is to maintain a “‘change
list” of the components of V which have been altered by
P. This may be done by executing P PSEUDOCOPY YV,
where

PSEUDOCOPY ISA V
(CL IS REF NIL;
SEARCHCL ISRA(X, I, F,G) IF X = NIL THEN G()
ELSEIF (X1)1=ITHENF (X 1) 2
ELSE SEARCHCL(X 2, I, F, G);
2 I (I IS COERCE I;
IFI=LLTHEN VLLELSEIFI=ULTHEN VUL
ELSE IF NOT ISINTEGER I OR GREATER(V LL, I)
OR GREATER(, V UL)
THEN GOTO ERROR
ELSE IMPREF(
A X SEARCHCL(VAL CL, I, » R NCSET(R, X),
A() (CL := ((I, NCREF X), VAL CL}),
A() SEARCHCL(VAL CL, I, VAL, A() VAL V I))));

The result of PSEUDOCOPY is an implicit vector
whose components are implicit references. Internally, CL
is a reference to the change list, which is a list of pairs, each
containing an integer argument of some altered com-
ponent and a reference to the current value of that com-
ponent. SEARCHCL is a subsidiary function which
searches a change list X for a pair beginning with the
integer I. If such a pair is found, SEARCHCL returns the
result of F applied to thereference paired withI; otherwise
SEARCHCL returns the result of G, which is a function
of no arguments. (The noncoercing functions NCSET and
NCREF are used to allow the values possessed by the
components of V to be references.)

Label Values

The final type of value used in GEDANKEN is the
label value. These values are created during execution of a
block containing labeled statements, and are used as
arguments to the built-in function GOTO, which never
returns but instead causes a transfer of control to the
computational state represented by the label value.

A more precise description requires introducing a model
of the interpretation of GEDANKEN by an abstract
machine. A complete description of such a model (given
in [7]) is beyond the scope of this paper, but the following

aspects are relevant to an understanding of the label and"

GOTO mechanisms:
During the execution of a program (at any instant when
a statement is about to be evaluated) the state of the
abstract interpreter will include the following entities:
(1) A conirol, which gives a list of the statements re-
maining to be evaluated in the current block.
(2) An environment, which gives the identifier bindings
to be used in the current block.

316 Communications of the ACM

(3) A dump, which specifies the computations to be
performed after the current block is completed. The
dump is a pushdown stack containing an entry for
each block and lambda-expression body whose
evaluation is incomplete; each entry contains a
control and an environment (plus additional in-
formation which is needed to describe partially
evaluated compound expressions).

(4) A memory, which specifies the mapping of references
into their values.

A label value consists of a control, an environment, and

a dump. During the evaluation of a block, immediately
before the first statement is evaluated, a label value is
created for each label in the block; each label value con-
tains a list of the statements between the corresponding
label and the block end, plus the current environment
(including the bindings of the labels themselves) and dump.

When the built-in function GOTO is applied to a label
value, the current control, environment, and dump are
replaced by the constituents of the label value, and execu-
tion continues with the first statement of the new control.
The memory is not altered.

This mechanism permits jumps within the same block
(which leave the environment and dump unchanged) or to
higher level blocks, with the same effect as in ALGoL. But
the fact that label values can be possessed by references or
returned by functions also provides the ability to jump
back into a block after it has been exited from. It i$ this
capability which allows the construction of coroutines.

Coroutines

A coroutine is a procedure which can relinquish control
to its calling program and later be reactivated to continue
computation. The simplest situation is that of two pro-
cedures, each of which treats the other as a subroutine.

As an example, suppose that COMPILE is a procedure
which produces a succession of data items called instruc-
tions, outputting each instruction by applying a function
OUT, and that ASSEMBLE is a procedure which accepts
a suceession of instructions, inputting each instruction by
applying a function IN. If OUT and IN are arguments to
COMPILE and ASSEMBLE respectively, we have

COMPILE ISRAOQOUT (- OUT X ---);
ASSEMBLE ISRMIN (.-« X := IN() -+~);

We now want to couple these procedures so that
ASSEMBLE receives the output of COMPILE. Speci-
fically, we want to run ASSEMBLE until it requests input,
than run COMPILE until it produces the required output,
then run ASSEMBLE again, etc. The necessary program
can be written by using label-valued references which are
global to both IN and OUT:

(LCISREF0; LAISREFO0; INSTISREFO;

LC := LC1; ASSEMBLE(\ () (LA := LAl; GOTOLC;
LAl: VAL INST)); GOTO DONE;

LCl: COMPILE(X (LC := LCZ;
LC2:)); GOTO ERROR;

DONE?);

INST := X; GOTO LA;

Volume 13 ; Number 5 / May, 1970

Here LA and LC are label-valued references saving the
current states of ASSEMBLE and COMPILE, and INST
is a third reference used to hold the instruction being
transmitted from COMPILE to ASSEMBLE. If COM-
PILE finishes while ASSEMBLE is still waiting for another
instruction, an error stop occurs.

