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Abstract The lattice-theoretic approach to the theory of computation,
developed by D. Scott, is based on assumptions that the data spaces manipulated
By a computation are complete lattices whose partial ordering represents a
notion of approximation, and that the computable functions between such data
spaces are continuous (in an appropriate sense). Since these assumptions lead
to conclusions which are quite different from the conventional theory of
computation, it is important to understand their interpretation in terms of

actual computational processes.

We consider non-terminating computational processes whose input and output

are enumerations of sets of messages. Given a relationship of satisfaction
between the universe of messages and some universe of models, we define

the meaning of a message set to be the set of those models which satisfy

all of its members, and we define the domain to be the range of this meaning
function. In this interpretation, Scott's axioms can be justified by physical
limitations of the communication between the computational processes and

their environments.
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Introduction

The last few years have seen the development of a radical new approach
to the theory of computation which is based on assumptions that the data
spaces manipulated by a computation are complete lattices whose partial
ordering represents a notion of approximation, and that‘the computable
functions between such data spaces are continuous (in an éppropriate sense) .
Originally developed by D. Scott, this approach has been applied to the
definition of higher-order programming languages and to the problem of
proving program correctness by Scott, Strachey, Wadsworth, Milner, and
others.

Invariably, the theory has been presented as an aEstract mathematical
development from assumptions which are only informally and intuitiyely
justified. However, since these assumptions lead to conclusions which are
quite different from the conventional theory of computation, it is important
to understand their precise interpretation in terms of real computation.

In this paper, we will explore a particular interpretation of Scott's
theory in terms of concrete computational processes, and we will try fo
justify the axioms of the theory in terms of reasonable assumptions about
the physical limitations of such processes. It should be emphasized at the
outset that our interpretation is not intended to be exclusive. By itself,
Scott's theory is goodvmathematics - a collection of surprisingly strong
inferences drawn from surprisingly weak assumptions. As such, it is likely

to have a long and varied history of interpretation and application.
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Fundamentally, our interpretation is based on two premisses:

(1) The theory is capable of describing useful non-terminating
computational processes which accept and produce endless sequences
of information.

(2) The axioms of the theory reflect limitations on the
communication between such processes and their environment, rather
than limitations on the internal character of the processes themselves.
In effect, we are dealing with a theory of communication rather than

a theory of computation.

More specifically, we consider processes (either mechanical or human)
which communiéate with their environment via discrete, one-way channels
of finite capacity. Each channel transmits a possibly endless sequence of
messages selected from a countable universe 7% of messages which is
characteristic of the channel.

Even at this stage, it is evident that endless communication can only
be meaningful in the preser-e of some notion of approximation and limit.
Since the receiver of an endless sequence of messages is never aware of more
than a finite initial subsequence, any meaning conveyed by the endless sequence
must be a limit of the meanings of its initial subsequences. Moreover, the
meaning of a finite sequence must approximate (i.e., be compatible with)

the meanings of all of its possible extensions.



Summary of Definitions and Axioms

Before proceeding further, we give a brief summary of the main definitions
and axioms used in the lattice-theoretic approach. More detailed expositions
are given in several of the references.

A partially ordered set is a complete lattice iff every subset possesses

a least upper bound. The symbols D, &, and U} (with occassional decoration)
will always denote a complete lattice, its partial ordering, and its least
upper bound.
A set X €D is called directed iff every finite subset of X is bounded
by some member of X.
A function f from D to D' is said to be:
(1) monotonic, iff x E y implies f(x) & f(y) for all x, y € D.
(2) continuous, iff f(l]x) =1J{ f(x) | x € X } for all
directed X €D.
(3) additive, iff f(UX) =TJ{ £f(x) | x € X } for all X & D.
By taking X = {x, y}, which is directed when x & y, it is easy to see that
continuoﬁs functions must be monotonic. We write D =»D' (D » D') for the
set-of all functions (all continuous functions) from D to D'.
A set UE D is called open iff (1) For all x ¢ U and y € D, x € y implies
y € U, and (2) For all directed X £D, if [TX € U, then x ¢ U for some x € X.
It cén be shown that unions and finite intersections of open sets are open sets,
and that a function f ¢ D=PD' is continuous if and only if, for all open u'con',

the preimage {x | x € D and £(x) € U'} is open.
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For x, z £ D, we write x < z iff there is an open set U € D such that

zeU, and x Ey for all y ¢ U. D is called a continuous lattice iff

y=U{x|xeDandxf-.y}forallyeD.

