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1. INTRODUCTION

Traditional denotational semantics models imperative languages using state-to-
state functions [Scott and Strachey 1971; Tennent 1991]. This approach successfully
accounts for the fact that storage variables take on different values at different times
during computation, but it does not cope nearly as well with the idea that a state
change destructively alters the contents of the store.

To see the difficulty, suppose we use a function p : States — States x Values to
model the behaviour of an expression with side effects. Because a state is treated as
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a value like any other we are free, in the semantics, to manipulate any such function
in a decidedly non-imperative manner. For instance, we can define a function

snap : (States — States X Values) — (States — States x Values)
as follows:
snap(p)s = [s,v], where ps = [s',v].

(Here we are ignoring issues of non-termination.) This snap operator is a perfectly
reasonable mathematical function, but if we try to read it in an imperative fashion
it contradicts the intuitive understanding of a state transformation as altering the
store. Instead, it displays a “snapback” effect; snap(p) proceeds by executing p,
producing a new state s’ and value v, and then snapping the state back to its initial
value s. The use of p here does not destroy the initial state s.

In this paper we present an approach that better captures the imperative char-
acter of state transformations. The approach is based on a combination of linear
typing and parametric polymorphism, and is given, formally, via syntactic transla-
tions from two variations on Algol 60 into a linear polymorphic A-calculus. The
translations are based on the idea that a program is linearly polymorphic in the
type of the state; this allows for a subtle interplay between the copyability of spe-
cific values put into the store, and the inability of a program to copy the entire
store. We analyze the translations using a model of the target language.

Although our analysis mainly focuses on the resulting semantics of the source
languages, the translations can be regarded as well as indicating the imperative
nature of the target language. That is, although the linear polymorphic calculus
is a purely functional language, the translations can be regarded as providing an
imperative reading of a range of types in the functional target.

Before continuing we would like to stress that the “problem” with the traditional
semantics should be understood in its historical context. Indeed, Strachey on a
number of occasions emphasized the fundamentally different way that the state
and environment are used. For example:

“The state transformation produced by obeying a command is essentially
irreversible and it is, by the nature of the computers we use, impossible
to have more than one version of [the state] available at any one time.”

C. Strachey [1972]

And Scott identified the non-copyability of state as crucial:

“We will be tempted to copy p [the environment], but we will never

generally feel free to ask for a copy of the whole computer store there
is just no room for that.” D.S. Scott [1972]

But, while Scott and Strachey’s prose vividly distinguished the state from the
environment, in 1972 the theoretical techniques were not yet in place to allow for
a precise description of the imperative, or irreversible, nature of state change, as
expressed informally by them.

In 1975, one of the authors (Reynolds) attempted to use the polymorphic A-
calculus [Girard 1972; Reynolds 1974] to describe Algol, discovering much of the
translation we will exhibit in Sections 4.1, 5.1, and 5.2. At the time, this seemed
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to be a quixotic effort to define a well-understood language in terms of a less
understood one. (The author overlooked the fact that the translation avoided
impredicativity.)

The intervening years, however, have seen the development of a relational se-
mantics of polymorphism [Reynolds 1983]; possible world semantics of imperative
languages [Reynolds 1981b; Oles 1982]; a connection between polymorphism and lo-
cal state [O'Hearn and Tennent 1995]; and linear logic [Girard 1987]. Drawing upon
all of these developments, we are now able to give a refined translation of Algol-like
languages into the linear polymorphic A-calculus that, when coupled with a rela-
tional semantics for the latter language, gives a more abstract description of Algol
that earlier formulations of its semantics.

The translations are essentially a recasting of the the functor-category semantics
developed by Reynolds [1981b] and Oles [1982] in the early eighties, using a lin-
ear polymorphic A-calculus in place of a functor category. Their store shapes are
replaced by type variables, natural transformations are replaced by polymorphic
functions, and state-to-state functions are replaced by linear functions. This use of
polymorphism is as in the parametric-functor semantics of O’Hearn and Tennent
[1995], but refined by the use of linearity.

In the remainder of this Introduction we give an extended, informal, description
of the main elements underlying our approach.

1.1 Linear Typing and State Transformations

The central idea, on which linear logic hinges, is that of a linear function. The
guiding intuition is that a linear function “uses” its argument exactly once; as a
result, it cannot freely copy or ignore its argument, because doing so would violate
the use criterion. One often speaks also of a linear function as “consuming” its
argument in the process of producing its result. The connection between use and
consumption is that, after a linear function has used its argument once, the argu-
ment is no longer available, because to use it again would constitute two uses. The
problem with snapback is that it uses the initial state twice, once when producing
an intermediate result and again when producing a final answer. Thus, it is not
linear in its state argument.

Linear logic is based on Girard’s identification of the structural rules of logic as
a source of discarding and copying data [Girard 1987]:

. I''BBFA
TFBFi:lA Weakening ———— Contraction.

IBEFA
Weakening introduces a dummy assumption: In computational terms it may be
understood as transforming a computation depending on I' into a computation
depending on T and B, but which ignores B. In Girard’s resource description of
logical rules, the ignoring of the B component involves the discarding of a datum of
type B. Similarly, Contraction involves copying: From a computation depending
on two B-typed values a computation depending on only one can be obtained, if we
have the ability to duplicate that value and supply the two copies to the original
computation.

Linear logic is a refinement of traditional logic which arises by restricting the
use of Weakening and Contraction. When the logic is used as a type system for
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a programming language, this control over structural rules translates into restric-
tions on the occurrences of identifiers within terms [Abramsky 1993; Wadler 1991;
Benton et al. 1993]. These restrictions result in a type A—o B of linear functions,
which cannot discard or duplicate their arguments through free use of Weakening
or Contraction.

To connect these ideas back to imperative computation, let us try to write snap
in a programming notation:

snap(p) = As.let[s’,v] bepsin [s,v].

This term uses both Contraction and Weakening: Contraction corresponds to the
two non-binding occurrences of the initial state s in the body of the A-expression,
and Weakening to the absence of s’ in [s,v]. As a result, if we were to use
States—o States ® Values as the type of side-effecting expressions (where States ®
Values is a type of “eager pairs”) then snap(p) would fail to typecheck; snapback
is excluded by linear typing.

There is thus a tantalizing analogy between linear functions and imperative state
transformations. So it is natural to ask whether, or the extent to which, linear logic
can give rise to an improved semantic treatment of state.

As a first test of the analogy, we might translate a basic imperative language,
such as the language of while programs, into a linear functional language. It is
clear that one could express typical constructs, such as sequencing, assignment and
iteration, in terms of linear functions.

This is all well and good, but it only connects up imperative and linear functional
programming on a basic level, for an imperative language without procedures. And
such a language does not in fact provide a satisfactory test. For, basic sequential
imperative languages, without procedures, already possess a satisfactory founda-
tion, with simple semantic models based on partial functions on states and logics
based on Hoare triples or weakest preconditions. It is difficult to see how this un-
derstanding could be improved by phrasing the semantics in terms of linear types.

How can this bel' We began by describing problems in traditional semantics
based on state-to-state functions, and the language of while programs uses precisely
that kind of semantics. Consider again the snapback example: snap is a function
from state transformations to state transformations; in imperative terms it is a
procedure that expects an expression thunk as an argument. It takes an arbitrary
state transformation, runs it, and then restores the state to its initial value. The
whole discussion of snapback and irreversibility hinged on having procedures, which
are missing from the language of while programs.

We can go further still if we use local variables: We can then write programs
whose observable behaviour is sensitive to whether or not snapback is present in
the semantics:

snaptester = Ap.new z.x :=0; p(z :=x + 1); if z > 0 then diverge.

The termination/nontermination behaviour of snaptester is equivalent to that of
Ap. p(diverge). The reason is that if p executes its argument at all then the value
of z on termination of p(z := x + 1) will be greater than 0, since there is no way for
p to alter the value of z other than by using its argument. Snapback contradicts
this informal reasoning, since snaptester(snap) converges while snaptester(diverge)
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diverges.

Thus, it makes sense to consider imperative languages that have procedures and
local state, in addition to assignment. In this paper we consider two such languages,
based on Idealized Algol [Reynolds 1981b].

1.2 Polymorphism, Data Abstraction and Store Shapes

It is evident how to model state transformations with linear functions, but now we
must consider how to model procedures and local state. We might attempt to do so
directly in a simply-typed linear language, using —o to model state transformations
and a conventional function type — to model procedures, but there is a further
problem: It is not obvious how we might account for the interaction of procedures
and local state (as given, for example, in snaptester).

To expand on this last last point, consider how a “counter class” can be pro-
grammed in an Algol-like language using procedures and local state [Reynolds 1978]:

newcounter = Ap.new z.x :=0; p(z:=z+ 1,x).

This code works by declaring a local variable x, and then passing the ability to
increment and read x to the procedure p. (The second argument z of p is implicitly
dereferenced from a variable to an expression, so that it cannot be assigned to by
p.). Because the procedure p can never access the local variable 2 we are assured,
for example, that the value of z can never be decremented. This illustrates how
a form of data abstraction results from the combination of procedures and local
state; it is hard to see how this phenomenon could be modelled in a simply typed
version of linear A-calculus.

This discussion has been leading toward our choice of target language. We can
account for data abstraction and local state using polymorphic types [Reynolds
1974; O’Hearn and Tennent 1995], so our target language will be a linearly-typed,
polymorphic A-calculus.

We can now sketch the main ideas behind the translations. The starting point is
to allow for multiple state types instead of only one. In terms of the polymorphic
target language we regard type variables as ranging over various “store shapes” or
state types, so that in a type a—o «a of state transformations the type variable «
can be instantiated to a variety of different representations of the state. The basic
idea is that programs working with different store shapes act on separate parts of
the store.

To see how this works recall the counter class above. An argument p to new-
counter is a procedure that accepts a command and an expression as arguments,
and produces a command as a result. We assign p the polymorphic type

VB.(B— B8)&(8—o [ @ nat) = (a ® B—o0a® f).

The idea is that the state in use when p is called is partitioned into the a-typed
part, which p may access directly, and the [-typed part, about which p knows
nothing. The argument type S—o 8 corresponds to a command for changing this
unknown state, and 8—o 8 ® nat to a natural number-valued expression (possibly
with side effects).

The type constructors & and — here are for conventional product and function
types; they are not subject to linearity restrictions. The mixing of linear and non-
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linear type constructors in the type of p implies that it is only the state that must
be used linearly; the two arguments, of types 8—o 3 and —o 3 ® nat, may be used
zero, one, or many times, as is common in imperative languages.

Now, if we apply the counter class to such a p, i.e., newcounter(p), we obtain a
function of type a—o a:

As:alet [s',n] be pnat]{An.n + 1, An. [n,n])[s, 0]
in s'.

We can see from this how the S-component in the type of p is regarded as ranging
over possible pieces of local state. What a local-variable declaration does first is
extend the state s to [s,0], i.e., a state with an additional component initialized
to 0. In this process of initialization the type of the state changes from a to
a®nat, with nat being the type of the values that can be held by the local variable.
Instantiating the 8 component to nat allows p to work in this enlarged state:
Communication between local state and non-local procedures is achieved through
polymorphic instantiation. Intuitively, the independence of non-local procedures
from local state corresponds to the parametricity of a polymorphic function whose
type argument ranges over possible pieces of local state [Reynolds 1983; O’Hearn
and Tennent 1995].

This example also illustrates how the move from simple to polymorphic types has
an additional effect, beyond enabling a treatment of data abstraction. To see this,
consider that we have used Contraction and Weakening of nat-typed identifiers:
Contraction is used for dereferencing, in An.[n,n], and Weakening of n’ is used to
model deallocation of the local variable on block exit. (We also sometimes need
Weakening to model updates.) These uses of Contraction and Weakening do not
contradict the intuitive connection between linearity and state change, because the
polymorphic uses of nat by p (obtained by instantiating £) will still all be linear.
This point deserves careful consideration, and we will return to it several times,
but the general idea is that polymorphic instantiation mediates between the linear
way that state is manipulated, and the use of non-linear values to make up specific
states.

Local-variable declarations are a special mechanism for ensuring absence of in-
terference through shared variables. We can also use polymorphic typing to treat
non-interference more generally. For example, consider the type

VBYy. (B B)&(y—oy®nat) = (a®@BRy—oa®B®7Y).

In imperative terms, a procedure of this type accepts two arguments, one a com-
mand and the other a side-effecting expression. If ¢ is such a procedure then in an
application g[A][B]{c,e) it is never possible to use ¢ to change the state in a way
that affects a future use of e. This is because, in ¢, using ¢ produces a (-typed
value, while e expects a y-typed value, and these types do not match up. So the
use of different type variables for the arguments means that the output state of one
cannot, be used as the input state of the other. Again in imperative terms, we take
this to mean that the two arguments ¢ and e don’t interfere.

We now proceed to present the translations, and the semantics. Our two source
languages are Idealized Algol [Reynolds 1981b] (without jumps or coercions, and
with side effects in expressions) and syntactic control of interference [Reynolds



8 : P.W. O’Hearn and J.C. Reynolds

1978] (without passivity). The target language is based on the —o, ®, &, — (or
“I”) fragment of intuitionistic linear logic [Girard 1987; Barber and Plotkin 1997],
extended with a fixed-point operator and a predicative form of polymorphism. The
semantic model of the target language is based on strict continuous functions and
binary relational parametricity [Reynolds 1983]. We analyze the model by looking
at sample equivalences, and by characterizing the structure of first-order types in
terms of domain equations for resumptions.

In Section 8 we will describe the connection to functor-category semantics in some
detail, but for the most part we will work directly with the polymorphic language
and its model.

2. TWO VARIATIONS ON ALGOL

Our imperative languages are based on the analysis of Algol 60 given in [Reynolds
1978; Reynolds 1981b]. The one, substantial, caveat is that our languages do not
account for passivity. Thus, evaluation of a natural-number expression can produce
a side effect, and we do not consider a concept of passive type [Reynolds 1978] (also,
[O’Hearn et al. 1999]).

Both languages use the following grammar of types:

¢ u= exp |acc | comm primitive types
=plOx0 |00 types

(s
1]

The primitive type exp is the type of natural-number expressions, acc is the type
of acceptors, and comm is the type of commands. Commands change the state of
the store but do not produce values, and an acceptor changes the state when it is
supplied with an integer. The type var of storage variables is an abbreviation for
acc x exp. The factors of var give the basic capabilities of updating and accessing
a storage variable.

2.1 lIdealized Algol

The typing rules for Idealized Algol follow. A typing context T' is a finite list of
assumptions z : § pairing identifiers with types, with the proviso that no identifier
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appears twice.

- w where ['is a permutation of I’
z:0Fx:60 'EM:6
Fz:0FM:¢ 'M:§—>6" THN:6
FEXz:0.M:60 -6 EMN:§6
PEM:6x0 102 L-M:0 TEN:6
ThmM:q; “iererissor TH(M,N):6x6
F'FNy:exp T'EFN;j:p,1=2,3
'+0:exp I'Fif Ny =0 then N, else N3 : ¢
' M:exp ' M:exp
'+ succ M : exp '+ pred M : exp
'-M:0—-46 I'M:var — ¢
Y, M:0 '-new, M : ¢
'FM:comm T'FN:yp
I' F skip : comm 'EM;N:p
' M :exp — comm 'FM:acc T'FN:exp
I' - byvalue M : acc I'M:=N:comm

Idealized Algol contains the functional constructs of PCF [Plotkin 1977]. Of
the imperative constructs, new(\z. C) works by binding x to a local storage vari-
able that is initialized to 0, “;” is sequential composition, skip is the do-nothing
command, and assignment supplies an integer value to an acceptor.