Nondeterministic Algorithms

Label values in GEDANKEN are closely related to
“processes” in simulation languages such as SiMuLa [13a
and 13b]; both are mechanisms which allow the state of a
suspended computation to be saved as an item of data. The
essential difference is that further execution of a computa-
tion which was saved as a process causes the process to be
updated, while further execution of a computation saved
as a label value leaves the label value unchanged. Thus
label values can be used to repeatedly initiate execution
from the same state.

This capability can be used to program a mode of execu-
tion for nondeterministic algorithms [14] in which alterna-
tive paths are pursued concurrently. A simple example is
nondeterministic parsing. It is fairly straightforward to
convert a context-free grammar into a recursive parsing
funetion. Unfortunately, for many grammars this function
will contain nondeterministic branches, i.e. points at which
a conditional branch must be performed although the cur-
rent state of the parse is insufficient to determine this
branch.

When such nondeterminism exists, parsing can be ac-
complished by simulating a finite set of independent
parsers, all accepting the same input string and obeying
the same program, but with different control states. When
a parser encounters a nondeterministic branch, it expands
into two separate parsers; when a parser reads an input
character which is inconsistent with its control state, it is
deleted.

Specifically, we assume that PARSE(IN, AMB, FAIL)
is a function which accepts two functions IN and AMB,
and a label value FAIL, and returns some representation
of a successful parse. The function IN, of no arguments, is
applied by PARSE to read each character of the input
string. The function AMB, whose argument is a label
value, is applied to execute a nondeterministic branch; one
side of the branch returns from AMB while the other
jumps to the label-valued argument. PARSE jumps to the
label value FAIL when it encounters an inconsistent
character. We assume that PARSE does not set any
references, or at least that it does not expect the value of
any reference to be preserved across an application of IN
or AMB.

The following program carries out the concurrent execu-
tion of PARSE, synchronizing the independent parsers by
their reading of characters:

(C IS REF NIL; W IS REF NIL; R IS REF NIL;
CHAR IS REF NIL;
C := (PARSE(\() (W := (L1, VAL W); GOTO CONT;
L1: VAL CHAR),
AL2 (R := (L2, VAL R)), CONT),
VAL ©O);

Volume 13 / Number 5 / May, 1970

CONT: IFR = NILANDW = NIL THEN GOTO DONE
ELSE IF R = NIL
THEN (CHAR := READCHAR(); R
ELSE ();
(LISR1; R := R2; GOTO L);
DONE: VAL C)

= W;W := NIL)

Each independent parser is represented by a label value if
it has not completed its parse, or by its result if it has
completed its parse. The finite set of parsers is main-
tained by the values of the references C, W, and R. C gives
a list of the results of completed parses, W gives a list of
label values representing the parsers which are waiting for
the next character, and R gives a similar list for the parsers
which are ready for execution before reading the next
character. The reference CHAR keeps track of the current
character, and is updated by the built-in function READ-
CHAR. The label CONT is reached whenever execution is
to be switched from one parser to another. The final value
of the block is the list of completed parses; the input
string is ill formed, well formed, or ambiguous depending
upon whether this list has zero, one, or more than one
element.

(This approach to parsing is basically the same as that
used in the CoGENT programming system [15a and 15b].
It is presented here as an illustration of the generality of
GEDANKEN, but it does not represent a significant
advance in the field of parsing techniques. Although it is
reasonably efficient for a large class of unambiguous gram-
mars, at least if the function PARSE is carefully con-
structed, some ambiguous grammars will cause an ex-
ponential growth in the number of parsers and are better
treated by other methods, such as that of Earley [16].)

Limitations and Possible Extensions

The goal of applying the basic principles of GEDANKEN
to the design of an efficient general purpose programming
language raises several interesting research problems:

(1) Addition of Type Declarations. The most natural
approach is probably an extension of Hoare’s concept of
record classes [9]. The programmer would be able to
declare an arbitrary number of disjoint function, reference,
and label classes, and would specify the range of each
identifier, function result, and reference value to be some
union of such classes (and/or predefined classes of primi-
tive values). All functions in the same class would have the
same domain-range relation, and all references in the same
class would have the same set of possible values.

However, the functional approach to data structures will

_require unusual flexibility in the specification of the do-

main-range relations of functions. If an inhomogeneous
data structure such as a record is to be treated as a fune-
tion, then it must be possible to specify that the range
of such a function depends on its argument. For example,
the set of lists of integers would be the union of the set
(NIL} with a class of functions with domain (1, 2) which
map 1 into an integer but map 2 into a list of integers.

