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Abstract program components, then the resultant decomposition of the spec-
ification and reasoning tasks should confer similar benefits. Un-
We investigate proof rules for information hiding, using the recent fortunately, most methods for specifying programs either severely
formalism of separation logic. In essence, we use the separatingrestrict the programming model, by ruling out common program-
conjunction to partition the internal resources of a module from ming features (so as to make the static enforcement of separation
those accessed by the module’s clients. The use of a logical con-feasible), or they expose the internal resources of a module in its
nective gives rise to a form of dynamic partitioning, where we track specification in order to preserve soundness.

the transfer of ownership of portions of heap storage between pro-

gram components. It also enables us to enforce separation in theStated more plainly, information hiding should be the bedrock of
presence of mutable data structures with embedded addresses thahodular reasoning, but it is difficult to support soundly, and this
may be aliased. presents a great challenge for research in program logic.

To see why information hiding in specifications is desirable, sup-
pose a program makes userofiifferent modules. It would be un-
fortunate if we had to thread descriptions of the internal resources
of each module through steps when reasoning about the program.
Even worse than the proof burden would be the additional anno-
tation burden, if we had to complicate specifications of user pro-
cedures by including descriptions of the internal resources of all
modules that might be accessed. A change to a module’s internal
representation would necessitate altering the specifications of all
other procedures that use it. The resulting breakdown of modularity
would doom any aspiration to scalable specification and reasoning.

Categories and Subject Descriptors:D.2.4 [Software Engineer-
ing]: Program Verification—elass invariantsD.3.3 [Programming
Languages]: Language Constructs and Featuraedules, pack-
ages

General Terms: Languages, Theory, Verification

Keywords: Separation Logic, Modularity, Resource Protection

1 Introduction

Mutable data structures with embedded addresses (pointers) have
: ; _proven to be a particularly obstinate obstacle to modularity. The
struggle against the complexity of software systems. When a pro problemis that it is difficult to keep track of aliases, different copies

gram is divided into conceptually distinct modules or components, ity
each of which owns separate internal resources (such as storage)Of the same address, and so it is difficult to know when there are no

the effort required for understanding the program is decomposed point_ers in_to the internals of a_module._ The_ purpose of this paper
into circumscribed, hopefully manageable, parts. And, if separa- is to investigate proof _rules for |nf0rm_at|on hiding using separation
tion is correctly maintained, we can regard the internal resources oflOQ'c’ a recent formalism for reasoning about mutable data struc-
one module as hidden from its clients, which results in a narrowing tures [36].

of interface between program components. The flipside, of course,
is that an ostensibly modular program organization is undermined
when internal resources are accessed from outside a module.

Modularity is a key concept which programmers wield in their

Our treatment draws on work of Hoare on proof rules for data
abstraction and for shared-variable concurrency [16, 17, 18]. In
Hoare’s approach each distinct module has an associated resource

It stands to reason that, when specifying and reasoning about pro_invariant, which describes its internal state, and scoping constraints

grams, if we can keep track of the separation of resources betweerf'© used to separate the resources of a module from those_ of client
' programs. We retain the resource invariants, and add a logical con-

nective, the separating conjunctien to provide a more flexible
form of separation.

We begin in the next section by describing the memory model and
the logic of pre- and post-conditions used in this work. We then
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gueue module. Both examples involve the phenomeneoesoiurce
ownership transferwhere the right to access a data structure trans-
fers between a module and its clients. We work through proofs, and



failed proofs, of client code as a way to illustrate the consequencesprogramming languages, or even for many of the programming pat-
of the proof rules. terns commonly expressed in them.

After giving the positive examples we present a counterexample, The essential point is that fixed partitioning does not cope naturally
which shows that our principal new proof rule, the hypothetical with systems whose resource ownership or interconnection struc-
frame rule, is incompatible with the usual Hoare logic rule for con- ture is changing over time. A good example is a resource manage-
junction; the new rule is thus unsound in models where commands ment module, that provides primitives for allocating and deallocat-
denote relations, which validate conjunction. The problem is that ing resources, which are held in a local free list. A client program
the very features that allow us to treat ownership transfer lead to should not alter the free list, except through the provided primi-
a subtle understanding where “Ownership is in the eye of the As- tives; for example, the client should not tie a cycle in the free list.
serter”. The remainder of the paper is occupied with a semantic In short, the free list is owned by the manager, and it is (intuitively)
analysis. This revolves around a notion of “precise” predicates, hidden from client programs. However, it is entirely possible for a
which are ones that unambiguously identify a portion of state. In client program to hold an alias to an element of the free list, after a
essence, we ask the Asserter to be unambiguous when specifyingleallocation operation is performed; intuitively, the “ownership” of
which resource is owned; when this is the case, we find that our a resource transfers from client to module on disposal, even if many
proof rules are sound. aliases to the resource continue to be held by the client code. In a
language that supports address arithmetic the potential difficulties
Familiarity with the basics of separation logic, as presented in [36], are compounded: the client might intentionally or unintentionally
would be helpful in reading the paper. We remind the reader in par- obtain an address used in an internal representation, just by an arith-
ticular that the rules for disposing or dereferencing an address aremetic calculation.
such that it must be known to point to something (not be dangling)
in the precondition for a rule to apply. For example, in the putative A word of warning on our use of “module” before we continue: The
triple {true}[x] := 7{??%, where the contents of heap address concept of module we use is just a grouping of procedures that share
mutated to7, there is no assertion we can use in the postcondition some private state. The sense of “private” will not be determined
to get a valid triple, becausemight be dangling in a state satisfy-  statically, but will be the subject of specifications and proof rules.
ing the precondition. So, in order to obtain any postcondition for This allows us to approach modules where correct protection of
[X] := 7, the precondition must imply the assertior>—x true that module internals would be impossible to determine with a compile-
x is not dangling. time check in current programming languages. The approach in this
paper might conceivably be used to analyze the information hiding
The local way of thinking encouraged by separation logic [26] is in a language that provides an explicit module notation, but that is
stretched by the approach to information hiding described here. We not our purpose here.
have found it useful to use a figurative language of “rights” when
thinking about specifications, where a predicatet a program The point is that it is possible to program modules, in the sense of
point asserts that “I have the right to dereference the addresges in the word used by Parnas, whether or not one has a specific module
here”. construct at one’s disposal. For example, the pamalfoc() and
free () in C, together with their shared free list, might be considered
as a module, even though their correct usage is not guaranteed by
1.1 Contextual Remarks C's compile-time checking. Indeed, there is no existing program-
ming language that correctly enforces information hiding of mu-
The link between modularity and information hiding was developed table data structures, largely because of the dynamic partitioning
in papers of Hoare and Parnas in the early 1970s [16, 17, 28, 29].issue mentioned above, and this is an area where logical specifica-
Parnas emphasized that poor information distribution amongst tions are needed. We emphasize that the issue is not one of “safe”
components could lead to “almost invisible connections between versus “unsafe” programming languages; for instance, middleware
supposedly independent modules”, and proposed that informationprograms written in garbage-collected, safe languages, often per-
hiding was a way to combat this problem. Hoare suggested usingform explicit management of certain resources, and there also own-
scoping restrictions to hide a particular kind of information, the in- ership transfer is essential to information hiding.
ternal state of a module, and showed how these restrictions could
be used in concert with invariants to support proof rules that did not Similarly, although we do not consider the features of a full-blown
need to reveal the internal data of a module or component. Theseobject-oriented language, our techniques, and certainly our prob-
ideas influenced many subsequent language constructs and specifiems, seem to be relevant. Theories of objects have been developed
cation notations. that account for hiding in a purely functional context (e.g., [30]), but
mutable structures with embedded addresses, or objectid’s, are fun-
Most formal approaches to information hiding work by assuming damental to object-oriented programming. A thoroughgoing theory
a fixed, a priori, partitioning between program components, usu- should account for them directly, confronting the problems caused
ally expressed using scoping restrictions, or typing, or simply using when there are potential aliases to the state used within an object.
cartesian product of state spaces. In simple cases fixed partition-
ing can be used to protect internal resources from outside tamper-These contextual remarks do not take into account some recent
ing. But in less simple situations, such as when data is referred work that attempts to address the limitations of fixed partitioning
to indirectly via addresses, or when resources dynamically transferand the difficulties of treating mutable data structures with embed-
between program components, correct separation is more difficult ded addresses. We will say more on some of the closely related
to maintain. Such situations are especially common in low-level work at the end of the paper.
systems programs whose purpose is to provide flexible, shared ac-
cess to system resources. They are also common in object-oriented
programs. An unhappy consequence is that modular specification
methods are lacking for widely-used imperative or object-oriented