Acceptors were originally introduced as part of a generalized approach to vari-
ables [Reynolds 1981b], in which an acceptor was considered simply as a function
from data values to commands. On this view acceptors are similar to functions of
type exp — commn, except that they accept integer values rather than expression-
thunks as arguments; they are thus a form of call-by-value procedures. The byvalue
construct converts a thunk-expecting procedure to an acceptor using a coercion
from natural-number values to expressions. (It would be conceivable to provide
instead an alternate binding form for call-by-value, as was done in Algol 60 using
the keyword value with a formal parameter.)

We will often use syntactic sugar in an informal, but hopefully clear, way. For

instance, newcounter is rendered formally as

Ap : (comm X exp — comm) — comm.
NeWeomm (AZ : var. (mz) := 0;p((m ) := (sucec max), mox)).

Generally, we omit mention of types in new or on A-bound identifiers, we omit
the projections when using a term of type var, and we write new z. M instead of
new (Az. M).

An important difference with the original Idealized Algol is that a sequential
composition of the form M; N when N : exp may result in an “active expression,”
which may return different natural numbers on different uses. For example, if
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x : var is a declared variable then = := x + 1; z returns successive natural numbers
on successive uses.

We have not attempted to produce an irredundant collection of basic constructs.
For instance, the expression new,.. P of type acc could be eliminated, as it is
equivalent to byvalue (\y : eXp. neWeomm 2. Pz := y).

It is worth considering how the inclusion of side effects in expressions impacts
the coding of arithmetic operations. A typical functional encoding of addition is

plus = Y (Aplus. Ax. Ay.if z = 0 then y else plus (pred z) (succ y)).

In Idealized Algol (with side effects) an evaluation of plus e; eo will evaluate e; and
e multiple times, perhaps changing the state each time. For example,

NeWexp 2. 2 1= 1; (plus (z := 2z + 1; 2) 2)

diverges since z is incremented each time pred is evaluated.
Using new we can program a version of addition that evaluates its arguments
once each, left followed by right, and adds the resulting values together:

leftadd = Ax. dy.newz'.newy'.x' := x;y" := y; plus (z') (y').
We can also define rightadd = Az. \y. leftadd y .

2.2 Basic SCI

Basic SCI (for syntactic control of interference) is similar to Idealized Algol, but
for a few modifications. First, it uses the affine A-calculus as its type system,
whereas Idealized Algol uses the full simply-typed calculus. The affine calculus is
just the usual simply-typed calculus, except that the rule for procedure application
is restricted so that procedure and argument have no free identifiers in common.
(This is another way of saying that the calculus does not have Contraction.) This
restriction prevents interference between different identifiers. For instance, y and z
are aliases in ((AyAz.-- -y :=a---z:=b---)x)x if z denotes a storage variable. But
a term of this form cannot typecheck in Basic SCI because there is an occurrence
of z in a procedure and its argument.

Second, the rule for recursion is restricted to procedures with no free identifiers.
This restriction is needed because otherwise a recursive unwinding Y (F) > F(Y (F))
would violate the disjointness between procedure and argument that is character-
istic of Basic SCI.

Third, in Basic SCI we have a determinate form of parallelism, where the parallel
composition M || N is allowed if the free identifiers of M and N are disjoint. This
illustrates the difference with Idealized Algol, where the same construct would
(because of interference) lead to indeterminacy.

These modifications and additions to Idealized Algol are summed up in the fol-
lowing rules:

'-M:0—-6 I'"+-N:§ T'HFM:comm I'F N :comm
T'FMN : 6 LT'F M| N:comm

FM:0—860
|—Y9M:9
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To illustrate further the difference between SCI and Idealized Algol consider the
addition operations leftadd, rightadd : exp — exp — exp. In Idealized Algol these
operations are inequivalent because of interfering side-effects. For example, in a
state where the contents of storage variable x is 5, evaluation of leftadd(succ z)(z :=
succ x; x) returns value 12, whereas rightadd(succ z)(z := succ x; z) returns value
13. In contrast, in SCI the arguments to these functions never interfere: The typing
rules ensure that in a procedure call leftadd(e,)(e2) the procedure leftadd(eq) and
argument ey have disjoint sets of free identifiers. As a result, even though we allow
side effects in expressions, leftadd and rightadd are equivalent in SCI.

An interfering version of addition can be programmed in SCI using the type
exp X exp — exp instead of exp — exp — exp. The point is that SCI types can
be used to specify both potential dependence and necessary independence between
program parts.

3. A POLYMORPHIC LINEAR A-CALCULUS

Now we introduce the polymorphic target language. We follow the version of linear
type theory formulated by Barber and Plotkin [1997], where two zones are used in
a typing context to keep track of intuitionistic and linear assumptions. The basic
idea is that linear assumptions are used once, while intuitionistic assumptions can
be used multiple times in a term. (We refer to [Abramsky 1993; Benton et al. 1993;
Wadler 1990; Wadler 1991] for further discussions of linear A-calculi.)

The kind of polymorphism we need for interpreting Algol is predicative in nature,
so we work with the following stratification of types:

o = a|nat|o®ao | Level 1
Au=o0|Va A|AoA|A— A| A&A|!A Level 2

Type variables are denoted by «a (or other Greek letters 3, ). The essence of
the stratification is that the V quantifier ranges over only Level 1 types. This
is significant because it makes the construction of models much easier than for
impredicative calculi.

This stratification is possible because of the distinction between data types and
phrase types (or between storable and denotable values) in Algol. The Level 1 types
correspond, intuitively, to store shapes in the sense of Reynolds and Oles, whereas
Level 2 types are, after translation, types of phrases in the imperative languages.

It would be possible to define A — B as !A—o B. But since, for the purpose of
the two translations, the only significant uses of “!” would be in this encoding we
prefer to work explicitly with both function types —o and —. For emphasis we use
two binding forms, Az : A.t and Az : A.t, one for each function type. We will use
the same syntax for applying both kinds of function (in effect leaving dereliction
implicit in —); no confusion is likely to arise from this.

The system uses typing judgements of the form

IARE: A,

where the context is broken into an intuitionistic zone I' and a linear zone A.
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IDENTITY
ARt A ~ ~
== whereI', A are permutations of I', A
ARt A
Fz:A_Fz:A Iiz: Az A
ADDITIVES

IArFt:A T;AFu:B

;AR (t,u): A&B
IIAFt: A&B
NAFmt: A

IIAFt: A&B

IIAFmst: B
Iz:A;A+t: B INMAFt:A—-B TI;_Fu:A

IAFAX:At:A—> B INAkFtu:B

MULTIPLICATIVES

ARt T T;AFu: A
A, AsFlet « betinu: A
IAtFu:AB T;Aq,z:Ay:BkFt:C

[;A,Ax Flet [z,y]beuint: C

| RS |

AT Ft:A TA3Fu:B

;A A tu]: AR B

Az AFt: B
IAFAM:At: A—-oB

A Ft:A—-oB T;AFu: A
F;A],Agl_tUZB

I;_Ft: A AT Fu:!A Tha: A AsFHt: B
r;_Fit:1A A, Ay Flet!lzbeuint: B
POLYMORPHISM
ARE:Va. A ARE: A

[iAFto] - Alo/a] T;AF Aat:Va.A adfv(l, A)
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NATURAL NUMBERS AND RECURSION

Ii_Ft: A A
[_F0:nat [;_FYyat: A
AR t:nat AR t:nat
I'; A F succ t: nat I';AF pred t: nat
AR t:nat AR t:nat

I'MAFcopyt:nat @nat [';AF discardt: 1

A Fuy:nat T;AsFus: A TiAsFug: A
A1, As Fifuy; =0 then us else uz : A

In this formulation of linear typing we have introduction and elimination rules for
each type constructor. However, we do not have to add explicit rules that permit
Weakening and Contraction of “!”-typed identifiers; this is because of the use of
two zones, which allows Weakening and Contraction in the intuitionistic zone to be
left implicit, as is the case in simply-typed A-calculus. This allows for a particularly
smooth treatment of the intuitionistic function type —, which is attractive for our
purposes: We will have need for —, but not explicitly for “l.”

The characteristic feature of the additive rules is the sharing of typing contexts.
For instance, in the introduction rule for &, the linear zone A is shared between
both premises. On the other hand, the characteristic feature of the multiplicatives is
the splitting of typing contexts in the linear zone. For instance, in the introduction
rule for ®, the contexts A; and As must be made up of disjoint collections of
identifiers. The absence of Contraction is reflected in this splitting of contexts in
the multiplicative rules, and the absence of Weakening is reflected in the rules for
identifiers; the linear zone is empty when an identifier from the intuitionistic zone
is typed, and of length one when a linear identifier is typed.

One point to notice is the presence of explicit terms for copying and discarding
natural numbers. Using these and the rules for I we can define appropriate copying
and discarding terms of types c— 0 ® o and o—o I, for any closed Level 1 type
0. But we do not have copying or discarding of Level 1 types available generically,
as terms of type Va.a—oa ® a or Ya. a—o I. This distinction between specific and
generic copying/discarding is related to the following idea in Idealized Algol: A
state change effected by a command on any fixed finite number of storage variables
could be reversed by using local variables to store and restore the values. But we
cannot program a general snapback mechanism that reverses state changes for every
possible shape of the store.

We have used [s,t] as notation for ®-pairs, reserving f ® g for the functorial
action of ®, where

f®g = Ax: A® B.let [y, 2] be z in [fy, g2]

3

when f: A— A" and g: B—o B'.

We use 24 to abbreviate Y4 (Az : A.x). In a fully polymorphic language ¥ would
have type Va. (o — a) — «, but in the predicative sublanguage this type is not
sufficient because a does not range over all types.



14 : P.W. O'Hearn and J.C. Reynolds

4. TRANSLATIONS OF TYPES

In this section we give the translations on the level of types. We consider terms
by treating a few examples, leaving the detailed translation to the next section.
In presenting examples we will be somewhat liberal in the use of syntactic sugar
and the application of (meaning-preserving) syntactic simplifications in the linear
calculus.

4.1 Idealized Algol
The translation takes a judgement
r1:601,...,0, :0, - M:0
in Idealized Algol to a judgement
1 07a,. . oy Oha; M a: 8% a

in polymorphic linear A-calculus, where

comm*aq = a—o«
acc*a = a®nat—-oq
exp*a = a—oa ® nat

@ x 0V a = 60*a&b*a
0= 60)a =V3.0(axp) =0 (axpB).

The translation 6* of an Idealized Algol type is a type with a “hole” that can
be filled by substituting type variables and other Level 1 types. For instance,
comm*(a ® ) is a ® f—oa ® 3. Similarly, a term M gets mapped to a term M*
with a type variable hole that can be filled with various type variables or Level 1
types: M*o, M*o'... and so on. (The translation could be arranged so that each
M* was a polymorphic function of type Va.0ia & --- &6ra — 6*a. We prefer,
however, to use the term-with-hole representation in order to minimize explicit
manipulations of environments.)

The only essential uses of linearity involve primitive types and states. In partic-
ular, the translations of Algol types always appear in the intuitionistic zone of a
typing judgement.

In the informal translation of newcounter in the Introduction we used Weakening
and Contraction of nat-typed identifiers. With our linear language, however, we
have to be more explicit, using copy and discard. Also, a slight adjustment is
needed because the translation of procedure types in Idealized Algol allows a to
appear to the left of —, whereas the type for the procedure p in the Introduction
used the SCI interpretation (see below) where o does not appear to the left. So p
now has type

VB.(a®fB—oa®fB) X (a®foa®BRnat) = (a® foa®f),
and the translation of newcounter(p) is the following function of type a—o a:

As : a.let [s',n'] be p[nat]{(id, ® An. succ n), (id, ® An.copyn))|s, 0]
in (let * be (discardn') in ')

where id, is As : a. s.
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Some equivalences between Idealized Algol terms can be proven using basic laws
of polymorphic A-calculus. For example, the equivalence (new Az.c) = ¢, for an
identifier ¢ : comm, follows from basic equivalences of polymorphic A-calculus to-
gether with the assumption that discard and copy give nat a comonoid structure.
Typically, the basic equations that are valid in models where V is interpreted simply
as an indexed product are sufficient for reasoning about new blocks whose only free
identifiers are of primitive type, but parametricity is needed when there are free
identifiers of procedural type.

In the Introduction we discussed snapback in the context of a single collection
States of states. In the polymorphic language snapback would ostensibly be given
by a term

Aa.Xs:a.let [s',n] be ¢s in [s,n]

of type Ya. (a—o a®nat) — (a—o a®mnat) which (given the isomorphism a = I @)
would determine a closed term of type (exp — exp)*I. But this term does not
have the indicated type because it uses Contraction of s and Weakening of s,
where s and s’ are a-typed values. This does not show that no other term produces
the behaviour of snapback for that we will appeal to a semantic model but it
illustrates that it is the general, or polymorphic, snapback that we expect control
of structural rules to forbid.

4.2 Basic SCI

We translate
x1:601,...,0, :0, - M:0
in Basic SCI to a judgement
1 00an,. .y Onay; o MO (o, .. ) 0%(a ® - ® ay)

in polymorphic linear A-calculus, where

comm®a = a—ow
acc’a = a ®nat—oq
exp°a = a—oa ® nat

(0 x0)a = 0°a&b°a
(0 — 0)°a = VB.0°8— 0°(axB).

Compared to the other translation, each identifier x; is now associated with a
separate state-type «;; the idea is that each identifier has a separate piece of the
store that it acts upon. The other difference is that the procedure type uses 6°43
in the argument position instead of §°(a ® ). The result is that the procedure
and argument types no longer share type variable o, mirroring the restricted rule
for application in SCI which ensures that procedures and their arguments don’t
interfere.

For example, the type comm — exp — comm translates as

V3. (B0 pB) = (Vy.(yoy®@nat) = (a®fRyo0a®B®Y)),
which is isomorphic to the type
VBVy. (B—oB)& (y—oy®nat) = (a®fRyoa®f®Y)
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that we used to illustrate non-interference in the Introduction.

Note that the absence of Contraction in linear logic is not being used to account
for the absence of Contraction in SCI. Indeed, the translations of SCI types al-
ways appear in the intuitionistic zone in the translation of a judgement. It is the
use of different type variables that corresponds to the absence of Contraction in
SCI: Different occurrences of the same SCI type 6, say x; : 8, xo : 6, get sent to
different types, z1 : 8°ay, 2 : §°as. Generally, parametric polymorphism is used
to model both local state and non-interference, whereas linearity (combined with
polymorphism) ensures that there is no snapback.

