
Separation and Information Hiding

Peter W. O’Hearn

Queen Mary
University of London

Hongseok Yang

Seoul National
University

John C. Reynolds

Carnegie Mellon
University

Abstract

We investigate proof rules for information hiding, using the recent
formalism of separation logic. In essence, we use the separating
conjunction to partition the internal resources of a module from
those accessed by the module’s clients. The use of a logical con-
nective gives rise to a form of dynamic partitioning, where we track
the transfer of ownership of portions of heap storage between pro-
gram components. It also enables us to enforce separation in the
presence of mutable data structures with embedded addresses that
may be aliased.

Categories and Subject Descriptors:D.2.4 [Software Engineer-
ing]: Program Verification—class invariants; D.3.3 [Programming
Languages]: Language Constructs and Features—modules, pack-
ages

General Terms: Languages, Theory, Verification

Keywords: Separation Logic, Modularity, Resource Protection

1 Introduction

Modularity is a key concept which programmers wield in their
struggle against the complexity of software systems. When a pro-
gram is divided into conceptually distinct modules or components,
each of which owns separate internal resources (such as storage),
the effort required for understanding the program is decomposed
into circumscribed, hopefully manageable, parts. And, if separa-
tion is correctly maintained, we can regard the internal resources of
one module as hidden from its clients, which results in a narrowing
of interface between program components. The flipside, of course,
is that an ostensibly modular program organization is undermined
when internal resources are accessed from outside a module.

It stands to reason that, when specifying and reasoning about pro-
grams, if we can keep track of the separation of resources between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’04,January 14–16, 2004, Venice, Italy.
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

program components, then the resultant decomposition of the spec-
ification and reasoning tasks should confer similar benefits. Un-
fortunately, most methods for specifying programs either severely
restrict the programming model, by ruling out common program-
ming features (so as to make the static enforcement of separation
feasible), or they expose the internal resources of a module in its
specification in order to preserve soundness.

Stated more plainly, information hiding should be the bedrock of
modular reasoning, but it is difficult to support soundly, and this
presents a great challenge for research in program logic.

To see why information hiding in specifications is desirable, sup-
pose a program makes use ofn different modules. It would be un-
fortunate if we had to thread descriptions of the internal resources
of each module through steps when reasoning about the program.
Even worse than the proof burden would be the additional anno-
tation burden, if we had to complicate specifications of user pro-
cedures by including descriptions of the internal resources of all
modules that might be accessed. A change to a module’s internal
representation would necessitate altering the specifications of all
other procedures that use it. The resulting breakdown of modularity
would doom any aspiration to scalable specification and reasoning.

Mutable data structures with embedded addresses (pointers) have
proven to be a particularly obstinate obstacle to modularity. The
problem is that it is difficult to keep track of aliases, different copies
of the same address, and so it is difficult to know when there are no
pointers into the internals of a module. The purpose of this paper
is to investigate proof rules for information hiding using separation
logic, a recent formalism for reasoning about mutable data struc-
tures [36].

Our treatment draws on work of Hoare on proof rules for data
abstraction and for shared-variable concurrency [16, 17, 18]. In
Hoare’s approach each distinct module has an associated resource
invariant, which describes its internal state, and scoping constraints
are used to separate the resources of a module from those of client
programs. We retain the resource invariants, and add a logical con-
nective, the separating conjunction∗, to provide a more flexible
form of separation.

We begin in the next section by describing the memory model and
the logic of pre- and post-conditions used in this work. We then
describe our proof rules for information hiding, followed by two
examples, one a simple memory manager module and the other a
queue module. Both examples involve the phenomenon ofresource
ownership transfer, where the right to access a data structure trans-
fers between a module and its clients. We work through proofs, and

failed proofs, of client code as a way to illustrate the consequences
of the proof rules.

After giving the positive examples we present a counterexample,
which shows that our principal new proof rule, the hypothetical
frame rule, is incompatible with the usual Hoare logic rule for con-
junction; the new rule is thus unsound in models where commands
denote relations, which validate conjunction. The problem is that
the very features that allow us to treat ownership transfer lead to
a subtle understanding where “Ownership is in the eye of the As-
serter”. The remainder of the paper is occupied with a semantic
analysis. This revolves around a notion of “precise” predicates,
which are ones that unambiguously identify a portion of state. In
essence, we ask the Asserter to be unambiguous when specifying
which resource is owned; when this is the case, we find that our
proof rules are sound.

Familiarity with the basics of separation logic, as presented in [36],
would be helpful in reading the paper. We remind the reader in par-
ticular that the rules for disposing or dereferencing an address are
such that it must be known to point to something (not be dangling)
in the precondition for a rule to apply. For example, in the putative
triple {true}[x] := 7{???}, where the contents of heap addressx is
mutated to7, there is no assertion we can use in the postcondition
to get a valid triple, becausex might be dangling in a state satisfy-
ing the precondition. So, in order to obtain any postcondition for
[x] := 7, the precondition must imply the assertionx 7→–∗true that
x is not dangling.

The local way of thinking encouraged by separation logic [26] is
stretched by the approach to information hiding described here. We
have found it useful to use a figurative language of “rights” when
thinking about specifications, where a predicatep at a program
point asserts that “I have the right to dereference the addresses inp
here”.

1.1 Contextual Remarks

The link between modularity and information hiding was developed
in papers of Hoare and Parnas in the early 1970s [16, 17, 28, 29].
Parnas emphasized that poor information distribution amongst
components could lead to “almost invisible connections between
supposedly independent modules”, and proposed that information
hiding was a way to combat this problem. Hoare suggested using
scoping restrictions to hide a particular kind of information, the in-
ternal state of a module, and showed how these restrictions could
be used in concert with invariants to support proof rules that did not
need to reveal the internal data of a module or component. These
ideas influenced many subsequent language constructs and specifi-
cation notations.

Most formal approaches to information hiding work by assuming
a fixed, a priori, partitioning between program components, usu-
ally expressed using scoping restrictions, or typing, or simply using
cartesian product of state spaces. In simple cases fixed partition-
ing can be used to protect internal resources from outside tamper-
ing. But in less simple situations, such as when data is referred
to indirectly via addresses, or when resources dynamically transfer
between program components, correct separation is more difficult
to maintain. Such situations are especially common in low-level
systems programs whose purpose is to provide flexible, shared ac-
cess to system resources. They are also common in object-oriented
programs. An unhappy consequence is that modular specification
methods are lacking for widely-used imperative or object-oriented

programming languages, or even for many of the programming pat-
terns commonly expressed in them.

The essential point is that fixed partitioning does not cope naturally
with systems whose resource ownership or interconnection struc-
ture is changing over time. A good example is a resource manage-
ment module, that provides primitives for allocating and deallocat-
ing resources, which are held in a local free list. A client program
should not alter the free list, except through the provided primi-
tives; for example, the client should not tie a cycle in the free list.
In short, the free list is owned by the manager, and it is (intuitively)
hidden from client programs. However, it is entirely possible for a
client program to hold an alias to an element of the free list, after a
deallocation operation is performed; intuitively, the “ownership” of
a resource transfers from client to module on disposal, even if many
aliases to the resource continue to be held by the client code. In a
language that supports address arithmetic the potential difficulties
are compounded: the client might intentionally or unintentionally
obtain an address used in an internal representation, just by an arith-
metic calculation.

A word of warning on our use of “module” before we continue: The
concept of module we use is just a grouping of procedures that share
some private state. The sense of “private” will not be determined
statically, but will be the subject of specifications and proof rules.
This allows us to approach modules where correct protection of
module internals would be impossible to determine with a compile-
time check in current programming languages. The approach in this
paper might conceivably be used to analyze the information hiding
in a language that provides an explicit module notation, but that is
not our purpose here.

The point is that it is possible to program modules, in the sense of
the word used by Parnas, whether or not one has a specific module
construct at one’s disposal. For example, the pair ofmalloc() and
free () in C, together with their shared free list, might be considered
as a module, even though their correct usage is not guaranteed by
C’s compile-time checking. Indeed, there is no existing program-
ming language that correctly enforces information hiding of mu-
table data structures, largely because of the dynamic partitioning
issue mentioned above, and this is an area where logical specifica-
tions are needed. We emphasize that the issue is not one of “safe”
versus “unsafe” programming languages; for instance, middleware
programs written in garbage-collected, safe languages, often per-
form explicit management of certain resources, and there also own-
ership transfer is essential to information hiding.

Similarly, although we do not consider the features of a full-blown
object-oriented language, our techniques, and certainly our prob-
lems, seem to be relevant. Theories of objects have been developed
that account for hiding in a purely functional context (e.g., [30]), but
mutable structures with embedded addresses, or object id’s, are fun-
damental to object-oriented programming. A thoroughgoing theory
should account for them directly, confronting the problems caused
when there are potential aliases to the state used within an object.