A set E €D is called a subbasis of D if x=1J{ e | ecEand e Ex}
for all x € D. If,:in addition, the least upper bound of every finite
subset of E is a member of E, then E is called a basis of D. D is said

to be countably based if it possesses a countable basis, or equivalently,

if it possesses a countable subbasis.
These definitions permit a concise statement of the basic assumptions
underlying the lattice-theoretic approach:
A domain is a complete, continuous, countably based lattice.

Meaningful functions between domains are continuous functions.

From these assumptions, Scott has deduced some surprising and provocative
conclusions. In particular:
(1) If D and D' are domains, then D - D' is a domain under the
partial ordering f & g iff f(x) © g(x) for all x € D.
(2) There exists a domain D, with more than one element, which

is isomorphic to D - D.

But the application of such conclusions depende upon our present task:
to interpret their underlying assumptions in terms of concrete computational
processes. |

(In the sequel, we will use several propositions which are minor
cdnsequences of the above definitions. Since these propositions are neither
deep nor particularly original, and since their proofs would distract from

the main thread of our exposition, they have been collected into an appendix.)



The Powerset Interpretation

We first consider an obvious but very special interpretation, in which
the‘meaning of a sequence of messages is simply the set of messages
enumerated by that sequence. Since the meaning of a sequence must approximate
the meaning of all of its extensions, the relation of approximation must be
that of set incluéion.
The set of all meanings is the powerset Zjﬁ, which is well-known to
form a complete lattice under set inclusion. In fact, it is easily shown
that 27" is a domain in which, for all M, N ¢ 2:?)1,, X< 29}1:
(1) MENiff MEN
@ Jx=Ux
(3) MAN iff M is a finite subset of N.

(4) The set-of all singleton subsets (finite subsets) of I

is a countable subbasis (basis).

This interpretation provides an obvious notion of computing a function
between domains. Consider a process P with a single input channel whose

message universe is?7 and a single output channel whose message universe is
' . Wf_m o, A .
997'. We say that P computes the function F € 277=2 iff, for all input

sequences which enumerate the set M, P produces an output sequence which
enumerates the set F(M).
' n
Now suppose that P computes F, and that m ¢ F(M) for some M € 2 .
If an enumeration of M is given to P as its input, then P must emit the

message m' at some finite time during its operation. Since the capacity of

the input channel is finite, at the time when m' is emitted P cannot have
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received the entire enumeration of M, but only an enumerétion of some finite
subset Mf-< M. Thus for any set N containing Mf, we must have m' ¢ F(N),
since when P emits m' it has no way of knowing that its input will not be an
enumeration of N.

In particular, this argument shows that a' ¢ F(N) whenever M & N
( regardless of the value of Mf), and since this holds for all a' € F(M),
we have F(M) € F(N), i.e. F is monotonic. More interestingly, by taking

N = Mf, we find that every member ‘of F(M) must belong to the set

Ut F(M) | M.~ M}

and since the opposite inclusion is an immediate consequence of monotonicity,

we have

Fa) = U { FMp) | M < M)

i.e., F must be finitely generated. By Proposition 3, this is equivalent to

the requirement that F be continuous.

It should be noticed that the above argument is based on the nature of
thé communication between P and its environment, but it does not make any
assumptions about the internal nature of P itself (beyond assuming that P
cannot predict the future). Thus cuntinuity is more general than the
conventional concept of computability. For example, constant functions which
produce (conventionally) nonenumerable sets are still continuous.