We give several examples of term translations. First, if z; and z, are different
identifiers of type comm, then the translation of z || z9 is

1 X1 —O0Q1,T2 I X209, _
FAs:ar ®as. let [s1,s2] besin[z1s1,2282]: a1 @ as—o a1 ® as.

From this we can see how the disjointness property of SCI is very explicit: It is
obvious that £ and y act on disjoint portions of the store, so we can run them in
parallel.

Consider next the sequential composition x;y of two command identifiers. This
is translated as

T1 (X1 —0O0Q1,Ty I Aa—0Qg, -
. (! .
FAs:a ®ag. zh(2)(s)) : a1 ® ag—oay ® g,

where

) = As:a; ® az.let [s1,s2] be s in [z151, $9]
xh = As:ag ® as.let [s1,s9] be s in [s1,y2s2].

Although the translation uses z} (2} (s)), which indicates that z; is evaluated first,
it reduces to let [s1,s2] be s in [x1$1,z252] using typical reductions of linear A-
calculus. Thus, it is clear that z1;z2 and x; || 2 are equivalent.

Finally, consider our two addition operations leftadd and rightadd. The transla-
tions of leftadd(xz1)(x2) and rightadd(z:)(x2) are both

Tt ap—o ] ®nat,xs 1 ax—o as ® nat; _
FAs:ar ®as. let [s1,s2] be sin
let[[s’] s n]: [SIQ7 m]] be [.’17131,.’17232] in [[ql] ’ S‘IZ]: m + ’ﬂ,]

T @ as—oa; ® as ® nat.

We regard the two arguments as being evaluated in parallel, possibly altering differ-
ent portions of the store, before their results are added together. (The translations
do not literally result in this term, but in ones that are, by an easy analysis using
the semantic model of Section 6, seen to be equivalent to it.)

5. TRANSLATIONS OF TERMS

The detailed translations of terms follow ideas from functor-category semantics
[Oles 1982].
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5.1 ldealized Algol

We begin by translating assignment. An assignment statement M := N is executed
by first evaluating IV, obtaining a changed state and value, and then supplying this
value and state to M. Thus, assignment is simply a composition of the form

* *

N*a o ® nat M*«

(87 Q.

More explicitly, we may define
(M :=N)*a = As:a.let[s’,m] = (N*as)in (M*a[s',m]).

To translate newcomm we follow the pattern of the newcounter example in the
Introduction:

(N€Weomm P)*a = As:a.let [s',n] be (P*a)[nat] (v[a]) [s, 0] in
let * be (discardn) in s'.

In this equation the expanded state [s,0] and a local variable v[a] (defined below)
are passed as arguments to the procedure P, and the final value n of the local
variable is discarded on termination of P. The translation P*a of P has type
Vi.var*(a ® ) - comm*(a ® ), and polymorphic instantiation is used to set
the B-component to nat.

The local variable v is given by the term Aa.(assign[a],lookup|a]) of type
Va. (acc X exp)*(a ® nat), where

assign = Aa. s : (o ® nat)® nat. let [[a,n], m]bes in
let * be (discardn) in [a,m]

lookup = Aa. As:a®mnat.let [a,n] be sin
let [n’,n"] be (copy n) in [[a,n'],n"].

The essence of these two operations is the use of discard in assign and copy
in lookup. Similar assignment and lookup operations are therefore available if we
replace nat by any type that has appropriate versions of copy and discard maps.
Since all types of the form !A have copy and discard maps, if we were to consider
an impredicative polymorphic calculus we could write lookup and assign maps
for “storing” elements of any such type. An interesting question is whether such
operations make (imperative) operational sense.
The translation of newexp, is similar:

(newexp P)*a = As: a.let [[s',n], m] be (P*a)[nat] (v][a]) [s,0] in
let x be (discardn) in [s',m].

If we had interpreted comm as a—o a ® I then the two new constructs could have
been treated uniformly, by the same defining equation. The translation of new,c. P
is obtained by viewing it as sugar for byvalue (\y : eXp. neWeomm 2. Pz := y).

To translate an application (M N)*, where M : 8 — 6’ and N : §, we must use
translations of M and N with the following types:

M*a : V3.0 (a® 3) = 0™ (a® f)
N*a : 6*a.
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In order to apply M* to N*, we apply M*a to the unit I of ®, and then use a
canonical isomorphism a® I = a to make the types of the procedure and argument
match up. That is,

(MN)'a = h((M*0)[](i(N*a)))

3

where h : §*(a ® I)—060™a and i : 0*a—o0*(a ® I) are terms coding canonical
isomorphisms.

We will not give the explicit definitions of h and i, but simply say that they
are defined in a standard way by induction on types. If T(«) is a type of the
polymorphic calculus with a free type variable a, and f : a— (3 and g : f—o« are
terms (8 ¢ fv(T)), then there is an induced term T[f, g] : T'(a))—o T'(8) obtained by
applying f for positive occurrences of a and g for negative occurrences. Further,
T[f,g] is an isomorphism (say, in the model of the following section) whenever f
and g denote inverse isomorphisms.

This use of canonical isomorphisms is unpleasant, and is treated much more
smoothly in a semantics based explicitly on a functor category.

The next case we consider is A-abstraction. We need to define

(A : 0. M)*a:¥5.0"(a® f) = 8™ (a® f)
in terms of
M*a : 0'a, assuming = : 6*a.

The type mismatch between 6*a and 6*(a ® ) is dealt with now by using “expan-
sion” mappings expandy : YaB.0*a—o 8*(a ® ). Expansions show how a piece of
code defined outside the scope of a local-variable declaration can be used within
the scope of the declaration. For instance, a command identifier ¢ : comm™*« gets
sent to Als,s'] : a ® B.[c(s), s'].

A detailed description of expand is postponed until later in this section, but the
way expansions are used to treat A-abstraction can be set out now. Suppose we are
given

z1: 0,z 0o, a; _F Mra:fa.
Then we also have

10 (a®B),...,2n 0 (a® B)x 0% (a® B); -
- M a® 8): 80w )

and using a typical substitution lemma for the linear calculus we can infer

T 0,z Oa 0 (a® B); -
F (M*(a® B3))lexpandy, [a][B]x;/x;] : 6’ (a @ 3),
where (M*(a® (3))[expandy, [a][B])x; ;] denotes the term obtained by substituting

expandy, [a][B]z; for each z;. Notice that z is not replaced. Given this judgement
we can first Ad-abstract z and then A-abstract 3, leading to the definition

Az 0. M)*a = AB Xz : 0*(a® (). (M*(a ® B))[expandy, [a][B)z; [ x;].

Note that the use of expansions makes the translation M* dependent on the
types of free identifiers; e.g. Az : comm. y(z) gets translated differently, depending
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on the types of y and z. So to be precise the translation in fact defines terms M}a,
indexed by Idealized Algol type assignments T.

The remaining clauses are straightforward by comparison. A canonical isomor-
phism h : 8*(a ® I)—0 6*(a) is used to deal with the function application in the
translation of the fixed-point combinator.

*a = x
(miM)*a = m;(M*a)
(M,N)*a = (M*a, N*a)
0*a = As:a.[s,0]

(if Ny =0then N, = As:a.let[s',y] be Nsin
else N3)*a ify = Othen NJa s’ else Nja s’
(suce M)*a = As:a.let [s',y] be M*as in [¢', (succ y)]

)
(pred M)*a = As:a.let [s',y] be M*a s in [s', (pred y)]
(Yo M)*a
(byvalue M)*a = A[s,n]: a ® nat.
let [s',z] = (M*a[I](Aa: a ® I.]a,n])[s,*]) in

let x bezin s’

o = h(Ype(awnM*all])

(M;N)*a = As:a. N*a (M*as)

skip*a = As:a.s

The clause for M; N is for the cases when N : exp or N : comm. The
case of M; N when N : acc is treated by the translation as sugar for the ex-
pression (byvalue Az : exp.M;(N := z)). Similarly, the clause for if is when
Ny, N3 : comm or Ny, N3 : exp , and the acceptor case is sugar for the expression
(byvalue Az : exp.if Ny = Othen N, := zelse N, := z).

5.2 Expansions
We define functions
expandy : YaVp. 0% a—o 0* (a ® B),

where « and 3 are different type variables. These functions will be given by closed
terms. In the present setup, the Expansion Parametricity Lemma of [O’Hearn and
Tennent 1995] is then a consequence of the definability of these expansions and the
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Logical Relations Lemma. The definition goes by induction on 6:

expand.qpmm = Aaf.Ac:a—oa.Aa,b]:a® (.[ca,b)
expand,,. = Aaf.Ac: a®nat—o a.\[[a,b],n]: (o ® 3) ® nat. [c[a,n], b]
erpandey, = Aaf.de:a—oa®mnat.Aa,b]:a® (.let[a',n] =ea

in [[d', b], n]
expandy,. o = Aapf. (expandy|a, B])&(expandy [, 5])

expandy_sg = Aaf.Ap. Ay.ilop[f ® ] 0i2

Here we have used the shorthand of composition o (in functional order) and the
functorial action of &. The terms i1 and i2 are for associativity isomorphisms:

i1:0'((a®B)®y)—b(a®(B®7))
i2:0((a®f) @y)—obla® (Be7)).

Thus, expansions for function types are defined according to the following diagram:

plB ® 7]

0" (a®@ (6® 7)) 0" (a® (B®7))
12 71
0*((a ® B) ®7) 6" ((a® B) ®7)

expandg_, ¢ [a]|B]p[7]
5.3 Basic SCI

In the translation for Basic SCI we will gloss over isomorphisms for permuting and
associating ®. The translation is similar in many ways to the one for Idealized
Algol: We concentrate on the main differences.

First, to translate identifiers, given

T1:01,... Ty O oz 6
in SCI we must define
10700, Ty O o F () 0 (0 ® - ® ).
We define z (a1,...,an) = e(x;), where e : 6a;—0 0 (a1 ® -+ ® ) is obtained

by composing an expansion with appropriate symmetry isomorphisms.
For A-abstraction, given

071, .. Ty Oy 0,y 2 0°5;
F Mo(alr":am:ﬂ):o’o(al ®®am®ﬁ)

we can form the judgement

. (o) . o) .
1071, .. T Oy 0 -

FAB Ay :0°B.M°(a1,...,0m,0). :¥8.08 =0 (1 ® - ® o, @ ).

We take this as the interpretation of A-abstraction in SCI; it is remarkably simple
compared to the translation for Idealized Algol.
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The SCI rule for application is of the form

T1:01,...,0p: 0, FM:0—6 mn+1:91,...,mm:0ml-N:0-
z1:01,..., % O - MN : 6 ’

and we define (M N)°(ay,...,am) to be

(Mo(ozl, o) ® - ® am]) (No(ozn+1, . ,am)).
In this definition the 3-component of

M°(ay,...,0n) :VB.0°8 = 0°(0q @+ ® a, ® )

is instantiated to the type ap41 ® - - - ® ayy, of the state for V.
For parallel composition, given

z1:601,...,x,: 0, F M :comm z,.1:601,...,2,:0,F N:comm

1601, Ty 0 F M || N : comm

we translate as follows:

(M || N)°(a1,...,am) = As:a let[z1,...,2,] besin

[Mo(al,...7an)[z1,...7zn]7
N°(an+17...,am)[zn+1,...7zm]].

This interpretation splits the state into components z1,...,2, and 2z,41,...,2m
that are acted upon independently by M and N.

The equations for neweomm and newexy, are as in Idealized Algol, except that
the variable v[a] is replaced by v : (acc x exp)°(nat), given by (assign,lookup)
where

assign = A[n,m] : nat ® nat.let * be (discardn) in m

lookup = An :nat.copyn.

There is no longer a need for the a component of v because procedures and argu-
ments don’t interfere in Basic SCI.
Finally, expansions for procedure types are defined as follows:

expandy_yy = Aaf. Ap. Ay.i o expandy o @ ~][8] o pl],
where 4 is an isomorphism as indicated in the following diagram

expandy [a @ v][0]

0° (o @ ) 0°((a®v)® B))
] ¢

0° (e B) @)

expandg o [a][B]p[Y]

Expansions for the primitive types are the same as in Idealized Algol.
There is another candidate definition for expansions at procedure types, based
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on the following diagram.

ooy —L0N s Beq)
T
o (v) #°((a @ B) %)

expandyg g [][B]p[7]

The equivalence of these two definitions depends on a naturality property for p,
which we will be able to verify later (Theorem 11) using a semantic model of the
linear calculus.

6. THE STRICT PARAMETRICITY MODEL

Having defined the translations we now want to analyze them in more detail. The
approach we take is to look at a simple semantic model of the target language,
and push it as far as possible. This will allow us (in Section 7) to very quickly go
beyond previous functor models [Oles 1982; O’Hearn and Tennent 1995]. Another
possibility for analysis would have been to directly relate contextual equivalence
relations for the source and target languages: A syntactic study along these lines
would be interesting, but is outside the scope of the present paper. Additionally, the
semantic model contains useful information beyond contextual equivalence, which
can be viewed as providing relational reasoning principles, and which leads to rep-
resentation results.

The model is based on strict continuous functions and relational parametricity;
we call it simply the strict parametricity model. It actually supports Contraction,
though it does not support Weakening. Such a simple model is useful for our pur-
pose, it seems, because problematic examples like snapback in imperative languages
typically use both Weakening and Contraction. Removing just one of Weakening
or Contraction banishes many of these examples.

6.1 Semantics of Types

In the strict parametricity model, types are interpreted as cpo’s, i.e., directed-
complete partial orders possessing a least element [Plotkin 1983; Abramsky and
Jung 1994]. Level 1 types will always denote countable, flat cpo’s, where there is a
discretely-ordered set of elements arranged just above a least element —.

More specifically, a type A determines a function [A] from type environments
to cpo’s, where a type environment D maps type variables to countable, flat cpo’s.
Most, type constructors are interpreted directly by their cpo counterparts:

[a]p = Da

[Ip =1

[[nat]]p Nl

[ecedlp = [o]p & [o']p
[A&B]p = [A]lp &[A]Dp

[[A — B]]D = [[A]]D — [[B]]D
[A—< B]p = [A]lp—<[B]»p
['Alp = ([Alp) ..

On the right-hand side I is the two-point cpo, (+) is lifting, ® is smash product,
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& is cartesian product, —o is strict continuous function space (pointwise ordered),
and — is continuous function space.

To define V we make use of an auxiliary relational semantics [Reynolds 1983].
Suppose R (a relation environment) is a function mapping each type variable into
a pointed (i.e., {(—, —)-containing) binary relation between flat cpo’s, such that

R(a) : Da < D'a, all a
for type environments D, D’'. Then we define a complete relation
[Al= : [Alp < [A]lp

as follows. (Completeness means that the relation is closed under lubs of directed
sets in [A]p ¢ [A]p'. This condition is needed for recursion to be compatible with
the Logical Relations Lemma, below.)

[eJr = Ra
[lr = {(a,a) |ael}

[nat]g = {(n,n) |ne N}
[ @o'lr = ({(dd]le.e) | {de) e [olr A (e € [o'])
[A&Blr = {({d,d'), (e, €)) [ (d;e) € [A]r A (d',€) € [B]r}
[A— Blr = {{f, /") | V(d,d) € [Alr-(fd, f'd') € [B]r}
[A—~Blr = {(f,f) |V(d.d) € [A]=.(fd, f'd') € [B]r}

I'Alr = {(d,e) | (d,e) e [A]r V d=e=—}.