These contextual remarks do not take into account some recent
work that attempts to address the limitations of fixed partitioning
and the difficulties of treating mutable data structures with embed-
ded addresses. We will say more on some of the closely related
work at the end of the paper.

2 The Storage Model

We consider a model where a heap is a finite partial function taking
addresses to values:

H
def= Addresses ⇀fin Values

This set has a partial commutative monoid structure, where the unit
is the empty function and the partial combining operation

∗ : H×H ⇀ H

is the union of partial functions with disjoint domains. More
formally, we say thath1#h2 holds for heapsh1 and h2 when
dom(h1)∩ dom(h2) = {}. In that case,h1 ∗ h2 denotes the com-
bined heaph1 ∪ h2. When h1#h2 fails, h1 ∗ h2 is undefined. In
particular, note that ifh = h1 ∗ h2 then we must have thath1#h2.
The subheap order≤ is subset inclusion of partial functions.

We will work with a RAM model, where the addresses are natural
numbers and the values are integers

Addresses
def= {0,1,2, . . .} Values

def= {. . . ,−1,0,1, . . .}
The results of this paper go through for other choices forAddresses
andValues, and thus cover a number of other naturally occurring
models, such as the cons cell model of [36] and the hierarchical
memory model of [1]. Our results also apply to traditional Hoare
logic, where there is no heap, by taking the trivial model where
Addresses is empty (andValues non-empty).

A natural model of separation that is not an instance of the par-
tial functions model construction above is the “trees with dangling
pointers” model of [6]; it would be interesting to axiomatize the es-
sentials of these separation models, by identifying a subclass of the
partial monoid models of [32].

To interpret variables in the programming language and logic, the
state has an additional component, the “stack”, which is a mapping
from variables to values; a state is then a pair consisting of a stack
and a heap:

S
def= Variables→ Values States

def= S×H.

We treat predicates semantically in this paper, so a predicate is just
a set of states.

Predicates
def= P (States)

The powerset of states has the usual boolean algebra structure,
where∧ is intersection,∨ is union,¬ is complement,true is the
set of all states, andfalse is the empty set of states. We usep, q, r,
sometimes with subscripts and superscripts, to range over predi-
cates. Besides the boolean connectives, we will need the lifting of
∗ from heaps to predicates:

p∗q
def= {(s,h) | ∃h0,h1.h = h0∗h1, and

(s,h0) ∈ p, and(s,h1) ∈ q}.
As a function on predicates we have a total map∗ from
Predicates×Predicates to Predicates which, to the right of

def=,
uses the partial map,∗ : H×H ⇀ H in its definition. This overload-
ing of ∗ will always be disambiguated by context.∗ has a unitemp,
the set{(s, []) | s ∈ S} of states whose heap component is empty.
It also has an implication adjoint−∗ , though that will play no role
in the present paper. Note thatemp is distinct from the empty set
false of states.

We usex 7→E to denote a predicate that consists of all pairs(s,h)
where h is a singleton in whichx points to the meaning ofE:

h(s(x)) = [[E]]s. The points-to relationx 7→E,F for binary cons
cells is syntactic sugar for(x 7→E)∗ (x+1 7→F). We will also use
quantifiers and recursive definitions in examples in what should be
a clear way.

The syntax for the programming language considered in this paper
is given by the following grammar.

E ::= x,y, . . . | 0 | 1 | E +E | E×E | E−E

B ::= false | B⇒ B | E = E | E < E

C ::= x := E | x := [E] | [E] := E | x := cons(E, . . . ,E)

| dispose(E) | skip |C;C | if B thenC elseC

| while B C | letrec k = C, . . . ,k = C inC | k
For simplicity we consider parameterless procedures only. The ex-
tension to all first-order procedures raises no new difficulties, but
lengthens the presentation. Higher-order features, on the other
hand, are not straightforward. We assume that all the procedure
identifiers are distinct in anyletrec declaration. When proce-
dure declarations do not have recursive calls, we writelet k1 =
C1, ...,kn = Cn inC to indicate this.

The commandx := cons(E1, . . . ,En) allocatesn consecutive cells,
initializes them with the values ofE1, . . . ,En, and stores the address
of the first cell inx. We could also consider a command for variable-
length allocation. The contents of an addressE can be read and
stored inx by x := [E], or can be modified by[E] := F . The com-
manddispose(E) deallocates the addressE. In x := [E], [E] := F
anddispose(E), the expressionE can be an arbitrary arithmetic
expression; so, this language allows address arithmetic.

This inclusion of address arithmetic does not represent a general
commitment to it on our part, but rather underlines the point that
our methods do not rely on ruling it out. In examples it is often
clearer to use a field-selection notation rather than arithmetic, and
for this we use the following syntactic sugar:

E.i := F
def= [E + i−1] := F x := E.i

def= x := [E + i−1].

Each command denotes a (nondeterministic) state transformer that
faults when heap storage is accessed illegally, and each expression
determines a (heap independent) function from stacks to values.
The semantics will be given in Section 7.

3 Proof System

The form of judgment we use is the sequent

Γ ` {p}C{q}
which states that commandC satisfies its Hoare triple, under certain
hypotheses. Hypotheses are given by the grammar

Γ ::= ε | {p}k{q}[X],Γ

subject to the constraint that no procedure identifierk appears twice.
An assumption{p}k{q}[X] requiresk to denote a command that
modifies only the variables appearing in setX and that satisfies the
indicated triple.

3.1 Proof Rules for Information Hiding

We begin with a special-case, programmer-friendly, proof rule, that
is a consequence of a more fundamental, logician-friendly, rule to
be described later.

Modular Non-Recursive Procedure Declaration Rule

Γ ` {p1 ∗ r}C1{q1 ∗ r}
...

Γ ` {pn ∗ r}Cn{qn ∗ r}
Γ,{p1}k1{q1}[X1], . . . ,{pn}kn{qn}[Xn] ` {p}C{q}

Γ ` {p∗ r}let k1 = C1, . . . ,kn = Cn inC{q∗ r}
In this rulek1, . . .kn is a grouping of procedures that share private
state described by resource invariantr. In a resource management
module, theki would be operations for allocating and freeing re-
sources, andr would describe unallocated resources (perhaps held
in a free list). The rule distinguishes two views of such a module.
When reasoning about the client codeC, we ignore the invariant
and its area of storage; reasoning is done in the context ofinterface
specifications{pi}ki{qi} that do not mentionr. The perspective is
different from inside the module; the implementationsCi operate
on a larger state than that presented to the client, and verifications
are performed in the presence of the resource invariant. The two
views, module and client, are tied up in the conclusion of the rule.

The modular procedure rule is subject to variable conditions: we
require a setY (of “private” variables), and the conditions are

• C does not modify variables inr, except through using
k1, ...,kn;

• Y is disjoint fromp, q, C and the context
“Γ,{p1}k1{q1}[X1], . . . ,{pn}kn{qn}[Xn]”;

• Ci only modifies variables inXi ,Y.

The idea behind these conditions is that we must be sure that client
code does not alter variables used within a module, but we must
also allow some overlap in variables to treat various examples. A
rigorous formulation of what these conditions mean has been placed
in an appendix at the end of the paper. We will continue to state the
necessary side conditions as we present our proof rules, but there
will be little harm if the reader skates over them, or understands
them in an intuitive way, while reading the paper. We only stress
that the modifies clauses refer exclusively to the stack, where the
new part of the paper involves the heap, and∗.

It is also possible to consider initialization and finalization code.
For instance, if, in addition to the premises of the modular proce-
dure rule, we haveΓ ` {p}init{p∗ r} andΓ ` {q∗ r}final{q}, then
we can obtain

Γ ` {p} init;(let k1 = C1, . . . ,kn = Cn inC); final {q}.
In our examples we will not consider initialization or finalization
since they present no special logical difficulties.

In the modular procedure rule, the proof of{p}C{q} about the
client in the premises can be used withanyresource invariantr. As
a result, this reasoning does not need to be repeated when a module
representation is altered, as long as the alteration continues to sat-
isfy the interface specifications{pi}ki{qi}. This addresses one of
the points about reasoning that survives local changes discussed in
the Introduction.

However, the choice of invariantr is not specified by programming
language syntaxlet k1 = C1, . . . ,kn = Cn inC in the modular pro-
cedure rule. In this it is similar to the usual partial correctness rule
for while loops, which depends on the choice of a loop invariant.
It will be convenient to consider an annotation notation that spec-
ifies the invariant, and the interface specifications{pi}ki{qi}, as a
directive on how to apply the modular procedure rule; this is by

Interface Specifications
{p1}k1{q1}[X1], . . . ,{pn}kn{qn}[Xn]

Resource Invariant: r

Private Variables: Y

Internal Implementations
C1, ...,Cn

Table 1. Module Specification Format

analogy with the use of loop invariant annotations as directives to a
verification condition generator.

