Syntactic Control of Interference for Separation Logic

Uday S. Reddy

University of Birmingham
u.s.reddy@cs.bham.ac.uk

John C. Reynolds

Carnegie-Mellon University
jer@cs.cmu.edu

Abstract (or the “constancy” rule in Specification Logic [37]), written as

Separation Logic has witnessed tremendous success in recent years (P} C{Q}
in reasoning about programs that deal with heap storage. Its success

owes to the fundamental principle that one should keep separate ar- {PAR}C{QAR}

eas of the heap storage separate in program reasoning. However,

the way Separation Logic deals with program variables continues has a side condition that states th&t$hould not modify any vari-

to be based on traditional Hoare Logic without taking any bene- ables occurring free irR.” This rule becomes the all-important

fit of the separation principle. This has led to unwieldy proof rules “frame rule” in Separation Logic [30] but the same side condition
suffering from lack of clarity as well as questions surrounding their is retained. Similar conditions also occur in the rules for proce-
soundness. In this paper, we extend the separation idea to the treatdures [3, 37]. In fact, such conditions are not only employed in the
ment of variables in Separation Logic, especially Concurrent Sepa- proof rules for procedures, but it has also been argued that intel-
ration Logic, using the system of Syntactic Control of Interference ligible programming requires adherence to them even if no efforts
proposed by Reynolds in 1978. We extend the original system with are made at formal reasoning. A procedure ¢&ll) is regarded
permission algebras, making it more powerful and able to deal with as intelligible only if the procedur® does not modify any of the

the issues of concurrent programs. The result is a streamined pre-variables occurring free in the argumeatand, likewise, the ar-
sentation of Concurrent Separation Logic, whose rules are memo-gumentA does not cause state changes via the variables occurring
rable and soundness obvious. We also include a discussion of howfree in P. (This is more commonly called “aliasing” control. Con-
the new rules impact the semantics and devise static analysis techsider call-by-name or call-by-reference parameter passing methods

niques to infer the required permissions automatically.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guaget Formal Definitions and Theory—Syntax; F.1.2He-
ory of Computatioh Computation by Abstract Devices—Models
of Computation — Parallelism and concurrency; F.3Lbdics
and Meanings of ProgranisSpecifying and Verifying and Rea-
soning about Programs—Logics of programs; F.3.@djics and
Meanings of ProgranjsSemantics of Programming Languages—
Denotational semantics

General Terms Program Logic, Concurrency, Denotational Se-
mantics, Type Systems

Keywords Separation Logic, Syntactic Control of Interference,

or higher-order arguments to see the full effect of this observation.)

These observations are also made with additional force in con-
current programming. Hoare [17, 18] and Brinch Hansen [10&hav
argued convincingly that parallel processes should not interfere
with each other. A process should not modify variables that are
concurrently used by other processes unless the variables are un-
der the control of resources enforcing mutual exclusion. Program
logic proof rules similarly employ these conditions in their proof
rules [17, 25, 31].

Noticing that essentially the same side condition arises in all
such contexts, Reynolds [36] formulated it as a uniform princi-
ple of non-interferenceTwo program phraseB; and P, are con-
sidered non-interfering if the variables used in one of them for
state-modification do not occur free in the other phrase. This work
presents a system of rules called “syntactic control of interference”

Conditional Critical Regions, Fractional Permissions, Static Anal- (SCI) which bring structure to the conditions employed in intelligi-

ysis

1. Introduction

ble programming as well as the formal rules of programming log-
ics. These rules incorporate, at syntactic level, what we now regard
as the “separation principle,” the same principle that is responsible
for the success of Separation Logic in reasoning about heap stor-
age. The SCI system has been studied quite extensively since this

In reasoning about programs that alter the state, one often encoun<ay work. O’Hearn [26] reformulated Reynolds’s rules in the no-
ters stylized side conditions that have to do with how variable sym- ;4401 of type systems (or proof theory) and noted its overriding

bols are used. For example, the “invariance” rule of Hoare Logic [3] similarity to Girard's Linear Logic [15]. Reddy [33] formulated
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a novel semantic model for programs in the SCI framework, ex-
ploiting the non-interference property of the programs in a crucial
way, which turns out to be the first fully abstract model ever dis-
covered for a higher-order imperative programming language [22]
(The games models of Abramsky et al. [1, 2] generalize Reddy’s
model to deal with interference and represent fully abstract mod-
els as well.) Generalizing the SCI framework, O’Hearn and Pym

formulated bunched type systems and the logic of Bunched Impli-

cations [27], the latter of which forms the foundation for Separation
Logic [30, 34]. In retrospect, it is fair to say that SCI has proved to



be a deep foundational principle of imperative programs leading to true if = is a logical variable, but not necessarily so whers a
numerous developments in our understanding of their structure.  program variable.

Curiously, despite all the historical background, SCI has not Although we arrived at our formulation via a different route,
been used in formulating Separation Logic itself. We believe that using the ideas of syntactic control of interference to formalize
this has led to unwieldy proof rules fraught with side condi- the original Owicki-Gries-O’Hearn system, our system can also be
tions. The problems become critical in the formulation of Con- seen as a syntactic variant of the Parkinson-Bornat-Calcagno logic
current Separation Logic [25]. Brookes's attempt to formalize such described in [32]. The benefits of using the syntactic approach are:
rules [11] turned out to be faulty, with known counterexamples to
their soundness [4].

In this paper, we reformulate the rules of sequential as well as
concurrent Separation Logic using the principles of SCI to bring
structure to their side conditions. It turns out that the traditional ® We are able to devise a compositional (or “modular”) static
SCl is not quite adequate to the task. It incorporates a limited treat-  analysis system to automatically infer permissions required for

¢ The normal conventions of variable usage in Hoare-style logics
are respected. So pitfalls in reasoning from improper treatment
of variable symbols can be avoided.

ment of “passive” or “read-only” uses of variables which is unable variable usage.
to deal with the more advanced usage of variables in concurrent o The system should be extensible to higher-order languages with
programs. We enrich the traditional SCI with the idea of fractional procedures and objects. For instance, the methods of objects
permissions, borrowed from Boyland [8] and Bornat et al [6], to can be categorized as active or passive. (Even though we do
devise a more powerful variant. This system is then used to create ot giscuss the higher-order aspects in this paper, the traditional
a streamlined formulation of Separation Logic. . principles of syntactic control of interference for higher-order
While fractional permissions for variables allow a streamlined procedures apply. These principles however do not generalize
presentation of the proof rules and clarify their semantics, they {4 sioraple procedures as in ML. So, further work is needed to
would be an overkill to use in practice. A programmer should address such issues.)

not have to explicitly annotate all the variable uses in processes

and shared resources with fractional annotations. To address the In recent work, Brookes [12] has independently devised a re-
issue, we devise permission inference systemhich can take a vised set of proof rules for Concurrent Separation Logic using ideas
Separation Logic proof outline without any permissions specified resembling ours. His rules do not employ fractional permissions as
with shared resources and fills them in if at all possible according ours do and the relationship to SCI is less clear cut. We do not
to the rules of the logic. The effect is similar to that of Hindley- know at present the precise relationship between his formulation

Milner type inference in programming languages like ML [14, 23]. and ours, but we anticipate that the two are very close.
Inference of fractional permissions has been studied by Yasuoka

and Terauchi [40] and Bierhoff [5]. Both these pieces of work ad-

Related Work dress the permissions needed for heap cells (which is a harder prob-

) . lem than that for variables). However, they do not deal with concur-
Hoare [17] and Brinch Hansen [9] have formulated conventions rency, which is our main concern. Yasuoka et al. use a region-based
for controlling variable aliasing in concurrent programs. Hoare also  analysis to make the heap permission problem tractable, which may
proposed proof rules for reasoning with conditional critical regions. pe seen as a reduction to the corresponding problem for variable
Owicki and Gries [31] generalized Hoare’s conventions as well as names. The techniques employed in their work rely on sophisti-
the proof rules. O’Hearn [25] extended the Owicki-Gries systemto cated constraint-solving methods. In contrast, our permission in-
deal with heap storage, formulatin@ancurrent Separation Logic  ference algorithm a two-pass algorithm on the syntax tree, similar
which is currently a subject of active study [11, 13, 16, 20, 32, 38]. tg regular compiler analysis methods, with only rudimentary con-
We refer to this logic as the “Owicki-Gries-O’Hearn system.” straint solving issues.

The main issue of our concern is how the variable usage is con-  The rest of this paper is organized as follows. In Section 2, we
trolled across parallel processes and the interplay between suchinformally motivate the issues addressed by our formulation of Sep-
control and the proof rules of the programming logic. The original - aration Logic. The logical system itself is described in Sections 3
logic formulated by Owicki and Gries employed informal state- and 4. We also include a detailed comparison with the proof sys-
ments of the form “variable not modified by any other process”. tems of O’Hearn [25] Parkinson et al. [32]. A comparison with
Such a statement is ambiguous (e.g., does it include modification gropkes’s original system [11] is include in Appendix B. In Sec-
inside critical regions?). It is also non-compositional. Checking tion 5, we describe the denotational semantic framework of the
if a proof is correctly constructed involves examining the entire proof system and indicate how the soundness is proved. Finally, in
program. (For instance, the Smallfoot verification tool implements  section 6, we describe an algorithm to automatically infer variable
tics of the programming logic and verifying its soundness.

