
Syntactic Control of Interference for Separation Logic

Uday S. Reddy
University of Birmingham
u.s.reddy@cs.bham.ac.uk

John C. Reynolds
Carnegie-Mellon University

jcr@cs.cmu.edu

Abstract
Separation Logic has witnessed tremendous success in recent years
in reasoning about programs that deal with heap storage. Its success
owes to the fundamental principle that one should keep separate ar-
eas of the heap storage separate in program reasoning. However,
the way Separation Logic deals with program variables continues
to be based on traditional Hoare Logic without taking any bene-
fit of the separation principle. This has led to unwieldy proof rules
suffering from lack of clarity as well as questions surrounding their
soundness. In this paper, we extend the separation idea to the treat-
ment of variables in Separation Logic, especially Concurrent Sepa-
ration Logic, using the system of Syntactic Control of Interference
proposed by Reynolds in 1978. We extend the original system with
permission algebras, making it more powerful and able to deal with
the issues of concurrent programs. The result is a streamined pre-
sentation of Concurrent Separation Logic, whose rules are memo-
rable and soundness obvious. We also include a discussion of how
the new rules impact the semantics and devise static analysis tech-
niques to infer the required permissions automatically.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Syntax; F.1.2 [The-
ory of Computation]: Computation by Abstract Devices—Models
of Computation – Parallelism and concurrency; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—Logics of programs; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Denotational semantics

General Terms Program Logic, Concurrency, Denotational Se-
mantics, Type Systems

Keywords Separation Logic, Syntactic Control of Interference,
Conditional Critical Regions, Fractional Permissions, Static Anal-
ysis

1. Introduction
In reasoning about programs that alter the state, one often encoun-
ters stylized side conditions that have to do with how variable sym-
bols are used. For example, the “invariance” rule of Hoare Logic [3]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers orto redistribute
to lists, requires prior specific permission and/or a fee.

POPL ’12 January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

(or the “constancy” rule in Specification Logic [37]), written as

{P} C {Q}

{P ∧ R} C {Q ∧ R}

has a side condition that states that “C should not modify any vari-
ables occurring free inR.” This rule becomes the all-important
“frame rule” in Separation Logic [30] but the same side condition
is retained. Similar conditions also occur in the rules for proce-
dures [3, 37]. In fact, such conditions are not only employed in the
proof rules for procedures, but it has also been argued that intel-
ligible programming requires adherence to them even if no efforts
are made at formal reasoning. A procedure callP (A) is regarded
as intelligible only if the procedureP does not modify any of the
variables occurring free in the argumentA and, likewise, the ar-
gumentA does not cause state changes via the variables occurring
free inP . (This is more commonly called “aliasing” control. Con-
sider call-by-name or call-by-reference parameter passing methods
or higher-order arguments to see the full effect of this observation.)

These observations are also made with additional force in con-
current programming. Hoare [17, 18] and Brinch Hansen [10] have
argued convincingly that parallel processes should not interfere
with each other. A process should not modify variables that are
concurrently used by other processes unless the variables are un-
der the control of resources enforcing mutual exclusion. Program
logic proof rules similarly employ these conditions in their proof
rules [17, 25, 31].

Noticing that essentially the same side condition arises in all
such contexts, Reynolds [36] formulated it as a uniform princi-
ple of non-interference. Two program phrasesP1 andP2 are con-
sidered non-interfering if the variables used in one of them for
state-modification do not occur free in the other phrase. This work
presents a system of rules called “syntactic control of interference”
(SCI) which bring structure to the conditions employed in intelligi-
ble programming as well as the formal rules of programming log-
ics. These rules incorporate, at syntactic level, what we now regard
as the “separation principle,” the same principle that is responsible
for the success of Separation Logic in reasoning about heap stor-
age. The SCI system has been studied quite extensively since this
early work. O’Hearn [26] reformulated Reynolds’s rules in the no-
tation of type systems (or proof theory) and noted its overriding
similarity to Girard’s Linear Logic [15]. Reddy [33] formulated
a novel semantic model for programs in the SCI framework, ex-
ploiting the non-interference property of the programs in a crucial
way, which turns out to be the first fully abstract model ever dis-
covered for a higher-order imperative programming language [22].
(The games models of Abramsky et al. [1, 2] generalize Reddy’s
model to deal with interference and represent fully abstract mod-
els as well.) Generalizing the SCI framework, O’Hearn and Pym
formulated bunched type systems and the logic of Bunched Impli-
cations [27], the latter of which forms the foundation for Separation
Logic [30, 34]. In retrospect, it is fair to say that SCI has proved to

be a deep foundational principle of imperative programs leading to
numerous developments in our understanding of their structure.

Curiously, despite all the historical background, SCI has not
been used in formulating Separation Logic itself. We believe that
this has led to unwieldy proof rules fraught with side condi-
tions. The problems become critical in the formulation of Con-
current Separation Logic [25]. Brookes’s attempt to formalize such
rules [11] turned out to be faulty, with known counterexamples to
their soundness [4].

In this paper, we reformulate the rules of sequential as well as
concurrent Separation Logic using the principles of SCI to bring
structure to their side conditions. It turns out that the traditional
SCI is not quite adequate to the task. It incorporates a limited treat-
ment of “passive” or “read-only” uses of variables which is unable
to deal with the more advanced usage of variables in concurrent
programs. We enrich the traditional SCI with the idea of fractional
permissions, borrowed from Boyland [8] and Bornat et al [6], to
devise a more powerful variant. This system is then used to create
a streamlined formulation of Separation Logic.

While fractional permissions for variables allow a streamlined
presentation of the proof rules and clarify their semantics, they
would be an overkill to use in practice. A programmer should
not have to explicitly annotate all the variable uses in processes
and shared resources with fractional annotations. To address the
issue, we devise apermission inference system, which can take a
Separation Logic proof outline without any permissions specified
with shared resources and fills them in if at all possible according
to the rules of the logic. The effect is similar to that of Hindley-
Milner type inference in programming languages like ML [14, 23].

Related Work

Hoare [17] and Brinch Hansen [9] have formulated conventions
for controlling variable aliasing in concurrent programs. Hoare also
proposed proof rules for reasoning with conditional critical regions.
Owicki and Gries [31] generalized Hoare’s conventions as well as
the proof rules. O’Hearn [25] extended the Owicki-Gries system to
deal with heap storage, formulating aConcurrent Separation Logic,
which is currently a subject of active study [11, 13, 16, 20, 32, 38].
We refer to this logic as the “Owicki-Gries-O’Hearn system.”

The main issue of our concern is how the variable usage is con-
trolled across parallel processes and the interplay between such
control and the proof rules of the programming logic. The original
logic formulated by Owicki and Gries employed informal state-
ments of the form “variable not modified by any other process”.
Such a statement is ambiguous (e.g., does it include modification
inside critical regions?). It is also non-compositional. Checking
if a proof is correctly constructed involves examining the entire
program. (For instance, the Smallfoot verification tool implements
such global analysis [19].) It is also problematic in defining seman-
tics of the programming logic and verifying its soundness.

Two previous attempts have been made to formalise the variable
usage rules of Concurrent Separation Logic. Brookes [11] formu-
lated a compositional set of rules in his effort to prove the sound-
ness of the logic. However, the rules generalize the original Owicki-
Gries rules in new ways and their soundness is not obvious. In fact,
subsequently, Ian Wehrman has found counterexamples to their
soundness in one particular case [4]. The second attempt was that of
Bornatet al. [7, 32], where they treat variables as “resources” sim-
ilar to heap locations, whose access is controlled via programming
logic proof rules. Their rules do address the non-compositionality
issue mentioned above and the soundness of their rules is more im-
mediate. However the rules are clumsy to use in practice because
the normal pun of variable symbols as mutable variable and logical
variables is not retained. For instance, a formula such asx = x is

true if x is a logical variable, but not necessarily so whenx is a
program variable.

Although we arrived at our formulation via a different route,
using the ideas of syntactic control of interference to formalize
the original Owicki-Gries-O’Hearn system, our system can also be
seen as a syntactic variant of the Parkinson-Bornat-Calcagno logic
described in [32]. The benefits of using the syntactic approach are:

• The normal conventions of variable usage in Hoare-style logics
are respected. So pitfalls in reasoning from improper treatment
of variable symbols can be avoided.

• We are able to devise a compositional (or “modular”) static
analysis system to automatically infer permissions required for
variable usage.

• The system should be extensible to higher-order languages with
procedures and objects. For instance, the methods of objects
can be categorized as active or passive. (Even though we do
not discuss the higher-order aspects in this paper, the traditional
principles of syntactic control of interference for higher-order
procedures apply. These principles however do not generalize
to storable procedures as in ML. So, further work is needed to
address such issues.)

In recent work, Brookes [12] has independently devised a re-
vised set of proof rules for Concurrent Separation Logic using ideas
resembling ours. His rules do not employ fractional permissions as
ours do and the relationship to SCI is less clear cut. We do not
know at present the precise relationship between his formulation
and ours, but we anticipate that the two are very close.

Inference of fractional permissions has been studied by Yasuoka
and Terauchi [40] and Bierhoff [5]. Both these pieces of work ad-
dress the permissions needed for heap cells (which is a harder prob-
lem than that for variables). However, they do not deal with concur-
rency, which is our main concern. Yasuoka et al. use a region-based
analysis to make the heap permission problem tractable, which may
be seen as a reduction to the corresponding problem for variable
names. The techniques employed in their work rely on sophisti-
cated constraint-solving methods. In contrast, our permission in-
ference algorithm a two-pass algorithm on the syntax tree, similar
to regular compiler analysis methods, with only rudimentary con-
straint solving issues.

The rest of this paper is organized as follows. In Section 2, we
informally motivate the issues addressed by our formulation of Sep-
aration Logic. The logical system itself is described in Sections 3
and 4. We also include a detailed comparison with the proof sys-
tems of O’Hearn [25] Parkinson et al. [32]. A comparison with
Brookes’s original system [11] is include in Appendix B. In Sec-
tion 5, we describe the denotational semantic framework of the
proof system and indicate how the soundness is proved. Finally, in
Section 6, we describe an algorithm to automatically infer variable
permissions needed in the proof system.

2. Motivation
As mentioned in the Introduction, Hoare and Brinch Hansen advo-
cated the avoidance of interference between concurrent processes
as a good practice of intelligible programming. That requires that,
in forming a parallel composition of commandsC1 ‖ C2, one must
ensure thatC1 does not modify any variable that occurs free inC2

andvice versa. We use the terminology “actively used” for vari-
ables that are used for state-modification. Any variables that are
usedonly for reading the state are said to be “passively used.”

We first consider how to treat active free variables of phrases
using Syntactic Control of Interference using the notations of [26,
29]. If a commandC is formed using a set of active free variables
Σ, it is described using a judgement of the formΣ ⊢ C Comm.

x := 0; a := 0; b := 0;
{x = a + b ⋆ a = 0 ⋆ b = 0}
resourcer(x, a, b){x = a + b} in
begin
{a = 0} {b = 0}
with r do with r do

{a = 0 ⋆ x = a + b} {b = 0 ⋆ x = a + b}
x := x+1; || x := x+1;
a := 1 b := 1
{a = 1 ⋆ x = a + b} {b = 1 ⋆ x = a + b}

od od
{a = 1} {b = 1}

end
{x = a + b ⋆ a = 1 ⋆ b = 1}
{x = 2}

Table 1. Example proof outline in Concurrent Separation Logic

Now, the well-formedness of an intelligible parallel composition in
the sense of Hoare and Brinch Hansen can be described by the rule:

Σ1 ⊢ C1 Comm Σ2 ⊢ C2 Comm

Σ1, Σ2 ⊢ (C1 ‖ C2) Comm

Notice that the active free variables ofC1 andC2 are combined
“multiplicatively,” requiring them to be separate or disjoint. Thus,
the non-interference conditions of Hoare and Brinch Hansen can
be described in a pleasingly symmetric fashion without employing
side conditions.

The judgements used above describe thewell-formednessof
commands. Rules of program logic can be stated in essentially the
same way. The Separation Logic proof rule for parallel composition
becomes:

Σ1 ⊢ {P1} C1 {Q1} Σ2 ⊢ {P2} C2 {Q2}

Σ1, Σ2 ⊢ {P1 ⋆ P2} C1 ‖ C2 {Q1 ⋆ Q2}

Each judgement in this rule asserts the well-formedness of a Hoare
triple specificationas well asthe truth of the specification. Once
again,no side conditions are requiredto describe a sound infer-
ence.

While Reynolds [36] only considered independent parallel com-
position, it is possible to add shared resources, e.g., Hoare-style
resources and conditional critical regions, in the same way. A re-
source declaration command

resource r(Σ0) in C

should split the available active variable context into two separate
parts,Σ0 for the variables encapsulated in the resource and the re-
mainder of the context for the bodyC. A critical region command:

with r when B do C od

should add the encapsulated context of the resourcer to the current
context for the scopeC. All this seems essentially straightforward.
However, it turns out to beinadequatein practice.