We will use the format for module specifications in Table 1. This
instructs us to apply the modular procedure rule in a particular way,
to prove

Γ, Interface Specifications ` {p}C{q}
for client codeC, and to proveΓ ` {pi ∗ r}Ci{qi ∗ r} for the bodies.
We emphasize that this module format is not officially part of our
programming language or even our logic; however, its role as a
directive on how to apply the modular procedure rule in examples
will, we hope, be clear.

The modular procedure rule can be derived from a standard rule for
parameterless procedure declarations, and the following more basic
rule.

Hypothetical Frame Rule

Γ,{pi}ki{qi}[Xi](for i≤n) ` {p}C{q}
Γ,{pi ∗ r}ki{qi ∗ r}[Xi ,Y](for i≤n) ` {p∗ r}C{q∗ r}

where
• C does not modify variables inr, except through

usingk1, ...,kn; and

• Y is disjoint from p, q, C, and the context
“Γ,{p1}k{q1}[X1], . . . ,{pn}k{qn}[Xn]”.

The notation{pi}ki{qi}[X1](for i≤n) in the rule is a shorthand
for {p1}k1{q1}[X1], . . . ,{pn}kn{qn}[Xn], and similarly for {pi ∗
r}ki{qi ∗ r}[X1,Y](for i≤n). In examples we will use the modular
procedure rule, but will phrase our theoretical results in terms of
the hypothetical frame rule.

The hypothetical frame rule is so named because of its relation to
the ordinary frame rule from [20, 26]. The hypothetical rule allows
us to place invariants on the hypotheses as well as the conclusion
of sequents, whereas the ordinary rule includes invariants on the
conclusion alone. (The ordinary frame rule is thus a special case of
the hypothetical rule, wheren = 0.)

3.2 Other Proof Rules

We have standard Hoare logic rules for various constructs, along
with the rule of consequence.

Γ,{p}k{q}[X] ` {p}k{q}
p⇒ p′ Γ ` {p′}C{q′} q′⇒ q

Γ ` {p}C{q}
Γ ` {p∧B}C{p}

Γ ` {p}whileBC{p∧¬B}
Γ ` {p}C1{q} Γ ` {q}C2{r}

Γ ` {p}C1;C2{r}
Γ ` {p∧B}C{q} Γ ` {p∧¬B}C′ {q}

Γ ` {p}ifBthenCelseC′{q}

In addition, we allow for the contextΓ to be permuted.

The rule for possibly recursive procedure declarations uses the pro-
cedure specifications in proofs of the bodies:

Γ,{p1}k1{q1}[X1], . . . ,{pn}kn{qn}[Xn] ` {p1}C1{q1}
...

Γ,{p1}k1{q1}[X1], . . . ,{pn}kn{qn}[Xn] ` {pn}Cn{qn}
Γ,{p1}k1{q1}[X1], . . . ,{pn}kn{qn}[Xn] ` {p}C{q}

Γ ` {p}letrec k1 = C1, . . . ,kn = Cn inC{q}
where
• Ci only modifies variables inXi .

In case none of theki are free in theCj we can get a simpler rule,
where the{pi}ki{qi}[Xi] hypotheses are omitted from the sequents
for theCj . Usinglet rather thanletrec to indicate the case where
a procedure declaration happens to have no recursive instances, we
can derive the modular non-recursive procedure declaration rule of
the previous section from the hypothetical frame rule and the stan-
dard procedure rule just given. We can also derive a modular rule
for recursive declarations.

The ordinary frame rule is

Γ ` {p}C{q}
Γ ` {p∗ r}C{q∗ r}

where
• C does not modify any variables inr.

This is a special case of the hypothetical rule, but we state it sep-
arately because the ordinary rule will be used without restriction,
while we will place restrictions on the hypothetical rule.

One rule of Hoare logic, which is sometimes not included explicitly
in proof systems, is the conjunction rule.

Γ ` {p}C{q} Γ ` {p′}C{q′}
Γ ` {p∧ p′}C{q∧q′}

The conjunction rule is often excluded because it is an example of
anadmissiblerule: one can (usually) prove a metatheorem, which
says that if the premises are derivable then so is the conclusion.
However, it is not an example of aderivedrule: one cannot con-
struct a generic derivation, in the logic, of the conclusion from the
premises. We will see in Section 6 that the hypothetical frame rule
can affect the admissible status of the conjunction rule.

Finally, we have axioms for the basic commands, wherex,m,n are
assumed to be distinct variables.

Γ ` {E 7→–} [E] := F {E 7→F}
Γ ` {E 7→–}dispose(E){emp}

Γ `
{

x=m
∧emp

}
x := cons(E1, ...,Ek){x 7→E1[m/x], ...,Ek[m/x]}

Γ ` {x = n∧emp}x := E{x = (E[n/x])∧emp}
Γ ` {E 7→n∧ x = m}x := [E]{x = n∧ E[m/x] 7→n}

These axioms describe the effect of each command on only one, or
sometimes no, heap cells. Typically, their effects can be extended
using the frame rule: for example, we can infer{(x 7→ 3) ∗ (y 7→
4)}[x] := 7{(x 7→7) ∗ (y 7→4)} by choosingy 7→4 as the invariant
in the frame rule.

Interface Specifications

{emp}alloc{x 7→–,–} [x]
{x 7→–,–}free{emp} []

Resource Invariant: list(f)

Private Variables: f

Internal Implementations

if f = nil then x := cons(–,–) (code foralloc)
else x := f ; f := x.2;

x.2 := f ; f := x; (code forfree)

Table 2. Memory Manager Module

4 A Memory Manager

We consider an extended example, of an idealized memory manager
that doles out memory in chunks of size two. The specifications and
code are given in Table 2.

The internal representation of the manager maintains a free list,
which is a singly-linked list of binary cons cells. The free list is
pointed to by f , and the predicatelist(f) is the representation in-
variant, where

list(f) def⇐⇒ (f = nil ∧ emp) ∨ (∃g. f 7→–,g ∗ list(g))

This predicate says thatf points to a linked list (and that there are
no other cells in storage), but it does not say what elements are in
the head components.

For the implementation ofalloc , the manager places intox the
address of the first element of the free list, if the list is nonempty. In
case the list is empty the manager calls the built-in allocatorcons
to get an extra element. The interaction betweenalloc andcons
is a microscopic idealization of the treatment ofmalloc in Section
8.7 of [22]. There,malloc manages a free list but, occasionally, it
calls a system routinesbrk to request additional memory. Besides
fixed versus variable sized allocation, the main difference is that we
assume thatcons always succeeds, whilesbrk might fail (return an
error code) if there is no extra memory to be given tomalloc . We
use this simple manager because to use a more complex one would
not add anything to the points made in this section.

When a user program gives a cell back to the memory manager it is
put on the front of the free list; there is no need for interaction with
a system routine here.

The form of the interface specifications are examples of the local
way of thinking encouraged by separation logic; they refer to small
pieces of storage. It is important to appreciate the interaction be-
tween local and more global perspectives in these assertions. For
example, in the implementation offree in Table 2 the variablex
contains the same address after the operation completes as it did
before, and the address continues to be in the domain of the global
program heap. The use ofemp in the postcondition offree does
not mean that the global heap is now empty, but rather it implies
that the knowledge thatx points to something is given up in the
postcondition. We say intuitively thatfree transfers ownership to
the manager, where ownership confers the right to dereference.

It is interesting to see how transfer works logically, by considering
a proof outline for the implementation offree .

{list(f) ∗ (x 7→–,–)}
x.2 := f ;
{list(f) ∗ (x 7→–, f)}
{list(x)}

f := x;
{list(f)}
{list(f) ∗ emp}

The most important step is the middle application of the rule of con-
sequence. At that point we still have the original resource invariant
list(f) and the knowledge thatx points to something, separately.
But since the second field of whatx points to holdsf , we can ob-
tain list(x) as a consequence. It is at this point in the proof that the
original free list and the additional elementx are bundled together;
the final statement simply letsf refer to this bundled information.

A similar point can be made about howalloc effects a transfer
from the module to the client.

We now give several examples from the client perspective. Each
proof, or attempted proof, is done in the context of the interface
specifications ofalloc andfree .

The first example is for inserting an element into the middle of a
linked list.

{(y 7→a,z)∗ (z 7→c,w)}
alloc;
{(y 7→a,z)∗ (z 7→c,w)∗ (x 7→–,–)}
{(y 7→a,z)∗ (x 7→–,–)∗ (z 7→c,w)}
x.2 := z; x.1 := b;y.2 := x
{(y 7→a,x)∗ (x 7→b,z)∗ (z 7→c,w)}

Here, in the step foralloc we use the interface specification, to-
gether with the ordinary frame rule.