2 The Storage Model h(s(x)) = [E]s. The points-to relatiox — E,F for binary cons
cells is syntactic sugar fax — E) « (x+ 1 —F). We will also use
We consider a model where a heap is a finite partial function taking quantifiers and recursive definitions in examples in what should be
addresses to values: a clear way.
def

H = Addresses =fin Values The syntax for the programming language considered in this paper
This set has a partial commutative monoid structure, where the unitis given by the following grammar.
is the empty function and the partial combining operation

E = xV,...|0|1|E+E|EXE|E—-E

*HxH—~H

. . i . . ) i= false|B=B|E=E|E<E
is the union of partial functions with disjoint domains. More
formally, we say thath;#h, holds for heapsh; and h, when C u= x:=E|x:=[E]|[E]:=E|x:=cons(E,...,E)
dom(hy) Ndom(hy) = {}. In that caseh; «h, denotes the com- |  dispose(E) | skip|C;C|if BthenCelseC
bined heaph; Uhy. Whenhi#h, fails, hy x hy is undefined. In 1eBC K—C K—CinC K
particular, note that ifh = hy x hy then we must have that#h,. | whileBC|letreck=C,....k=CinC|
The subheap ordet is subset inclusion of partial functions. For simplicity we consider parameterless procedures only. The ex-

] ) tension to all first-order procedures raises no new difficulties, but
We will work with a RAM model, where the addresses are natural |engthens the presentation. Higher-order features, on the other
numbers and the values are integers hand, are not straightforward. We assume that all the procedure

def def identifiers are distinct in anjetrec declaration. When proce-

Addresses = {0,1,2,...} Values = {...,=1,0,1,...} dure declarations do not have recursive calls, we write k; =

The results of this paper go through for other choicesAfddresses C1,...,kn = C, in Cto indicate this.

andValues, and thus cover a number of other naturally occurring

models, such as the cons cell model of [36] and the hierarchical The command := cons(Ey, ..., En) allocatesn consecutive cells,

memory model of [1]. Our results also apply to traditional Hoare initializes them with the values @&, ..., E,, and stores the address

logic, where there is no heap, by taking the trivial model where of the first cell inx. We could also consider a command for variable-

Addresses is empty (andvalues non-empty). length allocation. The contents of an addré&ssan be read and
stored inx by x := [E], or can be modified bjE] := F. The com-

A natural model of separation that is not an instance of the par- manddispose(E) deallocates the addreEs In x := [E], [E] :=F

tial functions model construction above is the “trees with dangling anddispose(E), the expressiofit can be an arbitrary arithmetic

pointers” model of [6]; it would be interesting to axiomatize the es- €xpression; so, this language allows address arithmetic.

sentials of these separation models, by identifying a subclass of the
partial monoid models of [32]. This inclusion of address arithmetic does not represent a general

commitment to it on our part, but rather underlines the point that
To interpret variables in the programming language and logic, the our methods do not rely on ruling it out. In examples it is often
state has an additional component, the “stack”, which is a mapping clearer to use a field-selection notation rather than arithmetic, and
from variables to values; a state is then a pair consisting of a stackfor this we use the following syntactic sugar:
and a heap: ) def i . def )
Ei:=F=[E+i—1:=F x:=Ei=x:=[E+i-1].
def . def
S = Variables — Values States = SxH. Each command denotes a (nondeterministic) state transformer that
We treat predicates semantically in this paper, so a predicate is justfaults when heap storage is accessed illegally, and each expression
a set of states. determines a (heap independent) function from stacks to values.
Predicates & P(States) The semantics will be given in Section 7.
The powerset of states has the usual boolean algebra structure3 Proof System
whereA is intersectiony is union,— is complementirue is the

set of all states, anfdlse is the empty set of states. We useg, r, The form of judgment we use is the sequent
sometimes with subscripts and superscripts, to range over predi-
cates. Besides the boolean connectives, we will need the lifting of I+ {p}C{a}

« from heaps to predicates: . P . .
which states that commafisatisfies its Hoare triple, under certain

pxq £ {(sh) | 3ho,h;.h=hy+hy, and hypotheses. Hypotheses are given by the grammar
(s.ho) € p,and(s,hy) € q}.
M= e|{pik{a}X],"

subject to the constraint that no procedure identifigppears twice.
An assumption{ p}k{q}[X] requiresk to denote a command that
modifies only the variables appearing in ¥e&nd that satisfies the
indicated triple.

As a function on predicates we have a total mapfrom

Predicates x Predicates to Predicates which, to the right of¥,
uses the partial map,: H x H — H in its definition. This overload-
ing of * will always be disambiguated by contexthas a uniemp,
the set{(s,[]) | se S} of states whose heap component is empty.
It also has an implication adjoint«, though that will play no role . o
in the present paper. Note thatp is distinct from the empty set 3.1  Proof Rules for Information Hiding
false of states.

We begin with a special-case, programmer-friendly, proof rule, that
We usex — E to denote a predicate that consists of all pag) is a consequence of a more fundamental, logician-friendly, rule to
whereh is a singleton in whichx points to the meaning oE: be described later.



Modular Non-Recursive Procedure Declaration Rule
ME{pr*r}Coi{au=r}

I F{pn=* r}Cn{qn*r}
o {patka{a}[Xd],. ... {Pn}kn{an}[Xn] - {p}C{a}
M {p*r}letky =C,...,kn =Cn in C{qxr}

In this ruleky, ...k, is a grouping of procedures that share private
state described by resource invarianin a resource management
module, thek; would be operations for allocating and freeing re-

Interface Specifications

{prtka{au} X, -+, {Pn}kn{an}[Xn]

Resource Invariant: r
Private Variables: Y

Internal Implementations
Cl, . ..,Cn

Table 1. Module Specification Format

analogy with the use of loop invariant annotations as directives to a

sources, and would describe unallocated resources (perhaps held verification condition generator.

in a free list). The rule distinguishes two views of such a module.
When reasoning about the client co@ewe ignore the invariant
and its area of storage; reasoning is done in the contentefface
specificationg p; }ki{q;j } that do not mentiom. The perspective is
different from inside the module; the implementatigBsoperate

on a larger state than that presented to the client, and verifications

We will use the format for module specifications in Table 1. This
instructs us to apply the modular procedure rule in a particular way,
to prove

I, Interface Specifications - { p}C{q}

are performed in the presence of the resource invariant. The twofor client codeC, and to prove F {pi *r}Ci{q; *r} for the bodies.

views, module and client, are tied up in the conclusion of the rule.