Two previous attempts have been made to formalise the variable2 Motivation
usage rules of Concurrent Separation Logic. Brookes [11] formu- “*
lated a compositional set of rules in his effort to prove the sound- As mentioned in the Introduction, Hoare and Brinch Hansen advo-
ness of the logic. However, the rules generalize the original Owicki- cated the avoidance of interference between concurrent processes
Gries rules in new ways and their soundness is not obvious. In fact, as a good practice of intelligible programming. That requires that,
subsequently, lan Wehrman has found counterexamples to theirin forming a parallel composition of commands || C-, one must
soundness in one particular case [4]. The second attempt was that obnsure that; does not modify any variable that occurs fre&in
Bornatet al.[7, 32], where they treat variables as “resources” sim- andvice versa We use the terminologyattively uset! for vari-
ilar to heap locations, whose access is controlled via programming ables that are used for state-modification. Any variables that are
logic proof rules. Their rules do address the non-compositionality usedonly for reading the state are said to lqga'ssively uset!
issue mentioned above and the soundness of their rules is more im-  We first consider how to treat active free variables of phrases
mediate. However the rules are clumsy to use in practice becauseusing Syntactic Control of Interference using the notations of [26,
the normal pun of variable symbols as mutable variable and logical 29]. If a command” is formed using a set of active free variables
variables is not retained. For instance, a formula such asz is 3, itis described using a judgement of the foln—- C Comm.



x:=0;a:=0;b:=0;
{xr=a+bxa=0xb=0}
resourcer(x, &, b){z = a + b} in

begin
{a =0} {b =0}
with r do with r do
{a=0%xz=a+0b} {b=0*xz=a+b}
X = X+1; [l X = X+1;
a:=1 b:=1
{a=1xz=a+b} {b=1%xzx=a+b}
od od
{a=1} {b=1}
end
{x=a+bxa=1xb=1}
{z=2)

Table 1. Example proof outline in Concurrent Separation Logic

Now, the well-formedness of an intelligible parallel composition in

the sense of Hoare and Brinch Hansen can be described by the rule:

Y1 FCi Comm Yot Cy Comm

21,22 }_ (Cl H 02) Comm

Notice that the active free variables 6% and Cy are combined
“multiplicatively,” requiring them to be separate or disjoint. Thus,
the non-interference conditions of Hoare and Brinch Hansen can
be described in a pleasingly symmetric fashion without employing
side conditions.

The judgements used above describe wedl-formednesof

commands. Rules of program logic can be stated in essentially the

same way. The Separation Logic proof rule for parallel composition
becomes:

L1 F{P}Ci{Q1} Yok {P2} Ca{Q2}
21722 = {P1 *Pz} 01 H CQ {Ql *QQ}

To solve the problem, Owicki and Gries recommend adding
auxiliary variables: andb and using them to record control infor-
mation about the increment actions performed in the two processes.
The auxiliary variables are also included in the shared resource. So,
a andb can only be modified inside critical regiohg.he resource
invariantz = a + b captures the control information recorded by
a andb. However, notice that andb need to be mentioned in as-
sertionsoutsidethe critical regions. Owicki and Gries tailor their
proof rules to allow such usage. Evidently, we are entering tricky
territory here. The variable cannot be used outside critical regions
whereas the variablesandb are allowed to be used. The difference
is thatz is modified inboththe processes. Making assertions about
itin one of the processes would not be sound because the other pro-
cess can invalidate the assertions. On the other hand, the variable
a is only modified in the left process. So, assertions mentioning
remain true independent of the progress of the other process. Thus,
Owicki-Gries as well as O’Hearn’s proof systems use a critical re-
gion proof rulewhich allows the variables owned by a resource
to appear in local assertions of a process, as long as they are not
modified in “other processes.”

Note that the notion of a variable being “modified in other pro-
cesses” is quite subtle. One might expect that neither a should

be regarded as being modified in the “other process” because the
other process does not have direct access to them. Any modification
happens only inside critical regions. So, the modification actions
cannot be attributed to the process. Rather they should be charged
to the resource, with the understanding that entering critical sec-
tions adds the access rights of the resource to the process. The pu-
tative Syntactic Control of Interference framework we alluded to
above would treat the variables in that way.

To handle these issues, we generalize the active versus passive
free variable distinction inherited from [29, 36] total versuspar-
tial ownership of the free variables [6, 8]. (It has become conven-
tional to call such ownership constraints “permissions.” We con-
tinue to use that terminology even though we regard it as mislead-
ing.) A total permission for a variable allows writing to the variable
(in other words, amctiveuse) and a partial permission allows only

Each judgement in this rule asserts the well-formedness of a Hoarereading (apassiveuse). In the algebra dfactional permissionsa

triple specificationas well asthe truth of the specification. Once
again,no side conditions are requiretb describe a sound infer-
ence.

total permission is denoted hdyand a partial permission by some
non-zero fraction. The use of permissions gives us more powerful
control over variable usage because fractional permissions can be

While Reynolds [36] only considered independent parallel com- ¢mpined, possibly leading to a total permission, which then allows
position, it is possible to add shared resources, e.g., Hoare-stylewriting.

resources and conditional critical regions, in the same way. A re-
source declaration command

resource () in C

should split the available active variable context into two separate
parts,>, for the variables encapsulated in the resource and the re-
mainder of the context for the body. A critical region command:

with » when B do C od

should add the encapsulated context of the resauta¢he current
context for the scop€'. All this seems essentially straightforward.
However, it turns out to bsmadequaten practice.

To see the problem, consider the example proof outline shown
in Table 1, discussed by Owicki and Gries [31]. Even though we
use separating conjunctionin assertionsx has the same force
as the ordinary conjunction here because the formulas involved
are pure. The purpose of the proof outline is to argue that running
x := x + 1 in parallel with itself increments by 2. The variable:
is placed in a resource allowing it to be safely shared across the
parallel branches. Notice that placing it in the resource precludes it

Returning to our example in Table 1, we can define the the re-

sourcer to contain the permissions', a%, bz. The entire pro-
gram is specified in the context, o', b'. The remaining permis-

sionsa? andb? are distributed to the two processesl,: to the left

process and? to the right process. This allows the two processes
to usea andb in their local assertions because such usage is passive.
When the left process enters its critical region, its local permissions
are combined with those owned by the resource, leading to the set
of permissionse!, a', b2 . This allows the critical region to mod-
ify « anda, while only reading is permitted fdr. The right process
is similar. This provides aompositional descriptioof the variable
usage in the example, eliding the references to “other processes.”
In the following sections, we formalize the system of Syntactic
Control of Interference with permissions and use it to formulate the
rules of sequential as well as concurrent Separation Logic.

11n Brookes’s variant of the Owicki-Gries-O’Hearn system[la andb

from being mentioned in the parallel branches outside any critical peed not be included among the owned variables of the resotinss,
regions. So, itis not possible to write assertions that show that eachgrookes's logic is subtly more general than the original Gorent Separa-

critical region increments.

tion Logic.



3. Sequential Separation Logic

Our form of syntactic control is a modified version of Reynolds
SCI, using the ideas of permissions for read-only access [6, 8].
We assume a permission algelffa &, T), i.e., a partial com-

mutative semigroup that is cancellative, has a distinguished element

T denoting full permission and satisfies the following axioms [32]:

(non-zero) Vp,p' € P.p®p #p
(top) Vp € P. T & pis undefined
(divisibility) Vp € P.3p1,p2 € P.p =p1 ®p2

A significant case of permission algebras is thatrattional per-
missionsthe real interval0, 1] with @ being the partial operation
of addition andT = 1. The idea is that a full permission {h the
fractional permission algebra) allows an “active” usage, i.e., both
reading and writing, whereas a partial permission (represented by
fractional values in the fractional algebra) allows a read-only or
“passive” usage.

A variable contex® is an unordered list of the form

it abn

wherez, ..., z, are variable symbols and, . ..
sions, subject to the following conditicn:

, P, @re permis-

¢ if the same variable symbel occurs inX multiple times with
permissions;, , . .., ps;, respectively them;, & --- & p;, is
defined.

We call a putative variable contemtell-definedwhen it satisfies
this condition. If the variables, ..., z, are pairwise distinct,
then we say that the variable context isrniarmal form A non-
normal form variable context can b®rmalizedby replacing the
multiple copies of each variable by a single copy and associating
with it the permissiorp;, @ --- & p;, as above. We denote the
normalized version of variable conteXtby norm(X%). Whenever
two variable contexts are combined, as ;' 22", one needs to
ensure that the combination is well-defined. We say¥haand>l»

are compatible, and denote this factBy £ X».

We assume that all the variable contexts appearing in legal
inferences are well-defined, i.e., any inference that leads to an ill-
defined variable context is illegal. (Formally, our system of rules
is anatural deduction systenwhere the variable contexts are used

The following rules will beadmissible rulesn our proof sys-
tems (if the premises are derivable then so is the conclusion):

>ES
LY ES
>+ EExp E,mT F P Assert

Weakening

Subst

Y+ P[E/xz] Assert

The substitution rules allow a variable witHw@l permission to be
substituted by an expression.

To use a variable symbal as a variable phrase in a program
(thereby allowing assignments to it), one needs the full permission
for the variable. On the other hand, to use a variable as an expres-
sion, any permission will do.

S,z bz Var 3, 2P - 2 Exp

More generally, for all expressions and assertions, the requirement
is that all their free variables must have some permissiadn. iie
omit the formal rules for brevity.

We can write down well-formedness rules for commands as
well, but we will save a bit of work by combining the well-
formedness of commands with program logic, which we look at
next. (For completeness, we include the well-formedness rules in
Appendix A.)

A judgement of sequential Separation Logic is of the form

EE{P}C{Q} (1)
which means that:
1. P, C' andQ are well-formed phrases in the contéxtand

2. the failure-avoiding specificatiofP} C' {Q} holds assuming a
variable contexi.

The variables that are modified in the commatidvould be re-
quired to havel permission inX. Other variables, which might be
employed inC' in a read-only fashion or employed only in asser-
tions, can have nofi- permissions.

The rules for commands are shown in Table 2. Since we incor-
porate the well-formedness of assertions and commands in speci-
fications, most rules have premises to do with well-formedness of
assertions, commands or components of commands. In the rule for
assignment, we depend on the admissible &udst which al-

as assumptions of the deductions. Even though we use the notationgys us to substitute for a variable symbol with ffiepermission.

of sequents for presenting the deduction rules, itasa sequent
calculus.)

The syntactic well-formedness of program phrases is expressed
using a variety of judgements:

YFxzVar YXFFEExp XF PAssert YFC Comm

These say, respectively, that the displayed phrase is a well-formed
variable, expression, assertion or command in the variable context
3. All these forms of judgements have a structural rule:
N, 2P,z S
Contraction ———MM ——
2, 2P% - S

This allows two copies of a variableto be combined into a single
copy or to split a single copy into two, while keeping account of
the permissions.

2|t is more conventional to require that all the variable syrsiisited in a
context are distinct. It would be possible to formulate vaseof our rules
using such a convention. But we feel that our approach is nmbuétive.