If we did not have the modular procedure rule we could still ver-
ify this code, by threading the free list through and changing the
interface specification. That is, the interface specifications would
become

{list(f)}alloc{list(f) ∗ x 7→–,–}
{list(f) ∗ x 7→–}free{list(f)}

thus exposing the free list, and the proof would be

{(y 7→a,z)∗ (z 7→c,w)∗ list(f)}
alloc;
{(y 7→a,z)∗ (z 7→c,w)∗ (x 7→–,–)∗ list(f)}
{(y 7→a,z)∗ (x 7→–,–)∗ (z 7→c,w)∗ list(f)}
x.2 := z; x.1 := b;y.2 := x
{(y 7→a,x)∗ (x 7→b,z)∗ (z 7→c,w)∗ list(f)}.

Although technically correct, this inclusion of the free list in the
proof of the client is an example of the breakdown of modularity
described in the Introduction.

One might wonder whether this hiding of invariants could be
viewed as a simple matter of syntactic sugar, instead of being the
subject of a proof rule. We return to this point in Section 6.

We can similarly reason about deletion from the middle of a linked
list, but it is more interesting to attempt to delete wrongly.

{(y 7→a,x)∗ (x 7→b,z)∗ (z 7→c,w)}
free;

{(y 7→a,x)∗ (z 7→c,w)}
y := x.2;
{???}

This verification cannot be completed, because after doing thefree
operation the client has given up the right to dereferencex.

This is a very simple example of the relation between ownership
transfer and aliasing; after thefree operationx and f are aliases
in the global state, and the incorrect use of the alias by the client
has been rightly precluded by the proof rules. (A more positive
example of aliasing, which incidentally would not be amenable to
unique-reference disciplines, would be a program to dispose nodes
in a graph.)

Similarly, suppose the client tried to corrupt the manager, by sneak-
ily tying a cycle in the free list.

{emp}alloc; free; x.2 := x{???}
Once again, there is no assertion we can find to fill in the ???, be-
cause after thefree statement the client has given up the right to
dereferencex (emp will hold at this program point). And, this pro-
tection has nothing to do with the fact that knotting the free list con-
tradicts the resource invariant. For, suppose the statementx.2 := x
was replaced byx.1 := x. Then the final assignment in this sequence
would not contradict the resource invariant, when viewed from the
perspective of the system’s global state, because thelist(f) pred-
icate is relaxed about what values are in head components. How-
ever, from the point of view of the interface specifications, the client
has given up the right to dereference even the first component of
x. Thus, separation prevents the client from accessing the internal
storage of the module in any way whatsoever.

Finally, it is worth emphasizing that this use of∗ to enforce separa-
tion provides protection even in the presence of address arithmetic
which, if used wrongly, can wreak havoc with data abstractions.
Suppose the client tries to access some memory address, which
might or might not be in the free list, using[42] := 7. Then, for
this statement to get past the proof rules, the client must have the
right to dereference42, and therefore 42 cannot be in the free list
(by separation). That is, we have two cases

{42 7→–∗ p} [42] := 7; alloc{42 7→7∗ p∗x 7→–,–}
and

{p} [42] := 7; {???}alloc{???}
wherep does not imply that42 is in the domain of its heap. In the
first case the client has used address arithmetic correctly, and the
42 7→– in the precondition ensures that42 is not one of the cells in
the free list. In the second case the client uses address arithmetic
potentially incorrectly, and the code might indeed corrupt the free
list, but the code is (in the first step) blocked by the proof rules.

5 The Eye of the Asserter

In Table 3 we give a queue module. In the specification we use
a predicatelistseg(x,α,y) which says that there is an acyclic linked
list from x to y has the sequenceα in its head components. The vari-
ableQ denotes the sequence of values currently held in the queue; it
is present in the resource invariant, as well as in the interface spec-
ifications. (Technically, we would have to ensure that the variable
Q was added to thes component of our semantics.) This exposing
of “abstract” variables is standard in module specifications, as is
the inclusion of assignment statements involving abstract variables

Interface Specifications
{Q = α∧z= n∧P(z)}enq {Q = α·〈n〉∧emp} [Q]
{Q = 〈m〉·α∧emp}deq {Q = α∧z= m∧P(z)} [Q,z]
{emp} isempty? {(w = (Q = ε))∧emp} [w]

Resource Invariant: listseg(x,Q,y) ∗ (y 7→–,–)

Private Variables: x,y, t

listsegPredicate Definition

listseg(x,α,y) def⇐⇒
if x = y then (α = []∧emp)
else

(∃v,z,α′. (α = 〈v〉·α′∧x 7→v,z) ∗ P(v)
∗ listseg(z,α′,y)

)

Internal Implementations

Q := Q·〈z〉; (code forenq)
t := cons(–,–); y.1 := z; y.2 := t; y := t

Q := cdr (Q); (code fordeq)
z := x.1; t := x; x := x.2; dispose(t)

w := (x = y) (code forisempty?)

Table 3. Queue Module, Parametric inP(v)

whose only purpose is to enable the specification to work.

This queue module keeps a sentinel at the end of its internal list,
as is indicated by(y 7→–,–) in the resource invariant. The sentinel
does not hold any value in the queue, but reserves storage for a new
value.

An additional feature of the treatment of queues is the predicate
P, which is required to hold for each element of the sequenceα.
By instantiatingP in various ways we obtain versions of the queue
module that transfer different amounts of storage.

• P(v) = emp: plain values are transferred in and out of the
queue, and no storage is transferred with any of these values;

• P(v) = v 7→–,–: binary cons cells, and ownership of the stor-
age associated with them, are transferred in and out of the
queue;

• P(v) = list(v): linked lists, and ownership of the storage as-
sociated with them, are transferred in and out of the queue.

To illustrate the difference between these cases, consider the fol-
lowing attempted proof steps in client code.

{Q = 〈n〉·α∧emp}
deq
{Q = α∧z= n∧P(z)}
z.1 := 42
{???}

In caseP(v) is eitheremp or list(v) we cannot fill in ??? because we
do not have the right to dereferencez in the precondition ofz.1 :=
42. However, ifP(v) is v 7→–,– then we will have this right, and a
valid postcondition is(Q= α∧z= n∧z 7→42,–). Conversely, if we
replacez.1 := 42 by code that traverses a linked list then the third
definition ofP(v) will enable a verification to go through, where the
other two will not.

On the other hand there is no operational distinction between these
three cases: the queue code just copies values.

The upshot of this discussion is that the idea of ownership transfer
we have alluded to is not determined by instructions in the program-
ming language alone. Just what storage is, or is not, transferred de-
pends on which definition ofP we choose. And this choice depends
on what we want to prove.

This phenomenon, where “Ownership is in the eye of the Asserter”,
can take some getting used to at first. One might feel ownership
transfer might be made an explicit operation in the programming
language. In some cases such a programming practice would be
useful, but the simple fact is that in real programs the amount of
resource transferred is not always determined operationally; rather,
there is an understanding between a module writer, and program-
mers of client code. For example, when you callmalloc() you
just receive an address. The implementation ofmalloc() does
not include explicit statements that transfer each of several cells to
its caller, but the caller understands that ownership of several cells
comes with the single address it receives.

6 A Conundrum

In the following0 is the assertionemp that the heap is empty, and1
says that it has precisely one active cell, sayx (so1 is x 7→–).

Consider the following instance of the hypothetical frame rule,
wheretrue is chosen as the invariant:

{0∨1}k{0}[] ` {1}k{false}
{(0∨1)∗true}k{0∗true}[] ` {1∗true}k{false∗true}

The conclusion is definitely false in any sensible semantics of se-
quents. For example, ifk denotes the do-nothing command,skip ,
then the antecedent holds, but the consequent does not.

However, we can derive the sequent in the premise:

{0∨1}k{0}
{1}k{0} Consequence

{0∨1}k{0}
{0}k{0} Consequence

{0∗1}k{0∗1} Ordinary Frame

{1}k{1} Consequence

{1∧1}k{1∧0} Conjunction

{1}k{false} Consequence

This shows that we cannot have all of: the usual rule of conse-
quence, the ordinary frame rule, the conjunction rule, and the hy-
pothetical frame rule. It also shows that the idea of treating infor-
mation hiding as syntactic sugar for proof and specification forms
should be approached with caution: one needs to be careful that in-
troduced sugar does not interact badly with expected rules, in a way
that contradicts them.

The counterexample can also be presented as a module, and can be
used to show a similar problem with the modular procedure rule.

Given this counterexample, the question is where to place the
blame. There are several possibilities.

1. The specification{0∨1}k{0}. This is an unusual specifica-
tion, since in the programming languages we have been using
there is no way to branch on whether the heap is empty.

2. The invarianttrue . Intuitively, a resource invariant should
precisely identify an unambiguous area of storage, that owned
by a module. The invariantlist(f) in the memory manager is
unambiguous in this sense, wheretrue is perhaps not.