The modular procedure rule is subject to variable conditions: we
require a seY (of “private” variables), and the conditions are

e C does not modify variables im, except through using
kl,...,kn;

e Y is disjoint fromp, g, C and the context
T {patka{ar}Xd], - {Pn}kn{an}[Xn]";

e C; only modifies variables ikX;,Y.

We emphasize that this module format is not officially part of our
programming language or even our logic; however, its role as a
directive on how to apply the modular procedure rule in examples
will, we hope, be clear.

The modular procedure rule can be derived from a standard rule for
parameterless procedure declarations, and the following more basic
rule.

Hypothetical Frame Rule

 {pitki{ai} %] fori<n) - {P}IC{a}
i r k{3 X, Y] tori<ny F {p*r}C{ax=r}

where ) ] )
e C does not modify variables in, except through

usingky, ..., kn; and
e Y is disjoint from p, q, C, and the context

‘T {ptk{ac}Xal, ..., {Pn}k{an}[Xn]".
The notation {pi }ki{ai }[Xa](fori<n) in the rule is a shorthand
for {pa}tke{ai}[Xa],--., {Pn}kn{an}[Xn], and similarly for{p; %
riki{ai = r}[Xl,Y](foriSnE. In examples we will use the modular

procedure rule, but will phrase our theoretical results in terms of
the hypothetical frame rule.

The idea behind these conditions is that we must be sure that client
code does not alter variables used within a module, but we must
also allow some overlap in variables to treat various examples. A

rigorous formulation of what these conditions mean has been placed
in an appendix at the end of the paper. We will continue to state the
necessary side conditions as we present our proof rules, but there
will be little harm if the reader skates over them, or understands
them in an intuitive way, while reading the paper. We only stress

that the modifies clauses refer exclusively to the stack, where the
new part of the paper involves the heap, and

It is also possible to consider initialization and finalization code.
For instance, if, in addition to the premises of the modular proce-
dure rule, we haveé + {p}init{p=r} andl - {g«r}final{q}, then

we can obtain

I F {p} init; (et ky =C;,...,ky = Cy in C); final {q}.

In our examples we will not consider initialization or finalization
since they present no special logical difficulties.

The hypothetical frame rule is so named because of its relation to
the ordinary frame rule from [20, 26]. The hypothetical rule allows

us to place invariants on the hypotheses as well as the conclusion
of sequents, whereas the ordinary rule includes invariants on the
conclusion alone. (The ordinary frame rule is thus a special case of

In the modular procedure rule, the proof fp}C{q} about the the hypothetical rule, where=0.)

client in the premises can be used watflyresource invariant. As

a result, this reasoning does not need to be repeated when a moduls-2  Other Proof Rules

representation is altered, as long as the alteration continues to sat- ) ]

isfy the interface specificationgpi }ki{qj}. This addresses one of ~We have standard Hoare logic rules for various constructs, along
the points about reasoning that survives local changes discussed ifvith the rule of consequence.

the Introduction. p=p TFH{PIC{d} d=q

r = {p}C{a}

r={p}Ci{a} T F{qiCo{r}
I+ {p}C1;Co{r}

rt{pABiC{a} T {pA-B}C'{q}
[+ {p}if BthenCelseC'{q}

O {pik{a}[X] - {ptk{a}

rF{pAB}C{p}
I+ {p}whileBC{pA-B}

However, the choice of invariantis not specified by programming
language syntaxet k; =Cy,...,ky = Cy in C in the modular pro-
cedure rule. In this it is similar to the usual partial correctness rule
for while loops, which depends on the choice of a loop invariant.
It will be convenient to consider an annotation notation that spec-
ifies the invariant, and the interface specificatigpstki{qi}, as a
directive on how to apply the modular procedure rule; this is by




In addition, we allow for the context to be permuted. Interface Specifications

) . ) {emp}alloc{x———}[X
The rule for possibly recursive procedure declarations uses the pro- {x+——,—}free{emp}|
cedure specifications in proofs of the bodies:

M {pitke{ac}Xa],- - {Pn}kn{an}[Xa] F {P1}C1{a1}

Resource Invariant: list(f)
Private Variables: f

Internal Implementations

rApitkafa} X, ., {pn.}kn{qn}[X”} F{pn}Cn{an} if f=nil thenx:=cons(—,—) (code foralloc )
Co{patka{an} Xl ..., {Pn}kn{an} %] - {p}C{a} elsex:=f; fi=x2;
I {p}letrec ky =Cy,...,kn=Cn in C{q} x2:=f f:=x (code forfree )
where Table 2. Memory Manager Module

e C; only modifies variables ix;.

In case none of thi are free in theCj we can get a simpler rule,

where the{ pi ki {g; }[Xi] hypotheses are omitted from the sequents 4 A Memory Manager

for theCj. Usinglet rather tharletrec to indicate the case where

a procedure declaration happens to have no recursive instances, wiVe consider an extended example, of an idealized memory manager
can derive the modular non-recursive procedure declaration rule ofthat doles out memory in chunks of size two. The specifications and
the previous section from the hypothetical frame rule and the stan- code are given in Table 2.

dard procedure rule just given. We can also derive a modular rule

for recursive declarations. The internal representation of the manager maintains a free list,
which is a singly-linked list of binary cons cells. The free list is
The ordinary frame rule is pointed to byf, and the predicathst(f) is the representation in-
variant, where
rF{piC{a} def
M+ {p*r}C{g=r} list(f) <= (f =nil A emp) V (3g. f ——, g list(g))
threc does not modify any variables i This predicate says thdtpoints to a linked list (and that there are

no other cells in storage), but it does not say what elements are in
This is a special case of the hypothetical rule, but we state it sep-the head components.
arately because the ordinary rule will be used without restriction,
while we will place restrictions on the hypothetical rule. For the implementation odlloc , the manager places intothe
address of the first element of the free list, if the list is nonempty. In
One rule of Hoare logic, which is sometimes not included explicitly case the list is empty the manager calls the built-in allocatas

in proof systems, is the conjunction rule. to get an extra element. The interaction betwelet andcons
, , is a microscopic idealization of the treatmentnaflloc in Section
M {piC{a} TF{p}C{d} 8.7 of [22]. Theremalloc manages a free list but, occasionally, it
r={pApIC{grnd} calls a system routingbrk to request additional memory. Besides

fixed versus variable sized allocation, the main difference is that we
assume thatons always succeeds, whibrk might fail (return an

error code) if there is no extra memory to be givermtdloc . We

use this simple manager because to use a more complex one would
not add anything to the points made in this section.