The rule for heap cell lookup illustrates the use of side conditions
for specifying genuine logical conditions about the occurrence of
free variables (as opposed to the conditions that are purely to do
with well-formedness issues). Contrast this with the rule for local
variable declaration, where we require that P and@ should be
well-formed in theouter variable context. So, they cannot hawe
occurring free. This seems to be a reasonable choice, because most
programmers understand the scope:@b be command’. So, its
free occurrence in other places would be considered odd.

The frame rule of Separation Logic gives us the first application
of the syntactic control of interference:

SH{P}C{Q} X'+ R Assert
Y F{P*xR}C{QxR}

(Note that there is an implicit side condition for the rule that says
that 33, ¥’ is a well-formed variable context.) Since the variable
contexts of{ P} C' {Q} andR are required to be separate, it is not
possible forC' to modify any free variables aR. If C' modifies a
variablez thenX needs to include:". But thenz? cannot occur

in X', for any permissiorp, becausel & p is undefined. Thus
the splitting of the variable context infd andX’ has exactly the

FRAME




YFP,Q Assert T+ {P}C

{Q}

SH{P}YC{Q}
Y+ P Assert Y+ x Var

if PP>PandQ>Q’

Y+ EExp X+ P Assert

S+ {P} skip {P} Sk

S+ 2 Var
S+ {P[E'/z] NE+ E'}z:=[E]{PAE— E'}

SH{PAB}C, {Q} S+ {PA-B}C:{Q}

Y+EExp X+ E Exp

(if v ¢ FV(E,E"))

{P[E/a]} x := E {P}
S+FEExp X+ E Exp
S+H{Ew— -}[E]:=E'{E— E'}

Y+ P,Q Assert s,z k {P} C{Q}

Y F {P}if B then C; else C; {Q}

Y F{P}localzin C{Q}

Table 2. Proof rules of seq

Y F z Var
Y |THA{P[E/z]} z .= E{P}
R S| DE{P} G {Q1}

Y+FEExp XF P Assert
ASSIGN

COND

uential Separation Logic

S|ITH{PAB}Ci1{Q} T|TH{PA-B}C:{Q}
S| Tk {P}if B then C else C> {Q}
Yo |[TH{P} Cy {Q2}

21,22 | 'k {P1 *PQ}C1 || Cs {Ql *QQ}

YFPQ Assert X,% |

I'{P*xRAB}C{Q* R}

CRIT

Y|T, r(X0): R+ {P}withr when B do C od {Q}

Yok RAssert X|T,r(X0): RE{P}C{Q}

RESOURCE

(R precise)

¥, %0 |T'F {P * R} resource r(Xy) in C {Q x R}

S+ P,QAssert X, X' |T+{P}C{Q}

AUXILIARY

if X is auxiliary forC

LITE{P}C\X{Q}

Table 3. Proof rules of Concurrent Separation Logic

same force as the usual side conditiafi tioes not modify any
free variables of?” in the conventional formulation of Separation
Logic.

As an example, using the fractional permission algebra, we can
derive the inference usifgRAME

xl’y% F{y=0}z:=y{x =0} y%7z% Fy = z Assert

Jrl,yl,z%F{yzO*yzz}x:zy{sz*y:z}

4. Concurrent Separation Logic

In this section, we formalize the rules of O’Hearn’s Concurrent
Separation Logic, treating Hoare-style resources and conditional
critical regions. The context-free syntax of the commands is:

C z:=F |z:=[E]|[E] :=FE|skip
| C1; C> | if B then C else C-
| Cy || C2 | with r when B do C od
| resource r(X) in C

Note that the resource declarations include permission contexts
Y. for the variables associated with them. The notation enhances
that of Owicki and Gries [31] and O’Hearn [25], who list only

variable names with resource declarations. In Section 6, we present

an inference algorithm that allows the resource declarations to
be written simply in the formresource r in C' and finds the

appropriate permission contexfsto be used with them, avoiding
the annotation burden for the programmer.

The well-formedness of commands is defined using judgements
of the form

Y |T'FC Comm

Here, X is a variable context anfl is aresource contexof the
form r1(%1),...,7.(Z») wherer; are resource namesg;; are
variable contexts owned by the resources, subject to the following
conditions:

* The resource names are distinct from each other.

e The variable context, >4, ..., X, is well-defined.

A putative syntactic context satisfying these conditions is said to
be well-defined Note that only commands require resource con-
texts (which get used in checking the well-formedness of critical
regions). Variables, expressions, and assertions only need variable
contexts.

Just as in the sequential case, our rules of the programming
logic incorporate the well-formedness of commands. So, no special
attention needs to be paid to their well-formedness.

The programming logic is formulated using judgements of the

LT HA{P}C{Q}
Here,X is a variable context anid is anannotated resource context
where each resoureg(X; ) is annotated with a “resource invariant”



formula R; which is apreciseassertion [25] and satisfies; + {57~ -}
RilAsserIt. Tgis me_argls that a_lreslou_rc_e invar_iaglt for aresource can  resourcer; (p%) in
only employ the variables available in its variable context. 1y ;

All the rules of the sequential Separation Logic can be lifted resowﬁre]rﬁl(gz)(mtﬁegndo p := 00d); [57] := 30d
to Concurrent Separation Logic by simply adding I'” to all the || with 7 do (with 71 dop := 1od): [57] := 4 0d
specification judgements. For example, see the rules for assignment 4 '
and conditional commands in Table 3. The resource contexts do (57— )
not play any rule in the sequential fragment of the programming
language.

The proof rule for parallel composition is the ruRAR As
one would expect, the variable context of the composite command, Table 4. “Problematic program” due to Berdine and Reynolds
31, X, needs to be split into separate porticds and X, for
the two processes. The resource context, on the other hand, is ) . . o
shared. The rule allows; andC, to share read-only variables, via leus, the proof outline of Table 1 is legal in the Owicki-Gries-
separate copies with partial permissions. However, it is not possible O’'Heéarn system. However, there is a rider to this allowance in the
for one process to modify a variable employed in the other process Owicki-Gries proof rule for critical regions. A variable occurring

orits proof free in the assertions surrounding a critical region should not be
A resource’s variables can be imported when a critical region changed in “another_process”. Th_e allowance as well as its rider
is entered (theCRIT rule). The body of the critical region(, are already covered in our relaxation of the rule 1 above. We treat

can use the combined variable contexts of the process and the relhe free occurrences of variables in assertions as well as read-only
source s andX, respectively. However, the pre-condition and the Occurrences in code in exactly the same way. A variable that is not
post-condition can only employ the variables available in the pro- modified in “another process,” is available to the current process

cess’s context. This captures the Owicki-Gries requirement that With @ partial permission. So, it can use it in a read-only fashion in
they should only employ variables not modified by “other pro- both code and assertions. Our relaxation of the Owicki-Gries rule

cesses”. 1 leads to a simpler formulation.

The rule for the resource declarationRESOURCEThe vari- Thus all valid proof outlines of the Owicki-Gries-O’Hearn sys-
able context), is sliced out of the current context, and transferred t€m remain valid proof outlines in our logic with syntactic control
to the resource. The resource invariant is based on these variables. Of interference. It is quite straightforward to come up with an as-
The body of the resource declaratiat, can only use the remaining signment of permissions to the variables listed in a resource.

contexts outside any critical regions. e If a variable appears in multiple processes, either in code or as-
Finally, the ruleAUXILIARY, which is similar to the rule for sertions, and modified in at least one of them, then the resource

local variable declaration in its form, allows a set of variables should contain th& permission for the variable.

X ={z1,...,z,} to be deleted from a commaxdalong with all

¢ If a variable has read-only occurrences in one or more pro-

assignments to them, provided they are “auxiliary”, i.e., each free ; h
cesses, then then resource may contain any permigsfon

occurrence inC' of a variable fromX is in an assignment whose

left hand side also belongs 6. The notationC' \ X denotes the the variable and the complementthould be distributed to
command obtained by deleting all the assignments to variables in &l Processes that use it outside critical sections.

X. Note that all the variables iX are assigned th& permission in e If a variable is used in only one process (but possibly in as-
the second premise. This guarantees that the variables do not occur  sertions outside critical regions), then the resource may contain
in X or the permission contexts in any permissiorp for the variable and the complement pfis

) ) o given to the process.
4.1 Comparison with Owicki-Gries-O’Hearn system ) . . .
For the example in Table 1, the variahleappears in multiple

processes. So, it gets the permissidn the resource. The variable
a (respectively,b) is used only in the left process (respectively,
the right process). So, the resource is givepermission and the
process is given the remainirg

However, our version of the Concurrent Separation Logic is
1. If a variablex belongs to a resource, it cannot appear in a  more expressive. By associating permission contexts with re-

parallel process except in a critical region for sources, we make it possible for the permission to be combined
in nested critical regions. For example, consider the program frag-
ment shown in Table 4 due to Berdine and Reynolds [35]. The
purpose of the two resources andr; is to achieve mutual exclu-
The rule 1is relaxed in our proof rules. Recall that our resources en- sion to a shared data structure, in this case just the locatiotf
capsulate not merely variables but variables with permissions. So, the specification has a proof in Concurrent Separation Logic, the
if  belongs to a resource with permissionthen the restrictions race-freedom property of the logic guaruantees that only one pro-
on its usage in our rules are exactly the same as in the Owicki-Gries cess can potentially access the memory location 57 at any given
system. However, i belongs to the resource with a partial permis- time. A proof can be given in our version of the logic using the
sion, then one or more processes can possiblyclinea read-only following resource invariants:
fashion using the remaining partial permission. _ Ri = (p=0A57— )V (p#0Aemp)
ruleTsr.]e rule 2 is represented exactly the same way in our proof Re = (p=0Aemp)V (p#0AB7——)

The rule 1 is somewhat misleading. While it requires that a Note thatR; *x R2 is equivalent to57 — —. So, both the pre-
variable z belonging to a resource cannot appear in toee of condition and the post-condition can be rewritterto* Ra.
a parallel process except in a critical region, it nevertheless permits ~ What makes the proof work is the idea that the permissions for
it to appear in thassertion®of the process outside critical regions.  the variablep are split across the two resources. So, a process can

O’Hearn’s version of Concurrent Separation Logic [25] is based
on the Owicki-Gries system [31] as its underlying framework for
variable usage. In this system, the free variables of the resource
invariant must be listed in the resource, similar to BRESOURCE
rule. The rules governing the variables of a resources are as follows:

