READABLE FORMAL PROOFS

John C. Reynolds
Carnegie Mellon University

VSTTE
Toronto, October 6, 2008
(corrected October 13)

(©2008 John C. Reynolds

Our Thesis

Formal proofs of program specifications (more precisely, proofs
that specifications follow from their verification conditions) are
best communicated by annotated specifications (sometimes called
proof outlines), in which intermediate assertions and other nota-
tions are interspersed within the specification.

These annotated specifications can be defined by inference rules
and mechanically translated into conventional formal proofs.

A Program for Fast Division

{x>0Ay >0}

newvar n .= 0 in newvar z .=y in

(whilezgxdo(nizn—l—l;z=z><2);

q:=0;r:=x;

while n %= 0 do
(n:zn—l;z:=z+2;q:=q><2;
ifzgrthenq:zq—l—l;r:=r—zelseskip))

{x=qgxy+rA0<r<y}

A Formal Proof for Fast Division

The invariants:

f
Iodé z=yXx2"An>0Ax>0Ay>0

Ildéfxzq><z—|—r/\0§r<z/\z=y><2”/\n20

The proof:
1. x>0Ay>0)=(y=yx2°A0>0Ax>0Ay>0)
2. {x>0Ay>0}

n:=0,;z:=y

{Ip} (RAS,1)
3. (Iphz<xAx—z=kg)=

(zx2 = yx2"T1An4+1 > 0Ax > 0Ay > OAx—zx2 < ko)

4. {IgNhNz<xAx—z=kg}

n:=n+1;z=2zx?2

{Iog Ax—z < kg} (RAS,3)
5. {lo}

whilez<xdo(n:=n+4+1;z=12zx 2)

{Ig AN =z < x} (WH,4)

10.

11.

(IpAN—z2<x) =
(x=0xz4+xAN0<x<zAz=yx2"An>0)

{Ig N =z <x}

q:=0;r:=x

{11} (RAS,6)

(I1 A\nZ=0An=ng) =
(x=(qx2) x (z+2)+rA0<r< (z=2)x2A

722=yx2" An—1>0An—1<ng)

{I1: A\n# 0 An =ng}

n:=n—1;,z:=z+2;q:=qX?2

{x=qxz4+rA0 <r<zx2Az=yx2"An > 0An < np}

(RAS,8)

x=gxz4+rA0<r<zx?2A
z=yXx2"An>0An<ngAz<r)=>
(xz(q—l—l)><z—|—(r—z)/\0§r—z<z/\
z=y><2”/\n20/\n<no)
Ix=qxz4+rA0<r<zx2Az=yx2"An > 0An < ng
Nz <r}
g =q+1;,ri=r—z
{I1 A\n <ng} (RAS,10)

12.

13.

14,

15.

16.

x=gxz4+rA0<r<zx2A
z=yx2"An>0An<ngA—-z<r)=>
(I1 An<ng)

Ix=qxz4+rA0<r<zx2Az=yx2"An>0An < ng
N—z<r}

skip

{I1 A\n < ng} (ISK,12)

{x =qxz4+rA0 <r<zx2Az=yx2"An > 0An < ng}

if z<rthenq:=q+4 1;r:=r—zelse skip

{I1 An<np} (CD,11,13)

{I1 A\n#= 0OAn=ng}
n:=n—1;z:=z+-2;q:=qX?2;
ifz<rthenq:=q-+4+1;r:=r— zelse skip
{I1 An <ng} (MSQ,9,14)
{11}
while n #= 0 do

(n::n—l;z:=z+2;q::q><2;

if z<rthenq: q—|—1;r:=r—zelseskip)
{I1 A= n* 0} (WH,15)

17. (11 N"nZ0)=>KxXx=gxy+rA0<r<y)
18. {x >0 Ay >0}

n:=0;z:=vy,
Whil@ZSXdO(n::n-'-]_;Z:ZXQ);
q:=0;r:=x;

while n = 0 do
(n:=n—1;z::z+2;q:=q><2;
ifzgrthenq:zq—l—l;r:=r—zelseskip)
{x=qxy+rA0<r<y} (MSQ,2,5,7,15,17)