The conjunction rule is often excluded because it is an example of
anadmissiblerule: one can (usually) prove a metatheorem, which
says that if the premises are derivable then so is the conclusion.
However, it is not an example of derivedrule: one cannot con-
struct a generic derivation, in the logic, of the conclusion from the

premises. We will see in Section 6 that the_r hyp_othetical frame rule \when a user program gives a cell back to the memory manager it is
can affect the admissible status of the conjunction rule. put on the front of the free list; there is no need for interaction with

. . . a system routine here.
Finally, we have axioms for the basic commands, wheng n are y

assumed to be distinct variables. The form of the interface specifications are examples of the local

r-{E—-}E:=F{E—F} way of thinking encouraged by separation logic; they refer to small
] pieces of storage. It is important to appreciate the interaction be-
'+ {E+——}dispose(E) {emp} tween local and more global perspectives in these assertions. For
x—m example, in the implementation &éte in Table 2 the variable
M- {/\em }x :=cons(Ey, ..., Ex){X— E1[m/X], ..., Ex[m/X]} contains the same address after the operation completes as it did
p before, and the address continues to be in the domain of the global
M= {x=nAemp}x:=E{x=(E[n/X]) Aemp} program heap. The use efp in the postcondition ofree does
M- {E—nAx=mbx:=[E] {x=nA E[m/x —n} not mean that the global heap is now empty, but rather it implies

that the knowledge that points to something is given up in the
These axioms describe the effect of each command on only one, orpostcondition. We say intuitively th&ee transfers ownership to
sometimes no, heap cells. Typically, their effects can be extendedthe manager, where ownership confers the right to dereference.
using the frame rule: for example, we can infgx — 3) x (y —
A }X :=7{(x—T7)*(y —4)} by choosingy — 4 as the invariant It is interesting to see how transfer works logically, by considering
in the frame rule. a proof outline for the implementation &ée .



}

) % emp}

The most important step is the middle application of the rule of con-
sequence. At that point we still have the original resource invariant
list(f) and the knowledge that points to something, separately.
But since the second field of whatpoints to holdsf, we can ob-
tain list(x) as a consequence. It is at this point in the proof that the
original free list and the additional elemenare bundled together;
the final statement simply letsrefer to this bundled information.

A similar point can be made about halloc effects a transfer
from the module to the client.

We now give several examples from the client perspective. Each
proof, or attempted proof, is done in the context of the interface
specifications oélloc andfree .

The first example is for inserting an element into the middle of a
linked list.

{(1{|—>.a,z) *(z—c,w)}
{(yr—a,2) % (21— ¢, W)  (Xi-—-)}

Here, in the step foalloc we use the interface specification, to-
gether with the ordinary frame rule.

If we did not have the modular procedure rule we could still ver-
ify this code, by threading the free list through and changing the
interface specification. That is, the interface specifications would
become

{list(f)}alloc{list(f) *« x ———}
{list(f) * x ——}free{list(f)}

thus exposing the free list, and the proof would be

{(y—a,2)x (z—c,w)«list(f)}

alloc;

{(y=2,2) % (2 ¢, W) (X =, ) #list ()}
{(ya,2) % (x+———) * (z—c,w) xlist(f)}
x2:=zx1l:=byy2:=x

{{y—a,x)* (X—b,z)x(z—c,w) «list(f)}.

Although technically correct, this inclusion of the free list in the
proof of the client is an example of the breakdown of modularity
described in the Introduction.

One might wonder whether this hiding of invariants could be
viewed as a simple matter of syntactic sugar, instead of being the
subject of a proof rule. We return to this point in Section 6.

We can similarly reason about deletion from the middle of a linked
list, but it is more interesting to attempt to delete wrongly.

i(y»—fa,x)*(be,z)*(zHc,w)}

{(y—ax) *(z—cw)}
y:i=X2;
{223

This verification cannot be completed, because after doinfyethe
operation the client has given up the right to dereference

This is a very simple example of the relation between ownership
transfer and aliasing; after thee operationx and f are aliases

in the global state, and the incorrect use of the alias by the client
has been rightly precluded by the proof rules. (A more positive
example of aliasing, which incidentally would not be amenable to
unique-reference disciplines, would be a program to dispose nodes
in a graph.)

Similarly, suppose the client tried to corrupt the manager, by sneak-
ily tying a cycle in the free list.

{emp}alloc; free; x.2 :=x{??%3

Once again, there is no assertion we can find to fill in the ???, be-
cause after théee statement the client has given up the right to
dereference (emp will hold at this program point). And, this pro-
tection has nothing to do with the fact that knotting the free list con-
tradicts the resource invariant. For, suppose the statexent x

was replaced by.1 :=x. Then the final assignment in this sequence
would not contradict the resource invariant, when viewed from the
perspective of the system’s global state, becausdist{é) pred-
icate is relaxed about what values are in head components. How-
ever, from the point of view of the interface specifications, the client
has given up the right to dereference even the first component of
X. Thus, separation prevents the client from accessing the internal
storage of the module in any way whatsoever.

Finally, it is worth emphasizing that this use-ofo enforce separa-

tion provides protection even in the presence of address arithmetic
which, if used wrongly, can wreak havoc with data abstractions.
Suppose the client tries to access some memory address, which
might or might not be in the free list, using2 := 7. Then, for

this statement to get past the proof rules, the client must have the
right to dereferencd?2, and therefore 42 cannot be in the free list
(by separation). That is, we have two cases

{42——+p}[42 :=7;alloc{42+— 7 p*xX+—>——}
and
{p}[42 :=7;{??% alloc{??23

wherep does not imply tha#i2is in the domain of its heap. In the
first case the client has used address arithmetic correctly, and the
42— —in the precondition ensures tht is not one of the cells in

the free list. In the second case the client uses address arithmetic
potentially incorrectly, and the code might indeed corrupt the free
list, but the code is (in the first step) blocked by the proof rules.

5 The Eye of the Asserter

In Table 3 we give a queue module. In the specification we use
a predicatdistsedx, a,y) which says that there is an acyclic linked
list from xtoy has the sequencein its head components. The vari-
ableQ denotes the sequence of values currently held in the queue; it
is present in the resource invariant, as well as in the interface spec-
ifications. (Technically, we would have to ensure that the variable
Q was added to the component of our semantics.) This exposing
of “abstract” variables is standard in module specifications, as is
the inclusion of assignment statements involving abstract variables



Interface Specifications The upshot of this discussion is that the idea of ownership transfer
{Q=0aAz=nAP(2)}eng {Q=a-(n) Aemp}[Q] we have alluded to is not determined by instructions in the program-
{Q=(m)-aAemp}deq {Q=aArz=mAP(2)}[Q.,Z ming language alone. Just what storage is, or is not, transferred de-
{emp}isempty? {(w=(Q=¢))Aemp} W] pends on which definition d&® we choose. And this choice depends

on what we want to prove.
Resource Invariant: listsedx, Q,y) * (y ———) ) o
This phenomenon, where “Ownership is in the eye of the Asserter”,

Private Variables: X,y,t can take some getting used to at first. One might feel ownership
transfer might be made an explicit operation in the programming

listsegPredicate Definition . .
language. In some cases such a programming practice would be

listsegx, a, y) et useful, but the simple fact is that in real programs the amount of
. resource transferred is not always determined operationally; rather,
ifx= yther,‘ (=] Aem/p) there is an understanding between a module writer, and program-
else (za'. (a=(v)a AX—V,2) ¥ P(v) mers of client code. For example, when you cadlloc()  you