2. If a variablex is changed in process;, it cannot appear it
(¢ # j) unless it belongs to a resource.



modify it only by entering critical regions for both the resources. the SCI judgements for phrases and specifications as a form of

This form of split-permissions for variables is not available in the type system, and use the approach of “Church typing” to define

Owicki-Gries-O’Hearn system. the semantics, i.e., we regard well-formedness judgererit
Brookes [11], in his effort to prove the soundness of Concurrent ¢’ Comm andX | I' v C Comm as a form of typing for

Separation Logic, defined a variant of the original system which C and interpretC' using denotations that aegppropriatefor the

is subtly more general. Unfortunately, the generalization proved to specified context: | I'. It is also possible to conceive of a “Curry

be unsound. However, all the valid proofs that can be carried out typing” semantics where the commands are interpreted without

in Brookes's system can be represented in our system. A detailedregard to their contexts of well-formedness, and the well-formed

comparison with Brookes'’s system, along with soundness issues,judgements are given a logical meaning as properties of the untyped

appears in Appendix B. denotations. However, we follow the Church typing approach here

. . . because it seems more natural.
4.2 Comparison with “Variables as Resource” systems

Parkinson et al. [32] and Brookes [13] define a general scheme o
treating variables as resources with permissions. In contrast to ourA stateis modelled as a paifs, ) of a “store” and a “heap,”
approach of syntactic control, the variable resources are includedwhich are finite partial functions from, respectively, variables and
in program assertions, through ownership formulas of the form addresses. To keep track of permissions, we define them to map
own,(z) and used with all the normal logical connectives. So, their arguments tpairs of values and permissions

this approach can be termed “logical control of interference” for

§5.1 Sequential Separation Logic

variables Store = Vars — Val x P

It is easy to see that the syntactic control system can be trans- Heap = Ad'dr_é Val x P o
lated to the logical control system. For every variable context We refer to such maps gsermissive storeind permissive heap
(¥, ..., zb), there is an ownership formulas, = own,, (z1)* respectively, and both kinds of maps generically pgsmissive
-..xown,, (z,). Ajudgement: | T' - { P} C {Q} of our system maps Two permissive mapg: and¢. are said to b&éompatible

can be translated to a judgemént {Os AP} C {Ox AQ} inthe denoted¢s # ¢2, if, for all arguments common to both of their
“Variables as resource” system. In fact, Parkinson et al [32] give domains, they agree on values and provide compatible permissions.
translations of this form for Hoare logics. More formally, ¢ # ¢ iff:

It is not possible to go in the reverse direction. The “Variables _ AN, o /- )
as resource” system uses logical formulas to express ownership of¢1(x) = p)Aga(2) = (v, 1) = v =0 Ap@p is defined
variables. So, it can express a much richer set of ownership con-If ¢1 and ¢. are compatible, their joining operation is denoted
straints than possible in the syntactic control system. For example, ¢1 - ¢ (which combines permissions whenever bgthand¢, are

the formula defined). It is extended to states by definisg, k1) - (s2,h2) =
_ (81 + 82, hl . hg).

(z=0Aownt(y))V (z # 0 AownT(z)) Given a variable context with norm(X) = («2*,...,28"),

does not correspond to any syntactic variable context. a stores is said to beof typeX if dom s = {z1,...,2,} and the

Thus, the “Variables as Resource” logic is more expressive than permission component of{x;) is p; for every:. It is easy to see
the syntactic control system. However, we argue that the syntactic that, wheneveE; § 3., any stores; of typeX; ands: of typeX,
control system offers considerable simplicity and convenience. In are compatible, angl; - s2 is of typeX;, 3.
particular, A statec = (s, h) is said to beof typeX just if s is of type .

The heap component of the state is unconstraine(1fz;) and
(s2, h2) are states of of typ&; and>, respectively; >, and
h1 ﬁhz, then(sl, h1) . (82, hz) is of typeZl, Yo,

The meaning of a command in the sequential programming
e Substitution is a valid operation in expressions and assertions. language is defined in [39] aslacal state transformeri.e., a
binary relation[C] C State x State W {fault} satisfying safety

e There are no issues of undefinedness in expressions and formu
las. So, one does not need to write formulas of the féim: E
just to ensure thak is defined in the current context.

e The system has no logical anomalies, e.g., the equivalence I =5 -~
-(Eyw = E2) <= E; # E, holds in our system, whereas monotonicity, termination monotonicity and the frame property. It
the two formulas have different interpretations in the Variables Was extended to permissive states in [6]. While itis not stated there,
as Resource logic it is also easy to see thdC] always preserves the domain and

) ) ) permission structure of the store. This allows us to define a typed
* We need no special treatment of logical variables. The “pun” of semantics for commands. ¥ - C Comm is a well-formedness
program variables as logical variables, characteristic of Hoare judgement then its meaning is a relatif#f] s consisting of just the
logics, continues to work in our system. pairs(o—7 0-’) where boths ando’ are of typex.

DEFINITION 1. A judgement of the sequential Separation Logic
Y+ {P} C{Q} isvalid iff, for all statess of typeX satisfyingP:

e (o, fault) ¢ [C]s, and
¢ if (0, o) € [C]x theno’ is of typeX and satisfies).

5. Semantics and soundness

The standard proof of soundness for sequential Separation Logic
is due to Yang and O’Hearn [39]. Bornat et al. [6] have extended
it to deal with permissions. The soundness proof of the original
Concurrent Separation Logic was provided by Brookes [11] us- Tyeorem2 (Soundness)Every derivable judgement of sequen-
ing novel denotational methods. Brookes [13] has also used theseyjg| Separation Logic is valid.
methods to prove the soundness of the “variables as resource” sys-
tem. Since then, other proofs of soundness have appeared. $ee [38The proof is by induction on the derivation of the judgement.
for an overview. We regard Brookes’s semantics as the canonical Consider the FRAME rule as a significant example.d &k a state
one since it is denotationally based and allows easy extensions andf type 33, ¥’ satisfyingP x R. Theno can be written ag; - oo
adaptations. whereo; is of type ¥ and satisfies? and oy is of type ¥’ and

In this section, we discuss how the presentation of Separation satisfiesk. Then by inductive hypothesig, - { P} C' {Q} is valid.
Logic using the SCI principles impacts the semantics. We regard Hence[C]x is safe fore1 and, wheneve(o1,01) € [Clx, o1 is



of typeX and satisfies). So, by the safety monotonicity and frame
properties[C]s s is safe foro, and(c, ’) € [C]x,s impliesc’
is of typeX, ¥ ando’ satisfiesQ x R.

5.2 Concurrent Separation Logic

The denotational semantics of commands in the concurrent pro-
gramming language is given in two stages. First, commands are in-
terpreted aracesi.e., stylized sequences of actions. Second, these

S5y T
3| T = ¥ | T wherez? € ¥ for somep
Y| T Z2 % | T wherez" € norm(X)
T s T

l]:=v

S| TU= T
2T, r(Se) ™ 5| T, (%)

traces are described by their effect on states as state transitions. Itis
not possible to interpret the commands directly as state transitions,

because such transitions only relate initial and final states whereas
parallel composition makes intermediate states visible.

2T, r(S0) “ 5, 5 | T, [r(20)]
~ rel(r ~
2,50 | T, [r(S0)] 22 5 | T, r(S0)

) Table 6. Actions used in traces
Trace semantics

A pre-action(or an untyped action) is a syntactic token given by

the syntax: locations is controlled in the programming logic rather than the

A o= Sla=v|lz=v|[l]=v]|[]:=v syntax. o
| try(r) | acq(r) | rel(r) | abort A trace is a finite or infinite sequence of the form

Asin[11],4 is a do-nothing or idle action; = v denotes the action
of reading the variable;, x := v denotes the action of writing to
the variablez. The actionsl] = v and[l] := v denote similar ~ If the sequencex = A1z is finite, we use the notation
actions for heap locations. The tokenig/(r), acq(r) and rel(r) Yo|To - ¥,|T, to denote the corresponding trace. If it is infi-

denote the actions of attempting to acquire a resource, acquiringnite, we use the notatioﬁo‘fo . ~o. We also use the notation
3 reStOUV?E andt_re|e?SIEQ ? resource retsyi')_ectl_vely. Theftdkem %|Tg — - for both finite and infinite traces, and say that the
erxn es the action o a.bcl)r |_n?_ a computation |rfl case 0 anbgrror. pretracen is enabledin the contextl,|To.
pretraceis a possibly infinite sequence of actions subject to For defining the meaning of parallel composition, we define an

the identificationsy -6 - 8 = a - §, ando; - abort - § = o - abort. operation ofinterleavingtwo traces. Suppose: anda: are two

We model the actions and action traces “appropriate” for a t itha bled i text, T and bled i
syntactic contexE | T as a form of typing. First of all, the contexts ~ 7aC€s Withr, enabled in a contexts |I's anda enabled in a con-
text X2|I'2. ThenI'; andT'; should have the same underlying re-

enable certain actions and prohibit others. A variable actien v a ne
or z := v would only be possible in a context that contains  source contexts, i.e(I'1)° = (I'2)°, and they should mark disjoint
with requisite permissions. The resource actiongr) andacq(r) sets of resources as busy. Then the resource context obtained by
would only be possible in a context that contains a resource namedmarking the busy resources of bdth andI'; is denoted™; A I's.
r. Secondly, as a result of an action, the context available for the |nterleaving is only possible for traces anda; such thaf"; and
rest of a trace might change. For instanee;(r) has the effect of T, are in this form andt,, 55 | Ty A T2 is well-defined.
removing the resource(X) from the resource context and adding Two actions\; and .\, are said tdnterfere written A, Jf A,
its variablesX, to the variable context. Ael(r) action has the it ), writes to a heap locatiohand ), reads or writes the same
OE\)pOSIte effect. W_e represent these effect.s by a.transmon relat'onlocationl, orvice versaThe set ofnutex fairmergesf £ [T %
— on contexts. Finally, when a resource is acquired by a process, andy,
it is not available for another acquisition until it is released. At the
same time, the type information of the resource should continue
to be retained in the context. Therefore, we work with a form ar]e={a1}
of extended contexts where the resources acquired by a trace are el oz = {aa}
marked “busy,” by enclosing them in square brackets-é5)]. e [|(Azaz) =

An extended contex$ a context of the form {abort | ALt A} U

20|f0 RSN 21|f1 ECN 22|f2 s

T2 22 . is a set of traces of typE;, X[y ATy — -
given by induction on the lengths ofi andas:

x | 7.1(21)’ cee 7rn(2n)7 [7’/1(2/1)}7 B} [T;n(zlm)] {21,22 | fl A fg i) 2/1, I ‘ fll A fg L .
such that such thg(ﬁ € |L()\2052) U o,
’ ’ .. {21,22|F1/\F2*2>21,E/2‘F1/\Fl2*>~
¢ the resource names, ..., r,, 71, ..., 7, are all distinct, and suchthad € (A1) || oz }
e the variable context, X1, ..., X, is well-defined.