19. {x>0Ay >0}
n:=0;newvar z:.:=yin
(Whilezgxdo(n:zn—l—l;z=z><2);
q:=0;r:=x;
while n # 0 do
(n:=n—1;z::z+2;q:=q><2;
ifz§rthenq:=q—|—1;r:=r—zelseskip))
{x=qgxy+rA0<r<y} (DC,18)

20. {x > 0Ay > 0}
newvar n .= 0 in newvar z .=y in
(whilezgxdo(n:zn—l—l;z=z><2);
q:=0;r:=x;
while n = 0 do
(n::n—l;z:=z+2;q::q><2;
ifz§rthenq:=q—|—1;r:=r—zelseskip))
{x=qxy+rA0<r<y} (DC,19)

An Annotated Specification for Fast Division

{x>0Ay >0}
newvar n .= 0 in newvar z .=y in
({z=y><2n/\n20/\x20/\y>0}
whilez<xdo(nh:=n+4+1;z=2zx2);
q:=0,r:=x,;
{x=qxz4+rA0<r<zAz=yx2"An>0}
while n = 0 do
(n:=n—1;z:=z+2;q:=q><2;
{x=qgxz4+rA0<r<zx2Az=yx2"An > 0An < ng}
ifzgrthenqizq—l—l;r:=r—zelseskip))
{x=qgqxy+rA0<r<y}

Another Example: Relative Pointers

{emp}

x .= cons(a,a) ;

{x — a,a}

y := cons(b,b) ;
{(x+—a,a) * (yr—b,b)}
{(x—a,=) x (y—b,—)}

x+ 1] ==y —x;
{(x—a,y—x) * (y—b,—)}
ly+1] :=x—vy,

{(x—a,y—x) * (y—bx—y)}
{Jo. (x — a,0) * (x4+o0+—b, —0)}.

Another Example: Concurrent Buffering

{emp}
x:=cons(...,..
{X = = _}
put(x) ;

{emp}

{emp}
{emp * emp}

D
|

{emp * emp}
{emp}

{emp}
get(y) ;

{y = =, _}
“Use y”;

{y = =, _}
disposey ;
{emp}

Annotation Descriptions

We will write the annotation description

A > {p} c{q}

to indicate that A is an annotated specification proving the spec-
ification {p} c {q}.

(The letter A, with various decorations, will be a metavariable
ranging over annotated specifications and their subphrases.)

We will define the valid annotation descriptions by means of in-
ference rules.

A Surprise

Sometimes an annotated specification may contain fewer asser-
tions than its unannotated version. For example, we will regard

y::2><y{y=2k/\k§n}
as an annotated version
{2><y=2k/\k§n}y:=2><y{y=2k/\k§n},
and
k:=k—|—1;y:=2><y{y=2k/\k§n}
as an annotated version of
{2xy = kT Ak41 < n} ki=k41;y:=2xy {y = 2kak < n}.

The main reason we can allow such incomplete specifications
is that, in such cases, for the command ¢ and postcondition g,
one can calculate a weakest (liberal) precondition p.,, which is
an assertion such that {p} ¢ {q} holds just when p = py. In
many such cases, we will take p,, as an implicit precondition of
the annotated specification.

Assignment (ASan)

vi=e{q} > {q/v—e}vi=e{q}.
Instances

y:=2Xy ({2xy=2KAk<n}
o =2 X
{y:2k/\k§n}}>><y A

L iy =2" Ak <n}

and
K=k +1 ({2xy=2K1Ak+1<n)
- k:=k+1
{2><y:2k/\k§n}}>>< t)
| {2xy=2Ak <n}.

Sequential Composition (SQan)

A1{q} > {p} c1 {q}

Ao > {q} co {r}

A1 Ax > {p} ey o {r}.

For instance,

k:=k+1
{2xy=2KAk<n}

y =2 Xy
{y=2kAk <n}

.
.

({2xy=2kFlAk+1<n}
k:=k+1

{2 xy=2kAk<n}
({2xy=2KAk<n}
y.:=2Xy

| {y=2KAk <n}

ki=k+4+1;,y:=2xXy
{y=2kAk <n}

.

({2xy=2Kt1Ak4+1<n}
ki=k+1;y:=2xy

\ {y =2KAk <n}.

Completeness

We say that an annotated specification is right-complete if it ends
with a postcondition, left-complete if it begins with a precondi-
tion, and complete if it is both right- and left-complete. Then

A) (annotated specification.
A{q} >mV;,l[|(|:h< right-complete annotated specification.
{p}A any left-complete annotated specification.