« listsedz o, y)) just receive an address. The implementationmafioc() does

not include explicit statements that transfer each of several cells to

Internal Implementations . -
P its caller, but the caller understands that ownership of several cells

Q:=Q(2); (code forenq) comes with the single address it receives.
t:=cons(—-);yli=zy2:=t;y:=t
Q:=cdr (Q); (code fordeq) 6 A Conundrum

z:=x1;t:=x; X:=x.2;dispose(t)

wi=(x=Y) (code forisempty? ) In the followingO is the assertiormp that the heap is empty, arld
says that it has precisely one active cell, 8§g01 is X ——).
Table 3. Queue Module, Parametric inP(v)

Consider the following instance of the hypothetical frame rule,
wheretrue is chosen as the invariant:

{0V 1}Kk{O}[] F {1}k{false}

This queue module keeps a sentinel at the end of its internal list, {(0v 1)« truetk{O+true}[] F {1« true}k{false x true}
as is indicated byy — — —) in the resource invariant. The sentinel
does not hold any value in the queue, but reserves storage for a newrhe conclusion is definitely false in any sensible semantics of se-
value. quents. For example, i denotes the do-nothing commanséip ,

then the antecedent holds, but the consequent does not.
An additional feature of the treatment of queues is the predicate
P, which is required to hold for each element of the sequence  However, we can derive the sequent in the premise:
By instantiatingP in various ways we obtain versions of the queue

whose only purpose is to enable the specification to work.

i 0V 1}k{0
module that transfer different amounts of storage. { 1k{0} Consequence
e P(v) = emp: plain values are transferred in and out of the {0}k{0} :
) . ) —————— Ordinary Frame
gueue, and no storage is transferred with any of these values; {0v 1}k{0} {0%1}k{0x*1}
s . —————— Consequence ————— Consequence

e P(v) = v———: binary cons cells, and ownership of the stor- {1}k{0} {1}k{1} o

age associated with them, are transferred in and out of the (LA LIK{1A 0} Conjunction

ueue; ———— Consequence
d {Lk{alse} a

e P(v) = list(v): linked lists, and ownership of the storage as-
sociated with them, are transferred in and out of the queue. This shows that we cannot have all of: the usual rule of conse-
quence, the ordinary frame rule, the conjunction rule, and the hy-

To illustrate the difference between these cases, consider the fol-pothetical frame rule. It also shows that the idea of treating infor-

lowing attempted proof steps in client code. mation hiding as syntactic sugar for proof and specification forms
should be approached with caution: one needs to be careful that in-
{Q=(n)-a Aemp} troduced sugar does not interact badly with expected rules, in a way
deq that contradicts them.
{Q=0aAz=nAP(2)}
21:=42 The counterexample can also be presented as a module, and can be
{773 used to show a similar problem with the modular procedure rule.

In caseP(v) is eitheremp or list(v) we cannot fill in ??? because we
do not have the right to dereferenze the precondition of.1 :=
42. However, ifP(v) is v — —,— then we will have this right, and a

Given this counterexample, the question is where to place the
blame. There are several possibilities.

valid postcondition i§Q = a Az= nAz+— 42,—). Conversely, if we 1. The specificatiof0V 1}k{0}. This is an unusual specifica-
replacez.1 := 42 by code that traverses a linked list then the third tion, since in the programming languages we have been using
definition of P(v) will enable a verification to go through, where the there is no way to branch on whether the heap is empty.

other two will not. 2. The invariantrue . Intuitively, a resource invariant should

precisely identify an unambiguous area of storage, that owned
On the other hand there is no operational distinction between these by a module. The invariarist(f) in the memory manager is
three cases: the queue code just copies values. unambiguous in this sense, whémee is perhaps not.



3. One of the rules of conjunction, consequence, or the ordinary properties, ordered by subset inclusion.
frame rule.

We pursue the first two options in the remainder of the paper, by LEMMA 1. LRelis a chain-complete partial order with a least el-

defining a model of the programming language and investigating a 8Ment. The least element is the empty relation, and the least upper
notion of precise predicate. bound of a chain is given by the union of all the relations in the

chain.
7 A Denotational Model The meaning of a command is given in the context of an environ-

. . . . . mentn, that maps procedure identifiers to relations Rel.
Until now in work on separation logic we have used operational

semantics, but in this paper we use a denotational semantics. By N € Proclds — LRel [CINn € LRel
using denotational semantics we will be able to reduce the truth . .
of a sequent F {p}C{q} to the truth of a single semantic triple The semantics of expressions depends only on the stack
{p}H[Cn{a} wheren maps each procedure identifier into a [E]se Ints [B]s < {true false} (wherese S).
“greatest” or “most general” relation satisfying it. In the case of
the hypothetical frame rule, we will be able to compare two de- The valuations are standard and omitted.
notations of the same command for particular instantiations of the
procedure identifiers, rather than having to quantify over all possi- Selected valuations for commands are in Table 4. The main point
ble instantiations. Our choice to use denotational semantics here isto note is the treatment dfult. We have included only the basic
entirely pragmatic: The greatest relation is not always definable by commands and sequential composition. The interpretation of con-
a program, but the ability to refer to it leads to significant simplifi- ditionals is as usual, a procedure call applies the environment to the
cations in proofs about the semantics. corresponding variable, and while loops artrec receive stan-

dard least fixed-point interpretations, which are guaranteed to exist
Recall that a state consists of a pair, of a stack and a heap. A com-by Lemma 1.
mand is interpreted as a binary relation
LEMMA 2. For each comman@, [[C] is well-defined: for all en-
vironments, [[C]n is in LRel, and[[C]|n is continuous im when
that relates an input state to possible output states, or a special outenvironments are ordered pointwise.
put, fault, which indicates an attempted access of an address not
in the domain of the heap. In fact, because we use a fault-avoiding It is entertaining to see the nondeterminism at work in the semantics
interpretation of Hoare triples, it would be possible to use the do- of cons in this model. In particular, since we are aiming for partial
main correctness, the semantics does not record whether a command ter-
minates or not; for instance,:= 1;y := 1 has the same denotation

States — P(States) U {fault} as a command that nondeterministically picks eithes 1;y:=1

instead. Using the more general domain lets us see clearly that if aor divergence. Such a nondeterministic command can be expressed
command nondeterministically chooses betweenlt and some  inour language as
state, then the possibility of faulting will mean that the command
is not well specified according to the semantics of triples. This is
not an essential point; the more constrained domain could be used
without affecting any of our results.

States < StatesU {fault}

X := cons(0);dispose(X);y:= cons(0);dispose(y);
if (X=Y) then (x:=1;y:=1)
else (while (X =X) skip)

] ) ) o ) The reader may enjoy verifying that this is indeed equivalent to
This domain of relations is inappropriate for total correctness be- x:— 1:y:= 1 in the model.

cause it does not include a specific result for non-termination, so
that our semantics will not distinguish a commahéom one that

nondeterministically choos&sor divergence. 8 Semantics of Sequents
We will not consider all relations, but rather only those that validate I this section we give a semantics where a sequent
the locality properties of the (ordinary) frame rule. We say that a I+ {p)C{q}

relationc: States <> StatesU {fault} is safeat a stat€s, h) when

~((s,h) [c]fault). We just list the properties here, and refer the says that if every specification Iis true of an environment, then
reader to [39] for further explanation of them. The locality proper- gg is{p}C{a}.

ties are:

To interpret sequents we define semantic cousins of the modifies

1. Safety Monotonicity: for all stateqs, h) and heaps; such that clauses and Hoare triples.df- LRel is a relation then

h#hy, if cis safe afs,h), it is also safe ats,h«h;).