The relational actions of — and —o use the same clauses, the difference being that
the clause for —o assumes that both f and f’ are strict. In the definition of ®, [z, y]
is the least element (—, —) if x or y is — and is the pair (x,y) otherwise. We often
refer to the relational action of type constructors directly, for example by writing
R ® S instead of Ja ® f](a — R, — S).

The relational action of ® deserves comment. A basic justification for the defi-
nition is the following two properties that it satisfies:

If (f,g) e R—oS and (f',g') € R"—0S8" then (f® f',g®¢) e RER —-©0S® 5,
R®S—oT = Ro(S—oT).

The first property connects the functorial and relational actions of ®, and is needed
for the interpretation of the elimination rule for ® to satisfy relevant parametric-
ity properties (needed for the Logical Relations Lemma below). The second is a
relationship we expect between ® and —o.

Next, note that we do not have the property that

(a,b) (R ® S)({c,d) implies aRc and bSd.

For instance if —Re and bSd then (—, —) (R ® S)({c,d) even when we do not have
—Sd. The property fails because of the use of [-, -] in the definition of R ® S.
Finally, a particular subtlety is that the formula for R®.S does not always produce
a complete relation, for complete relations R and S on arbitrary cpo’s. For example,
consider relations R: Nj « I and S : N < Vnat where R = {(—, =), (—, %)} and
S ={(-,0),(1,2),(2,3),...}, and Vnat is the vertical natural numbers. Then R® S
contains a chain of all tuples ((—, =), (x,n)), for n > 1, but it does not contain the

lub ((—, =), (*,00)). Nevertheless, R ® S is strict and trivially complete whenever
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R and S are strict relations on flat (or finite height) cpo’s. In the semantics of our
polymorphic language ® is only ever applied to flat cpo’s, so the definition of the
relational action is suitable for this language.

Returning to the definition of the model, we can now define the cpo and relational
semantics for V. For this, let Lewvell stand for the collection of countable, flat cpo’s.
A polymorphic function will be an element of an indexed product, indexed by cpo’s
in Levell, subject to a relational parametricity condition:

Va.Alp = {pe Hde[,euel] [[A]]’D\ou—m ‘
Vd,d' € Levell , Vr :d < d'.(p[d], p[d']) € [A]z,|asr

2

ordered pointwise
(p,p') € Va.A]r < Vd,d' € Levell , Vr: d < d'. (p[d], p'ld']) € [A]lr|arsq-

Here 7p maps each a to the identity relation Ap, on Da. The notation r : d <> d’
indicates that r is a relation between (flat) cpo’s d and d’ that relates their least
elements. For the well-definedness of this definition it is crucial that Levell is
essentially small  there are only set-many countable, flat cpo’s (at least up to
isomorphic copies).

With these definitions one may verify that each [A]p is a cpo and each [A]x is a
complete relation on cpo’s. This ensures that the least fixed-point operator exists
in the model.

By “parametric model” we mean a model satisfying the Identity Extension Lemma:

[Alz, = {{a,a)[a e [A]lp}.

This is usually taken as the defining characteristic of relational parametricity [Reynolds
1983], and the definition of V is arranged precisely to ensure the identity property
(which is included here as part of the Isomorphism Lemma).

LeEmMMA 1. (Isomorphism Functoriality Lemma) For any type A, the rela-
tional action of [A] is functorial on isomorphisms. That is, (i) if Ra is the graph
of an isomorphism between flat cpo’s for each a free in A then [A]r is the graph of
an isomorphism, and (ii) [A] preserves identities and composites of isomorphisms.
6.2 Semantics of Terms
A typing judgement

1Ay, T Ay B, Y B B E C
is interpreted by a D-indexed family of strict continuous functions

[tlp : ([Ai]p) L ® - @ ([An]p) L @ [Bi]p ®@ -+ ® [Bp]p — [Clp.

We omit the detailed definition, which is standard, but we do describe the unifor-
mity property of this family. For this, we extend relational actions from types to
typing contexts using the actions for ® and !:

[[.’,U] :A]:'-'7wn:An;y] :Blz"':ym:Bm]]R
=[A]r® - Q[A]r R[Bi]r ® - ® [Bum]r-
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LemMA 2. (Logical Relations Lemma) If
ARt A
Ra : Do+ D'a, for all
(n,n') € [I'; Al %,
then

([tlon, [tlom') € [Al-

Since logical relations are used to constrain V types, the lemma and the well-
definedness of the maps [t]p are proven simultaneously by induction on ¢.

7. WORKING WITH THE MODEL

Our aim in this section is to illustrate how strict, relational parametricity can be
used to reason about types and terms in the source languages. All of the examples
go beyond those that can be treated properly in either the basic functor category
model of Oles [1982] or the parametric functor models of O’Hearn and Tennent
[1995], and Sieber [1996]. (The ability to relate — to non-— states is responsible
for the improvement over [O’Hearn and Tennent 1995].)

From now on we will often mix notation for polymorphic types and cpo’s. For
instance, we write

VB.(S®@BoS®pP) = (S®BoS®MA)

instead of the more cumbersome

[VB.(a®pBoa®p) = (a®Boa®B)]iass)-

Similarly, we write M*S and M°S to indicate functions, and 6*S and 6°S to
indicate cpo’s, obtained by composing the translations with the semantics of the
linear langauge.

7.1 Snapback

ExaMPLE 1. We consider a snapback operator of type
Va. (a—a ® nat) —» (a—o « ® nat).

Were it to exist in the model, this operator would satisfy the property

[ (s,n) ife(s) = (s',n)
snap[Sles = { v if e(s) = —

for countable flat cpo’s S and s € S. We show that snap is not parametric.
Consider any p € [Va. (@— a ® nat) — (a—o a ® nat)]. We show the following
property (where 2 = {0,1}):

If e:2,—02, ® Ny is such that e(s) = (1,1) when s # —,
and  p[2,]e0 = (0,1)
then p[2,]-0=(0,1).

This property says that if you use e at all, the final state can no longer be 0: Using
e causes an irreversible state change.
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To prove the property, suppose the two assumptions hold for p and e, and consider
the relation R : 2, <> 2, consisting of tuples (0,0), (—, —), (1,—). Then (e,—) €
[R— R® An, ] and by parametricity (p[2,]e0,p[2,]—0) € R® Ay, . Since (0,1) is
only R ® Ap, -related to itself the property follows.

In contrast, the property is not satisfied by snap because snap[2,]—0 = —, even
though we will have snap[2,]e0 = (0, 1) for any e satisfying the first assumption
in the property. Thus, snap does not exist in the model.

The argument for the non-parametricity of snapback is, in fact, a transcription of
the failure of Weakening in the category of cpo’s and strict functions. Specifically,
for any cpo D there is a candidate Weakening map wp : D—o I that takes — to —
and all other elements of D to the non-— element of I. Though this map exists for
all D, it is not natural, in that

wp

D I
f
WE
E
does not commute when f takes a non-— element to —. Re-expressing this in

relational form, using the graph of such an f, shows that the family wp of maps,
indexed by countable, flat cpo’s D € Lewvell, is not in [Va. a—o IJ.

The failure of the naturality of this Weakening map is reminiscent of our con-
tention that it is general, or polymorphic, snapback that does not exist in Algol,
whereas specific state changes can often be reversed.

EXAMPLE 2. The reasoning in Example 1 can be used more positively, to verify
the snaptester equivalence from the Introduction:

new z.z :=0; p(z := z + 1); if (z > 0) then diverge = p(diverge).
To show the equivalence we argue that the translations
(2)  As:a.let [s',n'] be p[nat](id, ® An.n + 1)[s, 0]
in let [s"”,n"] be (ifn’ > 0thenQ s’ else s')
in (let x be (discardn”) in ") : a—o«
and
(3) As:a. let [s',n] be p[I](Q(4g1)—o (acr)) [5:#] in
let * be (discardn) in s'
are equivalent, where
p: V8. (a®foarf) > (a®foaRf).

Let S be a countable, flat cpo (the denotation of @) and consider the relation
R : N, <> I consisting of the tuples (—,—), (0,%), and (i,—) for i > 0. Let
c:S®N,—-o0S5® N, be ids ® succ, where succ is the strict extension of successor.
Then

(¢,—) e As® RoAg® R.
As a result, for arbitrary p we can use the parametricity property to get

(p[N1]c[s,0], plI]—[s,%]) € As® R.
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1"

Next, for any s € S suppose that p[N,]c[s,0] = [s',n] and p[I]—[s,*] = [s
Using ([s', n],[s",z]) € As® R we can argue that (2)=(3) by cases as follows:

—If [s’,n] = — then [s", 2] = — by the definition of R and ®, and so (2)s=(3)s.
If p[N1]e[s,0] = [s',n] # — then there are two subcases.
If n = 0 then, by the definition of R, we must have that [s",z] = [s',*] and
obviously (2)s=(3)s, since both will, when beginning in state s, return s’.
—If n > 0 then we know that (2) applied to s returns —. But since n > 0 we
know, from the definition of R and parametricity, that [s",z] = —, and so both
(2) and (3) return — when started in state s.

Many other equivalences can be treated using this form of reasoning. Typically,
one finds a relation between pieces of local state and implementations of different
objects. For example, to show the equivalence of two counter classes

Ap.new \z. z := 0; = Ap.new \z. z := (;
plx:=z+1,x) p(z:=z+2,z/2)

for p : comm x exp — comm, we simply use a relation on their local states
R: N, < N consisting of (—, —) and all pairs (i, 2i). This example (taken from
[O’Hearn and Tennent 1995]) indicates that the strict-function model provides an
extension of the reasoning methods presented there.

ExAMPLE 3. Since the cpo model of PCF contains functions such as “parallel or,”
[Plotkin 1977] one might expect similar functions to arise in the model here. But,
in the presence of side effects, if we are to evaluate two arguments in parallel then
indeterminacy typically results, unless we use snapback. For example, a “parallel
or” function of type (exp — exp — exp)°l in SCI would be determined by a
function of type

Vaf. (a— a ® nat)&(8—o 8 ® nat) - (o ® f—oa ® (8 ® nat)
with the following defining property:

(s1,82,0) if Asi.e1(s1) = (s),0)
por[Sl][Sg](m s 62) [S] , 82] = \Y 39’2 6‘2(52) = <S!2, 0)
— otherwise

This function is not parametric, because por[I][-]{—,—) would essentially be the
unary snapback which, as we saw in Example 1, is not parametric. Note here
that the condition 3si.e1(s1) = (s},0) is testing whether running e; results in
termination with result 0, and possibly some state change; it, and the other disjunct,
are false in the case of non-termination and also in the case of producing a result
other than 0.

A more subtle form of parallelism and snapback, which is not correctly treated
by the model, will be considered at the end of this section.

7.2 Sample Type Analyses

ExAMPLE 4. The polymorphic type (comm — comm)*I corresponds to closed
terms of type comm — comm in Idealized Algol. We can calculate its structure
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as follows:

(comm — comm)*]

V. (I B)—(I®p) = (I @)~ xp6)
V3. (B— ) — (B—p)

NJ.:

11

where the last isomorphism uses a parametricity argument in the strict-function
model. On the level of Idealized Algol, we obtain a correspondence

n — Ac:comm.c”
— = Ac:comm. diverge,

where ¥ = skip and ¢! = ¢;¢’. This representation of comm — comm should
be compared to that of O’Hearn and Tennent [1995], where (comm — comm)T is
N ® Vnat°P, with Vnat? the vertical natural numbers flipped upside-down. The
Vnat component was concerned exclusively with a form of snapback.

It is instructive to examine the parametricity argument giving the final isomor-
phism with N, . (It is in fact the usual parametricity argument for Church numerals
[Plotkin 1980; Reynolds 1983], extended to take appropriate care of the presence
of —.) Let p € [VB. (8—8) — (8- B)] and consider any flat cpo D, d € D, and ¢:
D—oD. Let R: N, + D be the relation consisting of pairs (—, —) and (m, c¢™(d)).
Then (succ,c) € R—o R and, by parametricity, (p[N,]succ0) R (p[D]cd). Next,
if (p[N1]succ0) = — then the definition of R ensures that (p[D]cd) = —, and
so p = —. And if (p[NL]succ0) = n # — then the definition of R ensures that
(p[D]ed) = ¢"d, and so p is the n’th Church numeral. We may conclude that
[VB. (B—0 B) — (B—o B)] is isomorphic to N .

In this argument note that R is strict and single-valued. Note also that n is
related to — when ¢"d = —. In [O’Hearn and Tennent 1995], relations that relate
— to non-— elements were not considered, which is why this argument could not
go through.

EXAMPLE 5. The SCI interpretation (comm — comm)®] turns out to be the
same as (comm — comm)*]. However, when we replace I by a non-trivial flat
cpo S a difference appears. We calculate

(comm — comm)®S

V3. (B~ B) = ((S® B)—o (S ® B))
S—(S®N,)

[l

where the last isomorphism is again a straightforward parametricity argument. In
the cpo S— (S ® N, ), the N part corresponds to use of the S-component, the
number of times the command argument is executed (so this part is essentially a
Church numeral). This cpo illustrates how the computation on the S and 8 com-
ponents can be carried out independently: The input state can affect the number of
times the command argument is used, but not what happens on each use. Equally,
none of the uses of the command argument affects the S-component, which is why
there is a single transformation from input state to output that is independent of
B. This independence is reflected in certain equivalences between terms, such as
between procedures Ac.c;x := 1 and Ac.z := 1; ¢ of type comm — comm.
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The same type in Idealized Algol translates as follows:

(comm — comm)*S

=VB.(S®B0S®pB) = (S®B)—o(S®A)).

The representation in terms of S—o (S ® N ) no longer works due to the possibility
of interference between procedure and argument in Idealized Algol. For instance,
the terms Ac.c;z := 1 and Ac.z := 1; ¢ can be now distinguished by being applied
to an argument that interferes with x.

An explicit description of the cpo for (comm — comm)*S can be given in terms
of resumptions. This will be presented as a special case of a representation result
in Section 10.1.

ExAaMPLE 6. Next we consider a type for functions with two arguments:

(comm x comm — comm)*]
V3. (8- B)&(B—o ) = (B )
(list{1,2})..

1112

A list £ of 1’s and 2’s corresponds to A¢ : comm x comm . ¢, where ¢¢ = skip and
¢t = (mic);ct, for i = 1,2 and i,/ is the cons of i onto £. The parametricity argu-
ment showing the last isomorphism is essentially the same as in Example 4. With
this representation we can see which argument an element of this type evaluates
first: 4,/ evaluates the i’th argument.

ExaMPLE 7. Two-argument curried functions in SCI are less rigidly sequential, in
that it is not necessary for one argument to be evaluated first:

(comm — comm — comm)®S

VBy. (B0 B)&(y—o7) = (S@BRYoS®A®Y)
Sﬂ)(S@NJ_@NJ_).