To see the problem, consider the example proof outline shown
in Table 1, discussed by Owicki and Gries [31]. Even though we
use separating conjunction⋆ in assertions,⋆ has the same force
as the ordinary conjunction∧ here because the formulas involved
are pure. The purpose of the proof outline is to argue that running
x := x +1 in parallel with itself incrementsx by 2. The variablex
is placed in a resourcer, allowing it to be safely shared across the
parallel branches. Notice that placing it in the resource precludes it
from being mentioned in the parallel branches outside any critical
regions. So, it is not possible to write assertions that show that each
critical region incrementsx.

To solve the problem, Owicki and Gries recommend adding
auxiliary variablesa andb and using them to record control infor-
mation about the increment actions performed in the two processes.
The auxiliary variables are also included in the shared resource. So,
a andb can only be modified inside critical regions.1 The resource
invariantx = a + b captures the control information recorded by
a andb. However, notice thata andb need to be mentioned in as-
sertionsoutsidethe critical regions. Owicki and Gries tailor their
proof rules to allow such usage. Evidently, we are entering tricky
territory here. The variablex cannot be used outside critical regions
whereas the variablesa andb are allowed to be used. The difference
is thatx is modified inboththe processes. Making assertions about
it in one of the processes would not be sound because the other pro-
cess can invalidate the assertions. On the other hand, the variable
a is only modified in the left process. So, assertions mentioninga
remain true independent of the progress of the other process. Thus,
Owicki-Gries as well as O’Hearn’s proof systems use a critical re-
gion proof rulewhich allows the variables owned by a resource
to appear in local assertions of a process, as long as they are not
modified in “other processes.”

Note that the notion of a variable being “modified in other pro-
cesses” is quite subtle. One might expect that neitherx nora should
be regarded as being modified in the “other process” because the
other process does not have direct access to them. Any modification
happens only inside critical regions. So, the modification actions
cannot be attributed to the process. Rather they should be charged
to the resource, with the understanding that entering critical sec-
tions adds the access rights of the resource to the process. The pu-
tative Syntactic Control of Interference framework we alluded to
above would treat the variables in that way.

To handle these issues, we generalize the active versus passive
free variable distinction inherited from [29, 36] tototal versuspar-
tial ownership of the free variables [6, 8]. (It has become conven-
tional to call such ownership constraints “permissions.” We con-
tinue to use that terminology even though we regard it as mislead-
ing.) A total permission for a variable allows writing to the variable
(in other words, anactiveuse) and a partial permission allows only
reading (apassiveuse). In the algebra offractional permissions, a
total permission is denoted by1 and a partial permission by some
non-zero fraction. The use of permissions gives us more powerful
control over variable usage because fractional permissions can be
combined, possibly leading to a total permission, which then allows
writing.

Returning to our example in Table 1, we can define the the re-
sourcer to contain the permissionsx1, a

1

2 , b
1

2 . The entire pro-
gram is specified in the contextx1, a1, b1. The remaining permis-
sionsa

1

2 andb
1

2 are distributed to the two processes:a
1

2 to the left
process andb

1

2 to the right process. This allows the two processes
to usea andb in their local assertions because such usage is passive.
When the left process enters its critical region, its local permissions
are combined with those owned by the resource, leading to the set
of permissionsx1, a1, b

1

2 . This allows the critical region to mod-
ify x anda, while only reading is permitted forb. The right process
is similar. This provides acompositional descriptionof the variable
usage in the example, eliding the references to “other processes.”

In the following sections, we formalize the system of Syntactic
Control of Interference with permissions and use it to formulate the
rules of sequential as well as concurrent Separation Logic.

1 In Brookes’s variant of the Owicki-Gries-O’Hearn system [11], a andb

need not be included among the owned variables of the resource. Thus,
Brookes’s logic is subtly more general than the original Concurrent Separa-
tion Logic.

3. Sequential Separation Logic
Our form of syntactic control is a modified version of Reynolds
SCI, using the ideas of permissions for read-only access [6, 8].

We assume a permission algebra(P,⊕,⊤), i.e., a partial com-
mutative semigroup that is cancellative, has a distinguished element
⊤ denoting full permission and satisfies the following axioms [32]:

(non-zero) ∀p, p′ ∈ P. p ⊕ p′ 6= p
(top) ∀p ∈ P.⊤⊕ p is undefined
(divisibility) ∀p ∈ P. ∃p1, p2 ∈ P. p = p1 ⊕ p2

A significant case of permission algebras is that offractional per-
missions: the real interval(0, 1] with ⊕ being the partial operation
of addition and⊤ = 1. The idea is that a full permission (1 in the
fractional permission algebra) allows an “active” usage, i.e., both
reading and writing, whereas a partial permission (represented by
fractional values in the fractional algebra) allows a read-only or
“passive” usage.

A variable contextΣ is an unordered list of the form

xp1

1 , . . . , xpn

n

wherex1, . . . , xn are variable symbols andp1, . . . , pn are permis-
sions, subject to the following condition:2

• if the same variable symbolx occurs inΣ multiple times with
permissionspi1 , . . . , pik

respectively thenpi1 ⊕ · · · ⊕ pik
is

defined.

We call a putative variable contextwell-definedwhen it satisfies
this condition. If the variablesx1, . . . , xn are pairwise distinct,
then we say that the variable context is innormal form. A non-
normal form variable context can benormalizedby replacing the
multiple copies of each variable by a single copy and associating
with it the permissionpi1 ⊕ · · · ⊕ pik

as above. We denote the
normalized version of variable contextΣ by norm(Σ). Whenever
two variable contexts are combined, as in “Σ1, Σ2”, one needs to
ensure that the combination is well-defined. We say thatΣ1 andΣ2

are compatible, and denote this fact byΣ1 ♯ Σ2.
We assume that all the variable contexts appearing in legal

inferences are well-defined, i.e., any inference that leads to an ill-
defined variable context is illegal. (Formally, our system of rules
is anatural deduction system, where the variable contexts are used
as assumptions of the deductions. Even though we use the notation
of sequents for presenting the deduction rules, it isnot a sequent
calculus.)

The syntactic well-formedness of program phrases is expressed
using a variety of judgements:

Σ ⊢ x Var Σ ⊢ E Exp Σ ⊢ P Assert Σ ⊢ C Comm

These say, respectively, that the displayed phrase is a well-formed
variable, expression, assertion or command in the variable context
Σ. All these forms of judgements have a structural rule:

Contraction
Σ, xp, xq ⊢ S

Σ, xp⊕q ⊢ S

This allows two copies of a variablex to be combined into a single
copy or to split a single copy into two, while keeping account of
the permissions.

2 It is more conventional to require that all the variable symbols listed in a
context are distinct. It would be possible to formulate variants of our rules
using such a convention. But we feel that our approach is more intuitive.

The following rules will beadmissible rulesin our proof sys-
tems (if the premises are derivable then so is the conclusion):

Weakening
Σ ⊢ S

Σ, Σ′ ⊢ S

SubstA
Σ ⊢ E Exp Σ, x⊤ ⊢ P Assert

Σ ⊢ P [E/x] Assert

The substitution rules allow a variable with afull permission to be
substituted by an expression.

To use a variable symbolx as a variable phrase in a program
(thereby allowing assignments to it), one needs the full permission
for the variable. On the other hand, to use a variable as an expres-
sion, any permission will do.

Σ, x⊤ ⊢ x Var Σ, xp ⊢ x Exp

More generally, for all expressions and assertions, the requirement
is that all their free variables must have some permission inΣ. We
omit the formal rules for brevity.

We can write down well-formedness rules for commands as
well, but we will save a bit of work by combining the well-
formedness of commands with program logic, which we look at
next. (For completeness, we include the well-formedness rules in
Appendix A.)

A judgement of sequential Separation Logic is of the form

Σ ⊢ {P} C {Q} (1)

which means that:

1. P , C andQ are well-formed phrases in the contextΣ, and

2. the failure-avoiding specification{P}C {Q} holds assuming a
variable contextΣ.

The variables that are modified in the commandC would be re-
quired to have⊤ permission inΣ. Other variables, which might be
employed inC in a read-only fashion or employed only in asser-
tions, can have non-⊤ permissions.

The rules for commands are shown in Table 2. Since we incor-
porate the well-formedness of assertions and commands in speci-
fications, most rules have premises to do with well-formedness of
assertions, commands or components of commands. In the rule for
assignment, we depend on the admissible ruleSubstA which al-
lows us to substitute for a variable symbol with the⊤ permission.
The rule for heap cell lookup illustrates the use of side conditions
for specifying genuine logical conditions about the occurrence of
free variables (as opposed to the conditions that are purely to do
with well-formedness issues). Contrast this with the rule for local
variable declaration, where we require thatE, P andQ should be
well-formed in theouter variable context. So, they cannot havex
occurring free. This seems to be a reasonable choice, because most
programmers understand the scope ofx to be commandC. So, its
free occurrence in other places would be considered odd.

The frame rule of Separation Logic gives us the first application
of the syntactic control of interference:

FRAME
Σ ⊢ {P} C {Q} Σ′ ⊢ R Assert

Σ, Σ′ ⊢ {P ⋆ R} C {Q ⋆ R}

(Note that there is an implicit side condition for the rule that says
that Σ, Σ′ is a well-formed variable context.) Since the variable
contexts of{P} C {Q} andR are required to be separate, it is not
possible forC to modify any free variables ofR. If C modifies a
variablex thenΣ needs to includex⊤. But thenxp cannot occur
in Σ′, for any permissionp, because⊤ ⊕ p is undefined. Thus
the splitting of the variable context intoΣ andΣ′ has exactly the

Σ ⊢ P ′, Q′
Assert Σ ⊢ {P} C {Q}

Σ ⊢ {P ′} C {Q′}
if P ′ ⊃P andQ⊃Q′

Σ ⊢ P Assert

Σ ⊢ {P} skip {P}

Σ ⊢ x Var Σ ⊢ E Exp Σ ⊢ P Assert

Σ ⊢ {P [E/x]} x := E {P}

Σ ⊢ x Var Σ ⊢ E Exp Σ ⊢ E′
Exp

Σ ⊢ {P [E′/x] ∧ E 7→ E′} x := [E] {P ∧ E 7→ E′}

`
if x 6∈ FV (E, E′)

´ Σ ⊢ E Exp Σ ⊢ E′
Exp

Σ ⊢ {E 7→ −} [E] := E′ {E 7→ E′}

Σ ⊢ {P ∧ B} C1 {Q} Σ ⊢ {P ∧ ¬B} C2 {Q}

Σ ⊢ {P} if B then C1 else C2 {Q}

Σ ⊢ P, Q Assert Σ, x⊤ ⊢ {P} C {Q}

Σ ⊢ {P} local x in C {Q}

Table 2. Proof rules of sequential Separation Logic

ASSIGN
Σ ⊢ x Var Σ ⊢ E Exp Σ ⊢ P Assert

Σ | Γ ⊢ {P [E/x]} x := E {P}
COND

Σ | Γ ⊢ {P ∧ B} C1 {Q} Σ | Γ ⊢ {P ∧ ¬B} C2 {Q}

Σ | Γ ⊢ {P} if B then C1 else C2 {Q}

PAR
Σ1 | Γ ⊢ {P1} C1 {Q1} Σ2 | Γ ⊢ {P2} C2 {Q2}

Σ1, Σ2 | Γ ⊢ {P1 ⋆ P2} C1 ‖ C2 {Q1 ⋆ Q2}

CRIT
Σ ⊢ P, Q Assert Σ, Σ0 | Γ ⊢ {P ⋆ R ∧ B} C {Q ⋆ R}

Σ | Γ, r(Σ0) : R ⊢ {P} with r when B do C od {Q}

RESOURCE
Σ0 ⊢ R Assert Σ | Γ, r(Σ0) : R ⊢ {P} C {Q}

Σ, Σ0 | Γ ⊢ {P ⋆ R} resource r(Σ0) in C {Q ⋆ R}
(R precise)

AUXILIARY
Σ ⊢ P, Q Assert Σ, X⊤ | Γ ⊢ {P} C {Q}

Σ | Γ ⊢ {P} C \ X {Q}
if X is auxiliary forC

Table 3. Proof rules of Concurrent Separation Logic

same force as the usual side condition “C does not modify any
free variables ofR” in the conventional formulation of Separation
Logic.