The fact that Scott's assumptions are weaker than the usual notion of
cdmputability may be a considerable virtue. The generalization from computable
to continuous functions is much like the generalization from algebraic to real
numbers. In both cases one moves from a small but subtle set, determined by a

certain kind of finite, implicit representation, to a larger but structurally

simpler set which can be constructed by limiting processes.



Logical Interpretations

Since powersets are a limited and special kind of domain, we now
develop a more flexible interpretatibn which can deal with arbitrary domains.
We will retain our assumption that a sequence of messages is an enumeration
of a set, but we wish to permit the meaning of such a set to be something
beyond itself.

For this purpose, we borrow an old idea from mathematical logic: We
assume the existence of a universe A of models and a relation o SZZWXZZ(

of satisfaction between messages and models. Then the meaning of a set M

of messages is the set
aM) = {u I u et(and for allme M, m g u }

of those models which satisfy every message in M. Intuitively, one can
imagine the receiver of a message sequence starting out with the set ( and,
upon receipt of each message, pruning out all models which do not satisfy
the message. It is tempting to call‘?{the mental set of the receiver.

Since receiving messages causes the elimination of models, the notion
of approximation among model sets must be the inverse of set inclusion.
Letlzﬁk be the powerset of MU with €= 2. Then ZQ( is almost a domain,
except that it will not be countably based when 1{ is not countable. Moreover,

I U

oy . +
o is an additive function from 2 lto .

2
However, rather than using the entire powerset 4 (, we take the domain

to be the image of 2’4 under o:

«hl

2
D={U|Uec? “and U = o(M) for some M ¢ 2 '}

In effect, we are limiting the domain to those meanings which can actually
be communicated by message sets. Or from a different viewpoint, we are taking

.
. s e, .
the domain to be the partition of 2 into equivalence classes of message sets



with the same meaning.

By Proposition 4, D is a complete lattice with the same partial ordering
as ZQ{ Moreover, the image under o of the set of singleton (finite) subsets
of P7is a subbasis (basis) of D, so that D is countably based. (However, our
construction does not require D to be a continuous lattice; we will return to
this point in a moment.) From now on, we will restrict the range of o to D,
so that this function continues to be additive and becomes a surjection.

Again there is an obvious notion of computing a function between domains.
Suppose P is a process whose input and output channels have message universes

M and 2n' which are mapped into meanings by the additive surjections

o € 2’"'—* D and o' € 2%" > D'. We say that P computes the functioh f e DD’
iff, for all input sequences whose meaning is x, P produces an output sequence
whose meaning is f(x). This is equivalent to requiring that P compute a
powerset function F € 2$"+ fh, such that o'*F = f-a.

But if‘F (and therefore o'*F) is continuous and o is additive and
surjective, then by Proposition 5, f must be continuous. Thus our argument
that computable functions must be continuous extends from the powerset case
to the more general logical interpretations.

We are left with the problem of justifying the axiom that domains must
be continuous lattices. This is certainly_the least intuitive of Scott's
aSSumptiops, yet it is critical to the coherence of the theory. For example,
if we only require domains to be complete, countably based lattices, then there

is a lattice D - D' of continuous functions which is not countably based.



- 10 -

Admittedly, our interpretation does not seem to make lattice continuity

inevitable. But at least there is a natural assumption which is equivalent

to lattice continuity: |
Since a can assign the same domain element to several message sets, it is’

natural to look for canonical message sets, i.e., to seek a function

B € D'=’?2-‘7Jz such that a8 is the identity function on D. The existence of

such a function is guaranteed by the surjectiveness of a. But suppose we

insisﬁ that the process of transforming any message set into a canonical

message set with the same meaning must be a computable process, so that B

must be a continuous function (and B,a must be what Scott calls a retraction pair).
By Propositions 7 and 8, there exists a continuous function B such that a°B

is the identity on D if and only if D is a continuous lattice. Moreover, if any

function meets these requirements, then they are met by the function
B(x) = U{ M| Me 2)7£ and a(M) < x }.