3. One of the rules of conjunction, consequence, or the ordinary
frame rule.

We pursue the first two options in the remainder of the paper, by
defining a model of the programming language and investigating a
notion of precise predicate.

7 A Denotational Model

Until now in work on separation logic we have used operational
semantics, but in this paper we use a denotational semantics. By
using denotational semantics we will be able to reduce the truth
of a sequentΓ ` {p}C{q} to the truth of a single semantic triple
{p}[[C]]η{q} where η maps each procedure identifier inΓ to a
“greatest” or “most general” relation satisfying it. In the case of
the hypothetical frame rule, we will be able to compare two de-
notations of the same command for particular instantiations of the
procedure identifiers, rather than having to quantify over all possi-
ble instantiations. Our choice to use denotational semantics here is
entirely pragmatic: The greatest relation is not always definable by
a program, but the ability to refer to it leads to significant simplifi-
cations in proofs about the semantics.

Recall that a state consists of a pair, of a stack and a heap. A com-
mand is interpreted as a binary relation

States↔ States∪{fault}
that relates an input state to possible output states, or a special out-
put,fault, which indicates an attempted access of an address not
in the domain of the heap. In fact, because we use a fault-avoiding
interpretation of Hoare triples, it would be possible to use the do-
main

States→ P (States)∪{fault}
instead. Using the more general domain lets us see clearly that if a
command nondeterministically chooses betweenfault and some
state, then the possibility of faulting will mean that the command
is not well specified according to the semantics of triples. This is
not an essential point; the more constrained domain could be used
without affecting any of our results.

This domain of relations is inappropriate for total correctness be-
cause it does not include a specific result for non-termination, so
that our semantics will not distinguish a commandC from one that
nondeterministically choosesC or divergence.

We will not consider all relations, but rather only those that validate
the locality properties of the (ordinary) frame rule. We say that a
relationc:States↔ States∪{fault} is safeat a state(s,h) when
¬((s,h) [c]fault). We just list the properties here, and refer the
reader to [39] for further explanation of them. The locality proper-
ties are:

1. Safety Monotonicity: for all states(s,h) and heapsh1 such that
h#h1, if c is safe at(s,h), it is also safe at(s,h∗h1).

2. Frame Property: for all states(s,h) and heapsh1 such that
h#h1, if c is safe at(s,h) and(s,h∗h1)[c](s′,h′), then there is
a subheaph′0 ≤ h′ such that

h′0#h1, h′0 ∗h1 = h′, and(s,h)[c](s′,h′0).

Commands will be interpreted using the following domain.

The posetLRel of “local relations” is the set of all re-
lations c satisfying the safety monotonicity and frame

properties, ordered by subset inclusion.

LEMMA 1. LRel is a chain-complete partial order with a least el-
ement. The least element is the empty relation, and the least upper
bound of a chain is given by the union of all the relations in the
chain.

The meaning of a command is given in the context of an environ-
mentη, that maps procedure identifiers to relations inLRel.

η ∈ ProcIds→ LRel [[C]]η ∈ LRel

The semantics of expressions depends only on the stack

[[E]]s∈ Ints [[B]]s∈ {true, false} (wheres∈ S).

The valuations are standard and omitted.

Selected valuations for commands are in Table 4. The main point
to note is the treatment offault. We have included only the basic
commands and sequential composition. The interpretation of con-
ditionals is as usual, a procedure call applies the environment to the
corresponding variable, and while loops andletrec receive stan-
dard least fixed-point interpretations, which are guaranteed to exist
by Lemma 1.

LEMMA 2. For each commandC, [[C]] is well-defined: for all en-
vironmentsη, [[C]]η is in LRel, and [[C]]η is continuous inη when
environments are ordered pointwise.

It is entertaining to see the nondeterminism at work in the semantics
of cons in this model. In particular, since we are aiming for partial
correctness, the semantics does not record whether a command ter-
minates or not; for instance,x := 1;y := 1 has the same denotation
as a command that nondeterministically picks eitherx := 1;y := 1
or divergence. Such a nondeterministic command can be expressed
in our language as

x := cons(0);dispose(x);y := cons(0);dispose(y);
if (x = y) then (x := 1;y := 1)

else (while (x = x) skip)

The reader may enjoy verifying that this is indeed equivalent to
x := 1;y := 1 in the model.

8 Semantics of Sequents

In this section we give a semantics where a sequent

Γ ` {p}C{q}
says that if every specification inΓ is true of an environment, then
so is{p}C{q}.

To interpret sequents we define semantic cousins of the modifies
clauses and Hoare triples. Ifc ∈ LRel is a relation then

• modifies(c,X) holds if and only if whenevery 6∈ X and
(s,h)[c](s′,h′), we have thats(y) = s′(y).

• {p}c{q} holds if and only if for all states(s,h) in p,
1. ¬((s,h) [c]fault); and

2. if (s,h) [c] (s′,h′) then state(s′,h′) is in q.

Now we can define the semantics: A sequent

{p1}k1{q1}[X1] . . . ,{pn}kn{qn}[Xn] ` {p}C{q}
holds if and only if

for (s,h) ∈ States anda ∈ States∪{fault},
(s,h)[[[x := E]]η]a⇐⇒ a = (s[x 7→ [[E]]s],h)

(s,h)[[[x := cons(E1, . . . ,En)]]η]a⇐⇒∃m. (m, . . . ,m+n−1 6∈ dom(h))
∧ (

a = (s[x 7→m],h∗ [m 7→ [[E1]]s, . . . ,m+n−1 7→ [[En]]s])
)

(s,h)[[[x := [E]]]η]a⇐⇒ if [[E]]s∈ dom(h) then a = (s[x 7→ h([[E]]s)],h) else a = fault

(s,h)[[[[E] := F]]η]a⇐⇒ if [[E]]s∈ dom(h) then a = (s,h[[[E]]s 7→ [[F]]s]) else a = fault

(s,h)[[[dispose(E)]]η]a⇐⇒ if [[E]]s∈ dom(h)
then a = (s,h′) for h′ s.t. h′ ∗ ([[E]]s 7→ h([[E]]s)) = h
else a = fault

(s,h)[[[C1;C2]]η]a⇐⇒
(
∃(s′,h′).(s,h) [[[C1]]η] (s′,h′)∧ (s′,h′) [[[C2]]η]a

)
∨

(
(s,h) [[[C1]]η]fault∧a = fault

)

wherefix f gives the least fixed-point off , andseq(c1,c2), b ; c1;c2 andd1, ...,dn are defined as follows:

(s,h) [seq(c1,c2)]a ⇐⇒
(
∃(s′,h′).(s,h) [c1] (s′,h′)∧ (s′,h′) [c2]a

)
∨

(
(s,h) [c1]fault∧a = fault

)

(s,h) [b ; c1;c2]a ⇐⇒ if b(s) = true then (s,h)[c1]a else (s,h)[c2]a
(d1, . . . ,dn) = fix(λd1, . . . ,dn ∈ LReln.(F1, ...,Fn)) (whereFi = [[Ci]]η[k1 7→ d1, . . . ,kn 7→ dn])

Table 4. Selected Valuations

for all environmentsη, if both {pi}η(ki){qi} and
modifies(η(ki),Xi) hold for all 1 ≤ i ≤ n, the triple
{p}([[C]]η){q} also holds.

9 Precise Predicates

We know from the counterexample in Section 6 that we must re-
strict the hypothetical frame rule in some way, if it is to be used
with the standard semantics. Before describing the restriction, let
us retrace some of our steps. We had a situation where ownership
could transfer between a module and a client, which made essential
use of the dynamic nature of∗. But we had also got to a position
where ownership is determined by what the Asserter asserts, and
this put us in a bind: when the Asserter does not precisely specify
what storage is owned, different splittings can be chosen at differ-
ent times using the nondeterministic semantics of∗; this fools the
hypothetical frame rule. It is perhaps fortuitous that the nondeter-
minism in∗ has not gotten us into trouble in separation logic before
now. A way out of this problem is to insist that the Asserter pre-
cisely nail down the storage that he or she is talking about.

A predicatep is preciseif and only if for all states(s,h),
there is at most one subheaphp of h for which(s,hp) ∈ p.

Intuitively, this definition says that for each state(s,h), a precise
predicate unambiguously specifies the portion of the heaph that
is relevant to the predicate. Formulae that describe data structures
are often precise. Indeed, the definition might be viewed as a for-
malization of a point of view stressed by Richard Bornat, that for
practically any data structure one can write a formula or program
that searches through a heap and picks out the relevant cells. Bornat
used this idea of reading out the relevant cells in order to express
spatial separation in traditional Hoare logic [4].