1R

In this case computation in the 3, v, and S components can all be carried out
independently, being again Church numerals in 4 and . If we consider the case
where S = I, then we obtain a correspondence between IV, ® N and closed SCI
terms of type comm — comm — comm:

(n,m) = Aci.Aea. ™ || ™
— — Aci. Acs . diverge.

In contrast to Example 6, the evaluations of the two command arguments can
proceed completely independently, in parallel.

7.3 A Limitation of Binary, Strict Parametricity
Independence from evaluation order in SCI gives rise to examples that require
stronger principles than binary relational parametricity to treat correctly.

ExaMPLE 8. We define a function rotate in the denotation of the type

Vajasas. (1 —o o ® nat)&(as—o as ® nat)& (az—o a3 ® nat)
— (1 ®ay ® azg—oa; ® as ® az Q nat)
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This type is isomorphic to (exp — exp — exp — exp)°l. The definition is
Tﬂt{lte[51, 527 S3]<Cl ; €2, (33)[317 52, 83]

1, 85,83,0] if 181 = [s1,0] # — A case = [s5,0] #
[s1, 8%, s4,1] if casa = [sh,1] # — A c3s3 = [s5,1] # —
1,582,852 if e1s1 =[87,2] # — A c3s3 = [s4,2] #
— otherwise

Informally, to evaluate rotate we begin by evaluating its three arguments in paral-
lel. Of the three possible rightmost conditions above only one can apply. If it is
the first, then we return the altered states s} and s}, while leaving s3 unchanged.
Similarly we leave s; unchanged in the second case and ss in the third. Intuitively,
this involves a form of snapback in each argument. Nevertheless, rotate does exist
in the model. (We leave the verification of parametricity conditions as an exercise.)

This example shows a limitation of the strict-function model of the polymorphic
calculus, and of the corresponding model of Basic SCI. In particular, because of
the example we would not expect a result to the effect that the syntactic type
(exp — exp — exp — exp)°! is, in the model, characterized by SCI-definable
elements: It seems reasonably clear that rotate is not definable in the linear language
(though a rigorous proof would be very involved).

Although this points to a limitation in the strict parametricity model, it does
not indicate a problem in our syntactic translation. We believe that the elements
of the cpo (exp — exp — exp — exp)°! that are definable by source and target
language terms are the same. Furthermore, it appears that these definable elements
(and their lubs) form a cpo that is isomorphic to the cpo N* x N* x N* —; N
of Kahn-Plotkin sequential functions, where N* is a stream cpo.

The rotate function is a variation on Berry’s [1978] example of a stable function
that is not sequential. It came to our attention in the context of SCI because of
Reddy’s coherence space model, where a version of it is also present. This indicates
that neither model fully accounts for sequentiality, or for the absence of snapback.
Reddy has suggested that one might hope that the approach to sequentiality using
games [Abramsky et al. ; Hyland and Ong 1994] might help to resolve this issue.
Another possibility would be to use a stronger form of parametricity based, perhaps,
on Kripke relations, which have also proven useful in approaching sequentiality
[O’Hearn and Riecke 1995; Riecke and Sandholm 1997].

8. RELATION TO FUNCTOR MODELS

While we have said that our translations are based on functor-category models, the
precise relationship to them may not be obvious. In particular, the translation for
Tdealized Algol relies on special properties of the functor-category model defined
by Oles [1982, 1997], and does not use standard structure found in all functor
categories. Furthermore, the translation for Basic SCI is unusual, in that each
identifier is associated with a separate store shape. In this section we describe the
ingredients allowing connections between the polymorphic and functor-category
forms of semantics to be drawn.

For Idealized Algol we define a logical relation between our model and the functor-
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category model of Oles (allowing for side effects in expressions). The logical relation
establishes that our model agrees with Oles’s on the meanings of closed terms of
primitive type. A corollary of this is a computational adequacy result, connecting
the model to an operational semantics for Idealized Algol. Interestingly, para-
metricity is not needed for this connection to be made, and it goes through for a
model in which V is simply an indexed product. For Basic SCI we relate the style
of interpretation where each identifier is associated with a separate store shape to
a notion of multi-map between functors.

It would be helpful to have some familiarity with functor-category models here.
In the next section we return to an analysis of the translations in their own right.

8.1 ldealized Algol
We recall the category ¥ of store shapes [Oles 1982; Oles 1987].

—The objects are countable sets.

—The morphisms from W to X are pairs of set-theoretic functions
p: X =>W,p: W x X — X such that
(1) Vo e X.plp(z), ) = ;
(2) Vz e X.Yw e W.p(plw,z)) = w;
(3) Vx e X.Yw,w' € W.plw, p(w',x)) = p(w,x).

The propotypical example is the “expansion” morphism (¢, p): W — W x Y where
W x Y is the set-product, ¢ is the first projection and p(w', (w,y)) = (w',y). The
composite of morphisms (p, p): W — X and (¢',p'): X =Y is (¢",p"): W = Y
such that ¢" = ¢'; 9 and p"(w,y) = p'{p{w, ¥’ (y)),y). The identity morphism on
W is (g, p) such that ¢(w) = w and p(w,w') = w. (g, p) is an isomorphism iff ¢ is
a bijection.

Let Predom denote the category of predomains (possibly bottomless cpo’s) and
continuous functions. The functor category Predom?” is Cartesian closed. In fact,
Predom© is Cartesian closed, for any small category C: The internal hom can be
given in a standard way using the definition

(F = G)X = Predom®[C[X, ] x F,G].  (Standard Definition)

(Note that this formula is covariant in X, which gives the action on morphisms.)
However, in the case that C' = ¥ a factorization of morphisms shown by Oles allows
the internal hom to be calculated in a special way.

LemMA 3. (Expansion Factorization Lemma) Any morphism (p,p) : X —
Y in ¥ factors as an expansion followed by an isomorphism X = X x Z =Y.

LEMMA 4. (Exponent Representation Lemma) The internal hom = in
Predom™ is such that

(F = G)X = Predom™[F(X x ),G(X x )], ordered pointwise

for any functors F,G : ¥ — Predom and any countable set X. (We are using
X X — to denote the evident endofunctor on ¥; but note that X is not the categorical
product in X.)
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Proof: The proof of the Factorization Lemma is in [Oles 1982]; we sketch why the
Representation Lemma follows from it. Any p € (F = G)X accepts a store shape
Y and a pair ((¢,p) : X = Y,a € FY) as arguments, and produces a result in GY'.
Using Oles’s lemma, we can factor (¢, p) into a composite X — X x Z - Y. By
functoriality F(i'') and Gi are both isomorphisms, where i! is the isomorphism
inverse to i. By naturality for the isomorphisms, p[Y]((¢,p),a) must be equal
to Gi(p[X x Z](e,(Fit')a). Thus, we can see that p is completely determined
by its action on expansions, and this leads in a straightforward fashion to the
representation result.

Notice that the formula for the internal hom in the Representation Lemma is for-
mally similar to the translation of function types in Idealized Algol. With this it is
possible to establish a connection with the translation (-)*, which we now outline.

First, given the Representation Lemma, we might as well define the internal hom
as

(F = G)X = Predom™[F(X x -),G(X x -)]. (Alternate Definition)

Ife: X — X x Y is an expansion then the required functorial action of F' = G is
given (suppressing associativity isomorphisms) by

(F=Qep) W] = plY xW]:F(XxY xW) > GX xY xW).
If i : X — Y is an isomorphism then
(F = Q)ip)[W] = F(i x W) pW];G(i x W),

and the functorial action for arbitrary Y-morphisms is then obtained from the
Expansion Factorization Lemma.

In order to interpret recursion we need to work in the full subcategory whose
objects are functors F' where [Oles 1982]: (i) F X has a least element, for each store
shape X, and (ii) F'(p, p) preserves least elements, for each Y-morphism (¢, p). All
of the objects we mention will in fact lie in this subcategory.

We can now define a functor O[f] for each Idealized Algol type 6. (The product
F x G of functors is defined pointwise as usual.)

Olcomm]W = W, oW,

|- if s =— orc(ps) =—
Ofcomm](p, p)es = {p(c(cp(s))7s) otherwise ’

Olacc]W = W, Ny oW,

- if s=— or¢[(ps),n] =—
Olacell. p)ets.n) = {P(d@(s),n],s) otherwise v

Olexp]W = W, oW, & N,

- if s=—ore(ps)=—

Olexp](¢.p)es = 055, 5').m) when (s',n) = e(ips)

O[8 — ¢'] = 0[8] = O[¢']
O[8 x 8] = O[F] x O[¢']
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The morphism part of OJcomm] appears, at first sight, to be nonlinear in the store,
where s is copied. Apart from the fact that the two occurrences of s are in different
arms of a pairing for a categorical product (-,-), this is not a problem because
when (i, p) is an expansion the “otherwise” clause of the definition is equivalent to
p(cz,y), and this is what we use in the translation to linear A-calculus.

Now we set up a logical relation between (-)* and O[], the former understood in
terms of the strict parametricity model. For each type # and countable set X, we
define a relation

R) CO*X, x O[] X.

For § = comm, acc or exp, RXV is an identity relation, and product types use the
obvious pointwise definition. For procedures,

(p,q) € Ry—sg = YW.(a,b) € RS = (p[Wi]a,qW]b) e RN *W.
We define R by viewing a type assignment I' as a product as usual.
LEMMA 5. Fach Rg( is a pointed, complete relation.
LeEMMA 6. (Expansion Relatedness Lemma) If (a,b) € R then
((eapandy[ X ][V1]a), (O[0](e)8)) € BY*Y,
where e : X — X x Y is the expansion in X.

The proof of the Expansion Relatedness Lemma is straightforward, as the definition
of ezpand, merely copies the definition of O[f]e in the functor category.

Each judgement T' F M : 6 in Idealized Algol is interpreted as a natural trans-
formation

O[M] : O[r] = O[f].
The interpretations are essentially as in the translations (-)*, except that we use
environment manipulations in place of substitution. Representing environments u €

O[] X as functions from identifiers to appropriately-typed values, representative
equations are:

O[M; M'"MTWus = O[M'ITWu(O[M]Wus)
Oz : 0. M[Wu[X]d = O[M](W x X) ((O[T]fu) | z — d)

O[M(M"Y]Wu = h(O[MWu[I](iO[M'|Wu))
[ w" if OJM]|Wu[N]v[w,0] = [w', n]
O[newcomm M]Wuw = { — it O[M]Wu[N]o[w, 0] = —.

In these definitions, i and h are suitable isomorphisms, f : W — W x X is the
expansion morphism, N is the set of natural numbers. The standard local variable v
is (a,e), wheree: (X xN)| o ((XxN)xN)  anda: (X xN)xN), —o (X xN),
are the unique strict functions such that

e(z,n) = ((z,n),n), and
al(w,n),m) = (z,m).
(Notice that a and e are obtained by lifting p and ¢ from the expansion map
(¢, p) : X = X x N in the category X.)
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LEMMA 7. Suppose T' = M : 0 in Idealized Algol, and that (u,u') € RX. Then
(M*X | u),(O[M]X u')) € Ry

Proof: By induction on M. We indicate the key cases of new and A-abstraction.

For new,, (M), by induction we know that (p,q) € Ry, _,,, where p is the deno-
tation of M in the strict parametricity model and ¢ in the Oles model. new, (M)
is defined in the models by supplying local variables v and v’ to p and ¢, and de-
allocating on termination. Clearly, by the definition of R for procedure types, this
case will hold if we can show that the two standard variables are in relation RXXN
and this is easy to check from their definitions above and in Section 5.

For the case T+ Ax : 6. M : § — 6', suppose (d,d') € R?XY. We need to show
that (m,m') € Ry, *", where

m = ((M*(a® B))[expandg, [a][Blzi/zi])(a— X, ,8- Y )(u]|z — d),
m' = O[M](X x Y)(O[T']eu' |z — d').

Here, e : X — X x Y is the expansion, m is the translation of a A-abstraction, ap-
plied in the strict parametricity model to an appropriate world Y| and argument d’,
and m' is obtained from the meaning of A-abstraction in the functor category. Us-
ing a substitution lemma for the parametricity model of the linear lambda-calculus
we can infer

m = (M*(X, ®@Y,)(x; = (expandy [X ][V |(uz;)), z — d).

Further, (O[I'](e)u'|z — d') is of the form (z; — O[6;]e(u'z;), z — d), so we know
that the environments (z; — (ezpandy [X ][V ]|(ux;)), 2 — d) and ([[](e)u'|z —
d') are Rﬁ{::g,—related, using the Expansion Relatedness Lemma and the assump-
tions that u and u', and d and d', are related. We can then use the induction
hypothesis to conclude that m and m' are related. B

At primitive types this lemma reduces to the following.

ProPOSITION 8. (Adequacy with Oles’s Model) If + M : ¢ in Idealized
Algol then M*X | = O[M]X.

Furthermore, Lent [1993] has verified that Oles’s model satisfies an adequacy cor-
respondence with a suitable operational semantics, to the effect that a closed term
of command type converges operationally iff it does not denote — (and the proof
carries through equally in the presence of expressions with side effects). Thus, ad-
equacy with respect to Oles’s model establishes also adequacy with respect to a
standard operational semantics. Note that parametricity has not been used thus
far in this section, and the adequacy result would go through for the unconstrained
model of polymorphism, where V is simply indexed product over countable, flat
cpo’s.

The logical relation, however, contains more information than required for ade-
quacy, which will be put to use in some technical lemmas at the end of the next
section.

8.2 Basic SCI

It is not difficult to interpret SCI in Predom™, by mimicking (-)°, and to verify an
adequacy correspondence as was done for Idealized Algol. Rather than do this, we
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want to relate the somewhat unusual form of interpretation, where each identifier
gets a separate piece of the store, to structure found in the functor category; see
also [O’Hearn et al. 1999].

First, recall the translation of the SCI function type:

6= 6')°a = ¥3.6°8 - 8°(a® B).

We can rewrite this in functorial form as follows: If G, F : ¥ — Predom are
functors, then the functor G¥ is defined by the equation

(GF)X = Predom™[F(-),G(X x -)], ordered pointwise.

This formula is covariant in X, which gives the action on morphisms.
What is the sense in which G¥ is a function typel’ One way to explain this would
be to find a tensor product of functors satisfying the usual adjunction property

Predom”™[E ® F,G] = Predom”[E,GF].

In fact, G is precisely the exponent of functors described by Day [1970], who also
gives a recipe for obtaining the required tensor products.

Another, for our purposes more direct, way is to proceed is to look explicitly at
maps of multiple arity.

DEFINITION 9. Suppose Fy,...,F, and G are functors in Predom™. A multi-
map

n:F,...F, —G
is a family of continuous functions
U[X]7...,Xn] PR Xy x - x X, HG(X] X e XXn)

natural in store shapes X1,..., Xp. (In case n =0 a multi-map is a function from
a one-point cpo to G(1), for 1 a one-point set.)

The connection between multi-maps and G¥ is immediate from the definitions.
ProrositioN 10. Given functors Fy, ..., F,, F and G, multi-maps
n:Fy,... F, F— G
are in bijective correspondence with multi-maps
n:F,...,F, —GF.