It should be noticed that this function is different than one might expect from
conventional logic. An obvious choice of a canonical message set representing
the model set x € D is the set of all messages which are satisfied by every

model in x; this would give

V) .
B(x) = LI{M|Me2 and a & x }.
But there are cases where D is a continuous lattice and this function is still

not continuous, e.g., the domain of closed real intervals discussed below.



- 11 -

Construction of Domains

The interpretation described in the previous section is sufficiently
flexible that it can be used to 'construct" any domain. For suppose D _ is
a complete lattice with a countable subbasis Eo' Let 2= Eo and ‘U = Do’

and let m 0 u be m €u. Then

aM) = {ufue Do and [}D ME_ ul.

~D
o o
But since Eo is a subbasis of Do’
c =
{1, M| MEE}=D ,
o
so that the image of a is the set
D={{u|ueD and xE_ ul | xeD }.
(o} D0 o

which, when partially ordered by the inverse of set inclusion, is a lattice
isomorphic to Do'
In addition, the logical interpretation provides very natural constructions

for a variety of simple domains. For example:

(1) Let 2= be a countable set {kl, k2, ... } and let ¢ be the
relation of equality. 1f #1=7( contains zero or one members, then D is

a domain with the single element (. Otherwise D is a primitive domain:
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(2) Let ‘i ="71( be a countable, totally ordered set {k1 <k, < ous }

and let m o u be m < u. Then D is a vertical domain:

~

(3) Letu =2 , aud let m ¢ u be m € u. Then

D= {{u|u€PanduCul | METN}

- 7.
with & = i, which is isomorphic to the powerset domain 2 .

(4) Let 2 be the set of real numbers, let'://l,be the set of all
closed non-empty real intervals which have finite rational endpoints,
and let m 0 u be u € m. Then D consists of all closed non-empty real
intervals with finite endpoints, plus the empty interval and the entire
real axis, with L .

(5) Let7)¢= A x B and 9¢= A =7B, where A and B are counfable sets.
Let m ¢ u be u([m]l) = [m]2. Then D consists of sets of total functions
from A to B which extend a particular partial function, plus the empty set.
It is isomorphic to a domain which consists of the partial functions from

A to B (with & the inverse of functional extension), plus a single

overdetermined element which is approximated by every element.
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1 s constructed from )J?l, i(l

. Let = ‘3771 + "/)72

(6) Suppose the domain D , and ¢

l’
while D2 is constructed from L7772, ‘7(2, and gy

and@{: Q[l + 2(2, where + denotes disjoint union, and let

ki
mo,u when m eﬁba and u € (l
mo,u when m e% and u ecL(z
mou-= .
true when m e7ﬂ1 and u €%y
true when m 5‘7712 and u e’?,(‘l

Then

D={d1+d2|dleDlanddzeD },

which is isomorphic to the lattice product D, x D,.
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Further Possibilities

The obvious limitation of the interpretations we have presented is
that a message sequence is always treated as an enumeration, so that its
meaning must be independent of tﬁe order of the messages. The possibility
of relaxing this restriction seems a fruitful line for further research.
It might also be fruitful to seek an interpretation which makes lattice

continuity more inevitable.
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APPENDIX

Proposition 1 If X is a directed subset of D, then x-{UX if and only if

x 4 y for some y € X.

Proof: Left to the reader.

Proposition 2 {x | x ¢ D and x { y} is a directed set.

Proof: Left to the reader.

Proposition 3 If f ¢ D=>D' and D is a continuous lattice, then f is

a continuous function if and only if, for all y ¢ D,
f(y) =LJ{ f(x) | x e Dand x <y } .

Proof: Suppose f is continuous. By the continuity of D and Proposition 2

we have

f(y) = f(UJ{ x| xeDand x<y }) =17{ f(x) | x e D and x <Xy }.