An example of a precise predicate is the following one for list seg-
ments:

listseg(x,y) def⇐⇒ (x = y∧emp)∨(
x 6= y∧∃z. (x 7→z) ∗ listseg(z,y)

)

This predicate is true when the heap contains a non-circular linked
list (and nothing else), which starts from the cellx and ends with
y. Note that because ofx 6= y in the second disjunct, the predicate

listseg(x,y) says that ifx andy have the same value in a state(s,h),
the heaph must be empty. If we had leftx 6= y out of the second
disjunct, thenlistseg(x,y) would not be precise:listseg(x,x) could
be true of a heap containing a non-empty circular list fromx to x
(and nothing else), and also of the empty heap, a proper subheap.
For this reason, the list segment predicate in [36] is not precise, if
we wrap it in an existential quantifier over the sequence parameter.

If p is a precise predicate then there can be at most one way to split
any given heap up in such a way as to satisfyp∗ q; the splitting,
if there is one, must givep the unique subheap satisfying it. This
leads to an important property of precise predicates.

LEMMA 3. A predicatep is precise if and only ifp∗− distributes
over∧:

for all predicatesq andr, we havep∗ (q∧ r) = (p∗q)∧
(p∗ r).

We also have closure properties of precise predicates.

LEMMA 4. For all precise predicatesp and q, all (possibly im-
precise) predicatesr, and boolean expressionsB, all the predicates
p∧ r, p ∗ q, and(B∧ p)∨ (¬B∧q) are precise.

10 Soundness

All of the proof rules from Section 3.2 are sound in the denota-
tional model. The main result of the paper concerns the hypotheti-
cal frame rule and, by implication, the modular procedure rule.

THEOREM 5.

(a) The hypothetical frame rule is sound for fixed preconditions
p1, ..., pn if and only if p1, ..., pn are all precise.

(b) The hypothetical frame rule is sound for a fixed invariantr if
and only ifr is precise.

Theorem 5(a) addresses point 1 from Section 6: it rules out the
precondition0∨1 in the conundrum, which is not precise. Theorem
5(b) addresses point 2: it rules out the invarianttrue , which is not
precise. And this result covers the queue and memory manager
examples, where the preconditions and invariants are all precise.

There are two main concepts used in the proof of the theorem.

• The greatest relation. We identify the greatest relation for
a specification{p}k{q}[X], which is the largest local relation
satisfying it. This allows us to reduce the truth of a sequent,
which officially involves quantification over all environments,
to the truth of a single triple for a single environment.

• Simulation. To show the soundness of the hypothetical frame
rule we need to connect the meaning of a command in one
context to its meaning in another with an additional invariant
and additional modifies sets. We develop a notion of simula-
tion relation between commands to describe this connection.

In the next two subsections we define these concepts and state some
of their properties, and then we sketch their relevance in the proof
of the theorem.

10.1 The Greatest Relation

For each specification{p}−{q}[X], definegreat(p,q,X)

(s,h)[great(p,q,X)]fault
def⇐⇒ (s,h) 6∈ p∗true

(s,h)[great(p,q,X)](s′,h′)
def⇐⇒ (1) s(y) = s′(y) for all variablesy 6∈ X; and

(2) ∀hp,h1.(hp ∗h1 = h∧ (s,hp) ∈ p)
=⇒ ∃h′q.h′q#h1∧h′q ∗h1 = h′∧ (s′,h′q) ∈ q

The first equivalence says thatgreat(p,q,X) is safe at(s,h) just
when p holds in (s,hp) for some subheaphp of h. The second
equivalence is about state changes. The condition (1) means that
great(p,q,X) can modify only those variables inX. Condition (2)
says thatgreat(p,q,X) demonically chooses a subheaphp of the
initial heaph that satisfiesp (i.e.,(s,hp) ∈ p), and disposes all cells
in hp; then, it angelically picks fromq a new heaph′q (i.e.,(s′,h′q) ∈
q) and allocatesh′q to get the final heaph′.

LEMMA 6. The relation great(p,q,X) is in LRel, and satis-
fies {p} − {q} and modifies(−,X). Moreover, it is the greatest
such: for all local relationsc in LRel, we have that{p}c{q} ∧
modifies(c,X) =⇒ c⊆ great(p,q,X).

Thegreatestenvironment for a contextΓ is the largest environment,
in the pointwise order, satisfying all the procedure specifications in
Γ. It mapsk to great(p,q,X) when{p}k{q}[X] ∈ Γ; otherwise, it
mapsk to the top relationStates× (States∪{fault}). Greatest
environments give us a simpler way to interpret sequents and proof
rules. A sequentΓ ` {p}C{q} holds just if the triple{p}([[C]]η){q}
holds for the greatest environmentη satisfyingΓ, leading to

PROPOSITION 7. For all predicatesp, q, p′ andq′, commandsC,
and contextsΓ andΓ′, we have the following equivalence: the proof
rule

Γ ` {p}C{q}
Γ′ ` {p′}C{q′}

holds if and only if we have{p}[[C]]η{q} =⇒ {p′}[[C]]η′{q′} for
the greatest environmentsη andη′ that, respectively, satisfyΓ and
Γ′.

10.2 Simulation

Let R : States ↔ States be a binary relation between states.
For c,c1 in LRel, we say thatc1 simulatesc upto R, denoted
c[sim(R)]c1, just if the following properties hold:

• Generalized Safety Monotonicity: if (s,h)[R](s1,h1), andc is
safe at(s,h), thenc1 is safe at(s1,h1).

• Generalized Frame Property: if (s,h)[R](s1,h1), c is safe at
(s,h), and(s1,h1)[c1](s′1,h

′
1), then there is a state(s′,h′) such

that(s,h)[c](s′,h′) and(s′,h′)[R](s′1,h
′
1).

c[sim(R)]c1 says that forR-related initial states(s,h) and(s1,h1),
when we have enough resources at(s,h) to run c safely, we also
have enough resources at(s1,h1) to runc1 safely; and in that case,
every state transition from(s1,h1) in c1 can be tracked by a transi-
tion from (s,h) in c.

Supposer is a predicate. The following relationRr plays a central
role in the analysis of the hypothetical frame rule.

(s,h)[Rr](s1,h1)
def⇐⇒ s= s1 ∧ ∃hr .h1 = h∗hr ∧ (s,hr) ∈ r

The next result gives us a way to connect hypotheses in the premise
and conclusion of the hypothetical rule, and additionally provides
the characterization of precise predicates that is at the core of The-
orem 5.

PROPOSITION 8.

(a) A predicatep is precise if and only if

great(p,q,X)[sim(Rr)]great(p∗ r,q∗ r,X)

holds for for all predicatesr andq, and setsX of variables.

(b) A predicater is precise if and only if

great(p,q,X)[sim(Rr)]great(p∗ r,q∗ r,X)

holds for all predicatesp,q and setsX of variables.

The detailed proof of Theorem 5 relies on developing machinery
that allows us to apply this key proposition; this development, and
the proof of the proposition itself, is nontrivial, and will be left to
the full paper. However, the relevance of the proposition can be
seen by considering a special case of the hypothetical frame rule,
for the key case of procedure call, and where the modified variables
are held fixed:

{p1}k{q1}[X1] ` {p}k{q}
{p1 ∗ r}k{q1 ∗ r}[X1] ` {p∗ r}k{q∗ r}

We give a proof of the following proposition about this special case;
it is the central step for showing Theorem 5.

PROPOSITION 9.

(a) The above special case of the hypothetical frame rule is sound
for a fixed preconditionp1 if and only if p1 is precise.

(b) The above special case is sound for a fixed invariantr if and
only if r is precise.

Note that the if direction of the proposition is implied by the same
direction of Theorem 5, and that for the only-if direction, the propo-
sition implies the theorem. The proof of this proposition uses a
lemma that characterizessim(Rr) using Hoare triples.

LEMMA 10. Local relationsc andc1 are related bysim(Rr) if and
only if for all predicatesp,q, we have

{p}c{q}=⇒{p ∗ r}c1{q ∗ r}.

Proof: [of Proposition 9]

Using Proposition 7 and Lemma 10, we can simplify the above spe-
cial case of the hypothetical frame rule as follows:

for all predicatesp,q,
if {p1}k1{q1}[X1] ` {p}k{q} holds,
then{p1 ∗ r}k1{q1 ∗ r}[X1] ` {p∗ r}k{q∗ r} holds

⇐⇒ (∵ Proposition 7)

for all predicatesp,q,
if {p}great(p1,q1,X1){q} holds,
then{p∗ r}great(p1 ∗ r,q1 ∗ r,X1){q∗ r} holds

⇐⇒ (∵ Lemma 10)

great(p1,q1,X1)[sim(Rr)]great(p1 ∗ r,q1 ∗ r,X1)

Now, Proposition 8(a) gives (a) of this proposition, and Proposi-
tion 8(b) gives (b) of this proposition.