As an example, using the fractional permission algebra, we can
derive the inference usingFRAME:

x1, y
1

2 ⊢ {y = 0} x := y {x = 0} y
1

2 , z
1

2 ⊢ y = z Assert

x1, y1, z
1

2 ⊢ {y = 0 ∗ y = z} x := y {x = 0 ∗ y = z}

4. Concurrent Separation Logic
In this section, we formalize the rules of O’Hearn’s Concurrent
Separation Logic, treating Hoare-style resources and conditional
critical regions. The context-free syntax of the commands is:

C ::= x := E | x := [E] | [E] := E′ | skip

| C1; C2 | if B then C1 else C2

| C1 ‖ C2 | with r when B do C od

| resource r(Σ) in C

Note that the resource declarations include permission contexts
Σ for the variables associated with them. The notation enhances
that of Owicki and Gries [31] and O’Hearn [25], who list only
variable names with resource declarations. In Section 6, we present
an inference algorithm that allows the resource declarations to
be written simply in the formresource r in C and finds the

appropriate permission contextsΣ to be used with them, avoiding
the annotation burden for the programmer.

The well-formedness of commands is defined using judgements
of the form

Σ | Γ ⊢ C Comm

Here,Σ is a variable context andΓ is a resource contextof the
form r1(Σ1), . . . , rn(Σn) where ri are resource names,Σi are
variable contexts owned by the resources, subject to the following
conditions:

• The resource namesri are distinct from each other.

• The variable contextΣ, Σ1, . . . , Σn is well-defined.

A putative syntactic context satisfying these conditions is said to
be well-defined. Note that only commands require resource con-
texts (which get used in checking the well-formedness of critical
regions). Variables, expressions, and assertions only need variable
contexts.

Just as in the sequential case, our rules of the programming
logic incorporate the well-formedness of commands. So, no special
attention needs to be paid to their well-formedness.

The programming logic is formulated using judgements of the
form

Σ | Γ ⊢ {P} C {Q}

Here,Σ is a variable context andΓ is anannotated resource context
where each resourceri(Σi) is annotated with a “resource invariant”

formula Ri which is apreciseassertion [25] and satisfiesΣi ⊢
Ri Assert. This means that a resource invariant for a resource can
only employ the variables available in its variable context.

All the rules of the sequential Separation Logic can be lifted
to Concurrent Separation Logic by simply adding “| Γ” to all the
specification judgements. For example, see the rules for assignment
and conditional commands in Table 3. The resource contexts do
not play any rule in the sequential fragment of the programming
language.

The proof rule for parallel composition is the rulePAR. As
one would expect, the variable context of the composite command,
Σ1, Σ2, needs to be split into separate portionsΣ1 and Σ2, for
the two processes. The resource context, on the other hand, is
shared. The rule allowsC1 andC2 to share read-only variables, via
separate copies with partial permissions. However, it is not possible
for one process to modify a variable employed in the other process
or its proof.

A resource’s variables can be imported when a critical region
is entered (theCRIT rule). The body of the critical region,C,
can use the combined variable contexts of the process and the re-
source,Σ andΣ0 respectively. However, the pre-condition and the
post-condition can only employ the variables available in the pro-
cess’s context. This captures the Owicki-Gries requirement that
they should only employ variables not modified by “other pro-
cesses”.

The rule for the resource declaration isRESOURCE. The vari-
able contextΣ0 is sliced out of the current context, and transferred
to the resourcer. The resource invariant is based on these variables.
The body of the resource declaration,C, can only use the remaining
contextΣ outside any critical regions.

Finally, the ruleAUXILIARY, which is similar to the rule for
local variable declaration in its form, allows a set of variables
X = {x1, . . . , xn} to be deleted from a commandC along with all
assignments to them, provided they are “auxiliary”, i.e., each free
occurrence inC of a variable fromX is in an assignment whose
left hand side also belongs toX. The notationC \ X denotes the
command obtained by deleting all the assignments to variables in
X. Note that all the variables inX are assigned the⊤ permission in
the second premise. This guarantees that the variables do not occur
in Σ or the permission contexts inΓ.

4.1 Comparison with Owicki-Gries-O’Hearn system

O’Hearn’s version of Concurrent Separation Logic [25] is based
on the Owicki-Gries system [31] as its underlying framework for
variable usage. In this system, the free variables of the resource
invariant must be listed in the resource, similar to ourRESOURCE
rule. The rules governing the variables of a resources are as follows:

1. If a variablex belongs to a resourcer, it cannot appear in a
parallel process except in a critical region forr.

2. If a variablex is changed in processSi, it cannot appear inSj

(i 6= j) unless it belongs to a resource.

The rule 1 is relaxed in our proof rules. Recall that our resources en-
capsulate not merely variables but variables with permissions. So,
if x belongs to a resource with permission⊤ then the restrictions
on its usage in our rules are exactly the same as in the Owicki-Gries
system. However, ifx belongs to the resource with a partial permis-
sion, then one or more processes can possibly usex in a read-only
fashion using the remaining partial permission.

The rule 2 is represented exactly the same way in our proof
rules.

The rule 1 is somewhat misleading. While it requires that a
variablex belonging to a resource cannot appear in thecodeof
a parallel process except in a critical region, it nevertheless permits
it to appear in theassertionsof the process outside critical regions.

{57 7→ −}

resourcer1(p
1

2) in
resourcer2(p

1

2) in begin
with r1 do (with r2 do p := 0od); [57] := 3 od

‖ with r2 do (with r1 do p := 1od); [57] := 4 od
end

{57 7→ −}

Table 4. “Problematic program” due to Berdine and Reynolds

Thus, the proof outline of Table 1 is legal in the Owicki-Gries-
O’Hearn system. However, there is a rider to this allowance in the
Owicki-Gries proof rule for critical regions. A variable occurring
free in the assertions surrounding a critical region should not be
changed in “another process”. The allowance as well as its rider
are already covered in our relaxation of the rule 1 above. We treat
the free occurrences of variables in assertions as well as read-only
occurrences in code in exactly the same way. A variable that is not
modified in “another process,” is available to the current process
with a partial permission. So, it can use it in a read-only fashion in
both code and assertions. Our relaxation of the Owicki-Gries rule
1 leads to a simpler formulation.

Thus all valid proof outlines of the Owicki-Gries-O’Hearn sys-
tem remain valid proof outlines in our logic with syntactic control
of interference. It is quite straightforward to come up with an as-
signment of permissions to the variables listed in a resource.

• If a variable appears in multiple processes, either in code or as-
sertions, and modified in at least one of them, then the resource
should contain the⊤ permission for the variable.

• If a variable has read-only occurrences in one or more pro-
cesses, then then resource may contain any permissionp for
the variable and the complement ofp should be distributed to
all processes that use it outside critical sections.

• If a variable is used in only one process (but possibly in as-
sertions outside critical regions), then the resource may contain
any permissionp for the variable and the complement ofp is
given to the process.

For the example in Table 1, the variablex appears in multiple
processes. So, it gets the permission1 in the resource. The variable
a (respectively,b) is used only in the left process (respectively,
the right process). So, the resource is given1

2
permission and the

process is given the remaining1
2
.

However, our version of the Concurrent Separation Logic is
more expressive. By associating permission contexts with re-
sources, we make it possible for the permission to be combined
in nested critical regions. For example, consider the program frag-
ment shown in Table 4 due to Berdine and Reynolds [35]. The
purpose of the two resourcesr1 andr2 is to achieve mutual exclu-
sion to a shared data structure, in this case just the location57. If
the specification has a proof in Concurrent Separation Logic, the
race-freedom property of the logic guaruantees that only one pro-
cess can potentially access the memory location 57 at any given
time. A proof can be given in our version of the logic using the
following resource invariants:

R1 = (p = 0 ∧ 57 7→ −) ∨ (p 6= 0 ∧ emp)
R2 = (p = 0 ∧ emp) ∨ (p 6= 0 ∧ 57 7→ −)

Note thatR1 ⋆ R2 is equivalent to57 7→ −. So, both the pre-
condition and the post-condition can be rewritten toR1 ⋆ R2.

What makes the proof work is the idea that the permissions for
the variablep are split across the two resources. So, a process can

modify it only by entering critical regions for both the resources.
This form of split-permissions for variables is not available in the
Owicki-Gries-O’Hearn system.

Brookes [11], in his effort to prove the soundness of Concurrent
Separation Logic, defined a variant of the original system which
is subtly more general. Unfortunately, the generalization proved to
be unsound. However, all the valid proofs that can be carried out
in Brookes’s system can be represented in our system. A detailed
comparison with Brookes’s system, along with soundness issues,
appears in Appendix B.

4.2 Comparison with “Variables as Resource” systems

Parkinson et al. [32] and Brookes [13] define a general scheme of
treating variables as resources with permissions. In contrast to our
approach of syntactic control, the variable resources are included
in program assertions, through ownership formulas of the form
ownp(x) and used with all the normal logical connectives. So,
this approach can be termed “logical control of interference” for
variables.

It is easy to see that the syntactic control system can be trans-
lated to the logical control system. For every variable contextΣ =
(xp1

1 , . . . , xpn
n), there is an ownership formulaOΣ ≡ ownp1

(x1)⋆
· · ·⋆ownpn

(xn). A judgementΣ | Γ ⊢ {P}C {Q} of our system
can be translated to a judgementΓ ⊢ {OΣ∧P}C {OΣ∧Q} in the
“Variables as resource” system. In fact, Parkinson et al [32] give
translations of this form for Hoare logics.

It is not possible to go in the reverse direction. The “Variables
as resource” system uses logical formulas to express ownership of
variables. So, it can express a much richer set of ownership con-
straints than possible in the syntactic control system. For example,
the formula

(x = 0 ∧ own⊤(y)) ∨ (x 6= 0 ∧ own⊤(z))

does not correspond to any syntactic variable context.
Thus, the “Variables as Resource” logic is more expressive than

the syntactic control system. However, we argue that the syntactic
control system offers considerable simplicity and convenience. In
particular,

• There are no issues of undefinedness in expressions and formu-
las. So, one does not need to write formulas of the formE = E
just to ensure thatE is defined in the current context.

• Substitution is a valid operation in expressions and assertions.

• The system has no logical anomalies, e.g., the equivalence
¬(E1 = E2) ⇐⇒ E1 6= E2 holds in our system, whereas
the two formulas have different interpretations in the Variables
as Resource logic.

• We need no special treatment of logical variables. The “pun” of
program variables as logical variables, characteristic of Hoare
logics, continues to work in our system.

5. Semantics and soundness
The standard proof of soundness for sequential Separation Logic
is due to Yang and O’Hearn [39]. Bornat et al. [6] have extended
it to deal with permissions. The soundness proof of the original
Concurrent Separation Logic was provided by Brookes [11] us-
ing novel denotational methods. Brookes [13] has also used these
methods to prove the soundness of the “variables as resource” sys-
tem. Since then, other proofs of soundness have appeared. See [38]
for an overview. We regard Brookes’s semantics as the canonical
one since it is denotationally based and allows easy extensions and
adaptations.

In this section, we discuss how the presentation of Separation
Logic using the SCI principles impacts the semantics. We regard

the SCI judgements for phrases and specifications as a form of
type system, and use the approach of “Church typing” to define
the semantics, i.e., we regard well-formedness judgementΣ ⊢
C Comm and Σ | Γ ⊢ C Comm as a form of typing for
C and interpretC using denotations that areappropriatefor the
specified contextΣ | Γ. It is also possible to conceive of a “Curry
typing” semantics where the commands are interpreted without
regard to their contexts of well-formedness, and the well-formed
judgements are given a logical meaning as properties of the untyped
denotations. However, we follow the Church typing approach here
because it seems more natural.

5.1 Sequential Separation Logic

A state is modelled as a pair(s, h) of a “store” and a “heap,”
which are finite partial functions from, respectively, variables and
addresses. To keep track of permissions, we define them to map
their arguments topairs of values and permissions:

Store = Vars ⇀ Val × P
Heap = Addr ⇀ Val × P

We refer to such maps aspermissive storeand permissive heap
respectively, and both kinds of maps generically aspermissive
maps. Two permissive mapsφ1 andφ2 are said to becompatible,
denotedφ1 ♯ φ2, if, for all arguments common to both of their
domains, they agree on values and provide compatible permissions.
More formally,φ1 ♯ φ2 iff:

φ1(x) = (v, p)∧ φ2(x) = (v′, p′) =⇒ v = v′ ∧ p ⊕ p′ is defined

If φ1 and φ2 are compatible, their joining operation is denoted
φ1 ·φ2 (which combines permissions whenever bothφ1 andφ2 are
defined). It is extended to states by defining(s1, h1) · (s2, h2) =
(s1 · s2, h1 · h2).

Given a variable contextΣ with norm(Σ) = (xp1

1 , . . . , xpn
n),

a stores is said to beof typeΣ if dom s = {x1, . . . , xn} and the
permission component ofs(xi) is pi for every i. It is easy to see
that, wheneverΣ1 ♯ Σ2, any storess1 of typeΣ1 ands2 of typeΣ2

are compatible, ands1 · s2 is of typeΣ1, Σ2.
A stateσ = (s, h) is said to beof typeΣ just if s is of typeΣ.