2. Frame Property: for all states(s,h) and heapd; such that e modifies(c,X) holds if and only if whenevely ¢ X and
h#hy, if cis safe af(s,h) and(s,hxhy)[c|(S,h), then there is (s,h)[c](s,h), we have thas(y) = S (y).
/ /
a subheapy < I such that « {p}c{a} holds if and only if for all stategs,h) in p,
e, < hy =1, and(s (el ). L~ {(3h)[¢] faulc); and

2. if (s,h)[c] (¢, ) then statds,h') ising.
Now we can define the semantics: A sequent

k Xi]... F{p}C
The posetLRel of “local relations” is the set of all re- {Putta{auial... {pn}kn{an} ol - {P}C{a}
lations c satisfying the safety monotonicity and frame holds if and only if

Commands will be interpreted using the following domain.



for (s,h) € States anda € StatesU {fault},
(sh)[[x:=E]nla <= a= (sx— [E]s,h)

(s,h)[[x:= cons(Ey,...,En)nja<=3Im. (m,...,m+n—1¢dom(h))
A (a= (s[x— m),hx[m— [Eq]ls,...,m+n—1 [En]s]))
(s,h)[[x:= [E]n]a <= if [E]lse dom(h) then a= (s[x — h([E]|s)],h) else a= fault

(s,N)[[[E] ;= F]n]a<= if [E]]s€ dom(h) then a= (s, h[[E]]s— [F]9) else a= fault

(s,h)[[dispose(E)]n]a <= if [E]lse dom(h)
then a= (s,1) for i s.t. ' % ([E]]s— h([[E]}s)) = h
else a= fault

(s)[[Cy;Calnja <= (3(S, ). (s h) [[CIn] (8. H) A (S, W) [[C2In]a) v (1) [[Cln] fault na = fault)
wherefix f gives the least fixed-point df, andsedcy, cy), b~ ¢1;cp andds, ...,dy are defined as follows:

(s,h)[seqcy,co)]a <= (a(g, ). (s.h) [ca] (5, 1) A (S, H) [c2] a) v ((s, h) [c] fault Aa = fault)

(s,h)[b~c1;co]a <= ifb(s) =truethen (s,h)[ci]aelse (s h)[co]a
(di,...,dn) = fix(Ady,...,dn € LRel". (Fy,...,Fn)) (whereF; = [Ci]n[ky — d1,...,Kn+— dn])

Table 4. Selected Valuations

for all environmentsn, if both {pi}n(ki){gi} and listsedx,y) says that ik andy have the same value in a stégeh),
modifies(n(k),X;) hold for all 1 <i < n, the triple the heaph must be empty. If we had lef # y out of the second
{p}([C]n){a} also holds. disjunct, therlistsegx,y) would not be preciselistseqx,x) could
be true of a heap containing a non-empty circular list footo x
9 Precise Predicates (and nothing else), and also of the empty heap, a proper subheap.

For this reason, the list segment predicate in [36] is not precise, if
We know from the counterexample in Section 6 that we must re- W& Wrap it in an existential quantifier over the sequence parameter.
strict the hypothetical frame rule in some way, if it is to be used . . . .
with the standard semantics. Before describing the restriction, let If PiS a precise predicate then there can be at most one way to split
us retrace some of our steps. We had a situation where ownershig?"y 9iven heap up in such a way as to satigfyq; the splitting,
could transfer between a module and a client, which made essential’ there is one, must give the unique subheap satisfying it. This
use of the dynamic nature ef But we had also got to a position  €2ds to animportant property of precise predicates.
where ownership is determined by what the Asserter asserts, andL

this put us in a bind: when the Asserter does not precisely specify EMMA 3. Apredicatepis precise if and only ip« — distributes

what storage is owned, different splittings can be chosen at differ- Overa:
ent times using the nondeterministic semantics;ahis fools the for all predicatesy andr, we haveps (qAT) = (p+a) A
hypothetical frame rule. It is perhaps fortuitous that the nondeter- (p*r).

minism inx has not gotten us into trouble in separation logic before
now. A way out of this problem is to insist that the Asserter pre- We also have closure properties of precise predicates.
cisely nail down the storage that he or she is talking about. ) ] o
LEMMA 4. For all precise predicatep and g, all (possibly im-
A predicatep is preciseif and only if for all stategs, h), precise) predicates, and boolean expressiofs all the predicates
there is at most one subheiapof hfor which (s, hp) € p. PAT, p g, and(BAp)Vv(-BAQ) are precise.

Intuitively, this definition says that for each stéteh), a precise

predicate unambiguously specifies the portion of the Heé#pat 10 Soundness
is relevant to the predicate. Formulae that describe data structure
are often precise. Indeed, the definition might be viewed as a for-
malization of a point of view stressed by Richard Bornat, that for
practically any data structure one can write a formula or program
that searches through a heap and picks out the relevant cells. Bornatryeorem 5.

used this idea of reading out the relevant cells in order to express ) ] ] -
spatial separation in traditional Hoare logic [4]. (a) The hypothetical frame rule is sound for fixed preconditions

P1,---, Pnifand only if p1, ..., pn are all precise.

<Al of the proof rules from Section 3.2 are sound in the denota-
tional model. The main result of the paper concerns the hypotheti-
cal frame rule and, by implication, the modular procedure rule.

An example of a precise predicate is the following one for list seg-

ments: (b) The hypothetical frame rule is sound for a fixed invariaift

] def and only ifr is precise.
listsegx,y) = (x=ynemp)V Theorem 5(a) addresses point 1 from Section 6: it rules out the
(x#yATz (x+—2) « listseqzy)) preconditior0V 1 in the conundrum, which is not precise. Theorem
This predicate is true when the heap contains a non-circular linked 5(b) addresses point 2: it rules out the invarigum , which is not
list (and nothing else), which starts from the cetind ends with precise. And this result covers the queue and memory manager
y. Note that because of+# y in the second disjunct, the predicate examples, where the preconditions and invariants are all precise.