10.3 Supported and Intuitionistic Predicates

There is a relaxation of the notion of precise predicate that can be
used to provide further sufficient conditions for soundness. A pred-
icate issupportedif, for any stack and heap, the collection of sub-
heaps making it true (while holding the stack constant) is empty or
has a least element. A predicate isintuitionistic if it is closed under
heap extension.

THEOREM 11. The hypothetical frame rule is sound in the follow-
ing cases:

(a) the preconditionsp1, . . . , pn are supported, and the postcon-
ditionsq1, . . . ,qn are intuitionistic; or

(b) the resource invariantr is supported, and the postconditions
q1, . . . ,qn are intuitionistic.

Notice that the first point does not contradict the only if part of
Theorem 5(a), because it mentions postconditions in addition to
preconditions. Likewise, the second point does not contradict The-
orem 5(b), because it mentions postconditions as well as the re-
source invariant. This result about supported predicates would give
us a version of the hypothetical frame rule appropriate when we are
not interested in nailing down definite portions of memory using
assertions, as might be the case in a garbage-collected language.

11 Related and Future Work

As we have emphasized, reliance on fixed resource partitioning has
been an obstacle to the development of modular methods of pro-
gram specification that are applicable to widely used programming
languages. Because the separating conjunction∗ is a logical con-
nective, which depends on the state, it allows us to describe situa-
tions where the partition between a module and its clients changes
over time. For example, with a resource manager module the re-
sources transfer back and forth between the module and a client,
as allocation and deallocation operations are performed, but correct
operating relies on separation being maintained at all times.

A different reaction to the limitations of fixed partitioning has
been the development of the assume-guarantee method of reasoning
about program components [24, 21]. While this has proven success-
ful, we are unsure whether it could be profitably applied to mutable
data structures with embedded pointers. In any case, when parti-
tioning can be ensured, be it fixed or dynamic, an invariant-based
methodology leads to pleasantly modular specifications and proofs.

Perhaps the most significant previous work that addresses infor-
mation hiding in program logics, and that confronts mutable data
structures, is that of Leino and Nelson [23] (also, [12]). They use
abstract variables (like our use of the variableQ in Table 3) to spec-
ify modules, and they develop a subtle notion of “modular sound-
ness” that identifies situations when clients cannot access the inter-
nal representation of a module. This much is similar in spirit to
what we are attempting, but on the technical level we are not at all
sure if there is any relationship between the separating conjunction
and their notion of modular soundness.

The information-hiding problems caused by pointers have been a
concern for a number of years in the object-oriented types com-
munity (e.g., [19, 10, 15]). A focal point of that work has been a
concept of “confinement”, which disallows or controls pointers into
data representations. Some confinement systems use techniques
similar to regions, with control over the number and direction of
pointers across region boundaries.

The advantage of confinement schemes is their use of static typing,
or static analysis, to provide algorithmic guarantees of information
hiding properties. Conversely, separation logic is more flexible, not
just because it is based on logic rather than types, but also because
it allows any number of pointers from the outside, requiring only
that these pointers not be dereferenced without permission. Current
confinement schemes have difficulty with ownership transfer that
involves aliasing (because they tend to rely on “unique” pointers),
such as a program that disposes all of the elements in a graph, or
with examples where resource partitioning depends on arithmetic
properties.

Recent work on the semantics of confinement uses heap partition-
ing in an essential way [3, 33], thus suggesting the prospect of a
deeper connection between type systems for confinement and log-
ics of separation. There is also the possibility of promoting the
heap partitioning operation∗ used in the semantic models to a type
operator in the source language; an immediate step could even be
attempted to obtain a form of alias types with information hiding
[37]. Further unification along these lines could be valuable.

It is striking that many proof systems for object-oriented languages
work by exposing class invariants or other descriptions of internal
states at method call sites (e.g., [13, 34]). Of course, the developers
of such systems have rightly been careful, as unsoundness can very
easily result if one incorrectly hides invariants. It seems plausible,
however, that taking explicit account of separation or confinement
could lead to an improved logic of objects.

Further afield in aims, but closer in technique, are logics of mo-
bile and concurrent processes that have been developed by Cardelli,
Caires and Gordon [9, 5]; related ideas have also been used to study
semi-structured data [8, 7]. Cardelli et. al. use subsets of a commu-
tative monoid, as in the general models of bunched logic [31, 32],
but the interaction between logic and program dynamics is very
different to that here. The models of [9, 5] do not satisfy the prop-
erties (such as the frame property) that drive our approach to infor-
mation hiding. Furthermore, although the “pointers from outside”
phenomenon certainly occurs in their setting, based as it is on the
π-calculus, they do not use the conjunction∗ (or | in their nota-
tion) to control these pointers/names; rather, they employ a form of
new name quantifier, following Gabbay and Pitts [14]. Despite the
surface similarity of logical structure, we do not feel that we fully
understand the relationship between the two approaches.

An intriguing question is if there is a link between the hypothet-

ical frame rule and the data abstraction provided by polymorphic
types. Polymorphic typing can be used to hide the type in a data ab-
straction [35, 25], but this is not the same thing as hiding dynamic
resources. For example, if we hide the type of a reference, polymor-
phic typing does not guarantee that the reference is not aliased, and
accessible from outside the data abstraction. Still, the hypothetical
frame rule ensures that a proof of client code can be used with any
(precise) representation invariant, so there is an obvious intuitive
analogy with polymorphic functions; the client should be paramet-
rically polymorphic in the resource invariant. If this analogy can
be made precise it may provide the basis for an approach to data
refinement, and encapsulated components as first-class values, that
accounts for mutable structures and dynamic ownership transfer.

We have stayed in a sequential setup in this paper, but the ideas
seem relevant to concurrent programming. Indeed, the treatment
by Hoare in [17] revolves around the concept of spatial separa-
tion, and the work here grew out of an attempt to directly adapt
that approach, and its extension by Owicki and Gries [27], to sep-
aration logic. In unpublished notes from August 2001, O’Hearn
described proof rules for concurrency using∗ to express heap sepa-
ration, and showed program proofs where storage moved from one
process to another. The proof rules were not published, because
O’Hearn was unable to establish their soundness. Then, in August
2002, Reynolds showed that the rules were unsound if used without
restriction, and this lead to our focus on precise assertions. Both
the promise and subtlety of the proof rules had as much to do with
information hiding as concurrency, and it seemed unwise to attempt
to tackle both at the same time. At the time of Reynolds’s discovery
we had already begun work on the hypothetical frame rule, and the
counterexample appears here as the conundrum in Section 6.

Work is underway on the semantics of the concurrent logic, and we
are hopeful that a thorough account of the concurrency proof rules
will be forthcoming.

Finally, in this paper we have concentrated on program proving,
but there have been striking successes in software model check-
ing [2, 11], which use abstraction to bridge the gap between infi-
nite state language models and the finite state models expected by
model checking algorithms; in essence, abstract interpretations are
chosen, and sometimes refined, that allow for the synthesis of loop
invariants. We wonder if one might synthesize resource invariants
describing heap-sensitive properties as well, and use this to parti-
tion the model checking effort. For this to be workable the imme-
diate challenge is to devise expressive heap abstractions [38] that
are compatible with an information-hiding rule like the hypotheti-
cal frame rule.

Acknowledgements. We have benefitted greatly from discus-
sions with Josh Berdine, Richard Bornat and Cristiano Calcagno.
O’Hearn’s research was supported by the EPSRC project “Lo-
cal Reasoning about State”. Reynolds’s research was partially
supported by an EPSRC Visiting Fellowship at Queen Mary,
University of London, by National Science Foundation Grant
CCR-0204242, and by the Basic Research in Computer Science
(http://www.brics.dk/) Centre of the Danish National Research
Foundation. Yang was supported by grant No. R08-2003-000-
10370-0 from the Basic Research Program of the Korea Science
& Engineering Foundation. Yang would like to thank EPSRC for
supporting his visit to University of London in 2002, during which
he first got involved in this work.

12 References

[1] A. Ahmed, L. Jia, and D. Walker. Reasoning about hierarchical stor-
age. In18th LICS, 2003.

[2] T. Ball and S. Rajamani. Checking temporal properties of software
with boolean programs.Proceedings of the Workshop on Advances in
Verification, 2000.

[3] A. Banerjee and D. Naumann. Representation independence, confine-
ment and access control. In29th POPL, 2002.

[4] R. Bornat. Proving pointer programs in Hoare logic.Mathematics of
Program Construction, 2000.

[5] L. Cardelli and L Caires. A spatial logic for concurrency. In TACS’01,
LNCS 2255:1–37, Springer, 2001.

[6] L. Cardelli, P. Gardner, and G. Ghelli. Querying trees with pointers.
Unpublished notes, 2003.

[7] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying
graphs.Proceedings of ICALP’02.