The heap component of the state is unconstrained. If(s1, h1) and
(s2, h2) are states of of typeΣ1 andΣ2 respectively,Σ1 ♯ Σ2 and
h1 ♯ h2, then(s1, h1) · (s2, h2) is of typeΣ1, Σ2.

The meaning of a command in the sequential programming
language is defined in [39] as alocal state transformer, i.e., a
binary relation[[C]] ⊆ State × State ⊎ {fault} satisfying safety
monotonicity, termination monotonicity and the frame property. It
was extended to permissive states in [6]. While it is not stated there,
it is also easy to see that[[C]] always preserves the domain and
permission structure of the store. This allows us to define a typed
semantics for commands. IfΣ ⊢ C Comm is a well-formedness
judgement then its meaning is a relation[[C]]Σ consisting of just the
pairs(σ, σ′) where bothσ andσ′ are of typeΣ.

DEFINITION 1. A judgement of the sequential Separation Logic
Σ ⊢ {P}C {Q} is valid iff, for all statesσ of typeΣ satisfyingP :

• (σ, fault) 6∈ [[C]]Σ, and
• if (σ, σ′) ∈ [[C]]Σ thenσ′ is of typeΣ and satisfiesQ.

THEOREM 2 (Soundness).Every derivable judgement of sequen-
tial Separation Logic is valid.

The proof is by induction on the derivation of the judgement.
Consider the FRAME rule as a significant example. Letσ be a state
of typeΣ, Σ′ satisfyingP ⋆ R. Thenσ can be written asσ1 · σ0

whereσ1 is of typeΣ and satisfiesP andσ0 is of typeΣ′ and
satisfiesR. Then by inductive hypothesis,Σ ⊢ {P}C {Q} is valid.
Hence[[C]]Σ is safe forσ1 and, whenever(σ1, σ

′
1) ∈ [[C]]Σ, σ′

1 is

of typeΣ and satisfiesQ. So, by the safety monotonicity and frame
properties,[[C]]Σ,Σ′ is safe forσ, and(σ, σ′) ∈ [[C]]Σ,Σ′ impliesσ′

is of typeΣ, Σ′ andσ′ satisfiesQ ⋆ R.

5.2 Concurrent Separation Logic

The denotational semantics of commands in the concurrent pro-
gramming language is given in two stages. First, commands are in-
terpreted astraces, i.e., stylized sequences of actions. Second, these
traces are described by their effect on states as state transitions. It is
not possible to interpret the commands directly as state transitions,
because such transitions only relate initial and final states whereas
parallel composition makes intermediate states visible.

Trace semantics

A pre-action(or an untyped action) is a syntactic token given by
the syntax:

λ ::= δ | x = v | x := v | [l] = v | [l] := v
| try(r) | acq(r) | rel(r) | abort

As in [11],δ is a do-nothing or idle action,x = v denotes the action
of reading the variablex, x := v denotes the action of writing to
the variablex. The actions[l] = v and [l] := v denote similar
actions for heap locations. The tokenstry(r), acq(r) andrel(r)
denote the actions of attempting to acquire a resource, acquiring
a resource and releasing a resource respectively. The tokenabort
denotes the action of aborting a computation in case of an error.

A pretraceis a possibly infinite sequence of actions subject to
the identificationsα · δ · β = α · β, andα · abort · β = α · abort .

We model the actions and action traces “appropriate” for a
syntactic contextΣ | Γ as a form of typing. First of all, the contexts
enable certain actions and prohibit others. A variable actionx = v
or x := v would only be possible in a context that containsx
with requisite permissions. The resource actionstry(r) andacq(r)
would only be possible in a context that contains a resource named
r. Secondly, as a result of an action, the context available for the
rest of a trace might change. For instance,acq(r) has the effect of
removing the resourcer(Σ0) from the resource context and adding
its variablesΣ0 to the variable context. Arel(r) action has the
opposite effect. We represent these effects by a transition relation

λ
−→ on contexts. Finally, when a resource is acquired by a process,
it is not available for another acquisition until it is released. At the
same time, the type information of the resource should continue
to be retained in the context. Therefore, we work with a form
of extended contexts where the resources acquired by a trace are
marked “busy,” by enclosing them in square brackets as[r(Σ)].

An extended contextis a context of the form

Σ | r1(Σ1), . . . , rn(Σn), [r′1(Σ
′
1)], . . . , [r

′
m(Σ′

m)]

such that

• the resource namesr1, . . . , rn, r′1, . . . , r
′
m are all distinct, and

• the variable contextΣ, Σ1, . . . , Σn is well-defined.

A putative extended context satisfying these conditions is said
to be well-defined. We use the lettereΓ to range over extended
resource contexts where some of the resources are marked busy.
The notation(eΓ)◦ denotes the underlying resource context ofeΓ
where all the busy markers are erased.

An action is a triple 〈Σ|eΓ, Σ′|eΓ′, λ〉 consisting of the initial
and final contexts and a pre-action that leads from the former to

the latter. We write it using the notationΣ|eΓ λ
−→ Σ′|eΓ′. The

list of actions used in the semantics of the programming language
are shown in Table 6. There are no constraints on the actions for
reading and writing heap locations because the access to heap

Σ | eΓ δ
−→ Σ | eΓ

Σ | eΓ x=v
−→ Σ | eΓ wherexp ∈ Σ for somep

Σ | eΓ x:=v
−→ Σ | eΓ wherex⊤ ∈ norm(Σ)

Σ | eΓ [l]=v
−→ Σ | eΓ

Σ | eΓ [l]:=v
−→ Σ | eΓ

Σ | eΓ, r(Σ0)
try(r)
−→ Σ | eΓ, r(Σ0)

Σ | eΓ, r(Σ0)
acq(r)
−→ Σ, Σ0 | eΓ, [r(Σ0)]

Σ, Σ0 | eΓ, [r(Σ0)]
rel(r)
−→ Σ | eΓ, r(Σ0)

Table 6. Actions used in traces

locations is controlled in the programming logic rather than the
syntax.

A trace is a finite or infinite sequence of the form

Σ0|eΓ0
λ1−→ Σ1|eΓ1

λ2−→ Σ2|eΓ2
λ3−→ · · ·

If the sequenceα = λ1λ2 · · · is finite, we use the notation
Σ0|eΓ0

α
−→ Σn|eΓn to denote the corresponding trace. If it is infi-

nite, we use the notationΣ0|eΓ0
α

−→ ∞. We also use the notation
Σ0|eΓ0

α
−→ · for both finite and infinite traces, and say that the

pretraceα is enabledin the contextΣ0|eΓ0.
For defining the meaning of parallel composition, we define an

operation ofinterleavingtwo traces. Supposeα1 andα2 are two
traces withα1 enabled in a contextΣ1|eΓ1 andα2 enabled in a con-
text Σ2|eΓ2. TheneΓ1 andeΓ2 should have the same underlying re-
source contexts, i.e.,(eΓ1)

◦ = (eΓ2)
◦, and they should mark disjoint

sets of resources as busy. Then the resource context obtained by
marking the busy resources of botheΓ1 andeΓ2 is denotedeΓ1 ∧ eΓ2.
Interleaving is only possible for tracesα1 andα2 such thateΓ1 and
eΓ2 are in this form andΣ1, Σ2 | eΓ1 ∧ eΓ2 is well-defined.

Two actionsλ1 andλ2 are said tointerfere, written λ1 ∦ λ2,
if λ1 writes to a heap locationl andλ2 reads or writes the same
locationl, or vice versa. The set ofmutex fairmergesof Σ1|eΓ1

α1−→

· andΣ2|eΓ2
α2−→ · is a set of traces of typeΣ1, Σ2|eΓ1 ∧ eΓ2 −→ ·

given by induction on the lengths ofα1 andα2:

α1 ‖ ǫ = {α1}

ǫ ‖α2 = {α2}

(λ1α1) ‖(λ2α2) =
{ abort | λ1 ∦ λ2} ∪

{Σ1, Σ2 | eΓ1 ∧ eΓ2
λ1−→ Σ′

1, Σ2 | eΓ′
1 ∧ eΓ2

β
−→ ·

such thatβ ∈ α1 ‖(λ2α2) } ∪

{Σ1, Σ2 | eΓ1 ∧ eΓ2
λ2−→ Σ1, Σ

′
2 | eΓ1 ∧ eΓ′

2
β

−→ ·
such thatβ ∈ (λ1α1) ‖α2 }

This definition is a typed version of the notion of mutex fairmerges
in Brookes [11]. Note that the typing information of traces obviates
the need to consider possible interference via variable usage.

The definition is extended tosetsof traces in the natural way. If
T1 andT2 are trace sets enabled in contextsΣ1|eΓ1 andΣ2|eΓ2 then
the trace setT1 ‖T2, obtained as the union of allα1 ‖α2 for all
α1 ∈ T1 andα2 ∈ T2 is enabled in the contextΣ1, Σ2 | eΓ1 ∧ eΓ2.

A (well-bracketed) trace for an extended contextΣ | eΓ is either
abort , a finite traceα such thatΣ | eΓ α

−→ Σ | eΓ, or an infinite
trace whose every finite prefix can be extended to a well-bracketed
finite trace. The terminology is motivated by thinking of theacq(r)
andrel(r) actions as brackets. A trace setT is a (well-bracketed)

[[x]]Σ = { (x = v, v) | v Value}
[[E1 + E2]]Σ = { (ρ1ρ2, v1 + v2) | (ρ1, v1) ∈ [[E1]]Σ ∧ (ρ2, v2) ∈ [[E2]]Σ }

[[skip]]Σ|Γ = {δ}
[[x := E]]Σ|Γ = { ρ(x := v) | (ρ, v) ∈ [[E]]Σ }
[[x := [E]]]Σ|Γ = { ρ([v] = v′)(x := v′) | (ρ, v) ∈ [[E]]Σ }
[[[E] := E′]]Σ|Γ = { ρρ′([v] := v′) | (ρ, v) ∈ [[E]]Σ ∧ (ρ′, v′) ∈ [[E′]]Σ }
[[if B then C1 else C2]]Σ|Γ = ([[B]]Σ ↾ true) [[C1]]Σ|Γ ∪ ([[B]]Σ ↾ false) [[C2]]Σ|Γ

[[local x in C]]Σ|Γ = { (ρ \ x) | ρ ∈ [[C]]Σ,x⊤|Γ }
[[C1 ‖C2]]Σ1,Σ2|Γ = [[C1]]Σ1|Γ ‖[[C2]]Σ2|Γ

[[with r when B do C od]]Σ|Γ,r(Σ0) = wait∗enter ∪ waitω

where wait = acq(r) ([[B]]Σ,Σ0
↾ false) rel(r) ∪ {try(r)}

enter = acq(r) ([[B]]Σ,Σ0
↾ true) [[C]]Σ,Σ0|Γ rel(r)

[[resource r(Σ0) in C]]Σ,Σ0|Γ = { ρ \ r | ρ ∈ [[C]]Σ|Γ,r(Σ0) }

Table 5. Trace semantics of phrases

trace set for contextΣ | eΓ if each trace inT is a well-bracketed
trace for the context.

LEMMA 3 (Weakening of contexts).If α is a trace for an extended
contextΣ|eΓ, and Σ, Σ′|eΓ, eΓ′ is a longer well-defined extended
context, thenα is a trace forΣ, Σ′|eΓ, eΓ′.

LEMMA 4 (Parallel composition preserves contexts).If α1 and
α2 are traces for extended contextsΣ1|eΓ and Σ2|eΓ respectively,
andΣ1, Σ2|eΓ is a well-defined extended context thenα1 ‖α2 is a
trace set for the contextΣ1, Σ2|eΓ.

All expressions and commands can be given a compositional
semantics in terms of trace sets.

• The meaning of an expressionΣ ⊢ E Exp is a set of pairs
(ρ, v) whereρ is an action trace of typeΣ|

ρ
−→ Σ| (i.e., a

context with no resources, because expressions do not access
resources), andv is a value (obtained as the result of evaluating
E). We denote it by[[E]]Σ.

• The meaning of a commandΣ | Γ ⊢ C Comm is a set of
tracesρ for the contextΣ|Γ. We denote it by[[C]]Σ|Γ.

The semantics is defined in the standard fashion [11]. However,
it is defined by induction on thederivationsof well-formedness
judgementsΣ ⊢ E Exp and Σ | Γ ⊢ C Comm, instead
of induction on the structure of terms. We show the meanings of
sample phrases in Table 5. The notation[[E]]Σ ↾ v denotes the set
of traces{ ρ | (ρ, v) ∈ [[E]]Σ }. The notationsρ\x andρ\r remove
the actions mentioningx andr respectively fromρ.