Proposition 10 could be restated in more abstract terms by saying that functors
in Predom®, together with multi-maps, comprise a closed multi-category [Lambek
1989]. We regard this as a kind of categorical justification for, or commentary on,
the form of the translation of SCI.

At this point the reader may be wondering why we arranged the (-)° translation
in this multi-map form: It would be more standard to follow the structure of a
monoidal closed category, where we would interpret a term using a map out of a
tensor product. There are two reasons. First, explicitly associating a different piece
of local state with each identifier is very appealing, as it directly models the idea
that distinct identifiers don’t interfere. Second, it is not clear to us how to describe
Day’s tensor product of functors in polymorphic linear A-calculus. As a result, if
we were to add types 8 ® 6’ of noninterfering pairs to SCI, it would not be evident
how to interpret them in the linear calculus.
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9. ON NATURALITY AND PARAMETRICITY

We have seen a close relationship between our translations and semantic equations
in a functor-category model. The main difference is that functor models require
meanings to be natural with respect to expansions, where in the strict parametricity
model we use binary relational parametricity. In this section we explore circum-
stances under which the former is implied by the latter. We begin by considering
SCI, where the situation is simpler.

9.1 Basic SCI
In SCI, parametricity implies naturality at all types.

THEOREM 11. (Naturality Theorem for SCI) Any p € (f; — 62)°S is nat-
ural with respect to expansions: for all flat cpo’s S1 and S,

o plS o

(5) 5L 508

expand, [S1][S]] expand,,[S @ S1][S]]
07 (S ® SY) S 90 65(S ® S ® S7)

(where we have elided canonical isomorphisms (S ® S1) ® Sy +» S ® (51 ® S)).

Proof: First, it is easy to see that the result holds for 6; — (62 x 03) iff it holds
for 1 — 65 and 6; — 3. By an inductive argument we obtain that it suffices to
prove the result for types of the form

0y — (s — (0 =) ).

We prove it for ¢ = comm; the cases of acc and exp are similar. Also, to keep

things simple, we give the proof for the case n = 2. This case shows the key role of

disjointness between arguments in the proof, and is easily extended to other n.
We are required to show that (a)=(b), where

(a) = p[S1 ® Si](ezpandy, [S1][St]ar)[S2]as [s, s1, 81, s2]

(b) = (ezpandy, _y commlS @ S111S7](p[S1]a1))[Salaz [s, s1, 51, 52]

for all Sa, [s,s1,87,82] € S® S1 ®S] ® Sa, a1 € 751 and as € 65S5,. It is crucial
here that ay lives in store shape Ss, which is separate from the S| component; this
allows us to use a relation that fixes S| below.
By the definition of expand for procedure types, (b) is equal to
(C) = [q, q1, SI] 3 q2]: Where p[sl]al [SZ]aZ[S: S1, 82] = [q, qi, qZ]

Let R : S; ® S] <+ S1 be the relation that fixes s}, i.e. it contains (—, —) and all
pairs ([z, s}],z) where z # —. By the Identity Extension property (a special case
of the Isomorphism Functoriality Lemma) we know that

(d) {(a1,a1) € 07Ag, and (as,as) € 85Ag,.
Further, we claim that

(e) ((expandy, [S1][Si]a1),a:) € 67 R.
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Postponing the proof of (e) for a moment, (d), (e), and parametricity of p imply
that (a) and [g,q1,¢2] are Ag ® R ® Ag,-related, and hence by the definition of R
that (a)=(c). Since (b)=(c) we obtain the desired result (a)=(b).

Property (e) follows from parametricity of expand, : V(BVvy.673—007(8 @ 7).
Specifically, we noted (ai,a1) € 07Ag, in (d), and taking R’ : S} < I as the
relation containing (—, —) and (s}, —), we obtain

() ((ezpandy, [S1][S1]a1), (expandy, [S1][T]a1)) € 67 (As, ® R).

Now, R is equal to the composition of Ay @ R' : S ® S] < S; ® I with the canon-
ical isomorphism S; ® I +» S;. We can then use Isomorphism Functoriality and

parametricity of ezxpand, once more (with respect to this canonical isomorphism)
to obtain (e) from (f). B

Similarly, we can show that the interpretation

z1:0lar, .. Ty O B M (.. ) 1 0% () @ ® auy,).

of a judgement satisfies a naturality property corresponding to Definition 9.

9.2 Idealized Algol

The proof of the Naturality Theorem for SCI relies on the simpler interpretation
of function types, where the state for procedures and arguments is separate. In
Idealized Algol, we have only been able to verify the corresponding result for types
of a specific form.

THEOREM 12. (Naturality Theorem for Idealized Algol) If ¢ is a primitive
type then any p € (61 — ¢)*S is natural with respect to expansions:

05(S ® S)) pl5]

¢* (5 ®51)
expandy [S ® S1][S1] expand,[S @ Si][S}]

SRS ®S))—————— " (S® S ® S
1(®1® 1) p[51®5” (p(®1® l)

(where we have elided canonical isomorphisms (S ® S;) ® S| & S® (S; ® S7)).

The proof can follow the proof of Naturality Theorem in [O’Hearn and Tennent
1995], and is essentially similar to the case of § — ¢ in the proof of Naturality for
SCI. The reason that the SCI proof does not generalize can be seen in the case §; —
6> — comm. In Idealized Algol the application p[Si ® S}](ezpand[Si][S2]a1)[S2]as
uses an element ay € 65(S ® S; ® S ® S») that can change members of S}, thus
preventing the use of a relation that fixes the S; component in the proof.

In [O’Hearn and Tennent 1995], Section 9, there was a counterexample to “para-
metricity implies naturality,” which showed that this result failed to hold with ¢
replaced by arbitrary 6. But the counterexample there used Weakening and Con-
traction and does not exist in the strict parametricity model. As a result, using
the representation in the Resumption Theorem in Section 10.1, we have been able
to slightly extend Theorem 12 to cases where ¢ is replaced by a first-order type
@1 X -+ X @ = . The question of whether it holds for all types remains open.

Naturality is important, e.g., for proving the isomorphism 6 x 8, — 63 = 6; —
05 — 65 that is characteristic of Cartesian closed categories. So, even though we

[4
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have the adequacy result above, we have not verified the indicated CCC isomor-
phism at higher types in Idealized Algol.

Interesting though the open question may be, it does not pose a fundamental
problem for our semantics, as it can be dealt with in at least two ways. First,
every Idealized Algol type can be converted to a “canonical form” of a product of
types of the form 8 — ¢, and we could simply use an uncurried presentation of
the semantics of types (as in [O’Hearn and Tennent 1995], Section 2). The second
option is to add naturality as an explicit additional requirement (as in [O’Hearn
and Tennent 1995], Section 7). In either case, we get an interpretation of Idealized
Algol using CCC structure, and satisfying all the laws of the typed A-calculus. Since
these two alternatives are thoroughly examined in [O’Hearn and Tennent 1995], the
details do not bear repeating here. Instead, we choose to carry working on with
the translation (-)* as defined (which we have seen satisfies an adequacy property),
and simply note that the naturality properties that we can verify are sufficient to
support the technical results that we shall prove about low-order types. To this
end, we finish this section with some technical lemmas that will be needed later, in

Section 10.3.

9.3 Technical Lemmas

We now prove some technical lemmas that will be used to help produce a distin-
guishing context during the proof of full abstraction in the next section; the reader
may wish to move on and refer back to these lemmas as necessary.

The first lemma reduces the domain approximation p C ¢ between certain poly-
morphic functions to the ordering p[N,] C ¢[N] of their instantiations to N, .
This is one of the steps which enables us to use a single local variable, which lives
in store shape N, to produce a distinguishing context.

The use of I in the lemma corresponds, semantically, to meanings for closed terms
of the indicated type.

LeEMMA 13. If p,q € 0*I, where 6 = (p1 X -+ X @, = @) — ¢, then p C q iff
p[N ] E g[Ny].

Proof: The only if part is immediate. For the if part, consider any countable, flat
cpo S, and suppose p[N] C ¢[N,]. We must show p[S] C ¢[S] for arbitrary S.
If S is {—} then the result is trivial. Otherwise, first note that N, and S ® N
are isomorphic, since both are countably infinite and flat. Using the Isomorphism
Functoriality Lemma and parametricity we infer p[S® N, ] C ¢[S ® N ]. We know
that p and q are natural with respect to expansions by Theorem 12, and so we
can then show that p[S] C ¢[S] using naturality with respect to the expansion
S—0S ® N and the easy fact that expansion maps expand,, [S1][Ss] reflect order
for primitive types ¢'. B

The next lemma refers to the logical relation R between (-)* and O[] defined in
Section 8.1.

LEMMA 14. If6 = (p1 X+ X p,, — ) — ' then the opposite of relation Ry
is single-valued: if pRy‘m and p' RXm then p = p'.

The point of this result is that, at first order types, the relationship between the
two models can be described by a partial function; an element in the Oles model
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can correspond to at most one element in the parametricity model (which is more
constrained).
Proof: Assume the antecedent. By Theorem 12 we have an injection

i ((p1 XX o) = @) (X x W) = Of(pr X -+ X ) = @] (X x W),

and it is clear that if g € ((p1 X -+ X ) = ©)* (X x W) then qR;(lXX‘_"_/_X%_W(iq).
By the logical relation property for p and p' this means that

(W) RS (m[W](ig)) and  (p'[W]q) R " (m[W](iq))-
But the logical relation RX*W at primitive type is an equality relation. Thus, we
have shown that p[Wlq = p'[W]q for arbitrary W and ¢, sop=p'. B

LEMMA 15. If = M : 0, where 8 = (o1 X -+ X @ — @) = ¢, then M is
natural:

I M7S 6*S
id expand,[S][S']
I EEEED) 0*(S® S

Proof: Let S= X, and S’ = X|. From Lemma 7 we know that
(M*X | )R} (O[M]X*) and (M*(X x X’)l*)Rg(XX'((’)[[M]](X x X")x).
By Expansion Relatedness (Lemma 6),
(expand, [S][S')(M* X 1)) R} X (O[f] € (O[M] X %)),
where e : X — X x X' is the expansion. Further, by naturality of O[M] we know
Of] e (O[M]X %) = O[M](X x X') .

Naturality follows from these facts together with Lemma 14 and the standard iso-
morphism (X x X'); 2S® S N

The order C on p and q in Lemma 13 is determined pointwise. Likewise, any
derivable judgement I' = M : 6 in Idealized Algol determines a family of maps
M*( ) :T*( )—o6*( ) in the strict parametricity model, which we also order point-
wise.

LEMMA 16. If F M,N : 6, where 8 = (p1 X -+ X o — ) —> ', then
M*C N* 4ff M*IC N*I.

Proof: The only if part is immediate from the pointwise order for C. For the if
part, if M*I © N*I we get M*(I ® S) C N*(I ® S) from naturality (Lemma 15),
and then M*S C N*S using the Isomorphism Functoriality Lemma (Section 6)
with the isomorphism S+ I ® S. B
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10. RESUMPTIONS AND IDEALIZED ALGOL

In this section we show that the meanings of first-order types in our model of Ideal-
ized Algol may be characterized using domain equations for resumptions. The proof
of this result goes by a parametricity argument which characterises the elements of
these types exactly. Using this characterization, we derive a full abstraction result
for closed terms of second-order type.

We have already seen in Section 7.3 that such representation results do not go
through in our model of SCI.

10.1 A Representation Theorem

The domain equation we give will need to deal with a number of different capabilities
for the primitive types, and it will help to look at some instances of it before giving
the general equation.

To begin, (comm — comm)*S is an initial solution of the familiar domain
equation for deterministic resumptions [Plotkin 1983]:

D = S— (5S¢ (S® D))

where S is a flat cpo and & is coalesced sum. Using this domain equation we
understand a procedure of type comm — comm as follows. A procedure with a
command argument begins by possibly changing the state. It then either terminates
or resumes. Resuming causes the argument to be evaluated once, with the state
resulting from this evaluation fed through as an argument to the resumed procedure.

For expressions we augment deterministic resumptions with input and output
capabilities. The equation for exp — exp is

D=~ So((S®N.)& (S®(NL—oD))).

This equation allows for an output value in the component S ® N, for the final
value of execution of the resumption, and an input value in N, —o D that is obtained
from evaluating the input expression once.

For acceptors to the left of — consider a procedure p : acc — comm. A
procedure call p(a) is a command which may assign a number of values to a during
its evaluation. The appropriate domain equation is the one for comm — comm,
augmented with natural number values to be supplied to the input acceptor on
resumption:

D= S—o(Sa(S®D®NL)).

For acceptors to the right of — consider a procedure p : acc — acc. A procedure
call p(a) is an acceptor, so that it accepts a natural number value and then behaves
like a command, during evaluation of which a can be used a number of times.
Accordingly, (acc — acc)*S is isomorphic to N; —o D, where D is the domain just
given for acc — comm.

This treatment of acceptors can in fact be regarded as being derived from a view
of acc as an infinite product of comm; semantically, acc*S is isomorphic to an
infinite product (comm*S)~. For acceptors to the right of —, the domain N; —o D
is isomorphic to the infinite product DN. To the left of — the term S® D ® N
in the domain equation can be isomorphically rewritten to ¥;c yS ® D, for X the
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coalesced sum: Below we will use summation in this way to account for explicit
product types to the left of —.

To formulate the general equation, for each primitive type ¢ we define functors
@™, 9 and and ¢"¢ (for input, argument, and result) on the category of cpo’s
and strict continuous functions:

exp'i,n — ( ) exp‘“"g — NJ_%)( ) expres — ( )®NJ_
acc™ = N;—o() acc’ = ()@N, acc™ = ()
comm™ = (). commt = ()  comm™ = (1)

Now we add the capability to choose among multiple arguments to the domain
equations above.

THEOREM 17. (Resumption Theorem) If o1, ..., on, @ are primitive Idealized
Algol types and S a countable flat cpo, then

(1 X+ X o = ©)*S
is isomorphic to o™ (D), where D is an initial solution of the domain equation
D = S—o (¢ (S) ® (S ® (ZiL19"(D)))),
where & and X are coalesced sum.

The summation over i € 1, ..., n here corresponds to a strong form of sequentiality
where a resumption must choose a specific 4, which causes the i'th argument to be
evaluated before resuming. This is analogous to strategies for picking sequentiality
indices in sequential algorithms [Berry and Curien 1982]: In contrast, Kahn-Plotkin
sequential functions require mere existence of a sequentiality index, and as a result
are less distinguishing than the stronger form of sequentiality found in Idealized
Algol. The weaker sequential-function form of sequentiality is closer to functions
in SCI, where non-interference leads to less dependence on evaluation order than
in Idealized Algol. (So the parallelism in SCI is reminiscent of independence from
evaluation order in PCF, and appears to be actually sequential in this weaker sense
of sequentiality.)

The proof of the Resumption Theorem is lengthy, and we give it separately in
the following subsection. In describing the proof we have attempted to isolate the
more conceptual part, the parametricity argument, from the technical development
needed to apply the argument to verify the theorem.

10.2 Proof of the Theorem

To keep the notation simple we give the proof for the type exp x exp — exp. This
requires us to address the most important issues raised by the domain equation,
including multiple arguments and possibly non-trivial input and output values. The
proof for more or fewer than two arguments involving comm or exp is a straight
notational reworking of what follows, and acc requires only minor modifications
(recall the remarks about acc as a infinite product of comm above).