{p}A{q} | complete annotated specification.

Strengthening Precedent (SPan)

p=>q A>{q}c{r}
{p} A> {p} c{r}.

For instance,

(y=2kAk<nAk#En) = Q@xy=2kt1Ak+1<n)

({2xy=2Kt1Ak4+1<n}
ki =k+1,y:=2xXy

ki=k+4+1;y:=2x
+1;y y}>><
\ {y=2kAk <n}

{y=2kAk <n}

{y=2kAk<nAk#n}) ({y=2kAk<nAk##n}
ki=k+1;,y:=2xXy > > ki=k+1;y:=2xXy
{y=2kAk<n} | {y=2KAk <n}.

Why Do We Ever Need Intermediate Assertions?

1. while commands and calls of recursive procedures do not
always have weakest preconditions that can be expressed
In our assertion language.

2. Certain structural inference rules, such as the existential
qguantifier rule (or the frame rule), do not fit well into the
framework of weakest assertions.

3. Intermediate assertions are often needed to simplify verifi-
cation conditions.

Partial Correctness of while (WHan)

{t ANb} A{i} > {i Ab} c {1}

{i} while b do A > {i} while b do ¢ {i A = b}.

For instance,

{y=2KAk<nAkz#n}]
ki =k+1;,y:=2xXy

o> S

{y=2kAk <n}

({y=2KAk<nAkz#n}
ki=k+1;,y:=2xy

| {y=2kAk<n}

{y=2KkAk<n}
while k #= n do

P> 9

(k:=k+1;,y:=2xy) |

[{y=2KAk<n}
while k = n do
(k:=k+1;y:=2xy)

\ {y=2KAk<nAk#n}

Weakening Consequent (WCan)

A>{p}cl{a} q=r
A{r} > {p} c{r}.

For instance,

\ f{y=2k/\k§n}
while k = n do
(k:i=k+1;y:=2xy)

\ {y=2kAk<nAk=#n}

{y=2KkAk <n}
while k #= n do o> 4
(k:=k+1;,y:=2xy) |

y=2kAk<nAk#n=y=2"

{y=2%Ak<n} ({y=2KAk<n}
while k #= n do while k #= n do
o> 4
(k:i=k+1;y:=2xy) (k:i=k+1;y:=2xy)

{y =2"} , {y=2"}

Alternative Axiom Schema (Assignment)

e Backward Reasoning (Hoare)

A{q} > {9(@)} c{q}

eg. vi=e{q} > {q/v—e}v:i=e{q}
e Forward Reasoning (Floyd)

{p}A> {p} c{9(p)}

eg. {plvi=e>{plvi=c{I . v=2¢ AP},

where v ¢ {v} UFV(e) UFV(p), e ise/v — v/, and p’ is
p/v — v'. The quantifier can be omitted when v does not

OCCur in e or p.

Alternative Rules with Premisses (Conditionals)

e Backward Reasoning

A1{f1(@)} > {p1} c1 {f1(@)}
Ax{f2(q)} > {p2} c2 {f2(@)}

a(Az, A2){q} > {9(p1,p2)} alc1,c2) {q}

e.g.

A1{q} > {p1} c1 {q}
Az{q} > {p2} c2 {q}

if b then A else (A5){q} >
{(b=p1) A(= b=po)} if bthen c; else cs {q}

e Forward Reasoning

{fip)} AL > {f1(p)} c1 {a1}
{f2(p)} A2 > {fo(p)} c2 {q2}

{pta(Aq, A2) > {p} alc1,c2) {9(q1,92)}

e.g.

{pAbYAL > {pAb}c1 {a1}
{pA—b}A> > {p A b} co{q2}

{p}if b then A, else (Ay) >
{p} if b then cq else cp {q1 V q2}

More Alternative Rules (Conditionals)

e |Inward Reasoning

{f1@} A1 {91(@} > {fi(p)} c1 {91(d)}
{fo(p)} A2 {g92(@)} > {fo(p)} c2 {92(@)}

{p} a(A1, A2) {q} > {p} alc1,c2) {q}

e.g.