This definition is a typed version of the notion of mutex fairmerges
A putative extended context satisfying these conditions is said in Brookes [11]. Note that the typing information of traces obviates
to be well-defined We use the lettef” to range over extended the need to consider possible interference via variable usage.
resource contexts where some of the resources are marked busy. The definition is extended teetsof traces in the natural way. If
The notation(T")° denotes the underlying resource contexttof 73 andT> are trace sets enabled in conteXtgT"; andX;|I'; then
where all the busy markers are erased. the trace sefly || T2, obtained as the union of all; || a2 for all

An actionis a triple (S|, X'|T, \) consisting of the initial a1 € T1 andas € Ts is enabled in the conteXt;, ¥o | I’y A Ts.

and final contexts and a pre-action that leads from the former to A (well-bracketed) trace for an extended contExr[f is either
the latter. We write it using the notatioB|T — S'|I. The abort, a finite tracea such that> | T -2 ¥ | T, or an infinite
list of actions used in the semantics of the programming language trace whose every finite prefix can be extended to a well-bracketed
are shown in Table 6. There are no constraints on the actions for finite trace. The terminology is motivated by thinking of the;(r)
reading and writing heap locations because the access to heamndrel(r) actions as brackets. A trace $ets a (well-bracketed)



[z]s = { (x = v,v) | v Value}
[E1 + E2]s = { (p1p2,v1 +v2) | (p1,v1) € [Er]s A (p2,v2) € [E2]s }

[
[[SU E}]z\r ={plz:=v)| (p,v) € [E]= }
[ = [Ellzir = {p([v] = v')(z := ) | (p,0) € [E]= }
[[E] := E'lsir = {pp'([v] := ') | (p,v) € [E]s A (p,0") € [E']n }
[if B then C) else Ca]sr = ([B]s [ true) [C1]sir U ([B]s | false) [Ca]sir
[localz in Cls;r = {(p\z) | p € [[C]]E zT\F}
[C1 [ Calsy 0 = [Cilsy e [[Colzar
[with » when B do C od]sr »(x,) = wait™ enter U wait”
where wait = acq(r) ([B]s,s, | false) rel(r) U {try(r)}
) enter = acq(r) ([B]s,s, | true) [Cls s, r rel(r)
[resource r(Xo) in Cls sor ={p\7 | p € [Clsir.r(zo) }

Table 5. Trace semantics of phrases

trace set for context | T" if each trace inl" is a well-bracketed A state of typet | I is eitherabort or a normal statgs, h, A)
trace for the context. wheres is a store of type:, h is a heap, andl is a subset of the
resources marked busyﬁl

We can interpret actions (and action traces) of tybef —
>’ | T as state transformations that transform states of En)d“
to states of type’ | I"'. For actions of types [ [ — X | T

LEMMA 3 (Weakening of contexts)f a is a trace for an extended
contextX|T’, and X, ¥'|T', T is a longer well-defined extended
context, ther is a trace fors, ©/|T", I”.

LEMMA 4 (Parallel composition preserves context§).a; and (where the state type is unchanged), the state transformations are
oy are traces for extended contex¥s |I' and X, |T" respectively,  as follows:
and X, 3T is a well-defined extended context then|| a- is a (s, h, A) =2 (s, h, A)
trace set for the contet, X2 |T". (s, h, A) abort 1 ort
All expressions and commands can be given a compositional (s, h A) =% (s,h, A) iff Ip.s(z) = (v,p)
semantics in terms of trace sets. (s,h, A) Z=2 (s[z — (v, T)],h, A) iff  Fvo.s(x) = (vo, T)
e The meaning of an expressiah - F Exp is a set of pairs (s,h, A) M=v (s,h,A) iff Fp.h(l) = (v,p)
(p,v) wherep is an action trace of typ&| - 3| (i.e., a (s,h, A) M=y bort iff 1 ¢ dom(h)
context with no resources, because expressions do not access = )
resources), and is a value (obtained as the result of evaluating (5,5, 4) = (s,h[l — (v, T)],A) iff  Jvo. h(l) = (vo, T)
E). We denote it by E] . (s,h A) U= abort iff 1 ¢ dom(h)

¢ The meaning of a command | I' + C' Comm is a set of (s, h, A) 8 try(r) (s, h, A)
tracesp for the context:|T". We denote it by[C]sr. 5

L ' . . For anacq action of type
The semantics is defined in the standard fashion [11]. However, acd P

it is defined by induction on thderivationsof well-formedness = acq(r)

. . Y|, r(Xo): R — X8 F R
judgements¥ + E Exp andX | I - C Commn, instead | T, 7(%o) o |1 [r(¥): Bl
of induction on the structure of terms. We show the meanings of the transformations are given by:

sample phrases in Table 5. The notat{@]x | v denotes the set

oftraces{ p | (p,v) € [E]s }. The notationg\ = andp\ r remove (s,h, A) ““% (s 50, h- ho, AU{r})
the actions mentioning andr respectively fronp. iff  (s0,ho) E R, s#so, hiho

THEOREMS5 (Type soundness of trace semantid®e meaning For arel action of type

of command: | I' = C Comm is a (well-bracketed) trace set ~ rel(r)

for the context | T. Likewise, for everyp, v) in the meaning of 2,50 | T, [r(20): Bl = 2| T,7(S0): R
an expressiort - E Exp, p is a (well-bracketed) trace for the

the transformations are:
contexty | .

rel(r)

(s-so, h-ho, AW{r}) — (s,h, A) iff (so,ho) FR

rel(r)
A statefor a concurrent program is a triplés, h, A) where s (s,h,A) — abort iff Vho C h.=(s,ho) F R
is a permissive store), is a permissive heap and is a set of The key property of these transformations, inherited from Brookk [1
resource names (deemed to have been acquired by the processjs that the transitions fogcg(r) extencthe current state with aar-
We also use an error statebort. The types for states will be  bitrary state of the resource satisfying the resource invarfant
annotated extended contexts of the fatnh I where the resources ~ The conditions { so ensures that the values of any common vari-
are annotatedwith resource invariants as in(Xo) : R. Itis a ables agree. The transitions faei#i (r) do the opposite: they remove
characteristic of Brookes’s semantics for Concurrent Separation the state of the resource from the current state. If and when the
Logic that the resource invariants play a central role in the state resource is reacquired in a future action, the state of the resource
transition semantics. obtained may bear no relationship to the state previously released.

Local state semantics



In fact, since other processes can intervene in the interim, nothing “self,” 1, ...

more can be assumed about the reacquired state of the resource.

LEMMA 6 (Type soundness of traces}iven a tracen of typeX |
I = ¥’ | I and a state(s, h, A) of typeX | T, if (s, h, A) =
(s',h', A") then(s',h', A’) is of typeX’ | T”.

Soundness

DEFINITION 7 (Validity). A judgemen® | ' - {P} C {Q} is
valid iff, for all well-bracketed tracesy for the context:|T" in
[Clsr. all local states(s, h, #) andc’ of typeX|T,

(s,h) EP A (s,h,0) = ¢/ =
s’ h.o" = (s, 0) A" EQ
THEOREM8 (Soundness)Every provable judgement of concur-
rent SCI Separation Logic is valid.

Standard semantics

In addition to the semantics defined above, which is with respect
to a program proof, traces can be interpreted as actions on global

a

states. The relation is denotéd, h, A) — (s’,h’, A’) and is

similar to an untyped version of the local state transition semantics,

except that the rules farcqg andrel actions are modified as follows:

(s,h, A) "2 (s b, AU {r}) ifr ¢ A
(s,h, Aw {r}) 2L (s, h, A\ {r}) ifreA

This relation corresponds to running a process on the global state

without any interference from any other processes.

The following result says that the standard semantics obtained

,n for the shared resources), and the ingesorre-
sponding to the variable. We represent all the data in the context by
two finite functions:

A : Vars — Owners — [0, 1]
whereOwners = {self } & Resources, andA satisfies
EoEmeers (A v 0) g 1

The setsvVars andResources include all the variable and resource
names appearing in the program fragment being analyzed.
Using these notations, the proof system of SCI Separation Logic
can be rewritten using judgements of the form:
A|THEExp A|TF P Assert (Passive)
AYFxVar A|YH{P}C{Q} (Active)
(where the first three forms have the resource coriteatlded for

uniformity in discussion). For example, the parallel composition
rule is rewritten as:

Ay [THEA{P}Ci{Q1} A [T H{P}C2{Q2}
AT HE{P* P} C1 || C2{Q1%Q2}

if Atvo=Azvo=Awvoforallo# self
Awvself = Ajvself + Asvself <1

We also use abbreviated rules for the passive judgements:

T : Resources — Invariant

A[TF E Exp if Vo € FV(E), Avself >0

A|TF P Assert if Vo € FV(P), Avself >0

by executing traces on the global state corresponds to the localDefine awrite-proof as a proof where the side conditions of pas-

state semantics defined above. The notatiil’) stands for the
conjunction of all the resource invariantslin

THEOREMO. Let (s, h, ) be a global state and: | T" a context.
Suppose the stats, h) can be split ag(s1, h1) - (s2, h2) where
(s1,h1,0) is of typeX | T and(s2, h2) = inv(T).

o If (s, h, ) = abort then(s1, h1, ) — abort.
o If (s,h,0) = (s', ', ) then either
= (s1,h1,0) 2, abort, or
= (s',1') can be splitags?, h’)-(sh, hs) such thays, ki, 0)

is of some type’ [T/, (s1,h1,0) — (s}, k},0) and
(s, ha) = inv(TY).

6. Permission inference

In this section, we investigate the problem of permission inference.
We construct an algorithm which, given a program and a proof
outline with no variable contexts listed with resources, fills them
in if at all possible in accordance with the rules of SCI Separation
Logic.