The relevant cpo in the strict parametricity model is

Z = V3. (S®PB—-0S®Fnat)&(S® F—oS R [ nat)
= (S® 0S5 ® [ ®nat).
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Let D be an initial solution of the equation D = TD, where T is the following
functor on the category of cpo’s and strict continuous functions:

T(-) = S=S® (N, & (N1 ()& (N1 — ().

(The functor S—o ((S®NL)®(S®XL (NL—o( )))) is explicitly given by the state-
ment of the theorem, but it is isomorphic to 7', which is obtained by distributing
& over ®.)

Our aim is to show that Z and D are isomorphic. To do this, we proceed in four
steps. First, we describe the structure of D. This is straightforward, and follows
from standard material on recursive domain equations [Plotkin 1983; Abramsky
and Jung 1994]. Second, we give the parametricity argument, which relates uses of
polymorphic functions to the structure described in the first step. Steps three and
four consist of technical results, which use the information from the first two steps
to verify that D and Z are isomorphic.

Step 1: Structure of D.

From the solution of domain equations by the inverse limit construction [Plotkin
1983; Abramsky and Jung 1994], we know that D is a bounded complete, algebraic
cpo. As a result, any element is the lub of the finite elements beneath it. The first
step needed for relating D to Z is to describe this structure explicitly. We do this
using step functions. If ' is a flat cpo, F' is bounded complete and algebraic, e € E
is not —, and f € F' is finite, then the step function e \, f : E—o F' is such that

fife=¢
— otherwise.

e =

The domain D can be described using special finite elements, the atoms. Recall
that an atom a in a cpo is an element just above —, i.e. a # — and Vb.b C a =

b=aV b= —. The atoms a € D can be generated using step functions as follows:
a == s \/[¢,¢€] (—#s,5'€S)
ex=mnll:nNyal|2:n\a (neN)

Here, we use n, 1 : n \( a and 2 : n \, a to indicate elements in respective
components of the coproduct N & N, —o D & N; —o D. We will follow the usual
practice of suppressing isomorphisms between D and T'D. For instance, s N\ [s', n]
is, strictly speaking, an element of 7T'D, which we could coerce to D using an
isomorphism.

It is not difficult to verify that each element a generated by this grammar is
indeed an atom, and also that this exhausts the atoms of D. The role of the atoms
in D is summed up by the following lemma.

LemMMA 18. D isisomorphic to {A C D | A is a pairwise-consistent set of atoms},
ordered by subset inclusion. (That is, D is a coherence space.)

Here, two elements are said to be consistent when they have an upper bound. The
lemma can be shown using a routine calculation with the inverse limit construction.

Step 2: The Parametricity Argument.
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The essential part of the proof is the following use of parametricity. Suppose
p e Z, Eis a flat cpo, ¢1,¢0 : S® E—-oS ® E® N, and p[E]{c1,¢2)[s0,€0] =
[s0,€0,n'] # —. We identify an element of D that tracks the calls of ¢; and cs.

Let L be the flat cpo whose non-— elements are lists of elements drawn from the
set coproduct S’ + N + N, where S’ is the set of non-— elements of S. We use s,
1:n, and 2 : n, with subscripts or superscripts, to range over components of the
coproduct. Define R : L < FE to be the smallest strict relation such that

(so)Req cils,e] = [s',e',n] # — and fRe = ({,s,s",i:n)Re'.

The initial and final values of the state on a use of ¢;[s, €], together with component i

(which is 1 or 2) and produced value n, are recorded in (¢, s,s’,i : n). (We are using

a comma for appending an element to a list.) R is single-valued and determines a

function fr : L—o E, where frl = e if /Re, and fgrf = — if there is no e such that

{Re. For i equal to 1 or 2, define ¢] : S® L—S® L ® N, to be the function where
ci[s,f) = let [s',e,n] bec[s, frl] in [s', ({, 5,587 :n),n].

This definition is such that
((s0),e0) e R N (c},ci) e AsR R—0As Q@R An, .
Parametricity of p then implies that

(p[L){cT, ¢3)[s0, (s0)], PLEN(e1, 2)[s0,€0]) € As @ R® Ap, .

By the definition of R, this means p[L]{c}, c3)[so,(s0)] # —. Further, the use of
As ® R® Ay, implies that p[L]{(c}, c)[so,(s0)] € S® L ® N, is of the form

[367 (307317 Sllail Ny, Sk S;caik : nk)anl]

for some, possibly empty, list si,s},41 : ny..., Sk, 8}, 0 : g (here sy and n' are
the final values in p[E]{c1, c2)[s0,€0] = [sg, €, n']). From this we can read off the
behaviour of p[E]{c1,c2)[s0,€0] as a sequence of calls to ¢; and ¢, together with
initial and final states and values produced when each call was made.

This determines an atom

so N [s1on s (na N (51 N [sns ik 2 (e N\ (83 N 50, 1)) )))]

in D, which we denote by a(E,p, c1,ca, S0,eq). The logical relation argument we
have just given is a recipe for obtaining a(FE,p,c1,ca, So,€9) from appropriately
typed E,p,c1,ca, 50, €0, as long as p[E]{c1, c2)[s0,€0] # —-

This completes the most important part of the proof. The remainder of the sec-
tion consists of technical lemmas, showing how this way of generating atoms in D
from elements of Z can be used to establish an isomorphism between D and 7.

Step 3: From D to Z.
We obtain a map from D to Z using the fact that there is an initial T-algebra

TD "2 D, the structure map hp of which is an isomorphism [Abramsky and
Jung 1994]. Initiality implies that there is a (unique) strict continuous function
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¥ : D — Z making

T
TD v TZ
hp hz
D Z
(G
commute, where the T-algebra structure map 7'Z "% 7 is as follows:
hz = /\p eTZ
AB Mei,c2) : (S® -0 S ® [ ®nat)&(S® [BF—oS ® (S nat)
Als,b]: S % 8
let [s',z] be psin
case z of

1:f = (let[s",b',n] be c[s',b] in (f n)[B](c1,ca)[s",b])
2:9 — (let[s",b',n] be cz[s',b] in (gn)[B]{c1, c2)[s", b']).

We are using polymorphic A-calculus notation as a convenient way of defining ele-
ments of Z in a way that makes the satisfaction of parametricity conditions obvious.
The case construct is used to branch on coproduct components, where n, (1 : f),
and (2 : g) range over components of N; & (N —o E) @& (N, —o E). Note that the
use of case is not a problem for parametricity because we are not branching on
anything we are required to be parametric in.

The map 1 can be obtained from general considerations ([Abramsky and Jung
1994], Lemma 5.3.1) as a least fixed-point:

v = pg. (hp'T(g); hz).

For concreteness, it will be useful to spell out the action of ¥ on atoms. Consider
an atom

a = so \¢[51,%1 1 (M1 N\ (8] N\ [Sks ik (me N\ Sk N\ [0, D] )]

in D. Then we define the polymorphic function ¢ (a) € Z by induction on the size
of a. The base case is for atoms of the form sq N\, [s(,n'], and ¢ (a) is then the
function

AB. Xer,ca). Als, b].if (s = so) then s, b,n'] else —.

For the induction case, suppose that we know the polymorphic function 1 (a’) cor-
responding to the atom

a' = () oo sk dn : (ne Neosy N[0, D] )
Then 9 (a) is
AB. Xcr,c2). Als, b].
if (s = ) then
(let [s',b',n] = ¢;,[s1,b]in
ifn = ny theny(a')[8](c1, c2)[s', b'] else —)
else —.
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It is not difficult to see that this description is consistent with the abstract definition
of ¥ as a least fixed-point.

From Lemma 18 we know that D is determined by its atoms, and consistency
between them. A key point is that v respects this consistency structure.

LEMMA 19. (1) Ifyd andd' are consistent in Z then d and d' are consistent
in D.
(2) o reflects order: Yd C ¢d = dCd'.

Proof: For part (1) of the lemma, by Lemma 18 it suffices to prove the result for
atoms only. From the description of atoms in D it is clear that, if d and d' are
inconsistent, then we must have a situation in which

d = so Ny [s1,01 0 (N1 N\ (81 N\ [Skyir o (e N\ Sk \([g,€])] -+ )]
d' = 50\ 51,011 (n1 N (85 N[5k in s (ne N8k N\ g5 €D 0)]

where one of three cases must be true:

(1) e=m and e’ = n are in the first component, and m # n,

(2) a#4q', or
(3) e and €' are in different components.

For each case it is straightforward to find arguments E, ¢;, ¢o and ey such that
(¢ d)[E){c1, c2)[s0,€0] and (¢ d')[E]{c1, ¢2)[s0, €] are unequal and non-—. For in-
stance, in the first case we can choose E = N, eg = 0, and for y equal to 1 or 2
define ¢, to be the least function such that c,[s;,j — 1] = [s},j,n;], for 1 <j < k.
A routine calculation with the definition of ¢ shows that (¢ d)[E]{c1, ¢c2)[s0, €] and
(v d)[E]{c1, c2)[s0, €0] are inconsistent. The other two cases are similar.

Part (2) of the lemma can also be shown straightforwardly by proving the con-
trapositive, constructing arguments that show ¢d Z ¢»d’ when d Z d'. &

From part (2) of this result it follows that ¢ is an an injection that preserves and
reflects order, so that D “sits inside” Z. The next result sets the stage for the proof
that ¢ is bijective; it shows that the behaviour of any polymorphic function p € Z
is completely determined by elements of the form 1 (a) lying below it, for a an atom
of D.

LEMMA 20. (1) ¢(a(E,p,c1,c2,50,€0))[Elcso, e0] = p[E](c1,c2)[s0, €]

(2) P(a(E,p,ci,ca,50,€0)) Ep.
Proof: (1) follows straightforwardly from the relational parametricity property
for ¢ (a(E, p,c1,ca, S0, €0)), with the relation R used to define a(E,p,ci1,c2, S0, €0)

above. For (2) we need more work because we must consider cpo’s other than E.
That is, we must show the following for every flat cpo B:

(a) If w((l(E,p, €1, €2, S0, eﬂ))[B]<h17 h,g)[(](], bU] = [q[lh 66] 7£ -
then p[B](h1, h2)[qo, bo] = [qg,bp]-
Fix B and assume the antecedent of (a). Note that we must have sy = qq, or else
we would have ¥ (a(E, p,c1, ca, so, €0))[B]{(h1, h2)[q0, bo] = —.
Let L and R : L < E be as in the parametricity argument that defined the atom
a(E,p,ci1,ca,80,€0), and define @ : L <> B as the least strict relation such that

(SO)QbO hl[q,e] = [qlzblzn] 7é - A ng = (é7q:q’:i : n)Qb’
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We define fg and h} similarly to fr and ¢f. Again we have
((50),b0) €@ A (hf,h) e AsRQ—o0As®RQ Ay,
so, by parametricity (remembering sop = gq) we obtain

(b) (p[LI(hT, h3)[s0, (s0)] . p[B](h1,h2)[s0,bo]) € As ® Q@ Ay,
and
(C) <’I/J(CL(EJJ,C],02780,60))[1/](}7,1‘,h;)[SO,(So)],
’I/J(CL(EJJ,C],CQ, 80760))[B](h],h2>[80,b0]> € AS X Q 4 ANL-

Then (b) and (c) imply, since @ is single-valued, that to prove (a) it suffices to
show

(d) w(a(EﬂD:01762780=60))[L]<h,{=h;)[s():(SU)] = p[L]<hT7h3>[SU7(SU)]

Now, the atom a(FE, p, ¢1, s, Sp, €0) must be of the form

so N [s1.01 1 (m N (81 N [Sky e (m Nsk N800 D] ))-
Fixing k, for each 0 < j < k define
Ui = (50,581,811 1 N1y 85, 85,05 2 1),

and, for i equal to 1 or 2, define /" to be the function where

s, laa] = [s].45,n4], for 1 < j <k,

(3

and ¢™"[s, (] = — in all other cases. Define U : L <> L to be the relation containing
(—, —), all pairs (¢;,¢;) for 0 < j <k, and (—, ¢) for all £’s whose length is greater
than 3k + 1 (which is the length of £;).

Intuitively, ¢ is like ¢, except that it is just defined enough to enable the

i
min ,min

polymorphic application p[L]{c[**", ¢5**™)[s0, (s0)] to be non-—.
More formally, it is easy to see that

(emin ey e As@U—-oAs®U ® Ay, ,

2 ki3

and parametricity then implies
(PLLIErn, im)so, (s0)] s PILICT, ¢5) 50, (s0)]) € As © U & Aw,.
We know from the parametricity argument that defined a(E, p, ¢1, ¢2, S0, €0) that
PLLIEE c3) 50, (50)] = [sh buc ')
Further, the definition of U implies that
if ((,0) € U then £ = [,
so we may conclude that
PLI(Ein, im0, (s0)] = [shs Ce ')

In particular, it is not —.
Next, we claim

(e) (" ) e Ag@U—-o0As®@U ® An, .

k3



From Algol to Polymorphic Linear Lambda-calculus : 47

min

To see why (e) must hold, consider how ¢/ is defined in terms of the atom. If (e)

did not hold then we would have
¢(a(E:p7 C1,C2, 80, 60))[L]<h17 h3>[807 (80)] =

and that cannot be the case because, by (c¢) and the definition of @, it would
contradict the assumed antecedent of (a).
From (e) and parametricity of p we obtain

(PLNeT™, ™) [s0, (s0)], PILI(AT, h3)[s0, (s0)]) € As @ U ® Ay, .

By the definition of U and the fact, shown above, that p[L]{(c", ¢"™)[sq, (s0)] # —,
this implies

() pILIE™, ™) [s0, (s0)] = PILI(R, h3)so, (s0)].

By a similar (but easier) argument, parametricity of ¢ (a(FE,p,c1,ca, sg,€0)) with
respect to U implies

(8) ¥(a(E,p,c1,ca, 50, €0)) L™, 5 [s0, (s0)]
= ’([J((I(E,p,(31,(32,80760))[L]<h’{,h,;>[807(So)].

The desired result (d) follows directly from (f) and (g). W

Step 4: From 7 to D.
Finally, we define the inverse map k : Z — D:

Kp = |_|{a € D | ¢a C pand a is an atom}.
LEMMA 21. k is well-defined.

Proof: If ¢d,yd C p then d and d' are consistent by Lemma 19(1). Thus, the set
{a € D | a C pand a is an atom} is pairwise consistent, and by Lemma 18 its lub
exists. W

This shows that k is a function but we do not, as yet, claim that it is continuous.

LEMMA 22. kpd = d.

Proof:
kpd = | [{a € D | Ya CE ¢d and a is an atom} (definition)
=||{aeD|aCdandaisan atom} (Lemma 19(2))
=d (Lemma 18)
|

LEMMA 23. ¢kp = p.