{pAb} A1 {g} > {pAb}c1{q}
{p N —b} Az {q} > {p A =0} co {q}
{p} if b then A4 else (A5) {q} >
{p} if b then c; else ¢y {q}

e Outward Reasoning

A1 > {p1} c1 {a1}
Ao > {p2} c2 {q2}
a(Aq, A2) > {f(p1,p2)} alc1,c2) {9(q1,92)}
e.g.

A1 > {p1} c1 {q1}
Az > {p2} c2 {q2}
if b then A4 else (A5) >
{(b=p1) AN (= b=pp)}if bthen cq else c» {q1 V ¢2}

Conditional (CDan) (Inward)

{pAb} A1 {q} > {pAb} c1 {g}
{p A —2b} Az {g} > {p A b co {g}
{p} if b then A, else Ay {q} > {p} if b then c; else ¢c> {q}.

Variable Declaration (DCan) (Inward)

1pt A1g} > P} c {4}
{p} newvar v in A {q} > {p} newvar v in c {q},

when v does not occur free in p or q.

Skip (SKan) (Backward)

skip {q} > {q} skip {q}.

More Structural Rules

In the following structural rules:
e In the unary rules braces are used to indicate the vertical
extent of the single operand.
e In the binary rules the two operands are placed symmetri-
cally around the indicator DISJ, CONJ, or ||.
We assume that the annotated specifications in the premisses
will often be sequences of several lines.

Vacuity (VACan) (Backward)

{c}VAC {q} > {false} c {q}.

Here c contains no annotations, since no reasoning about its
subcommands is used. For example, using (VACan), (SPan),
(WHan), and (WCan):

{s=0Aa—12>bAk>Db}
while k < b do

(k:=k+1;
s:=s -+ k) }VAC
{s=0Aa—12>b}.

Disjunction (DISJan) (Backward)

A1{q} > {p1} c{q} Ax{q} > {p2} c{q}
(A1 DISJ Az){q} > {p1V p2} c{q}
For example,

{true}

{a—12>b}
{a—1<b} s:=0;k:=a—1;

s::O;kk:.za—l; - [s=0Aa—1>bAk>b}
{s =2, ink<b} while k < b do

while k < b do (k:=k+ 1 + k) }VAC
= , S. =S
ki=k+1;s:=s+k |
(si=stk) {s=0Aa—12>b}.

{5 — Zib:a i}'

Conjuction (CONJ)
Forward:

{ptA1 > {p} c{q1} {p}A2> {p}c{q}
{p}(A1; CONJ A3) > {p} c {q1 N g2},

Outward (Better?):

A1 > {p1}c{qa1} Ax>{p2} c{qo}
(A1 CONJ A) > {p1 Ap2} c{q1 A q2}.

Noninterfering Concurrency (CONCan) (Outward)

A1 > {p1}ci{a1i}t Ax> {p2} c2 {2}

(A1 || A2) > {p1 * p2}c1llco{a1 * g2},
where no variable occurring free in pq1, c¢1, or g1 is modified by
co, and vice-versa.

Existential Quantification (EQan) (Outward)

A > {p} c{q}

{A} Jv > {Jv. p} ¢ {Fv. q},
where v is not free in c.

Universal Quantification (UQan) (Outward)

A > {p} c{q}

{A} Yo > {Vv. p} ¢ {Vv. ¢},
where v is not free in c.

Frame (FRan) (Outward)

A > {p} c{q}

{A} xr >{p *xrtc{q * r},
where no variable occurring free in r is modified by c.

An Example

{3j. x— —,] x listaj}
{XI—)—}\ 3\
X =a } s« x+1—jx*listaj,dj

{x—a} |
dj. x +— a,j * list o]
J J J

/

Substitution (SUBan) (Outward)

A > {p} c{q}
{A}/6 > {p/5} (¢/6) {a/6},

where ¢ is the substitution v1 — eq1,...,vn — en, v1,...,0n
are the variables occurring free in p, ¢, or g, and, if v; is modified
by ¢, then ¢; is a variable that does not occur free in any other

ej.

In the conclusion of this rule, {A}/(S denotes an annotated
specification in which “/” and the substitution denoted by é oc-
cur literally, i.e., the substitution is not carried out on A.

An Example

In

{x=ylx:=x+y{x=2xy},
one can substitute x — z, y — 2 x w — 1 to infer
{z=2xw—-1}z:=z4+2xw—-1{z=2x (2xw—1)}

But one cannot substitute x — z, y — 2 xz—1 to infer the invalid

{z=2xz—1}z:=z4+2xz—1{z=2x2xz—1)}.