THEOREM 5 (Type soundness of trace semantics).The meaning
of commandΣ | Γ ⊢ C Comm is a (well-bracketed) trace set
for the contextΣ | Γ. Likewise, for every(ρ, v) in the meaning of
an expressionΣ ⊢ E Exp, ρ is a (well-bracketed) trace for the
contextΣ | .

Local state semantics

A state for a concurrent program is a triple(s, h, A) where s
is a permissive store,h is a permissive heap andA is a set of
resource names (deemed to have been acquired by the process).
We also use an error stateabort. The types for states will be
annotated extended contexts of the formΣ | eΓ where the resources
are annotatedwith resource invariants as inr(Σ0) : R. It is a
characteristic of Brookes’s semantics for Concurrent Separation
Logic that the resource invariants play a central role in the state
transition semantics.

A state of typeΣ | eΓ is eitherabort or a normal state(s, h, A)
wheres is a store of typeΣ, h is a heap, andA is a subset of the
resources marked busy ineΓ.

We can interpret actions (and action traces) of typeΣ | eΓ −→

Σ′ | eΓ′ as state transformations that transform states of typeΣ | eΓ
to states of typeΣ′ | eΓ′. For actions of typeΣ | eΓ −→ Σ | eΓ
(where the state type is unchanged), the state transformations are
as follows:

(s, h, A)
δ

−→ (s, h, A)

(s, h, A)
abort
−→ abort

(s, h, A)
x=v
−→ (s, h, A) iff ∃p. s(x) = (v, p)

(s, h, A)
x:=v
−→ (s[x 7→ (v,⊤)], h, A) iff ∃v0. s(x) = (v0,⊤)

(s, h, A)
[l]=v
−→ (s, h, A) iff ∃p. h(l) = (v, p)

(s, h, A)
[l]=v
−→ abort iff l 6∈ dom(h)

(s, h, A)
[l]:=v
−→ (s, h[l 7→ (v,⊤)], A) iff ∃v0. h(l) = (v0,⊤)

(s, h, A)
[l]:=v
−→ abort iff l 6∈ dom(h)

(s, h, A)
try(r)
−→ (s, h, A)

For anacq action of type

Σ | eΓ, r(Σ0) : R
acq(r)
−→ Σ, Σ0 | eΓ, [r(Σ0) : R]

the transformations are given by:

(s, h, A)
acq(r)
−→ (s · s0, h · h0, A ∪ {r})

iff (s0, h0) |= R, s ♯ s0, h ♯ h0

For arel action of type

Σ, Σ0 | eΓ, [r(Σ0) : R]
rel(r)
−→ Σ | eΓ, r(Σ0) : R

the transformations are:

(s · s0, h · h0, A ⊎ {r})
rel(r)
−→ (s, h, A) iff (s0, h0) |= R

(s, h, A)
rel(r)
−→ abort iff ∀h0 ⊆ h.¬(s, h0) |= R

The key property of these transformations, inherited from Brookes [11],
is that the transitions foracq(r) extendthe current state with anar-
bitrary state of the resource satisfying the resource invariantR.
The conditions ♯ s0 ensures that the values of any common vari-
ables agree. The transitions forrel(r) do the opposite: they remove
the state of the resource from the current state. If and when the
resource is reacquired in a future action, the state of the resource
obtained may bear no relationship to the state previously released.

In fact, since other processes can intervene in the interim, nothing
more can be assumed about the reacquired state of the resource.

LEMMA 6 (Type soundness of traces).Given a traceα of typeΣ |
eΓ α
−→ Σ′ | eΓ′ and a state(s, h, A) of typeΣ | eΓ, if (s, h, A)

α
−→

(s′, h′, A′) then(s′, h′, A′) is of typeΣ′ | eΓ′.

Soundness

DEFINITION 7 (Validity). A judgementΣ | Γ ⊢ {P} C {Q} is
valid iff, for all well-bracketed tracesα for the contextΣ|Γ in
[[C]]Σ|Γ, all local states(s, h, ∅) andσ′ of typeΣ|Γ,

(s, h) |= P ∧ (s, h, ∅)
α

−→ σ′ =⇒
∃s′, h′. σ′ = (s′, h′, ∅) ∧ σ′ |= Q

THEOREM 8 (Soundness).Every provable judgement of concur-
rent SCI Separation Logic is valid.

Standard semantics

In addition to the semantics defined above, which is with respect
to a program proof, traces can be interpreted as actions on global
states. The relation is denoted(s, h, A)

α
=⇒ (s′, h′, A′) and is

similar to an untyped version of the local state transition semantics,
except that the rules foracq andrel actions are modified as follows:

(s, h, A)
acq(r)
=⇒ (s, h, A ∪ {r}) if r 6∈ A

(s, h, A ⊎ {r})
rel(r)
=⇒ (s, h, A \ {r}) if r ∈ A

This relation corresponds to running a process on the global state
without any interference from any other processes.

The following result says that the standard semantics obtained
by executing traces on the global state corresponds to the local
state semantics defined above. The notationinv(Γ) stands for the
conjunction of all the resource invariants inΓ.

THEOREM 9. Let (s, h, ∅) be a global state andΣ |Γ a context.
Suppose the state(s, h) can be split as(s1, h1) · (s2, h2) where
(s1, h1, ∅) is of typeΣ |Γ and(s2, h2) |= inv(Γ).

• If (s, h, ∅)
α

=⇒ abort then(s1, h1, ∅)
α

−→ abort.

• If (s, h, ∅)
λ

=⇒ (s′, h′, ∅) then either

(s1, h1, ∅)
λ

−→ abort, or
(s′, h′) can be split as(s′1, h

′
1)·(s

′
2, h

′
2) such that(s′1, h

′
1, ∅)

is of some typeΣ′ |Γ′, (s1, h1, ∅)
λ

−→ (s′1, h
′
1, ∅) and

(s′2, h
′
2) |= inv(Γ′).

6. Permission inference
In this section, we investigate the problem of permission inference.
We construct an algorithm which, given a program and a proof
outline with no variable contexts listed with resources, fills them
in if at all possible in accordance with the rules of SCI Separation
Logic.

We restrict our attention to the permission algebra of fractional
permissions, the real interval(0, 1] with addition as the partial
binary operation. For theoretical simplicity, we extend the algebra
to include0 as an abnormal permission value, indicating that the
resource or the process possesses no permission for the variable,
and extend addition to0 in the standard way. An element of[0, 1]
is referred to as an “extended permission.”

A normal form context withn variables andm resources is of
the form
xp01

1 , . . . , xp0n
n |

r1(x
p11

1 , . . . , xp1n
n) : R1, . . . , rm(xpm1

1 , . . . , xpmn

n) : Rm ⊢

where eachpij is an extended permission, with the indexi cor-
responding to the owner of the permission (0 for the process or

“self ,” 1, . . . , n for the shared resources), and the indexj corre-
sponding to the variable. We represent all the data in the context by
two finite functions:

∆ : Vars → Owners → [0, 1] Υ : Resources → Invariant

whereOwners = {self} ⊎ Resources, and∆ satisfies

Σo∈Owners (∆ v o) ≤ 1

The setsVars andResources include all the variable and resource
names appearing in the program fragment being analyzed.

Using these notations, the proof system of SCI Separation Logic
can be rewritten using judgements of the form:

∆|Υ ⊢ E Exp ∆|Υ ⊢ P Assert (Passive)
∆|Υ ⊢ x Var ∆|Υ ⊢ {P} C {Q} (Active)

(where the first three forms have the resource contextΥ added for
uniformity in discussion). For example, the parallel composition
rule is rewritten as:

∆1 | Υ ⊢ {P1} C1 {Q1} ∆2 | Υ ⊢ {P2} C2 {Q2}

∆ | Υ ⊢ {P1 ⋆ P2} C1 ‖ C2 {Q1 ⋆ Q2}

if ∆1 v o = ∆2 v o = ∆ v o for all o 6= self
∆ v self = ∆1 v self + ∆2 v self ≤ 1

We also use abbreviated rules for the passive judgements:

∆ | Υ ⊢ E Exp
if ∀v ∈ FV (E), ∆ v self > 0

∆ | Υ ⊢ P Assert
if ∀v ∈ FV (P), ∆ v self > 0

Define awrite-proof as a proof where the side conditions of pas-
sive judgements are ignored. Since the passive judgements involve
variable reading, this means that the permissions needed for vari-
able reading are not checked. However, the permissions needed for
variable writing are still checked, hence the name.

Define a “pre-judgement” as a judgement with variable contexts
∆ erased, i.e., a judgement of one of the forms:

Υ ⊢ E Exp Υ ⊢ P Assert (Passive)
Υ ⊢ x Var Υ ⊢ {P} C {Q} (Active)

A “pre-rule” is an SCI Separation Logic rule with variable con-
texts erased. A “pre-inference” is an instance of a pre-rule and a
“pre-proof” is a derivation made up of pre-inferences. Theera-
sureof a judgement, rule, inference or proofX is a pre-judgement,
pre-rule, pre-inference or pre-proof (respectively) denotedX0, ob-
tained by erasing all the variable contexts. In that case, we say that
X “erases” toX0 or X “extends”X0.

The problem of permission inference is now stated formally as
follows:

Given a pre-proofP 0, is there a proofP whose erasure isP 0?

The algorithm described below answers the question. Moreover, if
the answer is yes, it produces a maximally permissive proofP max

that extendsP 0.
We regard proof trees asformal trees, i.e., graphs satisfying the

tree conditions, labelled by judgements.P 0 and P are different
labellings of thesameformal tree. We use the notation(P 0)N and
(P)N , respectively, to refer to the judgements labeling a nodeN of
the formal tree.

We use a few auxiliary concepts:

• A permission restrictionΦ is an assignment

[v1 : O1, . . . , vk : Ok]

wherevi ∈ Vars andOi ⊆ Owners. We also feel free to treat
Φ as a partial function of typeVars ⇀ P(Owners). Such a

{57 7→ −}
resourcer1 in

resourcer2 in begin
with r1 do (with r2 do p := 0od); [57] := 3 od

‖ with r2 do (with r1 do p := 1od); [57] := 4 od
end

{57 7→ −}

Table 7. “Problematic program” due to Berdine and Reynolds

Φ represents the condition that, for each of the variablesvi, the
owners inOi share the full permission forvi. A variablevi

will occur in a permission restriction exactly when the program
phrase being described contains an assignment tovi. The corre-
spondingOi lists all the owners that can contribute permissions
required for that assignment to be legal. Formally, the satisfac-
tion of a permission restriction by a variable context is defined
as:

∆ |= Φ ⇐⇒ ∀(vi : Oi) ∈ Φ. Σo∈Oi
(∆ vi o) = 1

Note that∆ vi o must be0 for all owners outsideOi. There are
noconstraints on∆ for the other variables not mentioned inΦ.

• We define apermission orderingon variable contexts∆ � ∆′

by the rule:

∆ v o > 0 =⇒ ∆′ v o > 0

We say that∆′ is “more permissive” than∆. The intuition is
that∆′ has non-zero permissions for at least as many combina-
tions as∆.

A permission restrictionΦ = [v1 : O1, . . . , vk : Ok] is satisfiable
only if everyOi is nonempty. In that case, a maximally permissive
variable context satisfyingΦ can be defined as follows:

∆max v o =

8
<
:

1/#O, if (v : O) ∈ Φ ∧ o ∈ O
0, if (v : O) ∈ Φ ∧ o 6∈ O
1/(#Owners + 1), if v 6∈ dom Φ

where#S denotes the size of the setS. In other words, a full
permission is apportioned among all the owners permitted byΦ or,
if Φ imposes no restriction, then a partial permission is apportioned
among all owners.

Our algorithm for permission inference is a two-phase algo-
rithm. The first phase traverses a pre-proof leaves to root (“bottom-
up” in the syntax tree), and computes, at each inference step, the
permission restriction that must be satisfied by any write-proof. If
any permission restriction computed in this phase is unsatisfiable
then there is no proof corresponding to the pre-proof. The second
phase traverses the pre-proof from the root to leaves (“top-down”
in the syntax tree), computing variable contexts that extend the pre-
proof to amaximally permissive write-proofin the sense of the pre-
order�. The maximally permissive write-proof is then checked to
verify that it contains non-zero permissions for all the passive uses
of variables.

We illustrate the algorithm using the “problematic program”
of Berdine and Reynolds [35], reproduced in Table 7 for ease of
reference: LetΥ stand for the resource contextr1 : R1, r2 : R2.

The first phase of the algorithm traverses the pre-proof leaves to
root and computes, at each inference step, the permission restric-
tions needed to extend the pre-proof to a write proof. Since the in-
ference steps correspond to program terms, we just show the terms
involved in each case.