On the other hand, suppose that the equation in the proposition is true, and

let X €D be directed. Then by Proposition 1, we have

f(UX) =L1{ £(x) | x € D and x/\T_']X }
=U{U{f(x)IxeDandx-(y}|yeX}
=TJifw | yex?}. |

Proposition 4 Tf f ¢ D > D' is additive, and R'< D' is the range of f,

then R' is a complete lattice with the same partial ordering as D'. Moreover,
if E is a subbasis (basis) of D then the image of E under f is a subbasis

(basis) of R'.
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Proof: To show that R' is a .complete lattice, it is sufficient to show
that UD' X' ¢ R' whenever X' € R'. But if X' is a subset of the range of f,
then there is a X €D such that X' = { f(x) | x € X}, so that the additivity
of £ gives IJ X' =UJ{ £(x) | x e X1} = f('UX).e R'. (Note that, although

u,x =U

R b X', it is possible that DR' X' # j’]D, X', so that R' may not

be a sublattice of D'.)
Let E' be the image of E under f. If E is a subbasis of D, then for
any x' € R' there is an x ¢ D such that
x' = f(x) = f(IJ{ e | ec Eand eEx })
={J{ f(e) | ec Eand e E x }
ETT{ f(e) | e € E and f(e) € £(x)}
=1J{ e' | e' ¢ E and e' € x'}
Since the opposite ordering is obvious, E' is a subbasis of R'.
If E is also a basis of D and X' is a finite subset of E', then X' is the

image of some finite X €E. Then the additivity of f gives
ux =1J{ £(x) | xeX } = £(UUX) ¢ E',
so that E' is a basis of R'.

Proposition 5 If £ € D » D' is an additive surjection, g € D'=» D",

and the composition g-f is a continuous function, then g is a continuous
function.

Proof: Let X' be a directed subset of D', and let X €D be the preimage
of X' under f.' Any finite Y € X must have a finite image Y' € X' which is
bounded by some z' € X' which is the image of some z € X. But since f is
additive, f(LI(Y v {z}) =J@x'uv {z'}H) = z', so that 1.J (Y U {z}) is a member

of X which bounds Y. Thus X is directed.
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Then, by the continuity of f and g-f,
gJx") = g £ | x e x H = g(£Ax)

=U{ g(f(X)) l x e X } =U{ g(x') I X' € X! }’

so that g is continuous.

Proposition 6 If f ¢ D> D' and g € D' > D satisfy g(f(x)) E x for

all x € D, then for all x ¢ D and x' € D', x'«<' f(x) implies g(x') < x.
Proof: 1If x'<' f(x), then there is an open set U' such that f(x) e u',

and x' € y' for all y' € U'. Since f is continuous, the pre-image U of U'

under f must also be open. But U contains x, and for all y e U, f(y) ¢ U'

implies x' & £(y), which implies g(x") E g(f(y)) E y. Thus g(x') < x.

Proposition 7 If f ¢ D » D' and g e D' - D satisfy g(f(x)) = x for

all x € D, and D' is a continuous lattice, then D is a continuous lattice.
Proof: For all y ¢ D, using Propositions 2 and 6, we have
y = g(£(y)) = g(LI{ %' | x' € D' and x' 4 £(y)} )
= [J{g(x") I x' ¢ D' and x' < f(y)}
L:-I__T{g(x') | x' ¢ D' and g(x') € y!

EWUJ{x | xeDand x<y}

The opposite ordering is obvious.
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Proposition 8 1If g € D' > D is an additive surjection and D is a

continuous lattice, then the function f € D=>D' such that
f(x) =LJ{ x' | x' ¢ D' and g(x') < x }

is a continuous function such that g(f(x)) = x for all x e D.

Proof: If X €D is directed, then by Propositiom 1,

£(UJX) =17( x' | x' € D' and g(x")<TIx}
=13 {x" | x' eD' and g(x") < x} | xe X}
=TJ{ fx) | xe X}
so that f is continuous.
If x ¢ D, then by the continuity of D, and the surjectiveness and

additivity of g,

x={J{z| zeDand z4 x}

=1J{ gx") | x' ¢ D' and g(x') < x }

g(U{ x' | x' e D' and g(x") < x })

[}

g(f£(x)).
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