Annotated Specifications for the Heap Commands
e Mutation (MUBRan) (Backward)

[e] :=¢€ {p} > {(e = =) x((e =€) = p)} [e] :=¢ {p}.
e Disposal (DISBRan) (Backward)

dispose e {r} > {(e — —) xr} dispose e {r}.
e Allocation (CONSBRan) (Backward)

v:=cons(e) {p} > {W". (v—e) = p"} v:=cons(e) {p},

where v" is distinct from v, v" ¢ FV (g, p), and p” denotes

p/v — .

e Lookup (LKBR1an) (Backward)

v = [e] {p} > {F". (e—=v") x ((e=0") — p")} v :=[e] {p},
where v"" ¢ FV(e)U(FV(p)—{v}), and p” denotes p/v —

’U,/.

Deriving Local and Global Rules

By taking p in (MUBRan) to be e — €/, and using the valid verifi-
cation condition

VC= (e —)= (e =) * ((e—€) = (e ¢)),

we may use (SPan) to obtain a proof:

[e] . =€ {e— €'} >
VC (e =) * ((er &) = (e &N} [e] :=¢ {e s ¢}
fer —}[e] i =e' {e— €} > {e— —} [e] i=¢€ {e— €}
of an annotation description corresponding to the local form (MUL).

In such a manner, one may derive local and global rules of the
form

{p} c{q} > {p} c{q}.

Simple Procedures
By “simple” procedures, we mean that the following restrictions
are imposed:

e Parameters are variables and expressions, not commands
or procedure names.

e There are no “global” variables: All free variables of the pro-
cedure body must be formal parameters of the procedure.

e Procedures are proper, i.e., their calls are commands.
e Calls are restricted to prevent aliasing.

An additional peculiarity, which substantially simplifies reason-
iIng about simple procedures, is that we syntactically distinguish
parameters that may be modified from those that may not be.

Procedure Definitions

A simple nonrecursive (or recursive) procedure definition is a
command of the form
let h(vy,...,om;v],...,v,) =cin
letrec h(vy,...,vm;v],...,v,) =cind,

where

e his abinding occurrence of a procedure name, whose scope

is ¢’ (or c and ¢’ in the recursive case).
e c and ¢’ are commands.

® U1,...,Um;VY,..., vy, is a list of distinct variables, called
formal parameters, that includes all of the free variables of
c. The formal parameters are binding occurrences whose
scope is c.

e v1,..., v includes all of the variables modified by c.

Procedure Calls

A procedure call is a command of the form
h(wi, ..., wm;€e1,...,eh),

where
e h is a procedure name.

e wy,...,wnandel,..., e, are called actual parameters.

e wq,...,wm are distinct variables.

e ¢},..., e, are expressions that do not contain occurrences
of the variables w1, ..., wm.

e The free variables of the procedure call are

FV(h(w]_, ooy W, 6/1, .. .,6;1)) =
{wy,...,wm} U FV(e’l) U---UFV(e,)

and the variables modified by the call are w, ..., wm.

Hypothetical Specifications

The truth of a specification {p} ¢ {q} will depend upon an en-
vironment, which maps the procedure names occurring free in c
Into their meanings.

We define a hypothetical specification to have the form

M= 1{p} c{q},

where the context " is a sequence of specifications of the form

{ro} co {ao}, - s {Pn—1} cn—1 {an—1}

We say that such a hypothetical specification is true iff {p} ¢ {q}
holds for every environment in which all of the specifications in
[hold.

Generalizing Old Inference Rules

For example,

e Strengthening Precedent (SP)

p=>q T'+{q}c{r}

= {p}c{r}.
e Substitution (SUB)
M+ {p}c{q}
M= {p/d} (c/6) {a/d},

where ¢ is the substitutionvy — eq,...,vn — €en, v1,...,Un
are the variables occurring free in p, ¢, or g, and, if v; is mod-
ified by ¢, then ¢; is a variable that does not occur free in any
other e;.

Note that substitutions do not affect procedure names.