An elaboration of this approach to type, limited to a
purely applicative language, is described in [17].

Communications of the ACM 317

(2) Open Functions. Efficient implementation of func-
tional data structures will require that certain functions be
compiled into open code, i.e. that function designators
should be replaced by modified copies of the corresponding
lambda-expression body, and that these copies should then
be simplified to take advantage of constant arguments.
This capability could be provided by a macro-definitional
facility. A second approach, more in keeping with the spirit
of GEDANKEN, would be to permit certain lambda
expressions to be given an OPEN attribute.

This raises the question of whether a compiler could
determine automatically when a designator of a lambda-
defined function should be replaced by a copy of the func-
tion body. One might conjecture that such an expansion
could be performed for any function which was defined by
a nonrecursive declaration. Unfortunately, this conjecture
is disproved by the existence of a nonrecursive fized-point
Sfunction:

YISAG (UISAVGQAX (VV) X); U U);

which can be used to convert any simply recursive funetion
(i.e. a function which calls itself directly but not indirectly
via other functions) into an equivalent nonrecursive func-
tion [18].

Thus suppose a recursive function F is defined by F
ISR b, where T is the only identifier which occurs free in b.
Let F1 be the nonrecursive function defined by F1 IS \F
(b). Then the function (Y F1) can be shown to be equi-
valent to F, with the same domain of termination. More-
over, the expansion of a function designator such as (Y
F1) X by repeated substitution of the definitions of Y and
F1 will never terminate.

(38) Storage Allocation. A serious drawback of the
principle of completeness is the elimination of any run-
time stack discipline, so that all data storage must be
recovered by garbage collection. This problem might be
alleviated by adding language facilities for indicating
contexts where a stack discipline is applicable. Even with-
out such facilities, it may be possible to determine by
program analysis, particularly with appropriate type
declarations, situations where storage can be recovered
without garbage collection.

(4) Side Effects. 1In the applicative subset of GEDAN-
KEN, the immediate subexpressions of a function designa-
tor or a sequence expression can be evaluated in any order,
or the steps of their evaluation can be intermixed, without
affecting the result or termination of any program. This
property, which is obviously desirable for code optimiza-
tion or multiprocessing, is destroyed by the introduction
of assignment, since subexpressions can execute interfering
side effects.

The situation is exacerbated by the introduction of
label values, since then the order of evaluation can affect
the number of times a subexpression is executed. The
program
(XISREF0; (X := INCX,GOTOL); L: VALX)

produces one with left-to-right evaluation of the sequence

318 Communications of the ACM

expression, but produces zero with right-to-left evaluation.
Label-valued references lead to more paradoxical pro-
grams, such as

(X ISREFO;LISREFO; MISREFO;L :=L1;

(X :=INCX, M :=Mi;M1l: GOTO L));

L1: L :=1L2; GOTO M; L2: VAL X)
which produces one with left-to-right evaluation, zero with
right-to-left evaluation, and possibly two with intermixed
evaluation.

This problem is common to a wide variety of Ianguages.
One either imposes a fixed order of evaulation, as in
Avrcor 60 or GEDANKEN, or permits a significant elass
of well-formed programs to have indeterminate inter-
pretations, as in ArgoL 68 or PL/I. But a more flexible
approach might be possible, e.g. a limited form of impera-
tive features which could be added to an applicative lan-
guage without destroying order-of-evaluation indepen-
dence.

(5) Other Label-Value Problems. Label-valued refer-
ences can easily cause the preservation of data which will
no longer be accessed by a computation. If L is a label-
valued reference, then GOTO L will cause execution to
proceed from the computational state denoted by L. But
the unchanged state must also be saved in case GOTO L is
executed again before the value of L is changed. If, in fact,
such a repeated jump cannot occur, then information
will be saved unnecessarily unless the programmer goes to
the trouble of resetting L immediately after the original
jump. (As an example, the program for linking the co-
routines COMPILE and ASSENMBLE will preserve the
states of these routines unnecessarily.)

Presumably, it would be better to force the programmer
to extra trouble in order to preserve, rather than discard,
a reactivated computational state. This might be accom-
plished by adapting the concept of “process” used in
simulation languages, and providing a basic function for
copying processes. However, it is not clear how to combine
the process concept with an Avcov-like use of label values
in a clean manner which does not violate the principle of
completeness. .

A further difficulty is the inability of a label value to
preserve the values of references (i.e. the memory). In the
nondeterministic parser described earlier, the restriction
on the use of references in the function PARSE arises from
this problem.