1. For the variablep, i.e., the inference step concludingΥ ⊢
p Var, the permission restriction isΦ1 = [p : {self}]. The

total permission must be owned byself at this point in order to
allow assignments top.

2. For the commandp := 0, the permission restriction is the same,
Φ2 = [p : {self}].

3. For the critical sectionwith r2 do p := 0 od, the permission
restriction isΦ3 = [p : {self , r2}]. This means that both the
process and the resourcer2 could have non-zero permission for
p. Since the critical section combines the permissions fromself
andr2 to execute the body, this is well-justified.

4. The command[57] := 3 does not write to any variables. So, its
permission restriction is empty:Φ4 = [].

5. For the outer critical section

P1 ≡ with r1 do (with r2 do p := 0 od); [57] := 3 od

r1 is added to the restriction:Φ5 = [p : {self , r1, r2}].

6. The second processP2 similarly has the permission restriction
Φ6 = [p : {self , r1, r2}].

7. For the parallel compositionP1 ‖P2, the permission restriction
is Φ7 = [p : {r1, r2}], i.e.,self is removedfrom the permis-
sion restrictions obtained from the component processes.

Why? In this phase of the algorithm, we are only considering
what permissions are needed for writing variables. Since both
the processes have permission restrictions forp, that means that
they are both writing top, which is only possible if each of
them has0 as theself permission forp. (If the first process has
non-zero permission forp then, since the second process has the
sum of all its permissions forp summing to1, the total sum of
the permissions forp in the parallel composition would exceed
1, which is forbidden.) All the permissions for writing top in
both the processes must be obtained by entering critical regions
for the resources.

8. resource r2 in P1 ‖P2 has the permission contextΦ8 = [p :
{r1, self}], which is obtained by replacingr2 in Φ7 by self .
This is justified by noting that the resource declaration allows
the process to shift some portion of the permission forp from
self to r2. SinceΦ7 potentially requires a non-zero permission
for p in r2, Φ8 must require it inself .

9. resource r1 in resource r2 in P1 ‖P2 has the permission
restrictionΦ9 = [p : {self}], using the same reasoning as in
the previous step.

The key observation is the fact that permission restrictionΦ7 for
P1 ‖P2 does not containself . This requires us to divide the full
permission forp among only the two resourcesr1 andr2.

Since all the permission restrictions computed in phase 1 are
satisfiable, we proceed to phase 2 of the algorithm. This phase
movestop-down, from the root to the leaves, using the permission
restrictions computed in the previous phase.

1. For the overall program, the permission restriction isΦ9 = [p :
{self}]. The maximally permissive variable context satisfying
Φ9 is given by∆ p = [self : 1].

2. The last inference step is of the form:

∆1 | ⊢ R1 Assert []
∆2 | r1 : R1 ⊢ {R2} resource r2 in P1 ‖P2 {R2} [Φ8]

∆ | ⊢ {R1 ⋆ R2}

0
@

resource r1 in
resource r2 in

P1 ‖P2

1
A {R1 ⋆ R2} [Φ9]

(where the∆’s need to satisfy various side conditions detailed
in the formal rules given below). Note that the permission re-
striction for the first premise is empty because it is a passive

judgement. We calculate maximally permissive variable con-
texts∆1 and∆2 using∆ (obtained in the previous step) and the
permission restrictions for the premises[] andΦ8 calculated in
the first phase. Recall thatΦ8 = [p : {r1, self}]. This implies
that ∆2 p should be of the form[r1 : π1, self : πs] for some
non-zero fractionsπ1 andπs such thatπ1 + πs = 1. The pre-
cise fractions do not matter, just that they should be non-zero.
For instance, we can pickπ1 = πs = 1

2
. ∆1 should be of the

form [p : [self : π1]] because the permission allocated toself
in the resource invariant should be the permission allocated to
r1 in ∆2.

3. Moving top-down in the pre-proof, we need to construct the
inference:

∆′
1 | ⊢ R2 Assert []

∆′
2 | r1 : R1, r2 : R2 ⊢ {emp} P1 ‖P2 {emp} [Φ7]

∆2 | r1 : R1 ⊢ {R2} resource r2 in P1 ‖P2 {R2} [Φ8]

where∆2 = [p : [r1 : π1, self : πs]] is the variable context
from the previous step. Proceeding similarly to the previous
step, we can calculate that the variable context∆′

2 in the judge-
ment should be of the form[r1 : π′

1, r2 : π′
2, self : π′

s] such
thatπ′

1 = π1 andπ′
2 + π′

s = πs. However, the permission re-
strictionΦ7 only listsr1 andr2 for p. Hence,πs should be0,
andπ′

2 = πs. If π1 = πs = 1
2

was chosen in the previous step,
then we obtainπ′

1 = π′
2 = 1

2
.

We omit the remaining steps, which are straightforward. Note that
the main task of the algorithm is now accomplished. The permis-
sions forp in the two resourcesr1 andr2 have been inferred. They
are 1

2
each.

The algorithm for permission inference takes as input a pre-
proof P 0, regarded as a labeling function(P 0)N of a formal tree
of nodes. In phase 1, it traverses the tree leaf-to-root and constructs
a permission restrictionΦN for each nodeN . If the pre-inference
for (P 0)N is of the form

X0 :
ΥN1

⊢ SN1
· · · ΥNk

⊢ SNk

ΥN ⊢ SN

(2)

then the algorithm computes the permission restrictionΦN for node
N as a partial functionFR(ΦN1

, . . . , ΦNk
) of the permission re-

strictions of its children (antecedents of the pre-inference), satisfy-
ing:

Property L0: If eachdomΦNi
contains exactly the modified free

variables ofSNi
(i.e., varaibles that occur on the left hand sides of

assignments) thendom ΦN likewise contains exactly the modified
free variables ofSN .

Property L1: For every inferenceX that extendsX0:

X :
∆1 |ΥN1

⊢ SN1
· · · ∆k |ΥNk

⊢ SNk

∆ |ΥN ⊢ SN

we have (
Vk

i=1 ∆i |= ΦNi
) =⇒ ∆ |= ΦN where ΦN =

FR(ΦN1
, . . . , ΦNk

).
If, on the other hand,FR(ΦN1

, . . . , ΦNk
) is undefined then

there exists no inferenceX extendingX0. This case arises only
for the variable declaration rule.

LEMMA 10. Given a pre-proofP 0, if ΦN is a family of of permis-
sion restrictions for the nodes ofP 0 produced in phase 1, then, for
every write-proofP w that extendsP 0, the variable context∆N of
(P w)N satisfiesΦN .

The proof is by induction on the structure of the underlying tree of
P 0. Thus, the result holds for all sub-proofs ofP 0 as well.

In phase 2, we construct a maximally permissive write-proof
that extendsP 0 by calculating∆max

N for every nodeN . For the
root node, we choose a maximally permissive∆ satisfyingΦroot.
Then phase 2 proceeds from the root to leaves, constructing∆max

N

for each node using the∆max of the the parent (consequent of the
pre-inference) and the permission restrictions computed in phase 1.
Specifically, given a pre-inferenceX0

X0 :
ΥN1

⊢ SN1
· · · ΥNk

⊢ SNk

ΥN ⊢ SN

and ∆max
N satisfyingΦN , it computes∆max

N1
, . . . , ∆max

Nk
for the

child nodes ofN (antecedents of the pre-inference) as a function
GR(ΦN1

, . . . , ΦNk
, ∆max

N) of the given∆max
N and the permission

restrictionsΦN1
, . . . , ΦNk

of the child nodes, satisfying:

Property L2: ∆max
N1

|= ΦN1
,. . . ,∆max

Nk
|= ΦNk

, and the follow-
ing is a legal inference that extendsX0:

Xmax :
∆max

N1
|ΥN1

⊢ SN1
· · · ∆max

Nk
|ΥNk

⊢ SNk

∆max
N |ΥN ⊢ SN

Moreover, for any other legal inferenceX that extendsX0:

X :
∆1 |ΥN1

⊢ SN1
· · · ∆k |ΥNk

⊢ SNk

∆ |ΥN ⊢ SN

such that∀i. ∆i |= ΦNi
and∆ |= ΦN , we have∆ � ∆max

N =⇒
∀i.∆i � ∆max

Ni
.

LEMMA 11. Given a pre-proofP 0, a family of permission restric-
tionsΦN produced in phase 1, and a variable context∆max

root sat-
isfyingΦroot, let Pmax be the write-proof on the same underlying
tree of nodes obtained by using the given∆max

root and contexts∆max
N

satisfying the Property L2. Then

1. Pmax is a legal write-proof extendingP 0.
2. if P is any other write-proof extendingP 0 using variable con-

texts∆N , and∆root � ∆max
root, then∆N � ∆max

N for all nodes
N .

The proof is by induction on the depth of the nodes in the underly-
ing tree ofP 0.

We describe all these aspects compactly by writing down the
rules of SCI Separation Logic using the notations of this section,
and displaying the computations of both the phases of the algo-
rithm. We decorate the judgements with schematic permission re-
strictionsΦ:

∆ | Υ ⊢ S [Φ]

in order to refer to the permission restrictions computed in phase 1
and used in phase 2. The side conditions of passive rules are ignored
in phase 1, but used in phase 2.

Some of rules are as follows (the others are similar):

Expressions:

∆ | Υ ⊢ E Exp []
where∀v ∈ FV (E). ∆ v self > 0

Phase 1 is trivial:Φ = [].
Phase 2 checks to verify that∆max satisfies the side condition.
If and only if the side condition is satisfied, the write-proof that
extendsP 0 with ∆max for this node will be a proof.

The rule for Assertions is similar.

Assignable Variable:

∆ | Υ ⊢ x Var [Φ]
where∆ x o =


1, if o = self
0, otherwise

Phase 1: Φ = [x : {self}]
Phase 2 computation is trivial because there are no premises.

Sequencing:

∆1 | Υ ⊢ {P} C1 {Q} [Φ1] ∆2 | Υ ⊢ {Q} C2 {R} [Φ2]

∆ | Υ ⊢ {P} C1; C2 {R} [Φ]

where∆1 = ∆2 = ∆

Phase 1:

dom Φ = dom Φ1 ∪ dom Φ2

Φ v =

8
<
:

Φ1 v if v ∈ dom Φ1 \ dom Φ2

Φ2 v if v ∈ dom Φ2 \ dom Φ1

(Φ1v ∩ Φ2v) if v ∈ dom Φ1 ∩ dom Φ2

Phase 2:∆max
1 = ∆max

2 = ∆max.
All other rules such as conditionals, assignment, lookup and

mutation are similar to Sequencing in that∆ remains unchanged in
the premises. Their Phase 1 and Phase 2 computations are exactly
the same as for Sequencing.

Parallel composition:

∆1 | Υ ⊢ {P1} C1 {Q1} [Φ1] ∆2 | Υ ⊢ {P2} C2 {Q2} [Φ2]

∆ | Υ ⊢ {P1 ⋆ P2} C1 ‖C2 {Q1 ⋆ Q2} [Φ]

where ∆1 v o = ∆2 v o = ∆ v o for all o 6= self
∆ v self = ∆1 v self + ∆2 v self ≤ 1

Phase 1:

dom Φ = dom Φ1 ∪ dom Φ2

Φ v =

8
<
:

Φ1 v if v ∈ dom Φ1 \ dom Φ2

Φ2 v if v ∈ dom Φ2 \ dom Φ1

(Φ1v ∩ Φ2v) \ {self} if v ∈ dom Φ1 ∩ dom Φ2

Phase 2: The pair(∆max
1 v o, ∆max

2 v o) is as follows:

• If o 6= self , it is (∆max v o, ∆max v o).

• If o = self andv ∈ dom Φ1 \ dom Φ2, it is (∆max v self , 0)

• If o = self andv ∈ domΦ2 \domΦ1, it is (0, ∆max v self).

• If o = self andv ∈ dom Φ1 ∩ dom Φ2, it is (1
2

∆max v self ,
1
2

∆max v self).

• If o = self andv 6∈ dom Φ1 ∪ dom Φ2, it is (1
2

∆max v self ,
1
2

∆max v self).

The Frame rule is similar to parallel composition.

Critical regions:

∆1 | Υ, r : R ⊢ P, Q Assert []
∆2 | Υ ⊢ {(P ⋆ R) ∧ B} C {Q ⋆ R} [Φ2]

∆ | Υ, r : R ⊢ {P} with r when B do C od {Q} [Φ]

where∆2 v o = ∆ v o for all o 6∈ {self , r}
∆2 v self = ∆ v self + ∆ v r ≤ 1
∆2 v r = 0
∆1 = ∆

Phase 1: dom Φ = dom Φ2

Φ v = { o ∈ Φ2 v | o 6= self , o 6= r } ∪
{ self | self ∈ Φ2 v } ∪ { r | self ∈ Φ2 v }

Phase 2:

• Foro 6∈ {self , r}, ∆max
2 v o = ∆max v o.