Proof: Certainly we have ¢)kp C p by the definition of k. Conversely, sup-
pose that p[E](c1, c2)[s0,€0] = [$), 0] and consider a(E,p,c1,ca,s0,e0) € D. We
know from Lemma 20(1) that ¢ (a(E,p, c1,ca, S0, €q)) E p, and since, by definition,
a(E,p,c1,ca,80,€0) is an atom in D, the inequality a(E,p, ¢1, o, S0, €0) E ¥rp fol-
lows from the definition of k. This and Lemma 20(2) imply the desired equality
(VEp)[E]{c1, c2)[s0, €0] = [sh, €4], and we are done. B
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To prove the Resumption Theorem, note that in the specific category of cpo’s and
strict continuous functions any order-reflecting bijection is an isomorphism. Lem-
mas 22 and 23 show that ¢ is a bijection, so by Lemma 19 we conclude that it is
an isomorphism (and we can finally infer that x is continuous).

This Concludes the Proof of the Resumption Theorem

After all this work it is reasonable to ask if Theorem 17 could be seen as an
instance of a more general result about relational parametricity in linear type the-
ory. In suitably parametric models of (intuitionistic) polymorphic A-calculus types
of the form Va. (Ta — a) — a denote initial T-algebras, and this paves the way
for a characterization of all second-order types in prenex form. Plotkin [1993] in
lectures has indicated that the corresponding property in linear polymorphic type
theory is that Va. (Ta—o @) — « denotes an initial T-algebra, for covariant functors
T on a “linear” category where morphisms correspond to terms of —o type. It is
not immediately obvious that this implies our result because our translations of
first-order Idealized Algol types have quite a different form. Further, in contrast to
intuitionistic type theory the mixing of intuitionistic and linear facilities blocks an
evident reduction of these and other low order types to the form Va. (Ta—o«a) — a.
Finally, note that the map & in the proof, which essentially gives (weak) initiality,
was defined using details about the structure of solutions of domain equations in
the category of cpo’s and strict continuous functions.

10.3 A Full Abstraction Result

We know from the Resumption Theorem that the first-order types have algebraic
cpo structure. We show that the finite elements are definable in a suitable sense.
(This is related, but not identical, to the argument in [O’Hearn and Reddy 1999]
Proposition 5.2.)

Let vn, € var*NN | be the evident variable that directly updates and reads from
N, . It can be obtained from the standard variable v[I] € var*(I ® N, ) using the
canonical isomorphism I ® N; +< N .

LeEMMA 24. (Definability Lemma) If ¢1,...,n, ¢ are primitive Algol types
then every finite element d of (1 X - n — p)*N is definable by an Idealized
Algol term

x:vark My o1 X - = @,
in the sense that
(MjNi)on, = d
in the strict parametricity model.

In this result (M}JN,) is a map of type var* N —o (p1 X -+ ¢, — @)*N;. The
standard variable vy, for updating IV, is given as the only component in the
environment, and is denoted by z in (M}jN,)vn, .

Proof: Again we concentrate on exp x exp — exp. It is standard that the finite
elements d in the resumption domain can be generated as follows.
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d = (st N\ [sh,en]) U U (sp N[5}, €x])

(where s;,8; € N, s1,..., s are all distinct)

e x=mnli:(ng \(di)U-Unm \ydm)
(where all n; € N are distinct, and i = 1 or 2)

We define terms Ny, F, by induction on d and e, where

X :var,c; : exp,cs : exp - Ny : exp
T :var,c] : exp,cs : exp F F, : exp.

Ny is defined by

Nsi\lsten)U-Usi s en])
= ifz = s; then z := §{; F,

else if z = s;, then z := si; F,,

else (.
F, is defined according to the component of e:

F, =n

Fi (i N\dy) U0 Ndom)
= NeWexpy. Y 1= ¢;; if y = ny then Ny,

else if y = n,, then Ny
else (.

Then we set My = Xer, ¢2). Ng, and it is straightforward to verify that My defines
d in the sense of the statement of the Lemma. H

To formulate the full abstraction result, we will take convergence of closed terms
of type comm as the observable. (We could also observe integers generated by
terms of type exp, but this would lead to the same contextual equivalence rela-
tion.) To define this precisely, first note that if M is a closed term of type comm
in Idealized Algol, the family of maps M*( ) : [—ocomm*( ) is completely de-
termined by the component M*I : I—op*I at I. (This follows from the Logical
Relations Lemma, using relations of the form I < S that fix a state in S.) The
resulting function M*I'x : I—o I takes as an argument the state x € I and produces
as a result either x or —. We take as observable this final value M*TI % x, and we
look at approximation in all comm-typed contexts.

THEOREM 25. (Full Abstraction to 2nd order) Supposet M : 6 and+- N : 6
in Idealized Algol where 8 = (p1 X - - pn — @) = ¢'. Then

M*CN* < VCO[].C[M]*I**x C C[N]*I % x

(where C[-] is understood to be a context such that C[M] and C[N] are closed terms
of type comm).

Proof: The = direction is immediate from compositionality. For <=, suppose
that [M*a] Z [N*a]. We require a distinguishing context where C[M]* Z C[N]*.
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First suppose that ¢’ is comm or exp. By Lemmas 13 and 16, and continuity,
there is a finite element d and n € N such that

(M*I)[N_]d[*,n] Z (N*I)[N_]d[*,n].

By the Definability Lemma (using also an isomorphism N, < I ® N, ) there is a
term M, that defines d in an environment where x denotes the standard variable
v[I] for local variables.

If ¢' is comm then (M*I)[N,]d[*,n] = [*,m] for some m, and a distinguishing
context is

Cl] = newy z.z :=n; ([[|Mg); ifz = m then skip else diverge.

If ¢’ is exp then (M*I)[N]d[*,n] = [*,m,m'] for some m and m’', and a distin-
guishing context is

C[] = Nnewy I.x :=n; if([-]M,i) — m' then
if z = mthen skip else diverge
elsediverge.

The proof when ¢’ is acc is similar, if we observe that assignment to an acceptor is
needed when using continuity and definability to generate a distinguishing context.

We have formulated the full abstraction result for second-order types of a specific
form, but it is not difficult (observing remarks on naturality in Section 9.2) to extend
the argument to all second-order types. We do not know if the result extends to
higher types.

11. RELATED WORK

There are two ways to read the contribution of this paper. One has to do with
semantic models of imperative languages, and the other with translating from an
imperative language to a (linear) purely functional language. From the first point
of view the semantics is being used to analyze the imperative source languages,
while from the second the translation may be regarded just as much as telling us
something about the functional target language. In discussing related work we
consider these points of view in turn.

This paper builds on prior work on functor category semantics [Reynolds 1981a;
Oles 1982; Oles 1997; O’Hearn and Tennent 1995; Sieber 1996], the main technical
improvement being the elimination of snapback operators. The semantics may
in fact be regarded as a refinement of the parametric-functor model of O’Hearn
and Tennent [1995], obtained by moving from standard to linear polymorphism.
Another difference with these works is our use of a polymorphic target language
in place of a functor category (an aspect left implicit in the description of the
parametric-functor model). This makes the store shape typing information implicit
in a functor category more explicit, and statically checkable; we do not yet fully
appreciate the significance of this point.

Pitts [1996] has carried out a study of contextual equivalence in Algol-like lan-
guages using operational techniques. His work is a good example of useful interplay
between denotational and operational semantics. He proves a “possible worlds”
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version of the context lemma [Milner 1977], the formulation of which mimicks the
structure of a functor category; it characterizes equivalence of functions in terms
of applications to arguments at accessible worlds or store shapes. He uses an op-
erational formulation of the relational principles considered here (and in [O’Hearn
and Tennent 1995]) to prove his main result. A key point in Pitts’s work is that he
separates the use of logical relations as reasoning principles from their use in con-
structing a model. This does not lead to representation results, and it de-emphasizes
the connection with linear polymorphic typing, but it does provide a pleasantly sim-
ple mathematical expression of the relational principles, and interesting technical
results.

A completely different view of imperative computation is given by implicit-state
models, which interpret imperative programs using histories of events. The basic
conception of this approach is similar to ideas in work on processes (e.g. [Milner
1989]), but novel models of Algol-like languages have now been defined using de-
notational tools. The first of these is due to Reddy [1996], who defined a model for
syntactic control of interference using coherence spaces; more recently, Abramsky
and McCusker [1997] gave a game model of Idealized Algol.

Reddy’s semantics is similar in spirit to domain-theoretic models of functional
languages, and is based on a concrete description of domain-theoretic structure
associated with SCI types. It accounts especially well for independence between
arguments to functions. The model of Abramsky and McCusker is an extension the
game semantics of PCF developed by Hyland and Ong [1994], obtained by dropping
the “innocence” condition; this results in a clear distinction between functional
and imperative behaviours in the model. They show that all finite elements in
their model are definable by terms in essentially the same version of Idealized Algol
considered here; this leads, after quotienting, to a fully abstract model. Previously,
full abstraction had only been obtained up to second-order types [O’Hearn and
Reddy 1999], which is where our analysis here (which was carried out around the
same time) ends as well.

The difference between our semantics and implicit-state models is striking. For
us the primitive concepts are sets of states, and the linearly polymorphic way
that states are used. In the implicit models the primitive concepts are events or
observations, and interaction of a program with its environment. The conceptual
distance between the two approaches is thus very great. It is not obvious how to
formulate a precise linkage between them, but to do so would be valuable.

We now turn to related work on linear functional programming. The informal
connection between imperative-like state transformations and linear functions was
emphasized from the beginning in linear logic. It formed part of the motivation
for a number of linear functional languages [Mackie 1994; Lafont 1988; Holmstrom
1988; Chirimar et al. 1994], where linearity could be used to restrict the number of
pointers to functional values and, in some cases, guarantee the safety of destructive
array update.

This connection was illustrated particularly clearly by Wadler [1990], by translat-
ing an imperative langauge, without procedures, into a linear functional language.
We argued in the Introduction that a language without procedures does not itself
provide a stringent test for the imperative expressiveness of a linear language, but
we do want to emphasize our debt to the work of Wadler, and to other early works
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on linear logic, for making the connection between imperative-like state transfor-
mations and linear functions. To these works we would add the point that moving
from simple to polymorphic linear types allows for a treatment of procedures and
local state, and as a result it becomes possible to cover a much wider range of
imperative programming. We would also add that polymorphism can be used to
capture that a non-linear state be used linearly.

Prior to the appearance of linear logic, Schmidt [1985] had already studied the
relationship between syntactic restrictions on A-terms and the imperative nature of
state transformations. His aim was to detect, in a standard denotational definition,
when a parameter was “single threaded.” The idea was that this would enable a
compiler generator to detect when the parameter could be implemented in a store-
like manner, by overwriting. His aim, and form of analysis, was thus different from
ours; in particular, he works with simple types, where polymorphism plays a central
role here. Some of his basic ideas are reflected in our translations, but one that
is not is passivity [Reynolds 1978], where multiple copies of a store parameter are

3

allowed in contexts that ensure that they are used in a read-only fashion.

12. DISCUSSION

In the course of the paper we have presented syntactic translations from two Algol-
like languages into a polymorphic, linear lambda-calculus, given a semantic model
of the linear language, and used it characterize the cpo structure of a number
of low-order types. We hope particularly to have convinced the reader that the
translations and semantic model provide simple and effective principles that can be
utilized in a variety of circumstances. This is highlighted by our work in Section 7,
and also by Pitts’s work referenced above.

The semantic analysis provided by the strict parametricity model is, however,
incomplete in come respects. We were in fact surprised to find that we could push
the model as far as we could. To clarify this incompleteness we discuss a number
of unanswered questions.

The first question arises from the work in Section 9.2: Does parametricity imply
naturality with respect to expansions at all types for the Idealized Algol translationT’
If the answer is no then the translation of Idealized Algol, as it stands, would not
verify the isomorphisms of cartesian closed categories at higher types. We indicated
in Section 9.2 that this is not a fundamental problem, as we know a number of ways
to overcome it. Furthermore, in Section 8 we verified an adequacy result to the effect
that the translation gets convergence at primitive types right, so the translation
can be used to soundly reason about Idealized Algol programs. But the question
is irksome, because one might expect that parametricity should imply naturality
[Plotkin and Abadi 1993].

Our analysis of equivalence only went as far as second-order types. We have
not found a counterexample to full abstraction at higher types in Idealized Algol,
but we did find an explicit limitation in the model for SCI in Section 7.3. One
could consider a more focused study of contextual equivalence, either by using
different models or by a syntactic analysis of the translations. Independently of
any specific model we could ask if the translations are fully abstract, i.e., whether
they preserve and reflect appropriate notions of contextual equivalence for source
and target languages.
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It may have seemed odd that we did use the strict function model, since it is
actually a model of relevant lambda-calculus (it models Contraction). We observed
that snapback requires both Contraction and Weakening, so that eliminating one
has the effect of banishing snapback operators. But there may be a more com-
prehensive explanation than this. For primitive types in the translations there is
always a unique occurrence of any type variable to the left or right of —o: Intu-
itively, if you perform a Contraction, copying a value of one of these types, it must
be followed by a Weakening to preserve the uniqueness property (and conversely if
a Weakening is performed first). This leads to the question (which we leave impre-
cisely stated) of whether the translations are the same if we take relevant, linear, or
affine lambda-calculus as the target language. When one moves outside the ranges
of our translations, beyond Algol-like types, we expect that linearity would play
a more crucial role; we would benefit from a more precise understanding of these
points.

With this discussion of technical properties, it is well to remember that the
original motivation for semantics based on store shapes was much more basic: It
was to build a model that made the stack discipline obvious [Reynolds 1981a]. In
particular, it is clear from the semantics of types that the shape of the store in the
final state obtained by evaluating a command must be the same as the shape in
the initial state. While the translation for Idealized Algol follows previous functor-
category models closely, in SCI store shapes play a further role, making clear that
different identifiers work with different pieces of the state. So, more generally,
we may say that semantics based on store shapes aims to communicate a spatial
intuition: Programs working with different store shapes act on separate parts of
the store, and consequently don’t interfere.

Our work here gives an implementation of store shape semantics by translation
into a linear polymorphic functional language. We have, for the most part, con-
centrated on what the resulting semantics says about the source languages, but if
we switch focus to the target language then the translations can just as well be
regarded as telling us about it. In particular, since we already understand Algol
as an imperative language, the translations (and representation results) give us a
precise imperative way of reading certain linear types. This does not, however, help
us to understand types that lie beyond the ranges of our translations, because there
we do not have a prior understanding of an imperative language to fall back on.

A final note on the source languages, and limitations. While we concentrate
on call-by-name, the adaptation of our semantic methods to a call-by-value setting
does not appear to raise insuperable difficulties. Much more difficult is the inclusion
of storable procedures or commands. Idealized Algol and SCI allow only stateless
entities, such as integers, to be stored, and we do not know how well our methods
might extend to deal with stateful values in the store.

We wonder whether this apparent limitation could be turned into a feature.
That is, both Idealized Algol and Basic SCI are higher-order imperative languages
that obey a stack discipline for variable declarations. While the stack discipline is
made evident by the translations of types, there are other polymorphic types, lying
outside the ranges of the translations, that display the same stack-like character.
This raises the question of whether the stack-like sublanguage could be demarcated,
perhaps leading to an imperative language that is more general and flexible than
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Algol, while maintaining efficient storage utilization.
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