We restrict our attention to the permission algebra of fractional
permissions, the real intervgD, 1] with addition as the partial
binary operation. For theoretical simplicity, we extend the algebra
to include0 as an abnormal permission value, indicating that the

sive judgements are ignored. Since the passive judgements involve
variable reading, this means that the permissions needed for vari-
able reading are not checked. However, the permissions needed for
variable writing are still checked, hence the name.

Define a “pre-judgement” as a judgement with variable contexts
A erased, i.e., a judgement of one of the forms:

THEExp TF P Assert (Passive)
TrzVar YH{P}C{Q} (Active)

A “pre-rule” is an SCI Separation Logic rule with variable con-
texts erased. A “pre-inference” is an instance of a pre-rule and a
“pre-proof” is a derivation made up of pre-inferences. Téra-
sureof a judgement, rule, inference or pro&fis a pre-judgement,
pre-rule, pre-inference or pre-proof (respectively) denctéd ob-
tained by erasing all the variable contexts. In that case, we say that
X “erases” toX° or X “extends” X°.

The problem of permission inference is now stated formally as
follows:

Given a pre-proofP?, is there a proofP whose erasure i£°?

The algorithm described below answers the question. Moreover, if
the answer is yes, it produces a maximally permissive prJtt
that extendsP® .

We regard proof trees dsrmal treesi.e., graphs satisfying the
tree conditions, labelled by judgemen®® and P are different

resource or the process possesses no permission for the variablgabellings of thesameformal tree. We use the notati@i#®®) y and

and extend addition t0 in the standard way. An element [, 1]
is referred to as an “extended permission.”

A normal form context withn variables andn resources is of
the form

Po1 PO
ot abon |

ri(@ o aB) s Ry oy r (a2 ) f Ry b

where eaclp;; is an extended permission, with the indexor-
responding to the owner of the permissianfér the process or

(P)n, respectively, to refer to the judgements labeling a nvdef
the formal tree.
We use a few auxiliary concepts:

¢ A permission restrictiorP is an assignment
[vr: 01, ..., vk : O]

wherev; € Vars andO; C Owners. We also feel free to treat
® as a partial function of typ&ars — P(Owners). Such a



{57 — —} . total permission must be owned bylf at this point in order to
resourcery in allow assignments tp.
resourcer, in begin

with , do (with r» do p := 0od); [57] := 3 od 2. Forthe commang := 0, the permission restriction is the same,

| with r5 do (with r1 do p = 10d): [57] := 4 od ©2 = [p: {self}].
end 3. For the critical sectionvith r2 do p := 0 od, the permission
{57 +— —} restriction is®s = [p : {self,r2}]. This means that both the

process and the resouregcould have non-zero permission for
p. Since the critical section combines the permissions fsehf
andrs to execute the body, this is well-justified.

4. The commandb7] := 3 does not write to any variables. So, its
permission restriction is emptyy = [].

Table 7. “Problematic program” due to Berdine and Reynolds

d represents the condition that, for each of the variablethe 5. For the outer critical section

owners inO; share the full permission for;. A variable v;

will occur in a permission restriction exactly when the program P, = with r; do (with rz dop := 0 0d); [57] := 3 od
phrase being described contains an assignment the corre- r1 is added to the restrictior@s = [p : {self, 1, 72}].

spondingO; lists all the owners that can contribute permissions o o o
required for that assignment to be legal. Formally, the satisfac- 6- The second proceds similarly has the permission restriction
tion of a permission restriction by a variable context is defined ~ ®s = [P : {self, 1, 72}].
as: 7. For the parallel compositioR; || P2, the permission restriction
N, N is @7 = [p: {r1,r2}], i.e.,self is removedirom the permis-
AR > V(vi:0:) €2 Toco, (Avio) =1 sion restr[ﬁ:tio{ns obtt}al]ined from the component processes.
Why? In this phase of the algorithm, we are only considering
what permissions are needed for writing variables. Since both
We define germission orderingn variable contextay < A’ the processes have permission restrictiongfdinat means that
by the rule: they are both writing tg, which is only possible if each of
Avo>0— A vo>0 them had) as theself permission fop. (If the first process has
non-zero permission fgrthen, since the second process has the

Note thatA v; o must be0 for all owners outsid®;. There are
no constraints on\ for the other variables not mentioneddn

We say thatA' is “more permissive” tham. The intuition is sum of all its permissions fgs summing tol, the total sum of
that A" has non-zero permissions for at least as many combina-  he permissions fop in the parallel composition would exceed
tions asA. 1, which is forbidden.) All the permissions for writing j@in
A permission restrictiomb = [v1 : O1,...,vx : O] is satisfiable both the processes must be obtained by entering critical regions
only if every O; is nonempty. In that case, a maximally permissive for the resources.
variable context satisfying can be defined as follows: 8. resource r; in P || P> has the permission conte®is = [p :
; {r1, self}] which is obtained by replacing, in ®7 by self.
AmAX o (1)/#0 :; E Og g gﬁz ; 8 This is justified by noting that _the resource d(_eclaratlon allows
1/(#Owners + 1) if v & dom the process to shift some portion of the permissionférom
self to ry. Since®, potentially requires a non-zero permission
where #S denotes the size of the st In other words, a full for p in ro, &5 must require it inself.

permission is apportioned among all the owners permitted by,
if ® imposes no restriction, then a partial permission is apportioned
among all owners.

Our algorithm for permission inference is a two-phase algo-
rithm. The first phase traverses a pre-proof leaves to root (“bottom- The key observation is the fact that permission restrictienfor
up” in the syntax tree), and computes, at each inference step, theP: || P> does not contaiself. This requires us to divide the full
permission restriction that must be satisfied by any write-proof. If permission fofp among only the two resources andrs.
any permission restriction computed in this phase is unsatisfiable ~ Since all the permission restrictions computed in phase 1 are
then there is no proof corresponding to the pre-proof. The second satisfiable, we proceed to phase 2 of the algorithm. This phase
phase traverses the pre-proof from the root to leaves (“top-down” movestop-down from the root to the leaves, using the permission
in the syntax tree), computing variable contexts that extend the pre- restrictions computed in the previous phase.

proof to amaximally permissive write-proafi the sense of the pre- 1. For the overall program, the permission restrictiofbis= [p :

order=. The maximally permissive write-proof is then checked to {self}]. The maximally permissive variable context satisfying
verify that it contains non-zero permissions for all the passive uses By is given byA p = [self : 1].

9. resource r; in resource r» in P || P> has the permission
restriction®y = [p : {self}], using the same reasoning as in
the previous step.

of variables. ] ]
We illustrate the algorithm using the “problematic program” 2. The last inference step is of the form:

of Berdine and Reynolds [35], reproduced in Table 7 for ease of Ay | F Ry Assert

reference: Lefl" stand for the resource context: Ri, r2 : Ro. A | r1: Ry F {Ry} resource 7 in P || P> {R2} [®s]
The first phase of the algorithm traverses the pre-proof leaves to

root and computes, at each inference step, the permission restric- resource r1 in

tions needed to extend the pre-proof to a write proof. Since the in- A| F{R:1* Rz} resource rz in | {R1 x R2} [®o]

ference steps correspond to program terms, we just show the terms Py || P,

involved in each case. (where theA's need to satisfy various side conditions detailed

1. For the variablep, i.e., the inference step concluding + in the formal rules given below). Note that the permission re-
p Var, the permission restriction i&: = [p : {self}]. The striction for the first premise is empty because it is a passive



judgement. We calculate maximally permissive variable con-
textsA; andA, usingA (obtained in the previous step) and the
permission restrictions for the premisgsand®s calculated in

the first phase. Recall thaéts = [p : {r1,self}]. This implies
that A, p should be of the fornr; : 71, self : w5] for some
non-zero fractionsr; andrs such thatr; + ws = 1. The pre-
cise fractions do not matter, just that they should be non-zero.
For instance, we can pick; = 75 = % A1 should be of the
form [p : [self : m1]] because the permission allocatedsédf

in the resource invariant should be the permission allocated to
71 in Ao,

. Moving top-down in the pre-proof, we need to construct the
inference:

1| F R2 Assert []
5|r1:Ri,r2: Ro - {emp} Pi || P> {emp} [®7]

Az |r1: R+ {R2}resourcers in P || P> {R2} [Ps]

whereA; = [p : [r1 : w1, self : 7] is the variable context
from the previous step. Proceeding similarly to the previous
step, we can calculate that the variable cont®kiin the judge-
ment should be of the forrfr; : 7}, ro : 75, self : 7] such
thatr] = m; and~w) + 7, = 7. However, the permission re-
striction @~ only listsr; andrs for p. Hence,rs should beg,
andrh = m,. If 11 = 7 % was chosen in the previous step,
then we obtainr] = 75

1
5
We omit the remaining steps, which are straightforward. Note that
the main task of the algorithm is now accomplished. The permis-
sions forp in the two resources; andr. have been inferred. They
are: each.

The algorithm for permission inference takes as input a pre-
proof P°, regarded as a labeling functig#®®) 5 of a formal tree
of nodes. In phase 1, it traverses the tree leaf-to-root and cotsstruc
a permission restrictio® y for each nodeV. If the pre-inference
for (P%)x is of the form

Twn, F SN, TN, FSn,

X* @)

Ty FSn
then the algorithm computes the permission restricanfor node
N as a partial functiotFz(®x,, ..., P, ) of the permission re-
strictions of its children (antecedents of the pre-inference), satisfy-
ing:

Property LO:  If eachdom @ n, contains exactly the modified free
variables ofSy; (i.e., varaibles that occur on the left hand sides of
assignments) thedom @ x likewise contains exactly the modified
free variables of5y.

Property L1: For every inferenceX that extendsx°:
X A1 TN, F SNy Ak | TN, F SN,
' ATy F Sy

we have (A, A; = ®n,) = A | &y where &y
fR(q)Nl,...,(I)Nk .

If, on the other handFr(®x,,...,Pn,) is undefined then
there exists no inferenc& extendingX°. This case arises only
for the variable declaration rule.

LEMMA 10. Given a pre-proofP?, if & v is a family of of permis-
sion restrictions for the nodes &f° produced in phase 1, then, for
every write-proofP® that extendsP?, the variable contexf\  of
(P¥) N satisfiesdy.