[8] L. Cardelli and G. Ghelli. A query language for semistructured data
based on the ambient logic.Proceedings of ESOP’01.

[9] L. Cardelli and A. D. Gordon. Anytime, anywhere. Modal logics for
mobile ambients. In27th POPL, 2000.

[10] D. Clarke, J. Noble, and J. Potter. Simple ownership types for object
containment. ECOOP, LNCS 2072, 2001.

[11] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Păs̆areanu, Robby,
and H. Zheng. Bandera: extracting finite-state models from Java
source code. InInternational Conference on Software Engineering,
pages 439–448, 2000.

[12] K.R.M. Leino D. Detlefs and G. Nelson. Wrestling with rep exposure.
Digital SRC Research Report 156, 1998.

[13] F. de Boer. A WP calculus for OO. InFOSSACS, 1999.
[14] M. Gabbay and A. Pitts. A new approach to abstract syntax involving

binders. In14th LICS, 1999.
[15] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with

confined types.OOPSLA, pp241–253, 2001.
[16] C.A.R. Hoare. Proof of correctness of data representations. Acta

Informatica 4, 271-281, 1972.
[17] C.A.R. Hoare. Towards a theory of parallel programming. In Hoare

and Perrot, editors,Operating Systems Techniques. Academic Press,
1972.

[18] C.A.R. Hoare. Monitors: An operating system structuring concept.
C.ACM, 17(10):549–557, October 1974.

[19] J. Hogg, D. Lea, R. Holt, A. Wills, and D. de Champeaux. The
Geneva convention on the treatment of object aliasing.OOPS Mes-
senger, April, 1992.

[20] S. Isthiaq and P.W. O’Hearn. BI as an assertion language for mutable
data structures. In28th POPL, 2001.

[21] C.B. Jones. Specification and design of (parallel) programs.IFIP
Conference, 1983.

[22] B. Kernighan and D. Ritchie.The C programming language. Prentice
Hall, 1988.

[23] K.R.M. Leino and G. Nelson. Data abstraction and information hid-
ing. ACM TOPLAS 24(5): 491-553, 2002.

[24] J. Misra and K.M. Chandy. Proofs of networks of processes.IEEE
Transactions of Software Engineering, July, 1981.

[25] J.C. Mitchell and G.D. Plotkin. Abstract types have existential type.
ACM TOPLAS 10(3):470-502, 1988.

[26] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about pro-
grams that alter data structures. InProceedings of Computer Science
Logic, pages 1–19, 2001. LNCS 2142.

[27] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs I.Acta Informatica, 6:319–340, 1976.

[28] D.L. Parnas. Information distribution aspects of design methodology.
IFIP Congress (1) 1971:339-344, 1972.

[29] D.L. Parnas. On the criteria to be used in decomposing systems into
modules.C.ACM, 15(12):1053–1058, 1972.

[30] B.C. Pierce and D.N. Turner. Simple type-theoretic foundations for
object-oriented programming.Journal of Functional Programming,
4(2):207–247, 1994.

[31] D.J. Pym.The Semantics and Proof Theory of the Logic of Bunched
Implications.Kluwer Applied Logic series, 2002.

[32] D.J. Pym, P.W. O’Hearn, and H. Yang. Possible worlds and resources:
the semantics of BI.TCS, to appear, 2003.

[33] U. Reddy and H. Yang. Correctness of data representations involving
heap data structures.Proceedings of ESOP, 2003.

[34] B. Reus, M. Wirsing, and R. Hennicker. A Hoare calculus for ver-
ifying Java realizations of OCL-constrained design models.FASE
Proceedings, LNCS 2029, pp300–316, 2001.

[35] J.C. Reynolds. Types, abstraction and parametric polymorphism.
IFIP Proceedings, pp513-523, 1983.

[36] J.C. Reynolds. Separation logic: a logic for shared mutable data struc-
tures. Invited Paper,17th LICS, 2002.

[37] D. Walker and J.G. Morrisett. Alias types for recursive data structures.
In Types in Compilation, pp177–206, 2000.

[38] R. Wilhelm, M. Sagiv, and T. Reps. Shape analysis. InCompiler
Construction, pp1–17, 2000.

[39] H. Yang, and P. O’Hearn. A semantic basis for local reasoning. In
Proceedings of FOSSACS’02, pp402–416, 2002.

13 Appendix: Variable Conditions

13.1 Side Conditions and Modifies Sets

We now clarify the side conditions for the hypothetical frame rule.
To begin with, note that in the rule we are using comma between
theXi andY for union of disjoint sets; the form of the rule therefore
assumes thatXi andY are disjoint.

The disjointness requirement forY enforces that we do not observe
the changes of a variable inY while reasoning aboutC; as a result,
reasoning in client code is independent of variables inY. We give a
technical definition of several variants on a notion of disjointness of
a set of variablesX from a set of variables, a command, a predicate,
or a context. X is disjoint from a setY if their variables do not
overlap;X is disjoint from a commandC if X does not intersect
with the free variables ofC; X is disjoint from predicater if the
predicate is invariant under changes to values of variables inX; X
is disjoint from contextΓ if for all {p}k{q}[Y] in Γ, X is disjoint
from p, q andY. This defines the second side condition.

The first side condition can be made rigorous with a relativized ver-
sion of the usual notion of set of variables modified by a command.
We describe this using a setModifies(C)(Γ;Γ′) of variables associ-
ated with each command, where we split the context into two parts.
The two most important clauses in the definition concern procedure
call.

Modifies(k)(Γ;Γ′) = X, if {p}k{q}[X] ∈ Γ
Modifies(k)(Γ;Γ′) = {}, if {p}k{q}[X] ∈ Γ′

The upshot is thatModifies(C)(Γ;Γ′) reports those variables modi-
fied byC, except that it doesn’t count any procedure calls for pro-
cedures inΓ′.

For the other commands, the relativized notion of modifies set
is defined usual. For a compound commandC with immediate
subcommandsC1, . . . ,Cn, the setModifies(C)(Γ;Γ′) is the union
∪iModifies(Ci)(Γ;Γ′). Two of the basic commands are as follows:

Modifies(x := E)(Γ;Γ′) = {x} Modifies([x] := E)(Γ;Γ′) = {}
For [x] := E the modifies set is empty because the command alters
the heap but not the stack.

We are now in a position to state the first side condition rigorously:
it means

Modifies(C)(Γ; {p1}k1{q1}[X1], . . . ,{pn}kn{qn}[Xn])
is disjoint fromr.

The modifies conditions for the the ordinary frame and recursive
procedure rules do not mention the “except through” clause. These
can be formalized by takingΓ′ to be empty inModifies(C)(Γ;Γ′).

An important point is that the free variables of the resource invari-
ant are allowed to overlap with theXi . This often happens when
using abstract variables to specify the behaviour of a module, as
exemplified by the treatment of the abstract variableQ in the queue
module in Table 3.

The complexity of modifies clauses is a general irritation in pro-
gram logic, and one might feel that this problem with modifies
clauses could be easily avoided, simply by doing away with assign-
ment to variables, so that the heap component is the only part of the
state that changes. While this is easy to do semantically, obtaining
a satisfactory program logic is not as straightforward. The most im-
portant point is the treatment of abstract variables. For example, in
the queue module the variableq is used in interface specifications
as well as the invariant. If we were to try to place this variable into
the heap then separation would not allow us to have it in both an in-
terface specification and an invariant. If some other approach could
be developed as an alternative to the changing abstract variables,
that was itself not more complex, then perhaps we could finally do
away with modifies conditions.

In situations where one wants to capture only “structural integrity”
properties of data structures, rather than correctness properties, it is
often possible to avoid abstract variables. For example, one some-
times wants to ensure, for example, that a data structure has the
correct shape and has no dangling pointers, without giving a com-
plete description of the data that is represented. Because abstract
variables are not required (or less often required) in such situations
we might get some way with a logic simpler than the one here, that
does not require modifies clauses.

13.2 On Existentials and Free Variables

In [26, 36] there is an inference rule for introducing existential vari-
ables in preconditions and postconditions.

{p}C{q}
{∃x.p}C{∃x.q} x 6∈ free(C)

The side condition cannot be stated in the formalism of this paper.
For, a procedure specification{p}k{q}[X] identifies the variables,
X, thatk might modify, but not those thatk might read from.

We can get around this problem by adding a free variable compo-
nent to the sequent form, thus having

(Y) Γ ` {p}C{q}.
This constrains the variables appearing inC and all the procedures
ki , but not the preconditions and postconditions. This would allow
us to describe the existential rule as

(Y) Γ ` {p}C{q}
(Y) Γ ` {∃x.p}C{∃x.q} x 6∈Y

Another reasonable approach is to have a distinct class of “logical”
variables, that cannot be assigned to in programs. For technical
simplicity, we do not explicitly pursue either of these extensions in
the current paper.