Rules for Procedures
e Hypothesis (HYPOQO)

m{p} c{a},T"F {p} c {q}.
e Simple Procedures (SPROC)

M +A{p}c{q}
M {p} h(v1,..., om0y, ..., o) {a} = {p'} ¢/ {¢'}
r={p'} let h(vy,...,vm;v],...,v;,) =cin {¢'},
where h does not occur free in any triple of I".
e Simple Recursive Procedures (SRPROC)
(partial correctness only)

r{p} h(v1, ..., vm; v, .- o) {a} = {p} c {q}
M {p} h(v1, ..., om; o), .. o) {a} + {p'} ¢ {d'}
= {p'} letrec h(vy,...,vm; vy, ...,v,) =cind {¢'},
where h does not occur free in any triple of I".

Some Limitations

To keep our exposition straightforward, we have ignored:
e Simultaneous recursion,
e Multiple hypotheses for the same procedure.

Two Derived Rules

From (HYPO):
e Call (CALL)

,{p} h(vi,...,vm; ’0’1, o) g}, T
{p} h(v1,...,vm;v],...,v;) {q}.
and from (CALL) and (SUB):

e General Call (GCALL)

I_7 {p} h(vl, . .. ,’Um; ’U&, ... 7’0;7/) {Q}, r/ |_

{p/6} h(w1,...,wm;eq,... e) {q/d},
where § is a substitution

d =wv1] — wi,...,Vm — Wn,
/ / / /
U1_>€1,...,’Un—>€n,

! 1 1 !/

Ul _>€1,...,Uk _>€k,

which acts on all the free variables in

{p} h(’U]_, s 7Um; v{]_a R 7/047,) {Q},

and none of the variables w1, ..., wm occur free in the ex-
pressions ef,... e, oref, ... e}

Annotated Specifications: Ghosts
In (GCALL):

r,{p} h(v1,...,vm; v’l, e ,v;l) {q}, —_

{p/0} h(wy,...,wm;eq,...,ep) {q/d},
where ¢ is a substitution

d =wv1 — wi,...,Vm — Wmn,
/ / / /
U1_>€1,...,’Un_>€n,

!/ 1/ 1/ !/

Ul _>€1,...,'Uk: _>€k:,

which actson

there may be ghost variables v7, ..., v/ that appear in § but are
not formal parameters.

We will treat v, . . ., v as formal ghost parameters, and €7, . . ., e}/
as actual ghost parameters.

For example,

{hn>0Ar=rg} |
multfact(r; n)

> = <

{r=n! xrg})

({h—1>0Ar=nxrg}
multfact(r;n — 1)

 {r=0-1)!'xnXxrg}

is an instance of (GCALL) using the substitution

r—r,n—n—1rg—nXrg.

The corresponding annotated specification will be

{(h>0Ar=rg} |
multfact(r; n){rg}

= <

~”

{r=nl Xrg} /

({n—1>0Ar=nxrg}
multfact(r;n — 1){n X rg}

L {r=(0—-1)!'XnXrg}.

Generalizing Annotation Descriptions

An annotated context is a sequence of annotated hypotheses,
which have the form

{p} h(v1,...,vm,; v’l, .. ,v;z){vlll, .. ,vg} {q},

where o7, ... ,vg is a list of formal ghost parameters (and all of
the formal parameters, including the ghosts, are distinct).

We write [to denote an annotated context, and I" to denote the
corresponding ordinary context that is obtained by erasing the
lists of ghost formal parameters. Then an annotation description
has the form:

r=A> {p}c{q},

meaning that I - A is an annotated hypothetical specification
proving the hypothetical specification I - {p} ¢ {q}.

Rules for Procedural Annotated Specifications
e General Call (GCALLan) (Outward)

O, {p} h(vi,...,Um; ’U’l, . ,'U,fz){fv’ll, . ,vg} {q}, T+
h(wi,...,wm; ey, ... ep){e], ..., el} >

{p/0} h(wy,...,wm;€eq,...,ep) {q/d},
where § is the substitution

d =wv1 — wi,...,Vm — Wmn,
/ / / /
U1_>€1,...,'Un_>€n,

/! ! ! !/

’Ul _>61,...,/Uk _>€k,

which acts on all the free variables in

{p} h(v1,...,vm,; ’U’l, .. ,’1)7/1) {q},

and w1q, ..., wy are distinct variables that do not occur free
in the expressions €/, ..., e, oref,... e},

e Simple Procedures (SPROCan)

m = {p} A{q} > {p} c {¢}
O, {p} h(v1,...,om; vy, ..., o) {v7,... ,vg} {q} +
A > {p'} ¢ {d'}