The proof is by induction on the structure of the underlying tree of
P°. Thus, the result holds for all sub-proofs Bf as well.

In phase 2, we construct a maximally permissive write-proof
that extendsP® by calculatingAR®* for every nodeN. For the
root node, we choose a maximally permissi¥esatisfying®,,ot-
Then phase 2 proceeds from the root to leaves, construdiitf
for each node using thA™** of the the parent (consequent of the
pre-inference) and the permission restrictions computed in phase 1.
Specifically, given a pre-inference®

TNl F SNl TNk = SN;c
' T+ Sy

and AN** satisfying @ v, it computesART™, ..., AR* for the
child nodes ofN (antecedents of the pre-inference) as a function
Gr(®nN,y,- .., PN, , AN™™) of the givenAR™ and the permission
restrictions®y, , . .., @, of the child nodes, satisfying:

Property L2: AR = @ny,... AN = @, and the follow-
ing is a legal inference that extende’:
N Ty F Shy No | Ty, F Sn,
AN | TN F Sy
Moreover, for any other legal inferencé that extendsx :
X.A1|TN1FSN1 Ak | Tn, - S,
A|TNF SN

such thati. A; = @y, andA = @y, we haveA < AR —
Vi. Ay 2 AR

XO

max .

LEMMA 11. Given a pre-proofP®, a family of permission restric-
tions @ 5 produced in phase 1, and a variable context,> sat-
isfying ®,.0t, let P™** be the write-proof on the same underlying
tree of nodes obtained by using the giveli%; and contexta\ y**
satisfying the Property L2. Then

1. P™a* i3 a legal write-proof extending®.

2. if P is any other write-proof extending® using variable con-
textsAn, and Aot = Afoax, thenAy < AN for all nodes

N.

The proof is by induction on the depth of the nodes in the underly-
ing tree of P°.

We describe all these aspects compactly by writing down the
rules of SCI Separation Logic using the notations of this section,
and displaying the computations of both the phases of the algo-
rithm. We decorate the judgements with schematic permission re-
strictions®:

A|TFES[®]
in order to refer to the permission restrictions computed in phase 1
and used in phase 2. The side conditions of passive rules are ignored

in phase 1, but used in phase 2.
Some of rules are as follows (the others are similar):

Expressions:

m whereVv € FV(E). Avself > 0
Phase 1 s trivial® = [].
Phase 2 checks to verify tha&t™** satisfies the side condition.
If and only if the side condition is satisfied, the write-proof that
extendsP? with A™#* for this node will be a proof.

The rule for Assertions is similar.

Assignable Variable:

if o = self
otherwise

1,

whereA x o = {0’

A|TF x Var [9]



Phase 1: @ = [z : {self}]

Phase 2 computation is trivial because there are no premises.

Sequencing:
A | THEAPC{QY [®1] Az [T HA{Q} C2 {R} [P2]
AT AP} Ci;C2 {R} [P
whereA; = A, = A

Phase 1:
dom ® = dom ®; U dom Ps
Pv if v € dom @1 \ dom D,
Py=< Dy if v € dom @5 \ dom P,

(P1vN Pov)  if v € dom @1 N dom Py
Phase 2AP™* = AP»* = Amax,

All other rules such as conditionals, assignment, lookup and
mutation are similar to Sequencing in thatremains unchanged in
the premises. Their Phase 1 and Phase 2 computations are exactly

the same as for Sequencing.
Parallel composition:
Ay [T HEAP}CL{Q1} [P1] Az | TEA{P} C2{Q2} [®2]

AT HE{P* P} C1|Ca{Q1*Q2} [®]

where Ajvo=Asvo=Awvoforall o # self
Awvself = Ajvself + Asvself <1

Phase 1:
dom ® = dom ®; U dom P
div if v € dom @1 \ dom ®»
Pv=< DPyv if v € dom @2 \ dom &,

(®1v N Pv) \ {self} if v € dom ®; Ndom P,
Phase 2: The paiAT** v o, A7* v 0) is as follows:
o If 0 # self, itis (A™* v o, A™** v 0).
o If o = self andv € dom ®; \ dom P, itis (A™** v self, 0)
e If o = self andv € dom @3 \ dom P4, itis (0, A™** v self).

o If o = self andv € dom ®; N dom P, itis (% Ay self,
LA™y self).

If o = self andv € dom ®; U dom Py, itis (% Ay self,
LA™y self).

The Frame rule is similar to parallel composition.

Critical regions:

Ay | YT, r: RE P,Q Assert []
As | TH{(P*R)AB}C{Q«*R} [®2]

A|Y,r: R+ {P}withr when Bdo C od {Q} [?]

whereA; vo = Awvoforallo & {self,r}
Asvself = Avself +Avr <1
AQUTZO
A=A

Phase 1: dom ® = dom &,
dv={oeDyv|o#self,o#r}U
{self | self € Pyv}U{r|self € Pyv}

Phase 2:
e Foro ¢ {self,r}, AF** vo=A"*yo.
o AF* yself = AM** yself + A" yr.

o AP = AT and ARy 7 = 0,

Resource declaration:
A1 |THRAssert [] Ay |T,r:RF{P}C{Q} [P2]

A | YT+ {PxR}resourcerinC {Q x R} [P]

whereR is precise
Ayvo=Avoforallo ¢ {self,r}
Awvself = Aswvself + Asvr <1
A vo— {Agvr, ifo:s_elf
0, otherwise

Phase 1: dom ® = dom P,
dv={oe€Prv|oF#self,o#r}U
{self |self e DovVredv}
Phase 2: The contexf5*** is defined as follows:

e Foro ¢ {self,r}, AF** v ois A"* vy o.

¢ The pair(A5** vself, AF** vr) is as follows: Ifv ¢ dom @,
thenitis(3 A™ v self, £ A"y self). If v € dom Py:

s |f self € ® v andr € Py v, it is (%Amaxv self,
LA™y self).

= If self € & vandr ¢ @, v, itis (A™* v self, 0).

= If self € &, v andr € &, v, itis (0, A™** v self).

= If self € &, v andr & &, v, itis (0,0).

AT p self is the same ady"™* v r. For allo # self, AT v o

is 0.

Variable declaration:

A1 | THPQ Assert | ] Ay | T H{P}C{Q} [®2]

AFTF{P}localzin C {Q} [?]

whereAsvo=Avoforallv # x
1, if o=self
0, otherwise

Ajvo=Avoforalv #z
Airxzo=0

Phase 1: Ielf € @3 x or x ¢ dom P, then the computation is:

dom ® = (dom ®») \ {z}
duv=">qyuvforallv#x

If z € dom @, andself ¢ @, x then Phase 1 fails, i.e., there is
no write-proof extending?®.
Phase 2:

e AP x 0is 1 wheno is self, 0 otherwise. For all othep,
AT vo= A" vo.

° Ainax — Amax'
It may be verified that all the phase 1 and phase 2 computations

listed above satisfy the properties L1 and L2 respectively, complet-
ing the proof of correctness.

As o=

7. Conclusion

We have provided a streamlined formulation of Sequential and
Concurrent Separation Logic rules without awkward side condi-
tions for variable usage. The rules are more expressive than the
original Owicki-Gries-O’Hearn system. Yet, they retain the “syn-
tactic” character of the variable conditions without adding proof
burden in the programming logic itself. This syntactic character is
exploited in devising an algorithm to automatically infer the anno-
tations required in resource declarations. This should prove useful
for Separation Logic-based verification tools like Smallfoot.

Our work is also a modest contribution to the theory of Syn-
tactic Control of Interference, which dates back to 1978. While the



system has been studied from a semantics point of view, it has not[18] C. A. R. Hoare. Monitors: An operating system struatgriconcept.
been previously applied to the formulation of programming logics, Comm. ACM17(10):549-558, Oct. 1974.
which is somewhat paradoxical given its natural fit with reason- [19] B. J., C. Calcagno, and P. W. O’Hearn. Smallfoot: Modalatomatic
ing principles. We have extended the traditional framework with assertion checking with Separation Logic. In F. S. de Bagitog For-
permission algebras, which should prove useful for further devel- mal Methods for Components and Objects, 4th Intern. Sywopume
opment. 4111 ofLNCS pages 115-137. Springer-Verlag, 2005.

Further work along this line would include the extension of [20] K. Kapoor, K. Lodaya, and U. S. Reddy. Fine grained corency
Concurrent Separation Logic with higher-order features such as with Separation Logic.J. Philosophical Logic40(5):583-632, Oct
procedures and objects, for which Syntactic Control of Interference 2011. doi: 10.1007/s10992-011-9195-1.

is well-suited. [21] M. Main, A. Melton, and M. MisloveProc. 22nd Ann. Conf. on Math.
Found. of Program. Semantics (MFPS XXNplume 158 ofElect.
Notes in Theor. Comput. Sdtlsevier, 2006.
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Technical Appendix invariants inl". The two sets of variables are governed by different
rules.

A. Well-formedness of commands 1. Variables irowned(I") can beusedonly inside critical regions
For completeness, we include the well-formedness rules for com- for the resources. They cannot occur free in either assertions or
mands. They can be obtained from the programming logic rules by ~ €Xpressions outside the critical regions.

simply omitting all the judgements corresponding to assertions. 2. Variables infree(T") \ owned(I") can bemodifiedonly in the
Stz Var X+ EExp critical regions for the resources. However, tlean occur free
S in assertions and expressions outside the critical regions.
% - skip Comm Y F (z:= F) Comm
, So, the proof outline of Table 1 is not valid in the Brookes’s
YFazVar YFEExp YFEExp It E Exp version of Concurrent Separation Logic. The variableand b
S+ (z := [E]) Comm SF ([E] i= E') Comm are owned by the resource, but they occur free outside critical
’ regions. However, the proof outline can be transformed to a legal
LYFBExp Y ¢ Comm X C; Comm Brookes outline by removing the variablasand b from owned
S F (if B then () else C») Comm list of the resource. Since each of these variables is modified in
at most one process, Brookes does not require it to be owned by
%,z F C Comm the resource. It can simply remain a free variable of the resource

invariant. However, the rule 2 restricts each of these variables to be

2+ (local z in ¢') Comm modified only in critical regions.