There are two main concepts used in the proof of the theorem. e Generalized Safety Monotonicity: if (s,h)[R](st,h1), andc is

¢ The greatest relation We identify the greatest relation for safe a(s,h), thenc, is safe atsy, hy).

a specificatior{ p}k{q}[X], which is the largest local relation e Generalized Frame Property: if (s,h)[R|(s1,h1), ¢ is safe at
satisfying it. This allows us to reduce the truth of a sequent, (s,h), and(sy, hy)[ca](sy, ), then there is a statg’,h') such
which officially involves quantification over all environments, that(s,h)[c](s, i) and(s, )[R](s], h}).

to the truth of a single triple for a single environment. i
. . g P g ) c[sim(R)]cy says that folR-related initial stategs,h) and(sg,hs),

e Simulation. To show the soundness of the hypothetical frame \yhen we have enough resources(sh) to run c safely, we also
rule we need to connect the meaning of a command in one paye enough resources(at, hy) to runc; safely; and in that case,

context to its meaning in another with an additional invariant - eyery state transition frorfs;, hy) in ¢, can be tracked by a transi-
and additional modifies sets. We develop a notion of simula- o from (s, h) in c.

tion relation between commands to describe this connection.
Suppose is a predicate. The following relatidR plays a central

In the next two subsections we define these concepts and state someole in the analysis of the hypothetical frame rule.
of their properties, and then we sketch their relevance in the proof

of the theorem. (s, h)[R](st,hy) 2 s=s; A The.hy = hsh A (s hy) er

10.1 The Greatest Relation The next res_ult gives us a way to connect hypothe_s_es in the prv_smise
and conclusm_)n o_f the hypo_thetlcal _rule, and apldltlonally provides

For each specificatiofip} — {q}[X], definegreat(p,q, X) Lrlzéhsracterlzatlon of precise predicates that is at the core of The-

(s,h)[great(p,q, X)]fault

<d:(af>(s,h)§fp*true PROPOSITION 8.

(s,h)[great(p,q,X)](s,H) (a) A predicatepis precise if and only if
def : . .
o ey g
p M. (Ppxhy = :Np
= 3hg. hg#ha Ahgxhy = A (s hg) e g holds for for all predicates andg, and set of variables.

The first equivalence says thgteat(p, g, X) is safe at(s,h) just

A (b) A predicate is precise if and only if
when p holds in (s,hp) for some subheapp of h. The second

equivalence is about state changes. The condition (1) means that great(p,q, X)[sim(R)]great(p*r,qxr,X)
great(p,q,X) can modify only those variables K. Condition (2)
says thafgreat(p,q, X) demonically chooses a subhelagp of the holds for all predicatep, q and setsX of variables.

!nitia! heaph that se_ltisfiesp_(i.e., (S,hp) < p), and c/iis_poses aI/I cells The detailed proof of Theorem 5 relies on developing machinery
in hy; then, it angelically picks from a new hea (i.e., (8 hg) € that allows us to apply this key proposition; this development, and
q) and allocatesy to get the final heafy’. the proof of the proposition itself, is nontrivial, and will be left to
the full paper. However, the relevance of the proposition can be
seen by considering a special case of the hypothetical frame rule,
for the key case of procedure call, and where the modified variables
are held fixed:

LEMMA 6. The relation great(p,g,X) is in LRel, and satis-
fies{p} — {g} and modifies(—,X). Moreover, it is the greatest
such: for all local relationsc in LRel, we have thaf p}c{qg} A
modifies(c, X) = ¢ C great(p,q, X).

Thegreatesenvironment for a contexXt is the largest environment, {potk{an}{Xa] F {pk{a}

in the pointwise order, satisfying all the procedure specifications in {po+rik{or«r}[Xa] = {p*rik{o=r}
I. It mapsk to great(p,q,X) when{p}k{q}[X] € I'; otherwise, it
mapsk to the top relatiorbtates x (StatesU {fault}). Greatest
environments give us a simpler way to interpret sequents and proo
rules. A sequertt - { p}C{q} holds just if the triple{ p} ([C]]n){q}
holds for the greatest environmensatisfyingl’, leading to

We give a proof of the following proposition about this special case;
¢it is the central step for showing Theorem 5.

PROPOSITION 9.
(@) The above special case of the hypothetical frame rule is sound

PROPOSITION 7. For all predicatesp, g, p’ andq’, command€£, for a fixed preconditiorp; if and only if py is precise.
and context§ andl”’, we have the following equivalence: the proof
rule (b) The above special case is sound for a fixed invani@haind
I+ {p}C{a} only ifr is precise.
= {p'}C{d} Note that the if direction of the proposition is implied by the same

direction of Theorem 5, and that for the only-if direction, the propo-

H H / ! /
holds if and only if we havép}[Cln{q} = {p'}[[Cn’{q'} for sition implies the theorem. The proof of this proposition uses a

the greatest environmentsandn’ that, respectively, satisfy and

O lemma that characterizesn(R;) using Hoare triples.

. . LEMMA 10. Local relationscandc, are related bysim (R, ) if and
10.2 Simulation only if for all predicatesp, g, we have
Let R : States <> States be a binary relation between states. {pre{a} = {p*rici{gx*r}.

For c,c1 in LRel, we say thatc; simulatesc upto R, denoted
c[sim(R)]c1, just if the following properties hold: Proof: [of Proposition 9]



Using Proposition 7 and Lemma 10, we can simplify the above spe- Perhaps the most significant previous work that addresses infor-

cial case of the hypothetical frame rule as follows: mation hiding in program logics, and that confronts mutable data
) structures, is that of Leino and Nelson [23] (also, [12]). They use
for all predicate, g, abstract variables (like our use of the varia@len Table 3) to spec-
if {p}tka{as}Xa] - {p}k{a} holds ify modules, and they develop a subtle notion of “modular sound-
then{py +r}ki{ar«r}[Xa] = {p=*r}k{g=r} holds ness” that identifies situations when clients cannot access the inter-
. nal representation of a module. This much is similar in spirit to
<= (" Proposition 7 what we are attempting, but on the technical level we are not at all
for all predicate, q, sure if there is any relationship between the separating conjunction
if {p}great(py,qs,X1){q} holds, and their notion of modular soundness.

then{pxr}great(py«r,qp*r,X1){q=r} holds
The information-hiding problems caused by pointers have been a
<= ("."Lemma 10 concern for a number of years in the object-oriented types com-

reat(py, qg, X1 )[sim reat(py * 1, G * 1, X munity (e.g., [19, 10, 15] ). A focal point of that work has been a
great(p1, G, Xo)[sim(Ry)lgreat(py 1. Gy 2 concept of “confinement”, which disallows or controls pointers into

Now, Proposition 8(a) gives (a) of this proposition, and Proposi- dgtq representations. Some confinement systems use techniques
tion 8(b) gives (b) of this proposition. 1 similar to regions, with control over the number and direction of
pointers across region boundaries.

10.3 Supported and Intuitionistic Predicates The advantage of confinement schemes is their use of static typing,
or static analysis, to provide algorithmic guarantees of information
There is a relaxation of the notion of precise predicate that can be hiding properties. Conversely, separation logic is more flexible, not
used to provide further sufficient conditions for soundness. A pred- just because it is based on logic rather than types, but also because
icate issupportedif, for any stack and heap, the collection of sub- it allows any number of pointers from the outside, requiring only
heaps making it true (while holding the stack constant) is empty or that these pointers not be dereferenced without permission. Current
has a least element. A predicaténtuitionisticif it is closed under confinement schemes have difficulty with ownership transfer that
heap extension. involves aliasing (because they tend to rely on “unique” pointers),
. . . such as a program that disposes all of the elements in a graph, or
THEOREM 11. The hypothetical frame rule is sound in the follow-  yith examples where resource partitioning depends on arithmetic

ing cases: properties.
(a) the preconditiongs, ..., pn are supported, and the postcon-
ditionsqy, . .., gy are intuitionistic; or Recent work on the semantics of confinement uses heap partition-

) o - ing in an essential way [3, 33], thus suggesting the prospect of a
(b) the resource invariant is supported, and the postconditions  deeper connection between type systems for confinement and log-
d1,---,0n are intuitionistic. ics of separation. There is also the possibility of promoting the