• ∆max
2 v self = ∆max v self + ∆max v r.

• ∆max
1 = ∆max and∆max

2 v r = 0.

Resource declaration:
∆1 | Υ ⊢ R Assert [] ∆2 | Υ, r : R ⊢ {P} C {Q} [Φ2]

∆ | Υ ⊢ {P ⋆ R} resource r in C {Q ⋆ R} [Φ]

whereR is precise
∆2 v o = ∆ v o for all o 6∈ {self , r}
∆ v self = ∆2 v self + ∆2 v r ≤ 1

∆1 v o =


∆2 v r, if o = self
0, otherwise

Phase 1: dom Φ = dom Φ2

Φ v = { o ∈ Φ2 v | o 6= self , o 6= r } ∪
{ self | self ∈ Φ2 v ∨ r ∈ Φ2 v }

Phase 2: The context∆max
2 is defined as follows:

• Foro 6∈ {self , r}, ∆max
2 v o is ∆max v o.

• The pair(∆max
2 vself , ∆max

2 vr) is as follows: Ifv 6∈ domΦ2

then it is(1
2

∆max v self , 1
2

∆max v self). If v ∈ dom Φ2:

If self ∈ Φ2 v and r ∈ Φ2 v, it is (1
2

∆max v self ,
1
2

∆max v self).

If self ∈ Φ2 v andr 6∈ Φ2 v, it is (∆max v self , 0).

If self 6∈ Φ2 v andr ∈ Φ2 v, it is (0, ∆max v self).

If self 6∈ Φ2 v andr 6∈ Φ2 v, it is (0, 0).

∆max
1 v self is the same as∆max

2 v r. For allo 6= self , ∆max
1 v o

is 0.

Variable declaration:
∆1 | Υ ⊢ P, Q Assert [] ∆2 | Υ ⊢ {P} C {Q} [Φ2]

∆ ⊢ Υ ⊢ {P} local x in C {Q} [Φ]

where∆2 v o = ∆ v o for all v 6= x

∆2 x o =


1, if o = self
0, otherwise

∆1 v o = ∆ v o for all v 6= x
∆1 x o = 0

Phase 1: Ifself ∈ Φ2 x or x 6∈ dom Φ2 then the computation is:

dom Φ = (dom Φ2) \ {x}
Φ v = Φ2 v for all v 6= x

If x ∈ dom Φ2 andself 6∈ Φ2 x then Phase 1 fails, i.e., there is
no write-proof extendingP 0.
Phase 2:

• ∆max
2 x o is 1 when o is self , 0 otherwise. For all otherv,

∆max
2 v o = ∆max v o.

• ∆max
1 = ∆max.

It may be verified that all the phase 1 and phase 2 computations
listed above satisfy the properties L1 and L2 respectively, complet-
ing the proof of correctness.

7. Conclusion
We have provided a streamlined formulation of Sequential and
Concurrent Separation Logic rules without awkward side condi-
tions for variable usage. The rules are more expressive than the
original Owicki-Gries-O’Hearn system. Yet, they retain the “syn-
tactic” character of the variable conditions without adding proof
burden in the programming logic itself. This syntactic character is
exploited in devising an algorithm to automatically infer the anno-
tations required in resource declarations. This should prove useful
for Separation Logic-based verification tools like Smallfoot.

Our work is also a modest contribution to the theory of Syn-
tactic Control of Interference, which dates back to 1978. While the

system has been studied from a semantics point of view, it has not
been previously applied to the formulation of programming logics,
which is somewhat paradoxical given its natural fit with reason-
ing principles. We have extended the traditional framework with
permission algebras, which should prove useful for further devel-
opment.

Further work along this line would include the extension of
Concurrent Separation Logic with higher-order features such as
procedures and objects, for which Syntactic Control of Interference
is well-suited.

Acknowledgments
We are grateful to Philippa Gardner and her group for the “yak”
session at Imperial College where this work was first presented.
Peter O’Hearn has provided much appreciated encouragement
and inspiration throughout the development of this work. Spe-
cial thanks go to Josh Berdine and Ian Wehrman for making us
aware of the technical problems with the earlier proof systems.
John Reynolds’s work was partially supported by National Science
Foundation Grant CCF-0916808.

References
[1] S. Abramsky and G. McCusker. Linearity, sharing and state. In Algol-

like LanguagesO’Hearn and Tennent [28], chapter 20.

[2] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game
semantics for general references. InLICS 1998, pages 334–344, 1998.

[3] K. R. Apt. Ten years of Hoare’s logic: A survey.ACM Trans. Program.
Lang. Syst., 3(4):431–483, Oct. 1981.

[4] J. Berdine and I. Wehrman. Variable conditions and CSL. Private
communication, 4th April, 2011.

[5] K. Bierhoff. API protocol compliance in object-orientedsoftware.
Technical Report CMU-ISR-09-108, Carnegie-Mellon University, Apr
2009.

[6] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission
accounting in Separation Logic. InACM Symp. on Princ. of Program.
Lang., pages 59–70. ACM Press, 2005.

[7] R. Bornat, C. Calcagno, and H. Yang. Variables as resource in Sepa-
ration Logic. InProc. 22nd Ann. Conf. on Math. Found. of Program.
Semantics (MFPS XXII)Main et al. [21], pages 247–276.

[8] J. Boyland. Checking interference with fractional permissions. In
R. Cousot, editor,Static Analysis: 10th Intern. Symp., volume 2694 of
LNCS, pages 55–72. Springer, 2003.

[9] P. Brinch Hansen.Operating System Principles. Prentice-Hall, Engle-
wood Cliffs, 1973.

[10] P. Brinch Hansen. Structured multiprogramming.Comm. ACM, 15:
574–577, July 1972.

[11] S. D. Brookes. A semantics for Concurrent Separation Logic. Theo-
retical Comput. Sci., 375(1-3):227–270, Apr 2007.

[12] S. D. Brookes. A revisionist history of Concurrent Separation Logic.
In Mislove and Ouaknine [24], pages 5–28.

[13] S. D. Brookes. Variables as resource for shared-memory programs:
Semantics and soundness. InProc. 22nd Ann. Conf. on Math. Found.
of Program. Semantics (MFPS XXII)Main et al. [21], pages 123–150.
doi: DOI: 10.1016/j.entcs.2006.04.008.

[14] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. InACM Symp. on Princ. of Program. Lang., pages 207–212,
1982.

[15] J.-Y. Girard. Linear logic.Theoretical Comput. Sci., 50:1–102, 1987.

[16] A. Gotsman, J. Berdine, and B. Cook. Precision and the conjunction
rule in Concurrent Separation Logic. In Mislove and Ouaknine [24].

[17] C. A. R. Hoare. Towards a theory of parallel programming. In C. A. R.
Hoare and R. H. Perrott, editors,Operating Systems Techniques, pages
61–71. Academic Press, 1972.

[18] C. A. R. Hoare. Monitors: An operating system structuring concept.
Comm. ACM, 17(10):549–558, Oct. 1974.

[19] B. J., C. Calcagno, and P. W. O’Hearn. Smallfoot: Modularautomatic
assertion checking with Separation Logic. In F. S. de Boer, editor,For-
mal Methods for Components and Objects, 4th Intern. Symp., volume
4111 ofLNCS, pages 115–137. Springer-Verlag, 2005.

[20] K. Kapoor, K. Lodaya, and U. S. Reddy. Fine grained concurrency
with Separation Logic.J. Philosophical Logic, 40(5):583–632, Oct
2011. doi: 10.1007/s10992-011-9195-1.

[21] M. Main, A. Melton, and M. Mislove.Proc. 22nd Ann. Conf. on Math.
Found. of Program. Semantics (MFPS XXII), volume 158 ofElect.
Notes in Theor. Comput. Sci.Elsevier, 2006.

[22] G. McCusker. A graph model for imperative computation.Logical
Methods in Comp. Sci., 6(1-2), Jan 2010.

[23] R. Milner. A theory of type polymorphism in programming.J. Com-
put. Syst. Sci., 17:348–375, 1978.

[24] M. Mislove and J. Ouaknine, editors.Proc. 27nd Ann. Conf. on Math.
Found. of Program. Semantics (MFPS XXVII), volume 276 ofElect.
Notes in Theor. Comput. Sci.Elsevier, 2011.

[25] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoret-
ical Comput. Sci., 375(1-3):271–307, May 2007.

[26] P. W. O’Hearn. Linear logic and interference control. In Category
Theory and Computer Science, volume 350 ofLNCS, pages 74–93.
Springer-Verlag, 1991.

[27] P. W. O’Hearn and D. J. Pym. The logic of bunched implications.
Bulletin Symbolic Logic, 5(2):215–244, June 1999.

[28] P. W. O’Hearn and R. D. Tennent.Algol-like Languages (Two vol-
umes). Birkhäuser, Boston, 1997.

[29] P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent.Syn-
tactic control of interference revisited. In S. D. Brookes,M. Main,
A. Melton, and M. Mislove, editors,Math. Found. of Program. Se-
mantics: Eleventh Ann. Conference, volume 1 ofElect. Notes in Theor.
Comput. Sci.Elsevier, 1995. (Reprinted as Chapter 18 of [28]).

[30] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In L. Fribourg, editor,CSL 2001,
volume 2142 ofLNCS, pages 1–19, Berlin, 2001. Springer-Verlag.

[31] S. Owicki and D. Gries. Verifying properties of parallel programs: An
axiomatic approach.Comm. ACM, 19(5):279–285, May 1976.

[32] M. Parkinson, R. Bornat, and Calcagno. Variables as resource in Hoare
Logics. In Symp. on Logic in Comput. Sci., pages 137–146. IEEE,
2006.

[33] U. S. Reddy. Global state considered unnecessary: An introduction to
object-based semantics.J. Lisp and Symbolic Computation, 9:7–76,
1996. (Reprinted as Chapter 19 of [28]).

[34] J. Reynolds. Separation Logic: A logic for shared mutable data
structures. InLICS, pages 55–74, 2002.

[35] J. C. Reynolds. A problematic program (joint work with Josh
Berdine). Presentation at the Dagstuhl workshop on Types, Logics
and Semantics for State, 2008.

[36] J. C. Reynolds. Syntactic control of interference. InACM Symp. on
Princ. of Program. Lang., pages 39–46. ACM, 1978. (Reprinted as
Chapter 10 of [28]).

[37] J. C. Reynolds. Idealized Algol and its specification logic. In D. Neel,
editor,Tools and Notions for Program Construction, pages 121–161.
Cambridge Univ. Press, 1982. (Reprinted as Chapter 6 of [28]).

[38] V. Vafeiadis. Concurrent Separation Logic and operational semantics.
In Mislove and Ouaknine [24].

[39] H. Yang and P. W. O’Hearn. A semantics basis for local reasoning. In
FOSSACS, pages 402–416, Berlin, 2002. Springer-Verlag.

[40] H. Yasuoka and T. Terauchi. Polymorphic fractional capabilities. In
Static Analysis Symposium/Workshop on Static Analysis, pages 36–51,
2009. doi: 10.1007/978-3-642-03237-05.

Technical Appendix

A. Well-formedness of commands
For completeness, we include the well-formedness rules for com-
mands. They can be obtained from the programming logic rules by
simply omitting all the judgements corresponding to assertions.

Σ ⊢ skip Comm

Σ ⊢ x Var Σ ⊢ E Exp

Σ ⊢ (x := E) Comm

Σ ⊢ x Var Σ ⊢ E Exp

Σ ⊢ (x := [E]) Comm

Σ ⊢ E Exp Σ ⊢ E′
Exp

Σ ⊢ ([E] := E′) Comm

Σ ⊢ B Exp Σ ⊢ C1 Comm Σ ⊢ C2 Comm

Σ ⊢ (if B then C1 else C2) Comm

Σ, x⊤ ⊢ C Comm

Σ ⊢ (local x in C) Comm

An example of a well-formed command judgement is

x1, y
1

2 ⊢ (x := y) Comm

The variable context needs to contain a full permission forx be-
cause it is used on the left hand side of an assignment, but a half
permission will do fory because it is only used for reading.

The well-formedness rules for concurrent commands are shown
in below. All the rules of the sequential programming language
can be lifted to the concurrent language by adding “| Γ” to the
syntactic contexts of all the commands.