[let h(vl,...,vm;vll,...,v;l){v’l’,...,vllﬁ’} =
{p} A{q} in A’
> {p'} let h(vy,...,vm; vy, ..., v;,) =cind {¢'},

where h does not occur free in any triple of .

e Simple Recursive Procedures (SRPROCan)

[, {p} h(v1,...,vm; v’l, . ,v%){v’ll, . ,'UZ} {q} F

A {r} A{a} > {p}c{q}

[, {p} h(v1,...,vm; v’l, . >U7/7,>{U/1/7 . ,vg} {q} F
A" > {p'} ¢ {d'}

IﬁI—letrech(vl,...,vm;v’l,...,vgz){v’l’,...,vl’c’ =
Ain {p'} A" {¢'}
> {p'} letrec h(vy,...,om;v],...,v;,) =cind {¢'},

where h does not occur free in any triple of T".

An Example

{z =10}
letrec multfact(r;n){rg} =
{n>0Ar=rg}

if n = 0 then

{n=0Ar=rg} skip {r=n! xrg}

else

{n—1>0AnXr=nXrg}

r'’=nxr,

{n—1>0Ar=nxrg}
{h—1>0Ar=nxrg} | (%)
multfact(r;n — 1){n xXrg} ¢ *x n—12>0
{r=0-1)!'Xnxr} | (%)

{n—1>0Ar=(n—1)! xnXxrg}
| {r=n! X rg}
{56>0Az=10} (%)
multfact(z; 5){10}
{z= 5! x 10} ()

How the Annotations Determine a Formal Proof

The application of (SRPROCan) to the letrec definition gives
rise to the hypothesis

{n > 0 Ar=rg} multfact(r; n){rg} {r = n! x rg}.
By (GCALLan), the hypothesis entails

{n—1>0Ar=nxrg}

multfact(r;n — 1){n X rg}

{r=(n—-1)! xnXxrg}.
Next, since n is not modified by the call multfact(r;n — 1), the
frame rule gives

{hn—1>0Ar=nxrg*xn—12>0}
multfact(r;n — 1){n X rg}
{r=(n—1)!'Xnxrg*xn—12>0}
But the assertions here are all pure, so that the separating con-
junctions can be replaced by ordinary conjunctions. Then, we
can strengthen the precondition and weaken the postcondition,
to obtain
{n—1>0Ar=nxrg}
multfact(r;n — 1){n X rg}
{h—1>0Ar=(n—1)! xnxrg}.
Also, by (GCALLan), the hypothesis entails

{5 > 0Az= 10} multfact(z; 5){10} {z = 5! x 10}.

Why Annotated Specifications Work

Proofs of
Specifications

\
I —~ ~YJ

Proofs of _
Annotation erase-annspec Proofs of

Descriptions Specifications
| concl ~

Annotation P
Descriptions P

 erase-spec

Annotated P
Specifications
J (U ~

e
Proofs of

Specifications

The Rule of Constancy for Weakest Preconditions

e Constancy

wp(c,g Ar) & wp(c,q) AT

when no variable occurring free in r is modified by c.
PROOF First, we show that

wp(e,7) = r

by a semantic argument, i.e. by assuming a state s satisfies
s E wp(e,r), and showing s F r. From the assumption, we
have — s[[c] L and, for all states s’ such that s[c]s’, s’ = r. Then
from totality and — s[[c] L, we know that there exists an s’ such
that s[[c]s’, and therefore s’ £ r. Then Proposition ?? shows
that s’v = sv for all variables v not modified by ¢, and therefore
for all variables occurring free in r. Thus s F r.

Then the general rule for conjunction gives

wp(c,q Ar) = (wp(c,q) Awp(c,T))
= (wp(c,q) AT).
On the other hand, from the inference rule of constancy, we have

p = wp(c, q)
pAr=wpl(c,gAT),

so that taking p to be wp(c, g) gives

wp(c,q) ANr=wp(c, g AT).

END OF PROOF

The Rule of Constancy (continued)

Note that the rule of constancy fails for wlp. For example,

wp(while true do skip, g A r) < true,

but
wp(while true do skip,g) Ar < true A r

= T.