Notice that the first point does not contradict the only if part of heap partitioning operationused in the semantic models to a type
Theorem 5(a), because it mentions postconditions in addition to OPerator in the source language; an immediate step could even be
preconditions. Likewise, the second point does not contradict The- attempted to obtain a form of alias types with information hiding
orem 5(b), because it mentions postconditions as well as the re-[37]. Further unification along these lines could be valuable.

source invariant. This result about supported predicates would give . ) )

us a version of the hypothetical frame rule appropriate when we are It is striking that many proof systems for object-oriented languages
not interested in nailing down definite portions of memory using WOrk by exposing class invariants or other descriptions of internal

assertions, as might be the case in a garbage-collected language. States at method call sites (e.g., [13, 34]). Of course, the developers
of such systems have rightly been careful, as unsoundness can very

easily result if one incorrectly hides invariants. It seems plausible,
11 Related and Future Work however, that taking explicit account of separation or confinement
could lead to an improved logic of objects.
As we have emphasized, reliance on fixed resource partitioning has
been an obstacle to the development of modular methods of pro-Further afield in aims, but closer in technique, are logics of mo-
gram specification that are applicable to widely used programming bile and concurrent processes that have been developed by Cardelli,
languages. Because the separating conjunetisna logical con- Caires and Gordon [9, 5]; related ideas have also been used to study
nective, which depends on the state, it allows us to describe situa-semi-structured data [8, 7]. Cardelli et. al. use subsets of a commu-
tions where the partition between a module and its clients changestative monoid, as in the general models of bunched logic [31, 32],
over time. For example, with a resource manager module the re-but the interaction between logic and program dynamics is very
sources transfer back and forth between the module and a client,different to that here. The models of [9, 5] do not satisfy the prop-
as allocation and deallocation operations are performed, but correcterties (such as the frame property) that drive our approach to infor-
operating relies on separation being maintained at all times. mation hiding. Furthermore, although the “pointers from outside”
phenomenon certainly occurs in their setting, based as it is on the
A different reaction to the limitations of fixed partitioning has Ttrcalculus, they do not use the conjunctier(or | in their nota-
been the development of the assume-guarantee method of reasonintjon) to control these pointers/names; rather, they employ a form of
about program components [24, 21]. While this has proven success-new name quantifier, following Gabbay and Pitts [14]. Despite the
ful, we are unsure whether it could be profitably applied to mutable surface similarity of logical structure, we do not feel that we fully
data structures with embedded pointers. In any case, when parti-understand the relationship between the two approaches.
tioning can be ensured, be it fixed or dynamic, an invariant-based
methodology leads to pleasantly modular specifications and proofs.An intriguing question is if there is a link between the hypothet-



ical frame rule and the data abstraction provided by polymorphic 12
types. Polymorphic typing can be used to hide the type in a data ab-
straction [35, 25], but this is not the same thing as hiding dynamic

resources. For example, if we hide the type of a reference, polymor-
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13 Appendix: Variable Conditions
13.1 Side Conditions and Modifies Sets

We now clarify the side conditions for the hypothetical frame rule.
To begin with, note that in the rule we are using comma between
theX; andY for union of disjoint sets; the form of the rule therefore
assumes thaX; andY are disjoint.

The disjointness requirement fgrenforces that we do not observe
the changes of a variable ¥hwhile reasoning abou@; as a result,
reasoning in client code is independent of variableg.ilve give a
technical definition of several variants on a notion of disjointness of
a set of variableX from a set of variables, a command, a predicate,
or a context. X is disjoint from a sely if their variables do not
overlap; X is disjoint from a commang if X does not intersect
with the free variables of; X is disjoint from predicate if the
predicate is invariant under changes to values of variables X

is disjoint from contexf if for all {p}k{qg}[Y] in T, X is disjoint
from p, g andY. This defines the second side condition.

The first side condition can be made rigorous with a relativized ver-
sion of the usual notion of set of variables modified by a command.
We describe this using a setodifiegC)(I";I"") of variables associ-
ated with each command, where we split the context into two parts.
The two most important clauses in the definition concern procedure
call.

Modifiegk)(I; ") X, if {pik{a}[X]el
Modifiegk)(I"; ") {3, it {pik{a}[X] T’
The upshot is thatlodifieC)(I"; ") reports those variables modi-

fied by C, except that it doesn’t count any procedure calls for pro-
cedures i,

For the other commands, the relativized notion of modifies set
is defined usual. For a compound commahdvith immediate
subcommand€;, . ..,Cy, the setModifiegC)(I"; ') is the union
UiModifiegG;)(I"; ). Two of the basic commands are as follows:

Modifiegx:=E)(I';T") = {x}  Modifieg[x]:=E)(I';["’) = {}

ModifiesC)(I"; { p1}ka{d1}[Xal; - { Pn}kn{tin} [Xa])
is disjoint fromr.

The modifies conditions for the the ordinary frame and recursive
procedure rules do not mention the “except through” clause. These
can be formalized by taking’ to be empty inrModifiegC)(I"; ).

An important point is that the free variables of the resource invari-
ant are allowed to overlap with th§. This often happens when
using abstract variables to specify the behaviour of a module, as
exemplified by the treatment of the abstract variddie the queue
module in Table 3.

The complexity of modifies clauses is a general irritation in pro-
gram logic, and one might feel that this problem with modifies
clauses could be easily avoided, simply by doing away with assign-
ment to variables, so that the heap component is the only part of the
state that changes. While this is easy to do semantically, obtaining
a satisfactory program logic is not as straightforward. The most im-
portant point is the treatment of abstract variables. For example, in
the queue module the variabigis used in interface specifications
as well as the invariant. If we were to try to place this variable into
the heap then separation would not allow us to have it in both an in-
terface specification and an invariant. If some other approach could
be developed as an alternative to the changing abstract variables,
that was itself not more complex, then perhaps we could finally do
away with modifies conditions.

In situations where one wants to capture only “structural integrity”
properties of data structures, rather than correctness properties, it is
often possible to avoid abstract variables. For example, one some-
times wants to ensure, for example, that a data structure has the
correct shape and has no dangling pointers, without giving a com-
plete description of the data that is represented. Because abstract
variables are not required (or less often required) in such situations
we might get some way with a logic simpler than the one here, that
does not require modifies clauses.

13.2 On Existentials and Free Variables

In [26, 36] there is an inference rule for introducing existential vari-
ables in preconditions and postconditions.
{p}C{a}
{3x.p}C{3x.q}
The side condition cannot be stated in the formalism of this paper.

For, a procedure specificatidmp}k{q}[X] identifies the variables,
X, thatk might modify, but not those th&tmight read from.

x ¢ free(C)

We can get around this problem by adding a free variable compo-
nent to the sequent form, thus having

(Y)T - {p}C{a}.

This constrains the variables appearingiand all the procedures
ki, but not the preconditions and postconditions. This would allow
us to describe the existential rule as

(V)T +{p}C{a}
(V) T F{3x.p}C{3x.q}

xgY

For [x] := E the modifies set is empty because the command alters Another reasonable approach is to have a distinct class of “logical”

the heap but not the stack.

We are now in a position to state the first side condition rigorously:
it means

variables, that cannot be assigned to in programs. For technical
simplicity, we do not explicitly pursue either of these extensions in
the current paper.