Σ1 | Γ ⊢ C1 Comm Σ2 | Γ ⊢ C2 Comm

Σ1, Σ2 | Γ ⊢ (C1 ‖ C2) Comm

Σ, Σ0 ⊢ B Exp Σ, Σ0 | Γ ⊢ C Comm

Σ | Γ, r(Σ0) ⊢ (with r when B do C od) Comm

Σ | Γ, r(Σ0) ⊢ C Comm

Σ, Σ0 | Γ ⊢ (resource r(Σ0) in C) Comm

The rule for parallel composition follows the general pattern of
original syntactic control of interference in [29, 36]. The resource
context is shared between the parallel branches but the variable
contexts are required to be separate. The critical region rule shows
that the variable context of the resource becomes part of the normal
variable context of the critical region. This is where the use of a
permission algebra adds value to the traditional syntactic control
of interference. It is possible for the critical region to combine the
variable permissions inΣ andΣ0 to convert a passive free variable
into an active one. IfΣ andΣ0 each containx

1

2 then, by combining
them, the critical region obtains the permissionx1, which allows it
to modify the variablex. The rule for resource declaration requires
a part of the current variable context (Σ0) to be sliced off and
handed to the resource, which is then available only by entering
critical regions.

B. Comparison with Brookes’s system
Brookes [11], in his effort to prove the soundness of the Concurrent
Separation Logic, defined a variant of the original logic defined by
O’Hearn. In his formulation, the resource invariant of a resource
can have additional variables that are not declared in the resource.
He defines two sets of variables for a resource context:owned(Γ)
is the set of variables included in the resource declarations and
free(Γ) is the set of variables that occur free in the resource

invariants inΓ. The two sets of variables are governed by different
rules.

1. Variables inowned(Γ) can beusedonly inside critical regions
for the resources. They cannot occur free in either assertions or
expressions outside the critical regions.

2. Variables infree(Γ) \ owned(Γ) can bemodifiedonly in the
critical regions for the resources. However, theycanoccur free
in assertions and expressions outside the critical regions.

So, the proof outline of Table 1 is not valid in the Brookes’s
version of Concurrent Separation Logic. The variablesa and b
are owned by the resource, but they occur free outside critical
regions. However, the proof outline can be transformed to a legal
Brookes outline by removing the variablesa and b from owned
list of the resource. Since each of these variables is modified in
at most one process, Brookes does not require it to be owned by
the resource. It can simply remain a free variable of the resource
invariant. However, the rule 2 restricts each of these variables to be
modified only in critical regions.

Valid proof outlines in the Brookes’s system can be transformed
to our system. Ifr(x1, . . . , xn) is a Brookes resource declaration
used with an invariantR, and free(R) includes additional vari-
ablesy1, . . . , ym, then the resource declaration should be trans-
formed tor(x⊤

1 , . . . , x⊤
n , yp1

1 , . . . , ypm

m) in our system, where the
permissionsp1, . . . , pm are chosen to satisfy the constraints on
their use:

1. If a variableyi is modified in the critical regions of a processA
then it cannot occur in the other processes. (Brookes’s parallel
composition rule requires that any variable modified in one pro-
cess and occurring free in another process — called a “critical”
variable — has to be owned by a resource. Buty is not owned
by r by assumption, and well-formedness of resource contexts
prohibits it from being owned by another resource.) In this case,
pi can be some partial permission, and the complement ofpi is
allocated to the processA for the variableyi.

2. If a variableyi is not modified in any of the processes, then
it is a read-only variable in theresourcedeclaration command.
So, the available permission ofyi in the variable context (which
might be a partial permission) should be split into the permis-
sion for the resource (pi) and the various processes.

However, there is a third, more troublesome, case. Brookes’s rules,
like the Owicki-Gries rules, make a distinction between read-only
uses of variables in code and their use in assertions. While the
first case above prohibits the read-only uses ofyi in the code
of processes other thanA, it does not prohibit its uses in their
assertions. This turns out to be unsound, as shown by the example
in Table 8, due to Ian Wehrman [4]. In this example, the variablex
is in owned(Γ) anda is in free(Γ). Sincea does not occur free
in thecodeof the left process, this is permitted by Brookes’s rules.
However,a occurs in theassertionsof the left process, immediately
after the first critical region. This represents invalid reasoning. The
right process can intervene between the two critical regions of the
left process and modifya. So, the assertiont = a may not continue
to hold when the second critical region is entered.

The distinction between read-only uses in code and uses in as-
sertions was also made by Owicki-Gries, as noted in Sec. 4.1. How-
ever, Owicki-Gries place the additional requirement (the “rider”
mentioned in Sec. 4.1) that the assertions surrounding critical re-
gions can only use variables that are not modified by other pro-
cesses. The assertiont = a used after the first critical region of the
left process is thus prohibited by Owicki-Gries.

Brookes’s system can be repaired using a similar rider. This
would have the unfortunate consequence that the rules are not

x := a;
resourcer(x) {x = a} in
begin
{true} {true}
with r do with r do

{x = a} {x = a}
t := x || x := x+1;
{x = a = t} a := a+1

od {x = a}
{t = a} od
with r do {true}

{x = a = t}
x := t
{x = a}

od
{true}

end
{x = a}

Table 8. Example proof outline in Brookes’s system

compositional any more. However, it would bring it closer to the
Owicki-Gries system as well as our syntactic control system. In
effect, the variables listed in the resources are the variables with full
permissions, and the remaining variables infree(Γ) are variables
that have partial permissions in the resource. So, the distinction
betweenowned(Γ) andfree(Γ) is one of permission levels, and
Brookes’s system fits in between the Owicki-Gries system and our
system of syntactic control with permissions.

Recently, Brookes proposed a revised system [12], which avoids
the problem mentioned above. It uses sets of free variables called
“rely sets” in its judgements, similar to our use of variable contexts.
However, there are no permissions associated with the variables in
rely sets. There are also other technical differences in the way the
variable conditions are treated. We do not at present have a precise
comparison with the SCI system and Brookes’s revised system.

C. Selected proofs of results
Proof of Theorem 5 The proof is by induction on the derivation
of well-formed terms:

• If the command isΣ | Γ ⊢ (x := E) Comm then we
know thatx⊤ ∈ norm(Σ) and Σ ⊢ E Exp. So, for any
(ρ, v) ∈ [[E]]Σ, ρ is a well-bracketed trace forΣ | and, hence,
for Σ | Γ. Sincex⊤ ∈ norm(Σ), (x := v) is also a trace for
Σ | Γ.

• If the command is

Σ | Γ, r(Σ0) ⊢ (with r when B do C od) Comm

then we know thatΣ, Σ0 ⊢ B Exp andΣ, Σ0 ⊢ C Comm
are well-formed. By inductive hypothesis,[[B]]Σ,Σ0

↾ b and
[[C]]Σ,Σ0|Γ are trace sets forΣ, Σ0 | Γ. It then follows that
the trace setwait is a trace set forΣ | Γ, r(Σ0). The trace
setenter is a trace set forΓ | Γ, r(Σ0). Considering arbitrary
elementsρ ∈ [[B]]Σ,Σ0

↾ true andγ ∈ [[C]]Σ,Σ0|Γ, we have
the transition sequence:

Σ | Γ, r(Σ0)
acq(r)
−→ Σ, Σ0 | Γ by definition
ρ

−→ Σ, Σ0 | Γ, [r(Σ0)] by ind. hyp. forB and Lemma 3
γ

−→ Σ, Σ0 | Γ, [r(Σ0)] by ind. hyp. forC and Lemma 3
rel(r)
−→ Σ | Γ, r(Σ0) by definition

• If the command is

Σ1, Σ2 | Γ ⊢ (C1 ‖C2) Comm

then we have well-formed commandsΣi | Γ ⊢ Ci Comm for
i = 1, 2. By inductive hypothesis, each[[Ci]]Σi|Γ is a trace set
for the contextΣi | Γ. Then, by Lemma 2,[[C1]]Σ1|Γ ‖[[C2]]Σ2|Γ

is a trace set for the contextΣ1, Σ2 | Γ.

Proof of Theorem 8

Proof: By induction on the derivation ofΣ | Γ ⊢ {P} C {Q}. We
show selected cases.

• If the last rule is the assignment rule forΣ | Γ ⊢ {P [E/x]}x :=
E {P}, then we haveΣ ⊢ x Var, Σ ⊢ E Exp and
Σ ⊢ P Assert. The trace set[[x := E]]Σ|Γ consists of traces

of the formΣ|Γ
ρ(x:=v)
−→ Σ|Γ whereρ ∈ [[E]]Σ. Let (s, h) be a

state satisfyingP [E/x]. Then

every state transition forρ(x := v) is of the form(s, h)
ρ(x:=v)
−→

(s [x 7→ v] , h). We have(s, v) ∈ |e| and by Substitution
Lemma(s [x 7→ v] , h) |= P .

• If the last rule is the parallel composition rule forΣ1, Σ2 |
Γ ⊢ {P1 ⋆ P2} C1 ‖C2 {Q1 ⋆ Q2} derived from the premises
Σ1 | Γ ⊢ {P1} C1 {Q1} andΣ2 | Γ ⊢ {P2} C2 {Q2}, let
(s1 · s2, h1 · h2) be an initial state satisfyingP1 ⋆ P2 such that
h1 ⊥ h2 and each(si, hi) is of typeΣi | Γi and satisfiesPi.
The trace set[[C1 ‖C2]]Σ1,Σ2|Γ is the set of mutex fairmerges
[[C1]]Σ1|Γ ‖[[C2]]Σ2|Γ. Letα be a well-bracketed trace in this set
andσ′ a state such that(s, h)

α
−→ σ′. Then we know thatα is

a finite traceΣ1, Σ2 | Γ
α

−→ Σ1, Σ2 | Γ and it is in the mutex
fairmerges of someα1 ∈ [[C1]]Σ1|Γ andα2 ∈ [[C2]]Σ2|Γ.

If σ′ = abort then it must be the case that(si, hi)
αi−→

abort for somei = 1, 2. If so, the corresponding premise
Σi | Γ ⊢ {Pi} Ci {Qi} would be invalid, contradicting the
inductive hypothesis.
If σ′ is of the form(s′, h′) then by the Parallel Decomposition
Lemma, there are states(s′i, h

′
i) of typeΣi|Γ, for i = 1, 2, such

thats′ = s′1 · s′2, h′ = h′
1 · h′

2, and(si, hi)
αi−→ (s′i, h

′
i). By

the inductive hypothesis(s′i, h
′
i) |= Qi, for i = 1, 2. This gives

the result(s′1 · s
′
2, h′

1 · h
′
2) |= Q1 ⋆ Q2.

• If the last rule used is the critical region rule for

Σ | Γ, r(Σ0) : R ⊢ {P} with r when B do C {Q}

derived fromΣ ⊢ P, Q Assert, Σ, Σ0 ⊢ B Exp andΣ, Σ0 |
Γ ⊢ {(P ⋆ R) ∧ B} C {Q ⋆ R}, let (s, h) be an initial state
of typeΣ | Γ, r(Σ0) satisfyingP , α a well-bracketed trace for
contextΣ | Γ, r(Σ0) in [[with r when B do C]]Σ|Γ,r(Σ0),
andσ′ a state such that(s, h)

α
−→ σ′.

Ignoringtry actions and repeated tests,α is of the form

Σ | Γ, r(Σ0) : R
acq(r)
−→ Σ, Σ0 | Γ, [r(Σ0) : R]

ρ
−→ Σ, Σ0 | Γ, [r(Σ0) : R]

β
−→ Σ, Σ0 | Γ, [r(Σ0) : R]
rel(r)
−→ Σ | Γ, r(Σ0) : R

whereρ ∈ [[B]]Σ,Σ0
↾ true andβ ∈ [[C]]Σ,Σ0|Γ.

We argue that there are states(s0, h0) and(s′0, h
′
0) of typeΣ0|

and(s′, h′) of typeΣ | Γ such that

(s, h, ∅)
acq(r)
−→ (s · s0, h · h0, {r})

ρ
−→ (s · s0, h · h0, {r})

β
−→ (s′ · s′0, h′ · h′

0, {r})
rel(r)
−→ (s′, h′, ∅)

Here, (s0, h0) is an arbitrary state satisfyingR. Since(s, h)
satisfiesP , (s · s0, h · h0 satisfiesP ⋆ R. By virtue of the
fact thatρ ∈ [[B]]Σ,Σ0

, it also satisfiesB, and hence(P ⋆
R) ∧ B. The premise for the validity ofΣ, Σ0 ⊢ {(P ⋆ R) ∧
B}C {Q ⋆ R} implies that the target state ofβ satisfiesQ ⋆ R.
In particular, it cannot beabort. Since this state is of type
Σ, Σ0 | Γ, [r(Σ0) : R], the store is decomposable intos′ ands′0
of typesΣ andΣ0 respectively. Moreover, the heap of this state
must have a subheap of satisfyingR. The fact thatR is precise
means that this subheap is unique. So, the heap is decomposable
into h′ andh′

0. The remaining part of the target state(s′, h′)
satisfiesQ. Finally, therel(r) action removes the resource part
of the state, giving(s′, h′), which satisfiesQ.