(6) Secondary Storage and File Management. Even with
open functions and sophisticated code optimization, it
may be intolerably inefficient to impose a purely functional
approach on all data structures. But the functional ap-
proach still holds considerable promise for the treatment of
large structures which require secondary storage. A stated,
but usually unmet goal of most data management systems
is the complete separation of the logical properties of a file
from its physical representation. A natural approach to
this goal would be to equate a logical file with a collection
of funetions for accessing the file, and to permit thesc
functions to be implicit.

Volume 13 ; Number 5 7 May, 1970

Acknowledgments. The author wishes to thank Dr.
M. D. MacLaren of Argonne National Laboratory and
Professor Arthur Evans, Jr., of Massachusetts Institute
of Technology for their stimulating discussions and helpful
suggestions.

REecEIVED APRIL, 1969; REVISED OcTOBER 1969; FEBRUARY, 1970
REFERENCES

la. McCartHY, J. Recursive functions of symbolic expressions
and their computation by machine, Pt. I. Comm. ACM 3, 4
(Apr. 1960), 184-195.

1b. —, BT aL. LISP 1.5 programmers manual. MIT Press,
Cambridge, Mass., 1962.
2. Lanpin, P. J. The next 700 programming languages. Comm.

ACM 9,3 (Mar. 1966), 157-166.

3. Evans, A. PAL—A language designed for teaching program-
ming linguistics. Proc. ACM 23rd Nat. Conf. 1968, Brandin
Systems Press, Princeton, N.J., pp. 395-403.

4. vAN W1INGAARDEN, A. (Ed.), MarLvoux, B. J., Peck, J. E. L.,
AND KosTeR, C. H. A. Report on the algorithmic language
ALGOL 68. MR 101, Mathematisch Centrum, Amsterdam,
Feb., 1969.

5. CaeataaM, T. E., Jr., FiscHER, A., AND JOoRRAND, P. On
basis for ELF—An extensible language facility. Proc.
AFI1PS 1968 Fall Joint Comput. Conf., Vol. 33 Pt. 2, MDI
Publications, Wayne, Pa., pp. 937-948.

6. BaLzer, R. M. Dataless programming. Proc. AFIPS 1967
Fall Joint Comput. Conf. Vol. 31, MDI Publications,
Wayne, Pa., pp. 535-544.

7. ReYnNoLbs, J. C. GEDANKEN-—A simple typeless language
which permits functional data structures and coroutines.
ANL-7621, Argonne Nat. Lab., Argonne, IIl., Sept. 1969.

Volume 13 / Number 5 ; May, 1970

8. WirtH, N., aANp WEBER, H. EULER—A generalization of
ALGOL and its formal definition: Pt. I, Pt. II. Comm.
ACM 9, 1 and 2 (Jan., Feb. 1966), 13-25, 89-99.

9. Wirte, N., anp Hoarg, C. A. R. A contribution to the
development of ALGOL. Comm. ACM 9, 6 (June 1966),
413-432.

10. FarsER, D. J., GriswoLp, R. E., ANp Poronsky, I. P. The
SNOBOL3 programming language. Bell Syst. Tech. J. 45
(July-Aug. 1966), 895-944.

11. Kain, R. Y. Block structures, indirect addressing, and
garbage collection. Comm. ACM 12,7 (July 1969), 395-398.

12. BurstaLy, R. M., aN» PorrLEsTONE, R. J. POP-2 reference
manual. In Machine Intelligence 2, E. Dale and D. Michie
(Eds.), American Elsevier, New York, 1968, pp. 205-246.

13a. Danu, O. J., aNp Nyeaarp K. SIMULA—An ALGOL-
based simulation language. Comm. ACM 9, 9 (Sept. 1966),
671-678.

13b. — , MYHRHAUG, B., AND Nygaarp, K. SIMULA 67 com-
mon base language. Publ. No. S-2, Norwegian Computing
Center, Oslo, May 1968.

14. FLoyp, R. W. Nondeterministic algorithms. J. ACM 14, 3
(Oct. 1967), 636-644.

15a. Rey~Nowps, J. C. Anintroduction to the COGENT program-
ming system. Proc. ACM 20th Natl. Conf., 1965, pp. 422~
436.

16b. ~——, COGENT programming manual. ANL-7022, Argonne
Nat. Lab., Argonne, Ill., Mar. 1965.

16. EarLEY, J. An efficient context-free parsing algorithm.
Com. ACM 18: 2 (Feb. 1970), 94-102.

17. REvNowps, J. C. A set-theoretic approach to the concept
of type. Working paper, NATO Conf. on Techmques in
Software Engineering, Rome, Oct. 1969.

18a. Evans, A. Private communication.

18b. Morris, J. H. Lambda-calculus models of programming
languages. MAC-TR-57, Project MAC, MIT, Cambridge,
Mass., Dec. 1968.

Communications of the ACM 319