An example of a well-formed command judgement is Valid proof outlines in the Brookes'’s system can be transformed
L1 to our system. lfr(z1,...,z,) is a Brookes resource declaration
z,y? F (2 :=y) Comm used with an invariani?, and free(R) includes additional vari-
The variable context needs to contain a full permissionsfdre- ~ @Pl€Sy1, ..., ym, then the resource declaration should be trans-
cause it is used on the left hand side of an assignment, but a haifformed tor(zy ,..., @, , 97", ..., yp") in our system, where the
permission will do fory because it is only used for reading. permissionsps, ..., p, are chosen to satisfy the constraints on

The well-formedness rules for concurrent commands are shown their use:
in below. All the rules of the sequential programming language
can be lifted to the concurrent language by addingI'” to the
syntactic contexts of all the commands.

1. If a variabley; is modified in the critical regions of a proceds
then it cannot occur in the other processes. (Brookes’s parallel
composition rule requires that any variable modified in one pro-

31 |TFHCy Comm X5 |I'F C; Comm cess and occurring free in another process — called a “critical”
variable — has to be owned by a resource. Big not owned
21,5 [T'F(C1 || C2) Comm by r by assumption, and well-formedness of resource contexts

rohibits it from being owned by another resource.) In this case,
T, %o BExp I,% |I' € Comm gi can be some parti%ll permisszon, and the complt)emep,t isf
S| T,r(S0) + (with r when B do C od) Comm allocated to the process for the variabley;.
2. If a variabley; is not modified in any of the processes, then
Z|T,r(Zo) - € Comm itis a read-ozly variable in thesourcé,declarat?on command.
3, % | I (resource r(Xo) in ') Comm So, the available permission gfin the variable context (which
N might be a partial permission) should be split into the permis-
The rule for parallel composition follows the general pattern of sion for the resourcep() and the various processes.
original syntactic control of interference in [29, 36]. The resource
context is shared between the parallel branches but the variableHowever, there is a third, more troublesome, case. Brookes'’s rules,
contexts are required to be separate. The critical region rule showslike the Owicki-Gries rules, make a distinction between read-only
that the variable context of the resource becomes part of the normaluses of variables in code and their use in assertions. While the
variable context of the critical region. This is where the use of a first case above prohibits the read-only usesypfin the code
permission algebra adds value to the traditional syntactic control of processes other than, it does not prohibit its uses in their
of interference. It is possible for the critical region to combine the assertionsThis turns out to be unsound, as shown by the example
variable permissions il andX, to convert a passive free variable in Table 8, due to lan Wehrman [4]. In this example, the variable

into an active one. IE andX, each contain % then, by combining IS in owned(I') anda is in free(I"). Sincea does not occur free
them, the critical region obtains the permission which allows it in thecodeof the left process, this is permitted by Brookes's rules.
to modify the variabler. The rule for resource declaration requires Howevera occurs in theassertionof the left process, immediately

a part of the current variable context() to be sliced off and after the first critical region. This represents invalid reasoning. The

handed to the resource, which is then available only by entering fight process can intervene between the two critical regions of the
critical regions. left process and modify. So, the assertion= a may not continue

to hold when the second critical region is entered.

. . , The distinction between read-only uses in code and uses in as-
B. Comparison with Brookes'’s system sertions was also made by Owicki-Gries, as noted in Sec. 4.1. How-
Brookes [11], in his effort to prove the soundness of the Conctirren ever, Owicki-Gries place the additional requirement (the “rider”
Separation Logic, defined a variant of the original logic defined by mentioned in Sec. 4.1) that the assertions surrounding critical re-
O’Hearn. In his formulation, the resource invariant of a resource gions can only use variables that are not modified by other pro-
can have additional variables that are not declared in the resource.cesses. The assertior= a used after the first critical region of the

He defines two sets of variables for a resource contexiaed (I") left process is thus prohibited by Owicki-Gries.

is the set of variables included in the resource declarations and  Brookes'’s system can be repaired using a similar rider. This
free(I") is the set of variables that occur free in the resource would have the unfortunate consequence that the rules are not




X:=a;
resourcer(x) {x = a} in
begin
{true} {true}
with r do with r do
{z=a} {z=a}
ti=x [l X = X+1;
{x=a=1t} a:=atl
od {z =a}
{t =a} od
with r do {true}
{x=a=1t}
X:=t
{z=a}
od
{true}
end
{z=a}

Table 8. Example proof outline in Brookes'’s system

compositional any more. However, it would bring it closer to the
Owicki-Gries system as well as our syntactic control system. In
effect, the variables listed in the resources are the variables with full
permissions, and the remaining variabledire(I") are variables
that have partial permissions in the resource. So, the distinction
betweenowned(I") andfree(I") is one of permission levels, and
Brookes’s system fits in between the Owicki-Gries system and our
system of syntactic control with permissions.

Recently, Brookes proposed a revised system [12], which avoids
the problem mentioned above. It uses sets of free variables called
“rely sets” in its judgements, similar to our use of variable contexts.
However, there are no permissions associated with the variables in
rely sets. There are also other technical differences in the way the
variable conditions are treated. We do not at present have a precise
comparison with the SCI system and Brookes's revised system.

C. Selected proofs of results

Proof of Theorem5 The proof is by induction on the derivation
of well-formed terms:

e If the command is¥ | T' - (z := E) Comm then we
know thatz" € norm(X) and¥ + E Exp. So, for any
(p,v) € [E]s, pis awell-bracketed trace fa | and, hence,
for ¥ | I'. Sincex " € norm(%), (z := v) is also a trace for
> |T.

e If the command is

Y| T,r(Z0) - (with r when B do C od) Comm

then we know thak, ¥y - B Exp andX, X + C Comm
are well-formed. By inductive hypothesi§B]=,=, | b and
[Cls, s, r are trace sets foE, X, | I'. It then follows that
the trace setwait is a trace set fod | I', (o). The trace
setenter is a trace set fof' | I', r(2o). Considering arbitrary
elementy € [B]s s, [ true andy € [C]s s, r, we have
the transition sequence:
[T, r(X0)

) 5 S0 | T

— X, %0 | T, [T(EO)}

— 2,50 | T, [r(0)]

rel(r) o | F7’r’(20)

by definition
by ind. hyp. forB and Lemma 3
by ind. hyp. forC' and Lemma 3

—

by definition

¢ |f the command is
21,22 | '+ (Cl H Cg) Comm

then we have well-formed commantls | I' - C; Comm for

i = 1,2. By inductive hypothesis, eadl®’;] s, r is a trace set
for the contex®; | I'. Then, by Lemma Z[C1 ] s, r [|[C2] s, i1
is a trace set for the conteXt;, X, | T

Proof of Theorem 8

Proof: By induction on the derivation of | T' - {P} C {Q}. We
show selected cases.

e Ifthe lastrule is the assignmentrule for| I' - { P [E/z]}x :=
E {P}, then we haveX + =z Var, ¥ + FE Exp and
¥ P Assert. The trace sefz := E]yr consists of traces

of the formX | =" S| wherep € [E]s. Let (s, h) be a
state satisfying® [E//x]. Then

every state transition fqi(z := v) is of the form(s, h)
(s[z — v],h). We have(s,v) € |e| and by Substitution
Lemma(s [z — v],h) E P.

If the last rule is the parallel composition rule far, 3, |
P'E{Px P} Ci| C2{Q:1 * Q2} derived from the premises
1 | I' - {P1} Ch {Ql} anng | I' - {PQ} Co {Q2}, let
(s1 - s2,h1 - ho) be an initial state satisfying « P> such that
h1 L ho and eacl(s;, h;) is of type3; | I'; and satisfied;.

The trace sefC\ || C2]x, s, r IS the set of mutex fairmerges
[Cils,ir II[C2] 5, r- Leta be a well-bracketed trace in this set
ando’ a state such thdts, h) —~ ¢’. Then we know that is
afinite traceX;, T | T -2 ¥4, 3 | T and it is in the mutex
fairmerges of somey; € [Ci]s,r andas € [Ca]s,r.

If o/ = abort then it must be the case thét;, h;) —-
abort for some: = 1,2. If so, the corresponding premise
Y | T F {P} C; {Q:} would be invalid, contradicting the
inductive hypothesis.

If o’ is of the form(s’, h’) then by the Parallel Decomposition
Lemma, there are statés;, h;) of typeX;|T", fori = 1, 2, such
thats’ = s - s5, b’ = h} - h, and(s;, hi) —= (s}, h'). By
the inductive hypothesis;, h;) = Q;, fori = 1, 2. This gives
the result(s] - s, b} - h) = Q1 * Q2.

e If the last rule used is the critical region rule for

Y |T,r(Z0): RF {P} withr when Bdo C {Q}

derived fromX + P, Q Assert, X,3 - B Exp andX, X |
I' - {(Px R) A B} C {Q x R}, let (s, h) be an initial state
of typeX | I', r(Xo) satisfyingP, a a well-bracketed trace for
contexty | I, (o) in [with » when B do Clyr,r(s),
ando’ a state such thds, h) - o’.

Ignoring try actions and repeated testsis of the form

p(zi=v)
—

acq(r)
—

|0, r(Z0): R 2, %0 |1, [r(20): R
£ 2% | T, [r(Z0): R
L %% | T, [r(S0): R]

O ST, r(S0): R

wherep € [B]s s, | true andg € [Cls s, r-

We argue that there are statgs, ho) and(sg, hg) of type o]
and(s’,h’) of typeX: | T such that

a

(s,h,0) gl (s-so, h-ho, {r})
£ (s-s0, h-ho, {r})
Lo (s s, W hb, (D)
relD) (s', ', 0)



Here, (so, ho) is an arbitrary state satisfying. Since (s, h)
satisfiesP, (s - so, h - ho satisfiesP = R. By virtue of the
fact thatp € [B]s,s,, it also satisfiesB, and hence P x

R) A B. The premise for the validity oE, o - {(P * R) A

B} C {Q« R} implies that the target state Gfsatisfies) x R.

In particular, it cannot bexbort. Since this state is of type
¥, %0 | I, [r(Z0): R], the store is decomposable infoandsg

of typesX andX, respectively. Moreover, the heap of this state
must have a subheap of satisfyiRg The fact thatR is precise
means that this subheap is unique. So, the heap is decomposable
into A’ and hg. The remaining part of the target stdt€, h')
satisfies. Finally, therel(r) action removes the resource part
of the state, givinds’, '), which satisfies).



